Structuring and Visualising an
IC-card Security Standard

Hugh Glaser!, Pieter H. Hartel»2, Eduard K. de Jong Frz?

! Department of Electronics and Computer Science, University of Southampton, UK,
Email: hg,phhQecs.soton.ac.uk.

2 Faculty of Mathematics, Computer Science, Physics and Astronomy,
University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands,
Email: pieter@Qfwi.uva.nl.

3 QC Technology, Zaandam, The Netherlands, Email: eduard@q2c.nl.

Abstract. The standard way of visualising protocols using pictures with
boxes and arrows is insufficient to study the protocols in detail. The prob-
lem is that the structuring of the protocols relies on elements not explicit
in the usual visual rendering. To solve the problem one should visualise
not only the operations and the messages but also the state and the
security. This paper presents a system which can be used to visualise
a protocol, and is applied to some of the protocols in the load purse
transaction of the CEN Inter-sector electronic purse draft standard as
an example. The resulting conformant prototype provides abstract and
concrete views on the system at all significant levels. The prototype sup-
ports animation of the standard, giving the protocol designer feedback
on design decisions.

Keywords: protocol visualisation, protocol structure, standards, smart cards.

1 Introduction.

The security of IC-card systems depends as much on the cryptography as it does
on the quality of the system implementation. Provably correct implementations
of the relatively complex transaction protocols are as yet infeasible because of
their high cost. The costs of provably correct implementations of complex soft-
ware will come down [11], but presently one has to compromise. The only tech-
nique available for building secure systems is to structure the system carefully.
Many small building blocks and lean interfaces make it difficult for errors to
permeate the entire system. If furthermore the building blocks can be composed
easily, a high level of confidence in the reliability of the system is possible.

When given a particular application area, it is possible to produce structures
that give the required degree of modularity without unduly constraining the
system performance. The work described here is directed at producing an ap-
propriate structure to support the security architecture in an emerging standard.
It is important to scrutinise standards for potential problems in the implementa-
tions. Much effort is put into drafting standards, and once accepted, the standard
will persist for a long time.

Our efforts form part of a larger project to build prototypes for IC-card
systems so as to study the properties of these systems. In previous work, we
have taken a rather more formal approach to prototyping smartcard and network
architectures using similar transaction protocols [7]. The focus of the present
paper is on the structural aspects of the transactions, and more precisely on the
clarity of structure rendering. This does not preclude the use of formal methods
to make additional statements about the correctness of the system, but this is
not our aim here.

The present paper emphasizes the structural aspects of transaction protocol
implementation through the use of a visual, object oriented, data flow program-
ming language Prograph [6]. Important visual cues inherent in the work with
protocols are most naturally rendered by a visual programming language. A full
implementation of a protocol makes it possible to run simulations of the proto-
col, and even more importantly to animate the protocol. The visual feedback to
the protocol designer and prototype builder is vital to a full understanding of
the design.

A structure has been developed for the transaction protocols in the Euro-
pean draft standard for an Inter-sector electronic purse [5]. This document will
henceforth be referred to as ‘the standard’. The standard contains several differ-
ent transaction protocols, which fit the proposed structure. We believe that other
transaction protocols will also be accommodated by the proposed structure.

The next section introduces our case study, the protocols from the standard.
In Sect. 3 we discuss principles of structuring synchronous protocols. These are
used to describe a particular protocol from the standard in Sect. 4. This is fol-
lowed by a description of a prototype animation in Sect. 5. Related work and
conclusions are presented in the last two sections.

2 Inter-Sector Electronic Purse.

The standard [5] describes a security architecture for electronic purse systems.
In the electronic purse system three parties are defined. The purse provider (for
example a bank) issues the electronic purse. The service provider (for example
a shop) accepts electronic payment for services. The card holder charges the
electronic purse with funds and uses the purse to pay for services. The system
works in a similar way to travellers cheques. These are also prepaid by the
user and accepted as payment by a service provider. The organisation issuing
the travellers cheques guarantees the cheques to both the user and the service
provider. The electronic purse is not a real purse in the sense that two purse
holders cannot exchange funds.

The electronic purse system defines a number of protocols for the three parties
to use when communicating for a specific purpose. The major protocols are:

— Load the purse with the electronic counter value of a certain amount of
conventional currency. This transaction involves the card holder and the
purse provider.

— Purchase a service using the electronic purse to effect payment. This trans-
action involves the card holder and the service provider.

— Collect the totals of the electronic transactions. This protocol credits the
service provider with the conventional counter value of the electronic money
(similar to a shop keeper paying travellers cheques into the bank account).
This transaction involves the purse provider and the service provider.

A number of other protocols are defined for maintenance purposes, such as mon-
itoring the status of the purse, conversion of currency etc.

In the standard, the transaction protocols are partly described using natural
language, partly using a BASIC-like programming language. The standardisa-
tion committee has spent considerable effort in clarifying the important issues.
However, the transactions are sufficiently complicated to make the descriptions
verbose, difficult to interpret and error prone. The use of adequate structuring
tools would have been useful to increase the clarity of the descriptions.

