A Stability Analysis of the Modified NLMS Rules


Brown, M., An, P.E. and Harris, C.J. (1995) A Stability Analysis of the Modified NLMS Rules. IEEE Trans. on Signal Processing

Download

Full text not available from this repository.

Description/Abstract

This paper investigates the stability of two recently proposed modified NLMS learning rules that are based on calculating the smallest weight change which stores the current training pattern exactly. The Lp (p = 1, 2, infinity) norm used to measure the weight update produces different learning algorithms, and it is shown that both new learning rules (p = 1, infinity) can become unstable, as the parameter error increases without bound. This is in direct contrast to the standard (p = 2 norm) NLMS rule which is unconditionally stable (in the sense described in this paper - monotonically non-increasing weight error), and indeed the NLMS rule was originally derived to overcome such limitations. The conditions under which instability can occur are investigated both theoretically and in simulation and are shown to depend on the form of the input vector and only indirectly on the learning rate.

Item Type: Article
Additional Information: submitted for publication
Divisions: Faculty of Physical Sciences and Engineering > Electronics and Computer Science > Comms, Signal Processing & Control
ePrint ID: 250283
Date Deposited: 04 May 1999
Last Modified: 27 Mar 2014 19:51
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/250283

Actions (login required)

View Item View Item