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Our e�orts form part of a larger project to build prototypes for IC-cardsystems so as to study the properties of these systems. In previous work, wehave taken a rather more formal approach to prototyping smartcard and networkarchitectures using similar transaction protocols [7]. The focus of the presentpaper is on the structural aspects of the transactions, and more precisely on theclarity of structure rendering. This does not preclude the use of formal methodsto make additional statements about the correctness of the system, but this isnot our aim here.The present paper emphasizes the structural aspects of transaction protocolimplementation through the use of a visual, object oriented, data 
ow program-ming language Prograph [6]. Important visual cues inherent in the work withprotocols are most naturally rendered by a visual programming language. A fullimplementation of a protocol makes it possible to run simulations of the proto-col, and even more importantly to animate the protocol. The visual feedback tothe protocol designer and prototype builder is vital to a full understanding ofthe design.A structure has been developed for the transaction protocols in the Euro-pean draft standard for an Inter-sector electronic purse [5]. This document willhenceforth be referred to as `the standard'. The standard contains several di�er-ent transaction protocols, which �t the proposed structure. We believe that othertransaction protocols will also be accommodated by the proposed structure.The next section introduces our case study, the protocols from the standard.In Sect. 3 we discuss principles of structuring synchronous protocols. These areused to describe a particular protocol from the standard in Sect. 4. This is fol-lowed by a description of a prototype animation in Sect. 5. Related work andconclusions are presented in the last two sections.2 Inter-Sector Electronic Purse.The standard [5] describes a security architecture for electronic purse systems.In the electronic purse system three parties are de�ned. The purse provider (forexample a bank) issues the electronic purse. The service provider (for examplea shop) accepts electronic payment for services. The card holder charges theelectronic purse with funds and uses the purse to pay for services. The systemworks in a similar way to travellers cheques. These are also prepaid by theuser and accepted as payment by a service provider. The organisation issuingthe travellers cheques guarantees the cheques to both the user and the serviceprovider. The electronic purse is not a real purse in the sense that two purseholders cannot exchange funds.The electronic purse system de�nes a number of protocols for the three partiesto use when communicating for a speci�c purpose. The major protocols are:{ Load the purse with the electronic counter value of a certain amount ofconventional currency. This transaction involves the card holder and thepurse provider.



{ Purchase a service using the electronic purse to e�ect payment. This trans-action involves the card holder and the service provider.{ Collect the totals of the electronic transactions. This protocol credits theservice provider with the conventional counter value of the electronic money(similar to a shop keeper paying travellers cheques into the bank account).This transaction involves the purse provider and the service provider.A number of other protocols are de�ned for maintenance purposes, such as mon-itoring the status of the purse, conversion of currency etc.In the standard, the transaction protocols are partly described using naturallanguage, partly using a BASIC-like programming language. The standardisa-tion committee has spent considerable e�ort in clarifying the important issues.However, the transactions are su�ciently complicated to make the descriptionsverbose, di�cult to interpret and error prone. The use of adequate structuringtools would have been useful to increase the clarity of the descriptions.2.1 Structure in the StandardThe standard is structured as a four part document. Within each part variousstructuring tools are used:{ Part 1 describes the basic business relationships of the purse provider, theservice provider and the purse holder. The three parties conduct their busi-ness through a number of logical components that interact. The standardspeci�es the functionality and interconnections of these logical components.The standard distinguishes Secure Application Modules (SAM) from othermodules that are not secure.{ Part 2 describes the security architecture of the electronic purse system.The description consists of a global overview and a detailed description ofeach protocol. The global overview is cryptographically neutral. The detaileddescription of a particular protocol will be shown specialised towards a par-ticular cryptographic system. For most protocols, both an RSA and a DESversion exist.{ Part 3 describes the data elements and interchanges.{ Part 4 describes the devices.In the structures listed above it is Part 2 that provides a handle on the structur-ing of the actual protocols; It gives global and a detailed view on the protocols.The remaining structuring tools o�ered by the standard are aimed either at thelevels above the protocols, such as the 
ow of electronic value and payment, or atlevels below the protocol. They are thus not relevant to our presentation, whichdeals with the protocols.3 Structure in a Transaction Protocol.The structure of a protocol from the standard is highlighted by separating theessential elements of the protocol from the details. This results in a two part