2.1 Structure in the Standard

The standard is structured as a four part document. Within each part various
structuring tools are used:

— Part 1 describes the basic business relationships of the purse provider, the
service provider and the purse holder. The three parties conduct their busi-
ness through a number of logical components that interact. The standard
specifies the functionality and interconnections of these logical components.
The standard distinguishes Secure Application Modules (SAM) from other
modules that are not secure.

— Part 2 describes the security architecture of the electronic purse system.
The description consists of a global overview and a detailed description of
each protocol. The global overview is cryptographically neutral. The detailed
description of a particular protocol will be shown specialised towards a par-
ticular cryptographic system. For most protocols, both an RSA and a DES
version exist.

— Part 3 describes the data elements and interchanges.

— Part 4 describes the devices.

In the structures listed above it is Part 2 that provides a handle on the structur-
ing of the actual protocols; It gives global and a detailed view on the protocols.
The remaining structuring tools offered by the standard are aimed either at the
levels above the protocols, such as the flow of electronic value and payment, or at
levels below the protocol. They are thus not relevant to our presentation, which
deals with the protocols.

3 Structure in a Transaction Protocol.

The structure of a protocol from the standard is highlighted by separating the
essential elements of the protocol from the details. This results in a two part

description consisting of a one page overview of the main elements of the protocol
(see Fig. 2 for an example) and a listing of the details running over several pages
(for a fragment see Fig. 3, a digest of these figures is given in Sect. 4).

The structure of the one page overview follows the exchange of messages that
arises when a particular transaction is made. This is typical for the description of
cryptographic protocols, which mostly follow the synchronous pattern as shown
in Fig. 1a. Here two parties ‘Alice’ and ‘Bob’ exchange a number of messages

whilst each performs some actions Al ... A6 and generate some responses R2
. R5.
Alice Bob Alice Bob
Al: Al:
— —
A2: A2:
la L
R2: R2:
— —
A3: A3:
{as I b2
R3: R3:
— —
A4: A4:
las 1 bs
R4: R4:
— —
Ab: Ab:
las 1 ba
Rb5: Rb5:
— —
A6: A6:

(a) Disregarding the
state owned by the
parties.

(b) Explicitly tracing
the state owned by
the parties.

Fig. 1. Two abstract renderings of a synchronous protocol where two parties exchange
messages. The A; represent actions of the parties. The R; are the responses and the a;
and b; represent the state owned by the two parties.

The protocol of Fig. 1a does not expose much detail but it does show that
we are dealing with a synchronous protocol between two parties. To obtain more
information about the protocol one would have to zoom in on the A; and R;.
The standard does exactly this, and it does so at two levels of detail. The first
level exposes some detail (the one page overview) and the second level exposes
all detail. The standard is reasonably successful when it describes the essential

elements of a protocol in the one page overview. The data elements that are
manipulated by the partners in the transaction are exposed as well as the data
elements that are transmitted in the messages. Some of the relevant operations
on the data elements are also exposed, such as ‘sign’ and ‘verify’ (these operations
apply to signatures).

The standard uses no other structuring methods. We have identified two
additional structuring tools that can successfully and usefully be applied to a
protocol description. These tools will be presented in the next two sections.

3.1 Ownership of Data Imposes Structure

The first additional structuring tool extends the idea that in a protocol data is
owned by one of the two parties. Data that is not transferred in a message is
not accessible to the other party. We will often call the data that is owned by a
party the state of that party. Only data that is carried explicitly from one action
to the next is accessible. Data that is not explicitly traced becomes inaccessible.
Tracing the state in an abstract protocol is schematically rendered in Fig. 1b.
For example, the arrow labelled a; carries the state of Alice from action Al to
action A3.

In a concrete protocol one might trace all data elements explicitly from its
producer to its consumer, so that it is clear where data is produced, accessed,
modified and destroyed, thus making it possible to reason about the (mis)use of
data elements.

3.2 Action Details Impose Structure and Sub-structure

The second structuring tool that we wish to impose on a protocol description
concerns the internal structuring of the actions taken by a party. The following
three steps are essential within each action:

— Operational aspects describe what the protocol is for and how the operations
it supports take place. For example, The electronic purse protocols serve to
transfer funds. The structure should make it easy to find out when and how
funds are transferred.

— Security aspects describe what security is used for and how it is achieved.
Security in the electronic purse protocol serves to authenticate the parties
and to guarantee non-repudiation. It must be possible to uniquely identify
transactions and parties involved in transactions. Security is delivered by
cryptographic means. The structure should identify the cryptographic data
and operations.

— Protocol aspects describe which data are transmitted and when the data is
transmitted. The remaining data are kept locally by the parties involved in
a transaction.

The low level details of each of these aspects should be independent of the high
level aspects. For example it should be possible to exchange one cryptographic
system for another without affecting the functionality of the protocol.

The three steps within each action are sufficient to describe transaction pro-
tocol in the ideal world. Adding security aspects to the protocols requires each
step to be subdivided into several sub-steps. We identify six sub-steps in each
action:

— Protocol aspects — capture vars receives the message. The contents of the
message are captured in the state.

— Operational aspects — operational conditions check the state for operational
errors. After checking the operational conditions, the state is known to be
consistent.

