Neurofuzzy Modelling and State Estimation

Wu, Z.Q. and Harris, C.J. (1996) Neurofuzzy Modelling and State Estimation. IEEE Medit. Symp. on Control and Automation: Circuits, Systems and Computers '96 , 603-610.


Full text not available from this repository.


It is of great practical significance to merge the neural network identification technique and the Kalman filter to achieve optimal adaptive filtering and prediction for unknown observable nonlinear processes. In this paper, an operating point dependent ARMA model is used to represent the nonlinear system, and a neurofuzzy network is used to identify this model. It is then converted to its equivalent state-space representation with which a Kalman filter is applied to perform state estimation. Two approaches to combine the neurofuzzy modelling and the Kalman filter algorithm, indirect method and direct method, are presented. A simulated example is also given.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Additional Information: Address: Hellenic Naval Academy, Piraeus, Greece
ISBNs: 9608485002
Divisions : Faculty of Physical Sciences and Engineering > Electronics and Computer Science > Southampton Wireless Group
ePrint ID: 250010
Accepted Date and Publication Date:
July 1996Published
Date Deposited: 04 May 1999
Last Modified: 31 Mar 2016 13:50
Further Information:Google Scholar

Actions (login required)

View Item View Item