description consisting of a one page overview of the main elements of the protocol(see Fig. 2 for an example) and a listing of the details running over several pages(for a fragment see Fig. 3, a digest of these �gures is given in Sect. 4).The structure of the one page overview follows the exchange of messages thatarises when a particular transaction is made. This is typical for the description ofcryptographic protocols, which mostly follow the synchronous pattern as shownin Fig. 1a. Here two parties `Alice' and `Bob' exchange a number of messageswhilst each performs some actions A1 : : : A6 and generate some responses R2: : : R5. Alice BobA1: �! A2:R2: �A3:R3: �! A4:R4: �A5:R5: �! A6:(a) Disregarding thestate owned by theparties.

Alice BobA1: �! A2:# a1 # b1R2: �A3: # a2 # b2R3: �! A4:# a3 # b3R4: �A5: # a4 # b4R5: �! A6:(b) Explicitly tracingthe state owned bythe parties.Fig. 1. Two abstract renderings of a synchronous protocol where two parties exchangemessages. The Ai represent actions of the parties. The Ri are the responses and the aiand bi represent the state owned by the two parties.The protocol of Fig. 1a does not expose much detail but it does show thatwe are dealing with a synchronous protocol between two parties. To obtain moreinformation about the protocol one would have to zoom in on the Ai and Ri.The standard does exactly this, and it does so at two levels of detail. The �rstlevel exposes some detail (the one page overview) and the second level exposesall detail. The standard is reasonably successful when it describes the essential



elements of a protocol in the one page overview. The data elements that aremanipulated by the partners in the transaction are exposed as well as the dataelements that are transmitted in the messages. Some of the relevant operationson the data elements are also exposed, such as `sign' and `verify' (these operationsapply to signatures).The standard uses no other structuring methods. We have identi�ed twoadditional structuring tools that can successfully and usefully be applied to aprotocol description. These tools will be presented in the next two sections.3.1 Ownership of Data Imposes StructureThe �rst additional structuring tool extends the idea that in a protocol data isowned by one of the two parties. Data that is not transferred in a message isnot accessible to the other party. We will often call the data that is owned by aparty the state of that party. Only data that is carried explicitly from one actionto the next is accessible. Data that is not explicitly traced becomes inaccessible.Tracing the state in an abstract protocol is schematically rendered in Fig. 1b.For example, the arrow labelled a1 carries the state of Alice from action A1 toaction A3.In a concrete protocol one might trace all data elements explicitly from itsproducer to its consumer, so that it is clear where data is produced, accessed,modi�ed and destroyed, thus making it possible to reason about the (mis)use ofdata elements.3.2 Action Details Impose Structure and Sub-structureThe second structuring tool that we wish to impose on a protocol descriptionconcerns the internal structuring of the actions taken by a party. The followingthree steps are essential within each action:{ Operational aspects describe what the protocol is for and how the operationsit supports take place. For example, The electronic purse protocols serve totransfer funds. The structure should make it easy to �nd out when and howfunds are transferred.{ Security aspects describe what security is used for and how it is achieved.Security in the electronic purse protocol serves to authenticate the partiesand to guarantee non-repudiation. It must be possible to uniquely identifytransactions and parties involved in transactions. Security is delivered bycryptographic means. The structure should identify the cryptographic dataand operations.{ Protocol aspects describe which data are transmitted and when the data istransmitted. The remaining data are kept locally by the parties involved ina transaction.The low level details of each of these aspects should be independent of the highlevel aspects. For example it should be possible to exchange one cryptographicsystem for another without a�ecting the functionality of the protocol.