— Security aspects — protocol security generates and checks the data used for
authentication and non-repudiation. This includes the provision of unique
identifiers for the components as well as the transaction.

— Security aspects — cryptographic security performs the cryptographic func-
tions, such as encryption, hashing and signing of relevant data.

— Operational aspects — operations modify the state to reflect the progress
made in the current transaction.

— Protocol aspects — form response gathers the data necessary to generate the
response to the incoming message.

The structure of an action is sufficiently general to capture the pattern of com-
putation imposed by the transaction protocols of the standard.

3.3 Using the Data Flow Paradigm to Make Structure Concrete

Having identified two new ways of imposing structure on a transaction protocol,
we will now show that the data flow paradigm [9, 14] is ideal to support this
structure. There are two reasons for this. The first is that both data flow pro-
grams and protocols are naturally highly visual. The second reason is that the
data flow paradigm requires data to be traced explicitly from its source to its
destination.

At the lowest level, data flow is based on the manipulation of data by state-
less operators. An operator can have several inputs and outputs. An operator
fires as soon as all its inputs are available. To pass data from one operator
to another requires an explicit connection between the operators. This makes
it possible to trace explicitly the origin and destination of all data. The basic
state-less operators have no memory; state needs to be manipulated explicitly
as data. Operators can be connected to form a new, more powerful operator.
These constructed operators may have state, which at the implementation level
of the constructed operator would be clearly visible. When viewed as a separate
entity, the state of a constructed operator would not be visible.

The protocol of Fig. 1b can be given a data flow interpretation. This requires
interpreting the actions A; as (constructed) operators. The arrows in the protocol
form the data flow edges.

A data flow network is most naturally represented as a picture. This corre-
sponds well to the usual rendering of protocols. The extra edges (cf. the difference

between Fig. la and b) needed for a data flow diagram to thread the ‘state’ of
each of the parties in the protocol gives the picture an extra visual cue. It shows
clearly that the state is not threaded arbitrarily through the system, and that the
state is not accessible to just anyone. Instead the state is confined to particular
actions. The state must be confined, because it may contain secret information.
Obvious secrets that must not leak are cryptographic keys. In many applications
the operational data is also regarded as sensitive. In all cases it must be clear
where the sensitive information resides, so that proper protective measures can
be made.

The graphical nature of the data flow model gives leverage in the prototyping
of a protocol for a security architecture. In an interactive, GUI based system such
as Prograph, the visual aspect allows the designer to interact directly with the
prototype. Animations of the system make it possible to trace the flow of data.
The animation can be stopped to allow data to be inspected and altered. This
gives the designer immediate and valuable feed back.

4 Load Transaction from the Draft Standard.

The standard describes a number of transaction protocols in the style of Fig. 2.
It is sufficient for the present discussion to describe only the essential elements of
one of the transactions: the load purse transaction. The details the transaction
may be found in the standard.

Figure 2 shows three parties engaged in a the load purse transaction: The
Inter-sector Electronic Purse (IEP), the Load Device Application (LDA) and
the Purse Provider Secure Application Module (PPSAM). The LDA acts as an
intermediary driving the transaction because it is the device operated by the
purse holder. From the security point of view, the LDA is transparent. This im-
plies that our abstract two party protocol is applicable to describing the protocol
from the standard. An important aspect of the driving function of the LDA is
that it always checks the completion codes of the TEP and the PPSAM. If the
completion code indicates an error, the LDA informs the purse holder and aborts
the entire transaction.

Steps A1-C2

The transaction starts when the purse holder inserts the IEP in the LDA de-
vice. Step A1 acquires the amount to be loaded My,pa and currency CURR1,pA.-
Together these two values are referred to as MLpA. Step C2 sends a message
to the PPSAM containing the command to ‘initialise PPSAM for Load’. The
parameter of the command is the amount and currency to be loaded (Mrpa).
Steps A2-R2

The PPSAM at step A2 first checks that it is able to deal with the requested
currency CURRppa. Step A2 then checks that the balance of the PPSAM,
BALppsawm, is sufficient for the load transaction. Then the PPSAM generates a
random number R which will serve to uniquely identify the transaction. At step
R2 the PPSAM forms the response message to the LDA. The response message
contains as parameters the identity of the PPSAM and the random number.

IEP LDA PPSAM
Al:|Acquire M[,pa
C2:|Initialise PPSAM for
Load _
parameters(Mppa)
A2:|verify(CURRy,pA)
Verify(BALppsAM Z
Mrpa)
Generate random R,
R2:|response(PPppsanm,
PPSAM, R)
C3:|Initialise IEP for Load
parameters(PPppsAM,
PPSAM, R, Mypa)
A3:|verify(CURR,pA)
Verify(BALIEp +
Mipa < BALmaxgp)
NTIEP1=NTIEP +1
Sl:ZSign(PPIEp, IEP,
DEXPigp,
NTigp, MLpa, BALgp,
PPSAM, R)
R3:|response(FDigp,
NTigp, BALigp, S1)
C4:|Debit PPSAM
parameters(FDigp,
NTigp, BALigp, S1)
Ad:|verify(has got/will get

conventional payment)
verify(FDrgp)
verify(Sy)
So:=sign(PPppsamM;
IEP, NTigp, MLpA)
BALppgamM:=
BALppsam — Mrpa

R4:|response(IKppsam, S2)
C5:|Credit IEP
parameters(TKppgam,
S2)
Ab:|verify(Sa)
Sg:=sign(PPgp,
PPSAM, R, CCigp)
BALgp:=BALgp +
Mrpa
Rb5:|response(S3, CCipp)
C6:|PPSAM Load acknowl-

edgement
parameters(Ss, CCigp)

AG:

verify(Ss)
verify(CCrgp)

R6:

response(CCppsam)

Fig. 2. Load transaction without an LSAM from the standard.

