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Abstract—Systems in which semi-autonomous problem-solving agents communicate and cooperate
with one another represent an exciting vision of future computing environments. However, if this
vision is ever going to result in commercially viable systems, then consideration must be given to the
large software base that exists within many organisations. Success requires the ability to incorporate
pre-existing systems alongside purpose-built agents in a cooperating community. This requirement
is vital because the former represent a substantial resource investment that companies cannot afford
to consign to the scrap heap. We report on our experiences of constructing cooperating communities
that contain elements that were pre-existing and some that were developed specifically for incorporation
into an integrated environment. The general purpose framework of ARCHON (ARchitecture for Co-
operative Heterogeneous ON-line systems) provides the underlying technology to facilitate cooperative
problem solving, and the exemplar domain is the real world problem of electricity distribution man-
agement. The actual application being developed is called CIDIM (Cooperating Intelligent systems
Jor DIstribution system Management). An evolving methodology for designing and developing a mixed
system such as this is outlined, based on our experiences in CIDIM and several other real-world
industrial applications. It specifies a hybrid top-down and bottom-up approach to integration, identifies
the important characteristics that shape multi-agent problem analysis, and outlines key factors that
impinge upon the design of the community. This methodology is then used to motivate the design
decisions for the CIDIM application. Finally the process of instantiating the individual agents is
discussed, some helpful guidelines on testing and evaluating future applications are given, and the
implementation of one of CIDIM’s cooperative scenarios is described in depth.

1. INTRODUCTION

IN SOPHISTICATED industrial applications, there is a
growing desire to intelligently integrate information
from a diverse range of sources. Such information usu-
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ally is produced from multifarious data-gathering and
problem-solving activities, each of which is concerned
with a particular (partial) aspect of the overall process.
However, because of the interdependencies that exist
through the common process, if information is shared
in an intelligent and efficient manner the performance
of both the individuals and the system as a whole can
be enhanced. Consequently an increasingly large num-
ber of applications are being conceptualised in terms
of cooperating agents; examples include speech pro-
cessing (Erman & Lesser, 1975), flexible manufacturing
systems (Parunak, 1987), air traffic control (Cammar-
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ata, McArthur, & Steeb, 1983), electricity transporta-
tion management (Jennings, Mamdani, Laresgoiti,
Perez, & Corera, 1992), telecommunications network
management (Weihmayer & Brandau, 1990), design
(Kliein, 1991), concurrent engineering (Reddy, Srinivas,
Jagannathan, & Karinthi, 1993), sensor interpretation
(Lesser and Erman, 1980), and particle accelerator
control (Jennings, Varga, Aarnts, Fuchs, & Skarek,
1993).

In such Distributed Artificial Intelligence (DAI) sys-
tems, each agent is capable of some useful problem-
solving activity in its own right, but by communicating
and cooperating with others it is able to enhance its
performance (Bond & Gasser, 1988; Gasser & Huhns,
1989; Huhns, 1988). Such agents have two distinct
types of knowledge and reasoning capabilities: one for
solving domain-level problems (e.g., fault diagnosis,
security analysis, and restoration planning) and another
for participating in environments containing other en-
tities (e.g., being able to request information and ser-
vices from acquaintances and sending timely infor-
mation to help community members).

Jennings and Wittig (1992) highlight two features
of industrial applications that have a significant impact
upon the design of a cooperating community. First,
there is a vast amount of pre-existing software currently
being used. Second, a given application is composed
of a diverse range of generic tasks (e.g., diagnosis, plan-
ning, monitoring, and scheduling). The upshot of these
two observations is that any ensuing multi-agent system
in this domain is heterogeneous at many distinct lev-
els—different problem solving methods are employed
(e.g., heuristic and model based diagnosis), different
types of computer systems need to interact (e.g., expert
systems, databases, and conventional numerical soft-
ware), and different base-level programming languages
are used (e.g., LISP, Prolog, C, FORTRAN, and In-
formix).! Having to deal with pre-existing and hetero-
geneous software meant that a range of new DAI prob-
lems needed to be tackled. These issues had been ob-
scured in previous systems because they had dealt
predominantly with homogeneous and purpose-built
problem solvers. As such, the problems that were raised
and the solutions that were developed during this work
represent a necessary and important step in bridging
the gap between the simplifying assumptions of aca-
demic exercises and real-world multi-agent systems.