The three steps within each action are su�cient to describe transaction pro-tocol in the ideal world. Adding security aspects to the protocols requires eachstep to be subdivided into several sub-steps. We identify six sub-steps in eachaction:{ Protocol aspects { capture vars receives the message. The contents of themessage are captured in the state.{ Operational aspects { operational conditions check the state for operationalerrors. After checking the operational conditions, the state is known to beconsistent.{ Security aspects { protocol security generates and checks the data used forauthentication and non-repudiation. This includes the provision of uniqueidenti�ers for the components as well as the transaction.{ Security aspects { cryptographic security performs the cryptographic func-tions, such as encryption, hashing and signing of relevant data.{ Operational aspects { operations modify the state to re
ect the progressmade in the current transaction.{ Protocol aspects { form response gathers the data necessary to generate theresponse to the incoming message.The structure of an action is su�ciently general to capture the pattern of com-putation imposed by the transaction protocols of the standard.3.3 Using the Data Flow Paradigm to Make Structure ConcreteHaving identi�ed two new ways of imposing structure on a transaction protocol,we will now show that the data 
ow paradigm [9, 14] is ideal to support thisstructure. There are two reasons for this. The �rst is that both data 
ow pro-grams and protocols are naturally highly visual. The second reason is that thedata 
ow paradigm requires data to be traced explicitly from its source to itsdestination.At the lowest level, data 
ow is based on the manipulation of data by state-less operators. An operator can have several inputs and outputs. An operator�res as soon as all its inputs are available. To pass data from one operatorto another requires an explicit connection between the operators. This makesit possible to trace explicitly the origin and destination of all data. The basicstate-less operators have no memory; state needs to be manipulated explicitlyas data. Operators can be connected to form a new, more powerful operator.These constructed operators may have state, which at the implementation levelof the constructed operator would be clearly visible. When viewed as a separateentity, the state of a constructed operator would not be visible.The protocol of Fig. 1b can be given a data 
ow interpretation. This requiresinterpreting the actions Ai as (constructed) operators. The arrows in the protocolform the data 
ow edges.A data 
ow network is most naturally represented as a picture. This corre-sponds well to the usual rendering of protocols. The extra edges (cf. the di�erence



between Fig. 1a and b) needed for a data 
ow diagram to thread the `state' ofeach of the parties in the protocol gives the picture an extra visual cue. It showsclearly that the state is not threaded arbitrarily through the system, and that thestate is not accessible to just anyone. Instead the state is con�ned to particularactions. The state must be con�ned, because it may contain secret information.Obvious secrets that must not leak are cryptographic keys. In many applicationsthe operational data is also regarded as sensitive. In all cases it must be clearwhere the sensitive information resides, so that proper protective measures canbe made.The graphical nature of the data 
ow model gives leverage in the prototypingof a protocol for a security architecture. In an interactive, GUI based system suchas Prograph, the visual aspect allows the designer to interact directly with theprototype. Animations of the system make it possible to trace the 
ow of data.The animation can be stopped to allow data to be inspected and altered. Thisgives the designer immediate and valuable feed back.4 Load Transaction from the Draft Standard.The standard describes a number of transaction protocols in the style of Fig. 2.It is su�cient for the present discussion to describe only the essential elements ofone of the transactions: the load purse transaction. The details the transactionmay be found in the standard.Figure 2 shows three parties engaged in a the load purse transaction: TheInter-sector Electronic Purse (IEP), the Load Device Application (LDA) andthe Purse Provider Secure Application Module (PPSAM). The LDA acts as anintermediary driving the transaction because it is the device operated by thepurse holder. From the security point of view, the LDA is transparent. This im-plies that our abstract two party protocol is applicable to describing the protocolfrom the standard. An important aspect of the driving function of the LDA isthat it always checks the completion codes of the IEP and the PPSAM. If thecompletion code indicates an error, the LDA informs the purse holder and abortsthe entire transaction.Steps A1{C2The transaction starts when the purse holder inserts the IEP in the LDA de-vice. Step A1 acquires the amount to be loaded MLDA and currency CURRLDA.Together these two values are referred to as MLDA. Step C2 sends a messageto the PPSAM containing the command to `initialise PPSAM for Load'. Theparameter of the command is the amount and currency to be loaded (MLDA).Steps A2{R2The PPSAM at step A2 �rst checks that it is able to deal with the requestedcurrency CURRLDA. Step A2 then checks that the balance of the PPSAM,BALPPSAM, is su�cient for the load transaction. Then the PPSAM generates arandom number R which will serve to uniquely identify the transaction. At stepR2 the PPSAM forms the response message to the LDA. The response messagecontains as parameters the identity of the PPSAM and the random number.



