Neurofuzzy Modelling and State Estimation


Wu, Z.Q. and Harris, C.J. (1996) Neurofuzzy Modelling and State Estimation. IEEE Medit. Symp. on Control and Automation: Circuits, Systems and Computers '96 , 603-610.

Download

Full text not available from this repository.

Description/Abstract

It is of great practical significance to merge the neural network identification technique and the Kalman filter to achieve optimal adaptive filtering and prediction for unknown observable nonlinear processes. In this paper, an operating point dependent ARMA model is used to represent the nonlinear system, and a neurofuzzy network is used to identify this model. It is then converted to its equivalent state-space representation with which a Kalman filter is applied to perform state estimation. Two approaches to combine the neurofuzzy modelling and the Kalman filter algorithm, indirect method and direct method, are presented. A simulated example is also given.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Additional Information: Address: Hellenic Naval Academy, Piraeus, Greece
ISBNs: 9608485002
Divisions: Faculty of Physical Sciences and Engineering > Electronics and Computer Science > Comms, Signal Processing & Control
ePrint ID: 250010
Date Deposited: 04 May 1999
Last Modified: 27 Mar 2014 19:50
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/250010

Actions (login required)

View Item View Item