This work contributes to the general body of infor-
mation on DAI by describing a new application and
how it was solved using multi-agent techniques. From
an application perspective, we describe a novel and

! A more complete classification of the types of heterogeneity that
are found in such applications and how they impact on the design
of subsequent multi-agent systems is contained in (Roda, Jennings,
& Mamdani, 1991).
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promising approach to tackling the complexity of the
real-world problem of electricity distribution manage-
ment—hereafter referred to as CIDIM (Cooperating
Intelligent systems for DlIstribution system Manage-
ment) (Cockburn, Varga, & Jennings, 1992; Corera,
Laresgoiti, Cockburn, & Cross, 1993). An evolving
methodology for analysing, designing, and building
multi-agent systems for industrial applications that
contain several pre-existing software components is
described (Section 3). After introducing the electricity
distribution domain, these design guidelines are used
to motivate the structure of the CIDIM community.
The benefits of the resulting cooperating ensemble are
then explained in terms of the improved system func-
tionality, the greater automation of mundane tasks,
and the reduced burden on the control engineer (Sec-
tion 4). Finally the process of instantiating the indi-
vidual agents is discussed, some helpful guidelines on
testing and evaluation are given, and the implemen-
tation of one of CIDIM’s cooperative scenarios is de-
scribed in depth (Section 5). The agent community
was constructed using the ARCHON (ARchitecture
for Cooperative Heterogeneous ON-line systems) plat-
form (Jennings & Wittig, 1992; Wittig, 1992), which
is a general-purpose multi-agent framework for indus-
trial applications (Section 2).

2. THE ARCHON ARCHITECTURE

ARCHON agents have two distinct components; an
Intelligent System (1S) and an ARCHON Layer (see
Figure 1). The former may be pre-existing or may be
purpose-built and solves problems such as detecting
disturbances, recording status information, and diag-
nosing faults. From the ARCHON Layer perspective,
the IS is composed of a number of atomic tasks, al-
though in terms of their actual implementation the
tasks may themselves be relatively sophisticated prob-
lem-solving activities involving branching and decision
making. The latter is a meta-level controller that op-
erates on the IS to ensure that its activities are coor-
dinated with those of the others within the community.

Communication between agents is via message
passing and is controlled through the High Level Com-
munication Module (HLCM). It is deemed High Level
because it provides not only standard communication
facilities (achieved through a Session Layer implemen-
tation) but also services such as intelligent addressing
and filtering. For example, if the IS produces a result
that is relevant for other agents, the Planning and Co-
ordination Module (PCM) can simply instruct the
HLCM to send it to all interested agents without having
to enumerate them. A message-passing paradigm was
chosen in preference to a shared memory approach
[e.g., blackboard (Hayes—-Roth, 1985; Nii, 1986a/b)]
because it has well understood semantics and offers a
more abstract means of communication (Hewitt &
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FIGURE 1. ARCHON Agent Architecture.

Kornfield, 1980); no hidden interactions can occur, so
there is greater comprehensibility, reliability and con-
trol over access rights; it makes fewer assumptions
about the system architecture. Also the physical dis-
tribution of the problem-solving agents and the desire
to conform to the OSI standard for communication
made message passing the natural choice.

The Agent Acquaintance Models (AAMs) are a rep-
resentation of other agents in the community. Infor-
mation maintained includes an acquaintance’s skills,
interests, current status, workload, and so on. These
models are a prerequisite for coordinated activity be-
cause they provide a characterisation of the social
problem-solving context where the agent has to operate
(Jennings et al., 1992). The HLCM’s intelligent ad-
dressing facilities also make use of these models to find
the agents interested in a specific result. Much as the
AAMs represent other agents in the community, the
Self Model (SM) is an abstract characterisation of the
agent’s underlying IS. It contains information about
the current state of the IS and embodies a represen-
tation of the sequences of actions that can be executed
by the ARCHON Layer in its underlying IS.