The identity of the PPSAM consists of two elements: the identity of the device,
PPSAM, and the identity of the purse provider who owns the device PPppgan.
Step C3

The LDA sends the ‘initialise IEP for load’ command to the IEP, with the
amount and currency to be loaded. The LDA also sends the identification infor-
mation of the PPSAM to the IEP.

Steps A3-R3

The TEP first checks that it can deal with the requested currency. It then
checks whether its balance BALjgp would not exceed a predetermined maxi-
mum BALmaxgp. The TEP increments its transaction count NTigp to generate
a unique number of its own. The first authentication related step is the creation
of the signature S;. It contains a number of relevant data elements including the
expiration date of the IEP, DEXPigp, and the identity of the IEP, the identity
of the PPSAM and the unique numbers generated by the two parties. The re-
sponse message generated at R3 packages all relevant information for the LDA.
The notation FDigp is an abbreviation of a list of various data elements including
identities, expiration date and keys for the security system.

Step C3

The LDA continues the transaction if the IEP is able to deal with the currency
and amount to be loaded. It sends the ‘debit PPSAM’ command with the relevant
parameters to the PPSAM.

Steps A4—R/

The PPSAM checks that the counter value of the money to be loaded has been
supplied by conventional means. This could be done by, for example, requiring
the purse holder to insert some bank notes into the LDA device. The data
contained in FDigp will be checked. This involves testing operational conditions,
such as whether the PPSAM and the IEP are indeed able to interact with one
another, whether the IEP has perhaps been cancelled etc. The second verification
step authenticates the IEP to the PPSAM via the signature S;. The signature
S» is then computed, so that later in step A5 the IEP is able to authenticate the
PPSAM. The PPSAM has now been satisfied that all the operational conditions
have been checked. Furthermore it knows that it is communicating with a genuine
IEP, so the balance of the PPSAM can be decremented. This is the first ‘real
operation’. The response TKppsam as generated at step R4 contains a list of
relevant data for the IEP.

Step C5

The LDA sends the ‘credit IEP’ command along with relevant parameters to the
IEP.

Steps A5-R5

The IEP authenticates the PPSAM. The IEP then computes its second signature,
S, which is necessary for the PPSAM at step A6 to make sure that the load
has indeed taken place. If one were to remove the IEP, for example, whilst it is
carrying out step A5, the PPSAM needs to know about this so that it can undo
the debit operation on its balance. The second ‘real operation’ of the transaction
is to increment the balance of the IEP, just before the response at step R5.

Step C6

The LDA sends the ‘PPSAM load acknowledgement’ command. The completion
code CCigp is passed to the PPSAM so that it can check whether the IEP has
been successful in incrementing its balance.

Steps A6-R6

The final step checks the completion of the IEP. Step R6 sends a final response
to the LDA, which can be used to produce a receipt. This has not been made
explicit in the given transaction protocol, as it is not interesting from the point
of view of the security.

4.1 Analysis of the Transaction Structure

The transaction shown in Fig. 2 contains all of the aspects identified by the
structuring tools of Sect. 3:

— Operational aspects:
e Checking operational conditions at A2, A3 and A4.
o Performing operations at A4 and A5.
— Security aspects:
o Generation of signatures at A3, A4 and A5.
e Verification of signatures at A4, A5 and A6.
— Protocol aspects:
e Driving the transaction at C2 ... C6.
o Generation of command messages at C2 ...C6 and the generation of
result messages at R2 ... R6.
e Decoding of command messages at A2 ... A6 and the decoding of result
messages at C3, C4, C5 and C6.

The presentation of Fig. 2 focuses on the protocol aspects, as the messages are
clearly identified. The other elements of the structure are not identified. We will
first study some of the details of one of the actions in the protocol. Thereafter
we present a description of the load transaction from the standard with all its
structure clearly identified.

4.2 Details of Debit PPSAM

The analysis of the transaction applies to the level of detail as shown in Fig. 2.
This ignores a number of important elements, such as which cryptographic sys-
tem is used, and whether or not operations are logged. Such elements must play
arole in a comprehensive analysis of the protocol. To illustrate these elements we
will zoom in on the most interesting step A4-R4, which debits the PPSAM. This
step is the only step which defines all of the operational, security and protocol
aspects. Figure 3 shows step A4-R4 as it appears in the standard.

The first addition to the earlier, more abstract rendering of step A4-R4 is
that we now see that a log is maintained of the actions taken by the PPSAM.
The log contains relevant information necessary to trace all transactions.