IEP LDA PPSAMA1: Acquire MLDAC2: Initialise PPSAM forLoad �!parameters(MLDA) A2: verify(CURRLDA)verify(BALPPSAM �MLDA)Generate random R � R2: response(PPPPSAM,PPSAM, R) � C3: Initialise IEP for Loadparameters(PPPPSAM,PPSAM, R, MLDA)A3: verify(CURRLDA)verify(BALIEP +MLDA � BALmaxIEP)NTIEP:=NTIEP + 1S1:=sign(PPIEP, IEP,DEXPIEP,NTIEP, MLDA, BALIEP,PPSAM, R)R3: response(FDIEP,NTIEP, BALIEP, S1) �! C4: Debit PPSAM �!parameters(FDIEP,NTIEP, BALIEP, S1) A4: verify(has got/will getconventional payment)verify(FDIEP)verify(S1)S2:=sign(PPPPSAM,IEP, NTIEP, MLDA)BALPPSAM:=BALPPSAM �MLDA � R4: response(IKPPSAM, S2) � C5: Credit IEPparameters(IKPPSAM,S2)A5: verify(S2)S3:=sign(PPIEP,PPSAM, R, CCIEP)BALIEP:=BALIEP +MLDAR5: response(S3, CCIEP) �! C6: PPSAM Load acknowl-edgement �!parameters(S3, CCIEP) A6: verify(S3)verify(CCIEP) � R6: response(CCPPSAM)Fig. 2. Load transaction without an LSAM from the standard.



The identity of the PPSAM consists of two elements: the identity of the device,PPSAM, and the identity of the purse provider who owns the device PPPPSAM.Step C3The LDA sends the `initialise IEP for load' command to the IEP, with theamount and currency to be loaded. The LDA also sends the identi�cation infor-mation of the PPSAM to the IEP.Steps A3{R3The IEP �rst checks that it can deal with the requested currency. It thenchecks whether its balance BALIEP would not exceed a predetermined maxi-mum BALmaxIEP. The IEP increments its transaction count NTIEP to generatea unique number of its own. The �rst authentication related step is the creationof the signature S1. It contains a number of relevant data elements including theexpiration date of the IEP, DEXPIEP, and the identity of the IEP, the identityof the PPSAM and the unique numbers generated by the two parties. The re-sponse message generated at R3 packages all relevant information for the LDA.The notation FDIEP is an abbreviation of a list of various data elements includingidentities, expiration date and keys for the security system.Step C3The LDA continues the transaction if the IEP is able to deal with the currencyand amount to be loaded. It sends the `debit PPSAM' command with the relevantparameters to the PPSAM.Steps A4{R4The PPSAM checks that the counter value of the money to be loaded has beensupplied by conventional means. This could be done by, for example, requiringthe purse holder to insert some bank notes into the LDA device. The datacontained in FDIEP will be checked. This involves testing operational conditions,such as whether the PPSAM and the IEP are indeed able to interact with oneanother, whether the IEP has perhaps been cancelled etc. The second veri�cationstep authenticates the IEP to the PPSAM via the signature S1. The signatureS2 is then computed, so that later in step A5 the IEP is able to authenticate thePPSAM. The PPSAM has now been satis�ed that all the operational conditionshave been checked. Furthermore it knows that it is communicating with a genuineIEP, so the balance of the PPSAM can be decremented. This is the �rst `realoperation'. The response IKPPSAM as generated at step R4 contains a list ofrelevant data for the IEP.Step C5The LDA sends the `credit IEP' command along with relevant parameters to theIEP.Steps A5{R5The IEP authenticates the PPSAM. The IEP then computes its second signature,S3, which is necessary for the PPSAM at step A6 to make sure that the loadhas indeed taken place. If one were to remove the IEP, for example, whilst it iscarrying out step A5, the PPSAM needs to know about this so that it can undothe debit operation on its balance. The second `real operation' of the transactionis to increment the balance of the IEP, just before the response at step R5.



