Support vector machines for spectral unmixing


Brown, M., Lewis, H.G. and Gunn, S.R. (1999) Support vector machines for spectral unmixing. In, Proceedings of the IEEE 1999 International Symposium on Geoscience and Remote Sensing Symposium (IGARSS '99). EE 1999 International Symposium on Geoscience and Remote Sensing Symposium (IGARSS '99) Piscataway, USA, Institute of Electrical and Electronics Engineers, 1363-1365. (doi:10.1109/IGARSS.1999.774631).

Download

Full text not available from this repository.

Description/Abstract

Mixture modelling is becoming an increasingly important tool in the remote sensing community as researchers attempt to resolve sub-pixel, area information. This paper describes an approach based on a relatively new technique, support vector machines (SVMs), and compares this with more established algorithms such as linear spectral mixture models (LSMMs) and artificial neural networks (ANNs). In the simplest case, the mixture regions formed by the linear SVM and the LSMM are equivalent. Extensions to the basic SVM algorithm allow the technique to be applied to data sets that exhibit spectral confusion and to data sets that have non-linear mixture regions. The paper highlights the key advantage offered by the SVM approach in that it selects end-members (pure pixels) automatically and the potential of the SVM method is demonstrated using a Landsat TM data set

Item Type: Book Section
ISBNs: 0780352076 (hardback)
Related URLs:
Subjects: T Technology > T Technology (General)
Divisions: University Structure - Pre August 2011 > School of Engineering Sciences
University Structure - Pre August 2011 > School of Electronics and Computer Science
ePrint ID: 23745
Date Deposited: 15 Feb 2007
Last Modified: 27 Mar 2014 18:12
Publisher: Institute of Electrical and Electronics Engineers
URI: http://eprints.soton.ac.uk/id/eprint/23745

Actions (login required)

View Item View Item