The Monitor coordinates locally executable activi-
ties and is responsible for passing information to and
from the IS. Skills are the coarsest granularity at which
these activities are described. Other ARCHON Layer
components (e.g., PCM, SM, and AAMs) deal exclu-
sively on the level of skills, but within the Monitor they
are given a finer structure—corresponding to a pre-

defined OR-graph in which the named branches specify
alternative solutions. Branches are composed of named
units of activity called plans and are traversed in a
depth-first manner. The associated constraints deter-
mine path selection at runtime. The nodes of the graph
are called monitoring units, and they correspond to the
invocation of individual tasks within the IS.

The PCM is the reflective part of the ARCHON
Layer, reasoning about the agent’s role in terms of the
wider cooperating community. This module has to as-
sess the agent’s current status and decide which actions
should be taken in order to exploit interactions with
others whilst ensuring that the agent contributes to the
community’s overall well being. Specific examples of
the PCM’s functionality include deciding which skills
should be executed locally and which should be dele-
gated to others, directing requests for cooperation to
appropriate agents, determining how to respond to re-
quests from other agents, and identifying when to dis-
seminate timely information to acquaintances who
would benefit from receiving it. The PCM is composed
of generic rules about cooperation and situation as-
sessment that are applicable in all industrial applica-
tions. All the domain-specific information needed to
define individual behaviour is stored in the Self and
Acquaintance Models (Jennings, 1992).

ARCHON’s layered and modular architecture is
ideally suited for industrial applications. It has been
successfully applied to several problems, including
electricity distribution (see Sections 4 and 5), electricity
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transportation (Wittig, 1992, Chapter 8); cement fac-
tory control (Stassinopoulos & Lembesis, 1993); flexible
assembly robotic cells (Oliveira, Camacho, & Ramos,
1991); and particle accelerator control (Jennings et al.,
1993). The separation of the domain and cooperation
know-how into the IS and the ARCHON Layer, re-
spectively, allows pre-existing systems to be incorpo-
rated into the multiple agent community with relatively
few modifications. Without this clear demarcation, ex-
tensive changes to the existing systems would be re-
quired to provide them with the necessary knowledge
to interact with and benefit from the other agents in
the community. Also, by providing a configurable
mechanism for agent control and by defining a lan-
guage for interacting with ISs, the Monitor masks the
underlying heterogeneity of the domain system and
allows the ARCHON Layer to operate upon a ho-
mogeneous representation.

3. METHODOLOGY OF INTEGRATION
3.1. A Two-Sided Approach to Integration

The instantiation of a multi-agent system can proceed
in two ways. Using the concepts of a general purpose
framework, an application can be built completely
from scratch in a top-down manner. Alternatively, the
elements that satisfy the application requirements are
developed in a bottom-up manner. However, neither
of these approaches is entirely satisfactory for the ma-
jority of industrial applications; the former means that
already existing software is not used, the latter that no
reusable components are available for subsequent use
in future multi-agent applications. Thus, it was decided
that successful integration for this class of problem re-
quires a mixture of the two approaches to be applied
simultaneously and iteratively (see Figure 2). Therefore,
whilst constructing the agents, the application designers
continuously compare their design with the general ar-
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chitecture and, if the concepts are being poorly utilised,
a redesign may be necessary. The bottom-up forces
ensure that this design is continually compared with
the application requirements and constraints.