Step C6The LDA sends the `PPSAM load acknowledgement' command. The completioncode CCIEP is passed to the PPSAM so that it can check whether the IEP hasbeen successful in incrementing its balance.Steps A6{R6The �nal step checks the completion of the IEP. Step R6 sends a �nal responseto the LDA, which can be used to produce a receipt. This has not been madeexplicit in the given transaction protocol, as it is not interesting from the pointof view of the security.4.1 Analysis of the Transaction StructureThe transaction shown in Fig. 2 contains all of the aspects identi�ed by thestructuring tools of Sect. 3:{ Operational aspects:� Checking operational conditions at A2, A3 and A4.� Performing operations at A4 and A5.{ Security aspects:� Generation of signatures at A3, A4 and A5.� Veri�cation of signatures at A4, A5 and A6.{ Protocol aspects:� Driving the transaction at C2 . . . C6.� Generation of command messages at C2 . . . C6 and the generation ofresult messages at R2 . . . R6.� Decoding of command messages at A2 . . . A6 and the decoding of resultmessages at C3, C4, C5 and C6.The presentation of Fig. 2 focuses on the protocol aspects, as the messages areclearly identi�ed. The other elements of the structure are not identi�ed. We will�rst study some of the details of one of the actions in the protocol. Thereafterwe present a description of the load transaction from the standard with all itsstructure clearly identi�ed.4.2 Details of Debit PPSAMThe analysis of the transaction applies to the level of detail as shown in Fig. 2.This ignores a number of important elements, such as which cryptographic sys-tem is used, and whether or not operations are logged. Such elements must playa role in a comprehensive analysis of the protocol. To illustrate these elements wewill zoom in on the most interesting step A4{R4, which debits the PPSAM. Thisstep is the only step which de�nes all of the operational, security and protocolaspects. Figure 3 shows step A4{R4 as it appears in the standard.The �rst addition to the earlier, more abstract rendering of step A4{R4 isthat we now see that a log is maintained of the actions taken by the PPSAM.The log contains relevant information necessary to trace all transactions.



PPSAMA4: verify(has got/will get conventional payment) Operational conditionsverify(FDIEP) .verify(S1) Protocol securityS2:=sign(PPPPSAM, IEP, NTIEP, MLDA) .BALPPSAM:= BALPPSAM �MLDA OperationR4: response(IKPPSAM, S2) ProtocolStep Action DetailsA4: Update the log write(Load Log) [IEP, NTIEP] OperationalIs the conventional payment OK? [Outside the scope of this standard] conditionsDoes the IEP belong to the PP? IF PPIEP 62 fPPPPSAMg THEN .CCPPSAM:=PP MISMATCH .write(Load Log) [CCPPSAM] .abort .Is the IEP in the negative �le? IF (PPIEPkIEP) 2 NF THEN .CCPPSAM:=IEP OPPOSED .write(Load Log) [CCPPSAM] .abort .Has the IEP expired? IF DATEPPSAM > DEXPIEP THEN .CCPPSAM:=IEP EXPIRED .write(Load Log) [CCPPSAM] .abort .Is the algorithm and IF (ALGIEP;VKIEP) 62 Protocolkey version supported? f(ALGPPSAM;VKPPSAM)g THEN securityCCPPSAM:=ALG OR KEY MISMATCH .write(Load Log) [CCPPSAM] .abort .Select master key using key version KMLPPSAM:=select(IEP, VKIEP) [fKMLPPSAMg] .Compute diversi�ed key KDPPSAM:=encipher(KMLPPSAM) [IEP] .Compute session key KSESPPSAM:=encipher(KDPPSAM) .[DEXPIEPkNTIEP] .Verify IEP signature IF S1 6= sign(KSESPPSAM) .[MLDAk CURRIEPk BALIEPk PPSAMk R] THEN .CCPPSAM:=LOAD S1 FAILED .write(Load Log) [CCPPSAM] .abort .Compute debit signature S2:=sign(KSESPPSAM) [MLDAk CURRLDA] .Decrease PPSAM balance BALPPSAM:=BALPPSAM �MLDA OperationsR4: Transmit PPSAM parameters anddebit signature response(S2, CCPPSAM) ProtocolFig. 3. Two levels of detail for the `Debit PPSAM' step using DES from the Loadtransaction without an LSAM.



