An Analysis of the Application of B-spline Neurofuzzy Construction Algorithms

Brown, M., Bossley, K.M. and Harris, C.J. (1996) An Analysis of the Application of B-spline Neurofuzzy Construction Algorithms. EUFIT '96 , 1830--1834.


Full text not available from this repository.


This paper investigates the application of the B-spline neurofuzzy construction algorithms, developed by the ISIS research group, to identifying appropriate models from two standard data sets. The two data sets are the Box-Jenkins data and a simulated system data set, both of which can are described by discrete time series models. It is shown that the construction algorithms pick out the dominant linear components associated with this data, as well as the small nonlinearities, and the model's structure facilitates the analysis of the data where errors occur. This is simplified by the incorporation of these techniques inside NeuFrame: a PC-based graphical development environment.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Divisions : Faculty of Physical Sciences and Engineering > Electronics and Computer Science > Southampton Wireless Group
ePrint ID: 250120
Accepted Date and Publication Date:
Date Deposited: 04 May 1999
Last Modified: 31 Mar 2016 13:50
Further Information:Google Scholar

Actions (login required)

View Item View Item