In our case, the top-down part of the integration
process expresses the fact that the application designer
must understand the ARCHON architecture and its
associated concepts and then apply them to meet the
problem requirements and the abilities of the already
implemented elements. For CIDIM, the bottom-up as-
pect constitutes the bigger part of application design.
It involves analysing the problem from a multi-agent
perspective and extending or modifying the existing
systems into a cooperating community so that the gen-
eral framework can be applied in the most beneficial
manner. An initial methodology for these bottom-up
processes is discussed in the following subsections, and
its application to CIDIM is described in Section 4. At
this stage the methodology cannot be described in a
fully formal manner nor can it claim complete gen-
erality because it has only been applied to industrial
control applications. The current situation is somewhat
akin to that of knowledge engineering for stand-alone
expert systems; as experts cannot fully and formally
describe the knowledge needed to solve their problems,
they illustrate it through examples. The multi-agent
analogue is that developers and end-users prefer to see
examples of how cooperation can solve a problem in
the application domain rather than abstract examples
of different cooperation types. Despite this informality,
a methodological guide with such application-derived
examples is still extremely helpful in structuring their
approach to system design.

3.2. Multi-Agent Problem Analysis

Designing a cooperating community requires that the
problem be analysed from a multi-agent perspective.
The following key issues are dealt with in the remainder

General Framework
(e.g. ARCHON architecture)

cooperation
framework

currently existing elements + new elements

meeting

....................... point

Application

FIGURE 2. Integration methodology: Meeting in the middle.
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of this subsection: analysis of pre-existing systems;
analysis of the cooperation amongst the operators
controlling the process; analysis of possible means of
decomposing the systems; plans for new system com-
ponents, and the detection of new cooperative situa-
tions made possible by system integration (see Fig-
ure 3).

3.2.1. The Pre-Existing Intelligent Systems The ca-
pabilities of the existing ISs have to be identified. Ques-
tions that need answering include “What is their main
function?,” “How is this function achieved?,” “What
tasks are utilized in the operation of the IS?,” “Are
these tasks executable in a stand-alone way, or are they
deeply embedded in the IS?,” and “Are there tasks or
data that are duplicated in several I1Ss?.” This analysis
must also address the issue of the user interface. Most
existing ISs have an interface, which allows the operator
to interact with their component tasks (see interactions
a). However, some portion of these interactions are
replaced by cooperation amongst the agent community
(see interaction b). For those interactions that cannot
be replaced by interagent communication, some of
them can be inherently (e.g., derived from the structure
of the company) attached to the IS, and some of them
can be moved to a separate interface agent. These three
types of interactions must be identified and classified
and appropriate modifications and/or extensions made
to the interfaces.

3.2.2. Cooperation between the Operators. In many
industrial applications, the partial implementation of
various facets of system control requires the operators
to interact with one another to produce effective overall
responses (Jennings & Wittig, 1992). Analysis of these
interactions (shown as c) gives an important insight
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into some of the types of cooperation that are likely to
occur in the multi-agent system implementation. Fac-
tors that need to be identified include the data and
activity requests communicated between the operators;
the criteria that determine when requests are issued
and to whom; the mechanism by which requests are
issued; the protocol adopted for the request and how
the result is accepted. Sometimes communication is
not apparent, because two systems are operated by one
individual; in this case the information transfer must
be brought into the open.

3.2.3. Possible Decompositions of the Intelligent Sys-
tems. Some large ISs are difficult to maintain in their
own right, and introducing a further level of complexity
by incorporating them directly into a cooperating
community would simply be infeasible. In such cases,
it is worth splitting up the IS into several agents. An-
other reason for decomposing an IS into multiple
agents is if it has a capability that is replicated by an-
other component that will become part of the com-
munity. In this situation, a decision has to be reached
about the tradeoff between the efficiency of creating a
dedicated agent and the desirability for robustness,
which comes from duplicated capabilities. There is an
analogous situation for data: if the same information
is needed by several agents, then it is often worth in-
troducing a database agent to maintain it. This is es-
pecially true if the data is a description of the process
controlled by the ISs, because it can be kept up-to-date
and consistent more easily.

In terms of Figure 3, a pre-existing system has been
split up—most of it remains in system A, but an iden-
tifiable portion (B) has been combined with another
piece of pre-existing software (C) to make the intelligent
system of the middle agent.