PPSAM

A4:
verify (WIEP)
verify(Sy)

verify(has got/will get conventional payment)

So:=sign(PPppsam, IEP, NTigp, Mipa)

Operational conditions
Protocol security

Operation

Is the conventional payment OK?
Does the IEP belong to the PP?

Is the IEP in the negative file?

Has the IEP expired?

Is the algorithm and
key version supported?

Select master key using key version
Compute diversified key
Compute session key

Verify IEP signature

Compute debit signature

Decrease PPSAM balance
Transmit PPSAM parameters and
debit signature

RA4:

BALppsam:= BALppsam — MLpa
R4:|response(IKppsaM, S2) Protocol
Step|Action Details
A4: |Update the log write(Load Log) [IEP, NTigp]

[Outside the scope of this standard]

IF PPigp ¢ {PPppsam} THEN
CCppsan:=PP_MISMATCH
write(Load Log) [CCppsam]
abort

IF (PPigp||IEP) € NF THEN
CCppsam:=IEP_OPPOSED
write(Load Log) [CCppsaMm]
abort

IF DATEppsanm > DEXPigp THEN
CCppsan:=TEP_EXPIRED
write(Load Log) [CCppsam]
abort

IF (ALGgp, VKigp) €

{(ALGppsam, VKppsam)} THEN
CCppsan:=ALG_ORKEY_MISMATCH
write(Load Log) [CCppsaMm]
abort

KMLppgan:=select(IEP, VKigp) [{KMLppsan}]

KDppsam:=encipher(KMLppgan) [TEP]

KSESppgan:=encipher(KDppgan)
[DEXP1gp||NTigp]

IF S; # sign(KSESppsam)

[MLpal| CURRigp|| BALgp|| PPSAM|| R] THEN).

CCppsam:=LOAD_S1_FAILED

write(Load Log) [CCppsam]

abort
So:=sign(KSESppsam) [Mrpa |l CURRLDA]
BALppsam:=BALppsam — Mrpa
response(S2, CCppsam)

Fig. 3. Two levels of detail for the ‘Debit PPSAM’ step using DES from the Load

transaction without an LSAM.

Operational
conditions

Protocol
security

Operations
Protocol

The first four IF statements show how the operational conditions are checked.
The abort primitive causes the present step to be abandoned. It also generates
a result message to the LDA containing only the completion code CCppgam-

The identifiers in bold font are identifiers that have not yet been seen. They
appear only at this level of detail. For example NF represents the negative file.
This file contains the identities of the IEP’s that are no longer valid, for example,
because they have been reported lost.

The fifth IF statement shows how authentication works in the cryptographic
protocol being used. A session key KSESppga is computed, which is then used
to encipher the data contained in the signature S;. If the enciphered data fails
to match the signature, the authentication fails.

The standard is in principle neutral with respect to the chosen cryptographic
system. It provides diagrams such as Fig. 3 both for DES and for RSA.

This concludes the description of the standard load protocol. The main point
of the description is that the structure of the protocol is easily obscured by a
wealth of detail. We have indicated the structural elements by indicating to the
right of the statements in Fig. 3 which parts of the structure they represent.
In the following section we will look at a conformant prototype of the protocol
structure from the standard, with the aim to clearly expose the structure.

5 A Prograph Prototype of the Protocol Structure.

It is desirable that the conformant prototype follows the standard as closely as
possible, and so we expect to see the different aspects of the standard reflected in
separate parts of the implementation. In this section we give the reader a flavour
of the prototype, without becoming too involved in the details of the Prograph
language.

We begin by looking at the first part of the standard, where the components
are defined. The window that does this for the example we are using is shown in
Fig. 4. There are five entities defined in the Prograph, which correspond to five
of the entities from the standard. These are the components PSAM, IEP and
PPSAM and the devices LDA and PDA. At this level, we have also chosen to
expose the difference between the values that are part of the permanent data of
components (the State), and the ephemeral or session data (the Vars), since the
classification of data is important.

Prograph is an object-oriented language, and the lines between components
indicate inheritance. The PSAMs, TEPs and PPSAMs are proper components
since they inherit from COMP State. The LDAs and PDAs are not considered
(by the standard) to have the same status, and therefore they do not inherit
from the class COMP. When running the system, it is possible to open any of
these icons and examine the attributes that instances of these entities have.

Most of the standard is concerned with the actual processing and flow of
messages, and so it is important that the prototype accurately reflects the view
of Fig. 2, which is the heart of the design. The Prograph method (procedure)
which implements this is shown in Fig. 5. The dataflow in Prograph is down the

=1 &2 Classes of "'Protocols™ EE |
.
i'l =
(CDHP State
PS&H State IEF State PP5SAM State Ll}ﬁ State PDA State
"I
CDHP "||'ar5
‘)
FS5SAM Yars IEP "||'ar5 PPSAH Yars LDA Yars PDA. "||'ars -
4 | b |

Fig. 4. The window defining the types of components of the standard.

page (data enters the top of operations and leaves from the bottom). We have
placed the operations so that the whole method sends the right visual cues, with
the IEP on the left, the LDA in the middle and the PPSAM on the right. This
method is parameterised over the TEP and PPSAM, which come in as pairs of
(State, Vars) at the input bar at the top, and return their new States via the
output bar at the bottom.

