Adaptive Neurofuzzy Kalman Filter


Wu, Z.Q. and Harris, C.J. (1996) Adaptive Neurofuzzy Kalman Filter. FUZZ-IEEE '96 - Proceedings of the fifth IEEE International Conference on Fuzzy Systems , 1344-1350.

Download

Full text not available from this repository.

Description/Abstract

It is of great practical significance to merge the neural network identification technique and the Kalman filter to achieve adaptive and optimal filtering and prediction for unknown observable nonlinear processes. In this paper, an operating point dependent ARMA model is used to represent the nonlinear system, and a neurofuzzy network is used to approximate each AR parameter of such a model which can then be converted to its equivalent state-space representation. Using this state-space form, a Kalman filter can be applied to estimate the system state. The system modelling algorithm and the Kalman filter are combined in a bootstrap scheme, in which the error between the measured output and the filtered output is used to train the neural network, thus adaptive filtering for noisy nonlinear system is achieved. A simulated example is also given.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Additional Information: Address: New Orlean,USA
Divisions: Faculty of Physical Sciences and Engineering > Electronics and Computer Science > Comms, Signal Processing & Control
ePrint ID: 250002
Date Deposited: 19 Apr 2000
Last Modified: 27 Mar 2014 19:50
Further Information:Google Scholar
ISI Citation Count:0
URI: http://eprints.soton.ac.uk/id/eprint/250002

Actions (login required)

View Item View Item