Existing
D G Cooperation

Partial replacement of New ARCHON
a existing cooperation a Cooperation software
S SRR DN I T N :
N meaannng e R X oaeensenn e :
R B :
Existing Existing { Existing i New
System Sub- System System
System
A B C D

FIGURE 3. Problem analysis from a multi-agent perspective.
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3.2.4. Introducing New System Components. Some
components of the application may not be automated
at the time when the multi-agent system is being eval-
uated. In this case it is worth investigating the benefits
of introducing new ISs to deal with these activities (see
system D in Figure 3). New ISs may also be added for
reasons other than missing functionality. For example,
if a particular IS is often overloaded, then this bottle-
neck may be avoided by making it into several identical
agents within the community. To enhance solution
quality, new ISs can be added that generate the same
information as an existing system but that work with
different data and different side effects.

Newly written ISs can take advantage of being de-
signed specifically for use in an agent community by
having the ability to use information from acquain-
tances that would not be available to them outside of
the particular social context. For example, in CIDIM
a purpose-built diagnosis agent makes use of lightning
location information in its reasoning process because
an acquaintance is able to provide it. Outside of CIDIM
this information would not normally be available. To
maximise software reusability and system robustness,
the diagnosis agent is not dependent on the lightning
location information, but if it is available then it can
be used to improve the quality of its output. The same
use of optional additional inputs by existing 1Ss can
sometimes be achieved. However, this always involves
some restructuring work, because the additional data
would not have been accounted for in the original de-
sign.

3.2.5. Introducing New Forms of Cooperation. Some-
times in nonintegrated systems, potential interactions
that would be beneficial to the community’s problem-
solving efforts are not undertaken because they would
require a substantial amount of manual effort or cross-
checking. In these cases (interaction d in Figure 3), an
integrated system offers significant improvements by
automating these exchanges.

3.3. Agent Community Design

Once the problem analysis has been completed, design
of the multi-agent system can commence. To be suc-
cessful this design must consolidate the valuable fea-
tures of the existing system, improve on some of the
existing features, and introduce new features by ex-
ploiting the opportunities provided through social in-
teractions. By adopting a mixed approach to integra-
tion, community design imposes more constraints than
designing a system from scratch, because the designer
should aim to maximise software reuse. However, this
should not be taken to the extreme, in certain cases it
is better to cease using certain parts of the existing sys-
tem and change to new ideas brought in through the
multi-agent system approach.
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The first phase of system design concerns the com-
munity. Issues that need to be addressed include de-
termination of the agent granularity, identification of
the role of each agent, design of the user interfaces,
definition of the agents’ skills, and enumeration of the
forms of inter-agent communication. Once the com-
munity design has been completed, each individual
needs to be instantiated (see Section 5 for details of
this process).

3.3.1. Level of Granularity. The first step is to deter-
mine the granularity of the agents. In many cases, it is
the same as that of the existing systems because it in-
volves the least amount of restructuring work. How-
ever, the granularity may be changed if the application
is growing and needs redesign or if the granularity does
not really fit the problem. For example, earlier exper-
iments in the domain of particle accelerator control
showed that mapping two pre-existing expert systems
directly into a community of two agents did not allow
the full potential of the cooperating systems metaphor
to be exploited (Jennings et al., 1993). Only by decom-
posing the two agents into a community of six could
the benefits of parallelism and asynchronous interac-
tions be fully realised.

Other factors that impinge on decisions about gran-
ularity are the limitations on agent size caused by the
availability of computing resources; the natural distri-
bution and structure of the problem, and the ease of
transforming (restructuring) the existing systems.