The �rst four IF statements show how the operational conditions are checked.The abort primitive causes the present step to be abandoned. It also generatesa result message to the LDA containing only the completion code CCPPSAM.The identi�ers in bold font are identi�ers that have not yet been seen. Theyappear only at this level of detail. For example NF represents the negative �le.This �le contains the identities of the IEP's that are no longer valid, for example,because they have been reported lost.The �fth IF statement shows how authentication works in the cryptographicprotocol being used. A session keyKSESPPSAM is computed, which is then usedto encipher the data contained in the signature S1. If the enciphered data failsto match the signature, the authentication fails.The standard is in principle neutral with respect to the chosen cryptographicsystem. It provides diagrams such as Fig. 3 both for DES and for RSA.This concludes the description of the standard load protocol. The main pointof the description is that the structure of the protocol is easily obscured by awealth of detail. We have indicated the structural elements by indicating to theright of the statements in Fig. 3 which parts of the structure they represent.In the following section we will look at a conformant prototype of the protocolstructure from the standard, with the aim to clearly expose the structure.5 A Prograph Prototype of the Protocol Structure.It is desirable that the conformant prototype follows the standard as closely aspossible, and so we expect to see the di�erent aspects of the standard re
ected inseparate parts of the implementation. In this section we give the reader a 
avourof the prototype, without becoming too involved in the details of the Prographlanguage.We begin by looking at the �rst part of the standard, where the componentsare de�ned. The window that does this for the example we are using is shown inFig. 4. There are �ve entities de�ned in the Prograph, which correspond to �veof the entities from the standard. These are the components PSAM, IEP andPPSAM and the devices LDA and PDA. At this level, we have also chosen toexpose the di�erence between the values that are part of the permanent data ofcomponents (the State), and the ephemeral or session data (the Vars), since theclassi�cation of data is important.Prograph is an object-oriented language, and the lines between componentsindicate inheritance. The PSAMs, IEPs and PPSAMs are proper componentssince they inherit from COMP State. The LDAs and PDAs are not considered(by the standard) to have the same status, and therefore they do not inheritfrom the class COMP. When running the system, it is possible to open any ofthese icons and examine the attributes that instances of these entities have.Most of the standard is concerned with the actual processing and 
ow ofmessages, and so it is important that the prototype accurately re
ects the viewof Fig. 2, which is the heart of the design. The Prograph method (procedure)which implements this is shown in Fig. 5. The data
ow in Prograph is down the



Fig. 4. The window de�ning the types of components of the standard.page (data enters the top of operations and leaves from the bottom). We haveplaced the operations so that the whole method sends the right visual cues, withthe IEP on the left, the LDA in the middle and the PPSAM on the right. Thismethod is parameterised over the IEP and PPSAM, which come in as pairs of(State, Vars) at the input bar at the top, and return their new States via theoutput bar at the bottom.Following the principle laid out in Sect. 3, we have introduced an extra levelof representation here, for Fig. 2 includes more detail than Fig. 5. The latter ismerely the Prograph equivalent of our general notion of a protocol as given inFig. 1. We can now see that it is useful to be able to view the transaction withoutthe details. Omitting the details also makes the animation of this method (whenthe system dynamically illustrates the operations being �red) clear.Two aspects of the system have been made visible, which could not be seenin the standard. The �rst is concerned with aborting transactions. The notationin Prograph to indicate that an operation might fail, is to add an X on theright. We can thus see that the LDA is in control of the transaction, since it isthe component that can report failure (this is because it is the LDA that looksat the Completion Codes, and decides on the actions).The second aspect that has been made visible in our rendering of the proto-cols, but not in the standard is the explicit threading of state from one step ofthe protocol to the next. The vertical lines connecting the steps to A3, from A3to A5 and from A5 carry the permanent State and the ephemeral Vars of theIEP. Similarly for the LDA in the middle and the PPSAM on the right.



Fig. 5. The method which de�nes the Load no LSAM transaction protocol.



Fig. 6. Process message method conforming to the re�ned substep structure of eachstep in the protocol.Having looked at the transaction at the level of the message and componentstate 
ow, we now wish to examine the processing of the individual messages.Looking inside the Process message operation of Fig. 6, we �nd that it followsexactly the structure of Sect. 3. We can also see clearly where the processing ofa message might cause failure of the step. The data 
ow edges connecting theboxes indicate that in addition to the permanent State and ephemeral Vars theincoming message is also threaded from sub-step to sub-step. This is to tell eachof the methods contained in the sub-steps to which message to respond.We have used Prograph synchros (the connections made from the letter u)



to ensure that we know the order of operation execution, in this case so that,for example, security is checked before any operations take place.

