Study of density effects in turbulent buoyant jets using largeeddy simulation
Zhou, X., Luo, K.H. and Williams, J.J.R. (2001) Study of density effects in turbulent buoyant jets using largeeddy simulation. Theoretical Computational Fluid Dynamics, 15, (2), 95120. (doi:10.1007/s001620100045).
Download
Full text not available from this repository.
Description/Abstract
LargeEddy simulations (LES) of spatially evolving turbulent buoyant round jets have been carried out with two different density ratios. The numerical method used is based on a lowMachnumber version of the NavierStokes equations for weakly compressible flow using a secondorder centredifference scheme for spatial discretization in Cartesian coordinates and an AdamsBashforth scheme for temporal discretization. The simulations reproduce the typical temporal and spatial development of turbulent buoyant jets. The nearfield dynamic phenomenon of puffing associated with the formation of large vortex structures near the plume base with a varicose mode of instability and the farfield random motions of smallscale eddies are well captured. The pulsation frequencies of the buoyant plumes compare reasonably well with the experimental results of Cetegen (1997) under different density ratios, and the underlying mechanism of the pulsation instability is analysed by examining the vorticity transport equation where it is found that the baroclinic torque, buoyancy force and volumetric expansion are the dominant terms. The rollup of the vortices is broken down by a secondary instability mechanism which leads to strong turbulent mixing and a subsequent jet spreading. The transition from laminar to turbulence occurs at around four diameters when random disturbances with a 5% level of forcing are imposed to a tophat velocity profile at the inflow plane and the transition from jetlike to plumelike behaviour occurs further downstream. The energyspectrum for the temperature fluctuations show both m5/3 and m3 power laws, characteristic of buoyancydominated flows. Comparisons are conducted between LES results and experimental measurements, and good agreement has been achieved for the mean and turbulence quantities. The decay of the centreline mean velocity is proportional to xm1/3 in the plumelike region consistent with the experimental observation, but is different from the xm1 law for a nonbuoyant jet, where x is the streamwise location. The distributions of the mean velocity, temperature and their fluctuations in the nearfield strongly depend upon the ratio of the ambient density to plume density „a/„0. The increase of „a/„0 under buoyancy forcing causes an increase in the selfsimilar turbulent intensities and turbulent fluxes and an increase in the spatial growth rate. Budgets of the mean momentum, energy, temperature variance and turbulent kinetic energy are analysed and it is found that the production of turbulence kinetic energy by buoyancy relative to the production by shear is increased with the increase of „a/„0.
Item Type:  Article  

Digital Object Identifier (DOI):  doi:10.1007/s001620100045  
ISSNs:  09354964 (print) 

Related URLs:  
Subjects:  Q Science > QA Mathematics > QA75 Electronic computers. Computer science T Technology > TL Motor vehicles. Aeronautics. Astronautics Q Science > QC Physics 

Divisions :  University Structure  Pre August 2011 > School of Engineering Sciences 

ePrint ID:  23100  
Accepted Date and Publication Date: 


Date Deposited:  28 Mar 2006  
Last Modified:  31 Mar 2016 11:43  
URI:  http://eprints.soton.ac.uk/id/eprint/23100 
Actions (login required)
View Item 