Following the principle laid out in Sect. 3, we have introduced an extra level
of representation here, for Fig. 2 includes more detail than Fig. 5. The latter is
merely the Prograph equivalent of our general notion of a protocol as given in
Fig. 1. We can now see that it is useful to be able to view the transaction without
the details. Omitting the details also makes the animation of this method (when
the system dynamically illustrates the operations being fired) clear.

Two aspects of the system have been made visible, which could not be seen
in the standard. The first is concerned with aborting transactions. The notation
in Prograph to indicate that an operation might fail, is to add an on the
right. We can thus see that the LDA is in control of the transaction, since it is
the component that can report failure (this is because it is the LDA that looks
at the Completion Codes, and decides on the actions).

The second aspect that has been made visible in our rendering of the proto-
cols, but not in the standard is the explicit threading of state from one step of
the protocol to the next. The vertical lines connecting the steps to A3, from A3
to A5 and from A5 carry the permanent State and the ephemeral Vars of the
IEP. Similarly for the LDA in the middle and the PPSAM on the right.

1:2 Load no LSAM

[
T T M TCURR T
a1 W £ Acgquire input ,;ﬁ
[Z7C: Initialise PPSAM for Load 7|
i]
= o -
HZ: E’/’Process message Eﬂ
(= (=
@ g
7C: Initialise IEP for Load] X|
[— n
[
R ety SR
e VPrnnn MesEage ﬁ
(=] o
n'—————__——_______
[FC: Debit PPSAM 7] x|
[
=
i o 0
/C: Credit IEP
AL, A%
e et R -
AS: VPrncess message ﬁ
(= S— &
|
[—] "
ﬁ fC: PPSAM Load ﬁcknnvledgement@
[= S—
I]
#4&: [ZProcess message 7|
_f}___) T i
- e
W fConfirm Load @
]]
E] L
-
[»|E

Fig. 5. The method which defines the Load no LSAM transaction protocol.

=[0= [1:2 Process message —E 2 E=/215]

Mezzage State Vars -
] i T F
W fCapture ¥Yars ,«:ﬂ
[=] [
o]
o] B =]
W {f0perational conditions X
=
iy
2

: ol
fProtocol security

[u]

[

[w] [u]

]
7 Z
]
W fCryptographic security @
]
7 7
]
‘L.-'F'I

i 5 4
fOperation

(0]

CCCCC

i il
fForm response

ERESPDHSE ‘L

E

NI | DE

Fig. 6. Process message method conforming to the refined substep structure of each
step in the protocol.

Having looked at the transaction at the level of the message and component
state flow, we now wish to examine the processing of the individual messages.
Looking inside the Process message operation of Fig. 6, we find that it follows
exactly the structure of Sect. 3. We can also see clearly where the processing of
a message might cause failure of the step. The data flow edges connecting the
boxes indicate that in addition to the permanent State and ephemeral Vars the
incoming message is also threaded from sub-step to sub-step. This is to tell each
of the methods contained in the sub-steps to which message to respond.

We have used Prograph synchros (the connections made from the letter u)

to ensure that we know the order of operation execution, in this case so that,
for example, security is checked before any operations take place.

=[0= &2 1:1 Debit PPERIEE=EE
Meszage State Mars ;
= =
Cni
F o |
-
p B

Fig. 7. The Operations method for the PPSAM in response to Debit PPSAM.

Continuing down through the structure, we now look at the details of pro-
cessing a particular message, A4: Debit PPSAM. As a simple example, opening
the Operations operation for this message, we see (Fig. 7) the actual operation
BALppsam:=BALppsam — Mrpa from the one page transaction overview of
Fig. 2. The specially-shaped operations are Prographs way of accessing compo-
nents of structures. The two at the top of the method access the BALppgam
and Mp,pa components (which leave on the right hand outputs) and the one at
the bottom sets the BALppgan attribute to the new value. The rectangular box
labelled with the — sign performs the subtraction.

As another example of looking deeper into the structure, we show the Cryp-
tographic Security operation (again of the PPSAM in response to Debit PP-
SAM). This operation deals with two signatures: it checks S; and creates S,.
The dataflow view on this is provided in Fig. 8. This shows that both operations
need access to the ephemeral and permanent states, but not to the message. At
this level we do not see exactly what data elements are required, which would be
the purpose of the next level down, that is the methods Check S1 and Create S2.
Checking signature S; may fail. The creation of S, cannot fail, but instead its

D= 2 1:2 Debit PP EE=E=
Meszage State Vars Bt
K i =

1|||||I | k|

Fig. 8. The Cryptographic Security method for the PPSAM in response to Debit PP-
SAM.

value must be recorded in the ephemeral state. Because of the use of locally de-
fined operations (with white bars at the sides) in the dynamic system, it is easy
to name the more complex operations. We can also see that it is independent of
the cryptographic system being used.

Looking inside the Create S2local shown in Fig. 9, we find that it has been
possible to separate the signature processing into two steps. The first is to gather
all the values to be put into the signature, as well as any keys and algorithms
from the component (these are in IKppsam). The second is then to apply the
cryptographic routines of the system being used. In this way we have provided
cryptographic neutrality by encapsulating the cryptographic details as tightly
as possible.