Fig. 7. The Operations method for the PPSAM in response to Debit PPSAM.Continuing down through the structure, we now look at the details of pro-cessing a particular message, A4: Debit PPSAM. As a simple example, openingthe Operations operation for this message, we see (Fig. 7) the actual operationBALPPSAM:=BALPPSAM � MLDA from the one page transaction overview ofFig. 2. The specially-shaped operations are Prographs way of accessing compo-nents of structures. The two at the top of the method access the BALPPSAMand MLDA components (which leave on the right hand outputs) and the one atthe bottom sets the BALPPSAM attribute to the new value. The rectangular boxlabelled with the � sign performs the subtraction.As another example of looking deeper into the structure, we show the Cryp-tographic Security operation (again of the PPSAM in response to Debit PP-SAM). This operation deals with two signatures: it checks S1 and creates S2.The data
ow view on this is provided in Fig. 8. This shows that both operationsneed access to the ephemeral and permanent states, but not to the message. Atthis level we do not see exactly what data elements are required, which would bethe purpose of the next level down, that is the methods Check S1 and Create S2.Checking signature S1 may fail. The creation of S2 cannot fail, but instead its



Fig. 8. The Cryptographic Security method for the PPSAM in response to Debit PP-SAM.value must be recorded in the ephemeral state. Because of the use of locally de-�ned operations (with white bars at the sides) in the dynamic system, it is easyto name the more complex operations. We can also see that it is independent ofthe cryptographic system being used.Looking inside the Create S2 local shown in Fig. 9, we �nd that it has beenpossible to separate the signature processing into two steps. The �rst is to gatherall the values to be put into the signature, as well as any keys and algorithmsfrom the component (these are in IKPPSAM). The second is then to apply thecryptographic routines of the system being used. In this way we have providedcryptographic neutrality by encapsulating the cryptographic details as tightlyas possible.The �nal method to shows the start of the cryptographic system speci�c part,which is where methods for dealing with each of the signatures must be providedfor each cryptographic system. Thus Fig. 10 shows the Make S2 details for DES.It is interesting to note that it is here that the decisions of the cryptographerare documented, which are frequently used to optimise some calculation. In thiscase there are two such decisions, which our Prograph rendering of the protocolbrings to the fore.The �rst is the choice to create the session key (KSESPPSAM) once and touse it twice: to check S1 and to create S2. Figure 10 shows that the session keyKSESPPSAM is simply picked up from the ephemeral state. The code for Check



Fig. 9. The Create S2 local from the Cryptographic Security method for the PPSAMin response to Debit PPSAM.S1 (not shown) puts the session key into the ephemeral state.The second decision is to sign only MLDA and CURRLDA, instead of the dataPPPPSAM, IEP, NTIEP and MLDA, as suggested at step A4 in Fig. 2. (Rememberthat the notation MLDA stands for the pair MLDA and CURRLDA). Omittingthe data is permitted, as they have been used in computing the session key. Onewould have to study the details of Fig. 3 quite carefully to see what is happening.In the Program code omitting the �rst three elements of the list is shown as anexplicit discarding using split-nth.The �nal point about building a prototype in an object oriented system isthat certain mistakes are easily found. Consider the code labelled `Verify IEPsignature' in Fig. 3. We have shown in bold face the data that did not appear inthe one page overview. As could be expected, all data to do with DES, such asKSESPPSAM appear in bold face. Such data could not appear in the one pageoverview of Fig. 2, as that would have made crytographic neutrality impossible.The appearance of CURRIEP is surprising, for it is a data element belongingto the IEP component. The code labelled A4 is part of the PPSAM. Thereare at least two possibilities. Firstly it could be that the standard contains a



Fig. 10. The Make S2 method from DES Encryption system.mistake. Secondly this could be an optimisation relying on the fact that at stepA4, CURRLDA and CURRIEP represent the same value. The construction ofthe conformant prototype of the standard has revealed a number of such issues.Their description is beyond the scope of this paper, as it would require us topresent more detail of the standard.6 Related Work.Protocol structure is generally discussed in terms of the language used to expressthe protocols. At one end of the spectrum we �nd general purpose programminglanguages. They are often used to specify and or implement protocols. Thisprovides little opportunity for appropriately structuring the protocols. At theother end of the spectrum one �nds model-based protocol speci�cations [2, 4].Widely known formal languages such as LOTOS and Estelle provide a highlevel abstract view of protocols and impose structure on the protocols. It isinteresting to note that development of both LOTOS and Estelle were part ofthe standardisation e�orts of OSI.Abbot and Peterson [1] argue the necessity to avoid both extremes. Thishas some elements in common with our work. Their object oriented languageMorpheus is designed for protocol speci�cation. The key idea of Morpheus isto provide a �xed number of so-called shapes, as building blocks for protocols.



