Saint-Venant decay rates for the rectangular cross section rod


Stephen, N.G. and Wang, P.J. (2004) Saint-Venant decay rates for the rectangular cross section rod. Journal of Applied Mechanics, 71, (3), 429-433. (doi:10.1115/1.1687794).

Download

Full text not available from this repository.

Original Publication URL: http://dx.doi.org/10.1115/1.1687794

Description/Abstract

A finite element-transfer matrix procedure developed for determination of Saint-Venant decay rates of self-equilibrated loading at one end of a semi-infinite prismatic elastic rod of general cross section, which are the eigenvalues of a single repeating cell transfer matrix, is applied to the case of a rectangular cross section. First, a characteristic length of the rod is modelled within a finite element code; a superelement stiffness matrix relating force and displacement components at the master nodes at the ends of the length is then constructed, and its manipulation provides the transfer matrix, from which the eigenvalues and eigenvectors are determined. Over the range from plane stress to plane strain, which are the extremes of aspect ratio, there are always eigenmodes which decay slower than the generalized Papkovitch-Fadle modes, the latter being largely insensitive to aspect ratio. For compact cross sections, close to square, the slowest decay is for a mode having a distribution of axial displacement reminiscent of that associated with warping during torsion; for less compact cross sections, slowest decay is for a mode characterized by cross-sectional bending, caused by self-equilibrated twisting moment.

Item Type: Article
Related URLs:
Subjects: T Technology > TJ Mechanical engineering and machinery
Q Science > QC Physics
Divisions: University Structure - Pre August 2011 > School of Engineering Sciences
ePrint ID: 22914
Date Deposited: 23 Mar 2006
Last Modified: 27 Mar 2014 18:12
URI: http://eprints.soton.ac.uk/id/eprint/22914

Actions (login required)

View Item View Item