The final method to shows the start of the cryptographic system specific part,
which is where methods for dealing with each of the signatures must be provided
for each cryptographic system. Thus Fig. 10 shows the Make S2 details for DES.
It is interesting to note that it is here that the decisions of the cryptographer
are documented, which are frequently used to optimise some calculation. In this
case there are two such decisions, which our Prograph rendering of the protocol
brings to the fore.

The first is the choice to create the session key (KSESppganm) once and to

use it twice: to check S; and to create So. Figure 10 shows that the session key
KSESppsan is simply picked up from the ephemeral state. The code for Check

Il

S——7=—= 1:1 Create 2 =——— A& H

k- d

M

ZIKB AR(comp) ;j

::’5 IKB A.Rl:5e55mn) ﬁ
l i

PP flEP—mgﬁ FHE(EP);Q m m

(“"PP(PPSAM)" "IEP..

HMake 52 \ \ Z Paﬂk Jﬁ:ﬂ

ﬁpplg crypto ruutlne

-
A [l | b |F

Fig. 9. The Create S2 local from the Cryptographic Security method for the PPSAM
in response to Debit PPSAM.

S1 (not shown) puts the session key into the ephemeral state.

The second decision is to sign only My,pas and CURRy,pa, instead of the data
PPppsanm, IEP, NTigp and Mi,pa, as suggested at step A4 in Fig. 2. (Remember
that the notation Mppa stands for the pair Mppa and CURRLpa). Omitting
the data is permitted, as they have been used in computing the session key. One
would have to study the details of Fig. 3 quite carefully to see what is happening.
In the Program code omitting the first three elements of the list is shown as an
explicit discarding using split-nth.

The final point about building a prototype in an object oriented system is
that certain mistakes are easily found. Consider the code labelled ‘Verify IEP
signature’ in Fig. 3. We have shown in bold face the data that did not appear in
the one page overview. As could be expected, all data to do with DES, such as
KSESppsan appear in bold face. Such data could not appear in the one page
overview of Fig. 2, as that would have made crytographic neutrality impossible.
The appearance of CURRgp is surprising, for it is a data element belonging
to the TEP component. The code labelled A4 is part of the PPSAM. There
are at least two possibilities. Firstly it could be that the standard contains a

=[0= & 1:1 DES/Make 52 A EE=1

il
K _—
[x]
E:
|
1|||||I | b |

Fig.10. The Make S2 method from DES Encryption system.

mistake. Secondly this could be an optimisation relying on the fact that at step
A4, CURRypa and CURR;gp represent the same value. The construction of
the conformant prototype of the standard has revealed a number of such issues.
Their description is beyond the scope of this paper, as it would require us to
present more detail of the standard.

6 Related Work.

Protocol structure is generally discussed in terms of the language used to express
the protocols. At one end of the spectrum we find general purpose programming
languages. They are often used to specify and or implement protocols. This
provides little opportunity for appropriately structuring the protocols. At the
other end of the spectrum one finds model-based protocol specifications [2, 4].
Widely known formal languages such as LOTOS and Estelle provide a high
level abstract view of protocols and impose structure on the protocols. It is
interesting to note that development of both LOTOS and Estelle were part of
the standardisation efforts of OSI.

Abbot and Peterson [1] argue the necessity to avoid both extremes. This
has some elements in common with our work. Their object oriented language
Morpheus is designed for protocol specification. The key idea of Morpheus is
to provide a fixed number of so-called shapes, as building blocks for protocols.

The shapes are similar to our components. A shape is a sub class of an abstract
super class. Code and data reuse of the abstract class and of the shape make
it easy to create specific instances of shapes. These instances are then used as
building blocks for a protocol. Morpheus allows only a number of predetermined
shapes (a multiplexor, a worker and a router). Abbott and Peterson argue that
this provides their Morpheus compiler with more scope for optimisation. Qur
conformant prototyping system does not need to deliver high performance and
offers more flexibility by using a general purpose programming language. Our
protocols are represented using only a fixed set of classes, which are used in
a disciplined fashion. Abbott and Peterson note that protocols from standards
are generally difficult to represent because of their concern for efficiency. In
fact they represent the functionality of a standard protocol without necessarily
adhering to its exact syntax. Our rendering of the transaction protocols from
the standard is exact in that sense. We have prototyped every detail of the load
purse transaction as specified in the standard. Admittedly, we are not aiming to
specify arbitrary protocols, but a more restricted family of protocols.

Many tools have been developed to study complex protocol behaviour. The
Interrogator is an automatic protocol security analysis tool [10]; the language
Argos [8] supports automatic protocol validation using a mix of depth-first and
breadth-first search for particular scenarios; the Protean tool [3] is designed to
detect deadlock in complicated protocols specified as petri nets. The emphasis
in all these systems is on understanding and reasoning about the dynamics of
complex protocols. The understanding is achieved by animations and simulations
of the protocols. The Proteon system, for example, produces animated displays
of the history of a protocol, offering the user the opportunity to view a message
flowing on an arc, and even to change the message. Such facilities are also offered
by our system, because they are provided by Prograph. Our prototype thus offers
sophisticated functionality at no extra effort.