3.3.2. Role of Each Agent. The next step is to determine
the functional role of each agent and of the community
as a whole. If as a result of the problem analysis phase
it is determined that the existing ISs fulfil all the nec-
essary requirements, then the role of the agent com-
munity is basically the same as that of the original sys-
tem. In this case, the ISs only need to be extended with
the appropriate cooperative functions. However, if the
existing ISs do not fulfil all the requirements, then
identifying the role of each agent is a more time-con-
sumning task. The functionality of the whole application
has to be described, this functionality has to be broken
into identifiable subproblems, these subproblems are
then mapped to IS tasks and the IS tasks have to be
allocated to ISs. All of this has to be undertaken while
still being mindful! of the constraints imposed by the
structure of the existing ISs.

3.3.3. User Interface. In the same way as each agent’s
role is specified, so the role of the user interface(s) also
has to be determined. The basic question is whether
the designer wants to hide all the agents behind one
interface and make the cooperating community trans-
parent or whether each agent has its own interface and
the community and its interactions are made visible
(Avouris, 1992). A single interface is most appropriate
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when the application is centred around one problem
or when one operator can survey the whole application.
Multiple interfaces better fit those applications in which
agents mainly serve their own goals and cooperation
manifests itself as occasional assistance.

3.3.4. Agent Skills. Once the functional role of each
agent has been defined, the skills to be represented at
the ARCHON Layer have to be decided upon. For
newly developed ISs, the designer has a large degree of
freedom in deciding upon the skills. With pre-existing
systems, the process may be severely constrained by
the current structure of the system. Skills are allocated
so that agents are able to fulfil their designated role
and also so that they represent the largest possible
granularity of action. The latter point ensures that they
are large enough to warrant the overhead inherent in
skill execution, yet sufficiently small to concisely fulfil
the desired objective. The mandatory and optional in-
puts of the skills must be described as well as the in-
termediate and final results that are produced.

It should not be possible to combine two skills with-
out losing something in the role of that agent, and con-
versely, it should not be necessary to divide a skill into
subskills unless this enhances the role of the agent.
Thus, for example, an application designer may be
faced with the decision of whether to make tasks A
and B of an IS available as skills in the ARCHON
Layer or whether to combine them into a single skill.
This may be the case when in the normal operation of
the IS function B always follows function A. In making
this decision, the following points should be considered:
if the answer to any of the following is ‘“yes,” then A
and B should be separate skills. If the answer is “no”
and it is likely to remain this way even with future
developments in the application, then for efficiency
reasons it is better to combine them into a single skill.
¢ Will the calling of B ever be contingent on the output

of A, and, if so, will the ARCHON Layer be able to
assist in evaluating the decision?

¢ Could the calling of B be dependent on conditions
in another agent?

¢ Is A or B an activity that another agent might want
to request as a service (e.g., an acquaintance wants
B performed, but not A)?

e Are there different requirements regarding concur-
rent execution for A and B? If many versions of A
can run concurrently but B is a critical section it
makes sense to have separate skills and use the lock-
ing mechanisms of ARCHON for B.

3.3.5. Messages. From knowing the skills that are
present in the community, it is possible to describe
what types of messages are sent between the agents,
what format the information is in, and what the ex-
pected size of the transmissions are. Examples of ge-
neric message types supported by ARCHON include
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requests for data, requests for the execution of skills,
spontaneously volunteered information, responses to
requests, reports of current status, execution failure
messages, and emergency status messages.

It is also important to decide the mechanisms that
should be employed to disseminate useful information
around the community. For example, if an agent is
capable of producing a result that two of its acquain-
tances are interested in only if they are in specific prob-
lem-solving state, then this data cannot be volunteered
as unrequested information (because the sender cannot
be constantly aware of the exact state of the other com-
munity members) and should be requested by the
agents when they are in the relevant state. In other
cases, the main form of social interaction is through
the spontancous sending of information that is believed
to be relevant to the recipient.