The shapes are similar to our components. A shape is a sub class of an abstractsuper class. Code and data reuse of the abstract class and of the shape makeit easy to create speci�c instances of shapes. These instances are then used asbuilding blocks for a protocol. Morpheus allows only a number of predeterminedshapes (a multiplexor, a worker and a router). Abbott and Peterson argue thatthis provides their Morpheus compiler with more scope for optimisation. Ourconformant prototyping system does not need to deliver high performance ando�ers more 
exibility by using a general purpose programming language. Ourprotocols are represented using only a �xed set of classes, which are used ina disciplined fashion. Abbott and Peterson note that protocols from standardsare generally di�cult to represent because of their concern for e�ciency. Infact they represent the functionality of a standard protocol without necessarilyadhering to its exact syntax. Our rendering of the transaction protocols fromthe standard is exact in that sense. We have prototyped every detail of the loadpurse transaction as speci�ed in the standard. Admittedly, we are not aiming tospecify arbitrary protocols, but a more restricted family of protocols.Many tools have been developed to study complex protocol behaviour. TheInterrogator is an automatic protocol security analysis tool [10]; the languageArgos [8] supports automatic protocol validation using a mix of depth-�rst andbreadth-�rst search for particular scenarios; the Protean tool [3] is designed todetect deadlock in complicated protocols speci�ed as petri nets. The emphasisin all these systems is on understanding and reasoning about the dynamics ofcomplex protocols. The understanding is achieved by animations and simulationsof the protocols. The Proteon system, for example, produces animated displaysof the history of a protocol, o�ering the user the opportunity to view a message
owing on an arc, and even to change the message. Such facilities are also o�eredby our system, because they are provided by Prograph. Our prototype thus o�erssophisticated functionality at no extra e�ort.Many authors who work with protocols note that the lack of structure in theprotocols causes them problems. Billington et al [3] and Bochmann et al [13] dis-cuss the possibility of separating normal operations from exceptional conditions,and thus enriching the structure of protocols. Tel [12], in the context of provingproperties of distributed algorithms in general and protocols in particular, sug-gests a number of simple rules that enhance the structure of a protocol. Tel alsosuggests that properties of protocol skeletons may carry over to fully-populatedprotocols, provided certain precautions are taken.Our restricted setting of the authentication protocols has made it possible toseparate out exceptional from normal operations, and also to separate out thesecurity operations. This gives an extra level of structure in our protocols. Toour knowledge this has not been achieved elsewhere.7 Conclusions.The standard way of visualising protocols using pictures with boxes (representingoperations) and arrows (representing messages) is appropriate for a global study



of a protocol. The standard visualisation method is insu�cient to study theprotocols in detail, the problem being that the structuring of the protocols relieson elements not explicit in the standard visual rendering. Such elements includethe security and the state of the interacting components. To render the structureproperly one should visualise not only the operations and the messages but alsothe state and the security.Using the data 
ow model makes it possible to explicitly render the state ma-nipulations implied by the protocols. Using an object oriented design methodol-ogy makes it possible to be selective about the state elements that are accessedand updated at various points in the protocols. A system combining both modelsis thus appropriate to deal with the manipulation of state in the protocols.Security in an abstract sense relies on cryptographic systems. In a concretesense it is the encapsulation of the cryptographic data and operations that deter-mines whether the system is robust or fragile. We have shown how the separationof steps in the protocol into a number of judiciously chosen sub-steps separatesout the important protocol, security and operational aspects. The design methodthat we have used supports this subdivision of larger into smaller steps. It haspointed out where the standard may be unclear. This indicates that building ahighly structured prototype and using an object oriented data 
ow model whichsupports the encapsulation of data and operations gives a high level of con�dencein the robustness of the system.The combination of data 
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