Many authors who work with protocols note that the lack of structure in the
protocols causes them problems. Billington et al [3] and Bochmann et al [13] dis-
cuss the possibility of separating normal operations from exceptional conditions,
and thus enriching the structure of protocols. Tel [12], in the context of proving
properties of distributed algorithms in general and protocols in particular, sug-
gests a number of simple rules that enhance the structure of a protocol. Tel also
suggests that properties of protocol skeletons may carry over to fully-populated
protocols, provided certain precautions are taken.

Our restricted setting of the authentication protocols has made it possible to
separate out exceptional from normal operations, and also to separate out the
security operations. This gives an extra level of structure in our protocols. To
our knowledge this has not been achieved elsewhere.

7 Conclusions.

The standard way of visualising protocols using pictures with boxes (representing
operations) and arrows (representing messages) is appropriate for a global study

of a protocol. The standard visualisation method is insufficient to study the
protocols in detail, the problem being that the structuring of the protocols relies
on elements not explicit in the standard visual rendering. Such elements include
the security and the state of the interacting components. To render the structure
properly one should visualise not only the operations and the messages but also
the state and the security.

Using the data flow model makes it possible to explicitly render the state ma-
nipulations implied by the protocols. Using an object oriented design methodol-
ogy makes it possible to be selective about the state elements that are accessed
and updated at various points in the protocols. A system combining both models
is thus appropriate to deal with the manipulation of state in the protocols.

Security in an abstract sense relies on cryptographic systems. In a concrete
sense it is the encapsulation of the cryptographic data and operations that deter-
mines whether the system is robust or fragile. We have shown how the separation
of steps in the protocol into a number of judiciously chosen sub-steps separates
out the important protocol, security and operational aspects. The design method
that we have used supports this subdivision of larger into smaller steps. It has
pointed out where the standard may be unclear. This indicates that building a
highly structured prototype and using an object oriented data flow model which
supports the encapsulation of data and operations gives a high level of confidence
in the robustness of the system.

The combination of data flow, object orientedness and visual programming is
provided by the Prograph language that we have been using to build a prototype
of some of the protocols in the load purse transaction of the CEN Inter-sector
electronic purse draft standard. The Prograph prototype makes it possible to
animate the protocols and to perform simulations and experiments with the
protocols. This feedback of the system to the designer is a powerful design tool.

8 Acknowledgements.

We thank Hugh McEvoy and the referees for their comments on a draft version
of the paper. Jon Hallet provided assistance with the rendering of the screen
shots.

References

1. M. B. Abbott and L. L. Peterson. A language-based approach to protocol im-
plementation. In Communications architectures € Protocols (SIGCOMM), pages
27-38, Baltimore, Maryland, Oct 1992. ACM Computer communication review,
22(4).

2. M. S. Atkins. Experiments in SR with different upcall program structures. ACM
transactions on computer systems, 6(4):365-392, Nov 1988.

3. J. Billington, G. R. Wheeler, and M. C. Wilbur-Ham. PROTEAN: A High-Level
petri net tool for the specification and verification of communication protocols.
IEEE transactions on software engineering, SE-14(3):301-316, Mar 1988.

e~

10.

11.

12.

13.

14.

A. Dupuy, J. Schwartz, Y. Yemini, and D. Bacon. BEST: A network simulation
and prototyping testbed. CACM, 33(10):64-74, Oct 1990.

CEN European Committee for Standardization. Identification card systems —
inter—sector electronic purse. Draft standard prEN 1546, European Committee
for Standardization, Brussels, Nov 1995.

F. R. Giles, P. T. Cox, and T. Pietrzykowski. Prograph: A step towards liberating
programming from textual conditioning. In Workshop on Visual Languages, pages
150-156, Rome, Italy, Oct 1989. IEEE Computer society press, Washington.

P. H. Hartel and E. K. de Jong Frz. Towards testability in smart card operating
system design. In V. Cordonnier and J-J. Quisquater, editors, 1st Smart card
research and advanced application conference (CARDIS 94), pages 73-88, Lille
France, Oct 1994. Univ. de Lille, France.

G. J. Holzmann. Automated protocol verification in argos : Assertion proving and
scatter searching. IFFEE transactions on software engineering, SE-13(6):683-696,
Jun 1987.

J. R. McGraw. The VAL language: Description and analysis. ACM transactions
on programming languages and systems, 4(1):44-82, Jan 1982.

J. K. Millen, S. C. Clark, and S. B. Freeman. The Interrogator: Protocol security
analysis. IEEE transactions on software engineering, SE-13(2):274-288, Feb 1987.
S. Stepney. High integrity compilation: A case study. Prentice Hall, Hemel Hemp-
stead, England, 1993.

G. Tel. Topics in distributed algorithms. Cambridge Univ. Press, Cambridge,
England, 1991.

G. v. Bochmann and J. P. Verjus. Some comments on “Transition-Oriented” ver-
sus “structured’ specification of distributed algorithms and protocols. IEEFE trans-
actions on software engineering, SE-13(4):501-505, Apr 1987.

A. H. Veen. Dataflow machine architecture. ACM computing surveys, 18(4):365—
396, Dec 1986.

This article was processed using the ITEX macro package with LLNCS style