4. COOPERATIVE ELECTRICITY
DISTRIBUTION MANAGEMENT

4.1. Introducing Electricity Distribution
Management

Electricity distribution systems deliver electrical energy
from the transmission substations to customers, trans-
forming to a suitable voltage where necessary. In the
U.K., Regional Electricity Companies (RECs) are re-
sponsible for distribution and supply to customers
within a geographical area. Most electricity is supplied
by the generating companies via the national grid at
400KV and 275kV to grid points where it is fed through
transformers to the 132kV network of the REC. From
here it is passed around at a variety of voltage levels,
to different types of customers (see Figure 4).
Management of the distribution network aims to
ensure that there is a secure supply to all customers.
This involves maintenance and repair of plant, recon-
figuration of the network for stable operation, and re-
storing supply that has been lost due to faults. Coor-
dination within and between the different voltage levels
is carried out at a control centre by control engineers
(CEs) who aim to maintain the optimal network con-

132kV __S:(qx&
E’ o
X X

33kV Large Industry

=

11kV
Commercial,
and Industrial
240/415V Domestic Consumers

FIGURE 4. The distribution network.
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figuration, which keeps all customers supplied and
minimises losses. Listed next are several forces that
can cause the network to deviate from its steady state
and that the CE must therefore take into account when
making decisions about which actions to perform.
Some of these forces can be anticipated well in advance,
meaning that a schedule of actions can be agreed on
beforehand; others are unplanned and require the en-
gineers to create appropriate strategies in real time.
® Weather: Temperature fluctuations cause changes in
load. Wind, icing, and lightning damage the network.
¢ Demand: Demand changes according to the time of
day, the day of the week, and the weather.
e Events: Third party damage, equipment failure, in-
dustrial action, disasters.
® Planned work: Maintenance, installing new equip-
ment, reinforcement.

The higher voltage networks are usually managed
solely from the control centre, meaning that author-
isation must be given for any actions to be carried out
by a field engineer and that the outcome must be re-
ported back. With the lower voltage levels, the field
engineer may be authorised to perform a sequence of
operations to a preplanned schedule and only report
back on significant items. Figure 5 represents a sche-
matic picture of a control centre’s typical communi-
cation flows.

The extent to which the CE directly controls the
network, based on the measurements, indications, and
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alarms available to him/her and through the use of
telecontrol command schemes, varies between RECs.
However, in all cases it can be an extremely difficult
task; decisions have to be taken based on incomplete
information, presented from a variety of diverse
sources, and the resulting actions must be both timely
and secure. The major activity is to grant authority for
switching operations to the field engineers (except for
the 240/415V local network) and, where telecontrol
equipment is installed, to initiate the remote operation
of plant via a console in the control room. These ac-
tivities are the outcome of the CE’s reasoned decision-
making process and are a response to his perception
of the network’s needs:
¢ If the network is quiescent, work on it consists of
repairs and planned routine maintenance, which re-
quires authorisation for, or actual performance of,
the necessary switching operations to release the plant
from the network.
o If there is a fault in the network, responsibility has
to be assumed for initiating remedial action.
® The network configuration needs to be continuously
monitored to ensure that it is in a stable electrical
condition. This includes assessment of the load on
the network to respond to overloads on plant items
or to take early corrective action to avoid it: actions
to avoid excessive fault levels and actions that aim
to improve system security within the constraints of
the current network status.

Telecontrol Messages

Generation and

——————p | Gid Control

A
l Telephone
/

Telecontrol Messages

%
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Telecontrol Commands

Central Control -
132/33kV
11kV at night.
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Y

District/Zone  11kV

Telephone

/ Control Centre
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Centre - Identify no
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FIGURE 5. Communication flows in the control centre.
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4.2. Analysis and Design of the CIDIM Community

Following the methodology outlined in the previous
section, the first task when developing the CIDIM ap-
plication was to analyse the problem of electricity dis-
tribution management. From the top-down perspec-
tive, a specification of the whole CIDIM application
was developed. This necessarily included the function-
ality already available in the ISs, but also highlighted
some of the functionality that could not be assigned
to any single IS (i.e., those functionalities that require
cooperation between ISs or those that utilise ARCHON
Layer concepts). From the bottom-up perspective,
analysis involved a detailed examination of the pre-
existing ISs, identification of the types of cooperation
that take place between CEs, study of the possible de-
compositions of the ISs, identification of potential new
components and recognition of any new forms of co-
operation that could be realised through integrated
problem solving.

In this application several pre-existing systems were
available to assist the CE in managing the network.
These included a switching schedule production assis-
tant (SSPA) (Brailsford, Cross, & Raven, 1987; Cross,
Brailsford, & Brint, 1992 & 1993); a weather watch
expert system that locates lightning strikes (Lees, 1992;
Scott, 1988) and a high voltage diagnosis expert system
(HVDES) (Bramer, 1988; Cockburn et al., 1991, 1992).
These systems formed the basis of the CIDIM appli-
cation, but needed to be transformed into a cooperating
community using the established methodology.

The HVDES had a separate program to translate
and filter the telemetry messages arriving from the
electricity network. Because other agents also need this
telemetry, a dedicated Telemetry Agent (TA) was cre-
ated to handie telemetry for the whole system (see Sec-
tion 3.2.3). Similarly, the network model of the
HVDES was self-contained. However, as each REC
represents its network model in its own database, using
its own format, it was deemed appropriate, on the
grounds of consistency (see Section 3.2.3), to create an
information agent (IA) to provide a front end to the
actual database. This organisation also allows easier
access to the network models, and should the database
need to be changed, for example, using CIDIM in a
different REC, the alterations are confined to the in-
ternal workings of the IA. From an external perspective,
the format of the queries posed by other agents and
the response from the IA will remain the same.

The HVDES does not cover the whole distribution
network, so to produce a more comprehensive aid to
the CE, a low voltage diagnosis expert system (LVES)
(Cockburn et al., 1992) was developed (see Section
3.2.4). The LVES was conceived as separate from the
HVDES because its input data is different and because
its diagnosis method is necessarily different (incremen-
tal refinement rather than simulate and test). The rea-
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sons for these differences are, first, that the operation
of automatic protective devices only locates a fault to
the circuit level in the low voltage network and, second,
that important additional information is obtained from
customer telephone calls that report loss of supply.

For this application it was deemed appropriate to
develop a standard presentation system for information
to the CE (see Section 3.3.3). This Advisor Agent
(AVA) allows information derived from more than one
source to be presented in a standard way. For example,
the CE is interested in fault reports, not in the fact that
two separate agents were responsible for producing
them. Also, with an integrated presentation, lightning
information can be displayed next to faults that it may
have caused, thus providing a useful cross-check of in-
formation for the CE (see Section 3.2.5).

In addition to diagnosing faults, CEs spend a sig-
nificant proportion of their time on routine mainte-
nance and restoration of power. However, before
maintenance can begin, a plan of safe switching op-
erations needs to be made that isolates that part of the
network to be worked on. The pre-existing SSPA was
able to perform this job, and by integrating it into the
CIDIM community, it could use the network data from
the IA (previously it had its own source). The SSPA
has its own graphical user interface with which the CE
interacts to produce switching plans. In CIDIM these
plans can be made available to other agents so that
checks can be carried out to determine whether newly
detected faults will interfere with them. If this is the
case, such interference will be signalled to the user via
the AVA. Thus the SSPA can use its own specialised
interface for creating switching plans, so to the user it
appears the same as it does in stand-alone mode (see
Section 3.2.1), and the AVA can be used for giving
warnings about new faults affecting switching plans.
The latter is additional functionality brought into being
by the SSPA’s being included in CIDIM.

A switch checking agent (SCA) will also be included
in CIDIM. This agent will have the same safety check-
ing capabilities as the SSPA but will not require the
separate user interface. Its role will be to recheck already
created plans against the current network status before
they are carried out. This recheck will be automatically
triggered by the ARCHON Layer, and the results will
go to the AVA (see 3.2.5).

When a fault occurs it may be that no customers
actually lose supply—because of alternative routes
through the network. These new routes can be switched
in by the CE after he has checked, using the SCA, that
they will not damage the network. This new network
configuration might work temporarily but may leave
the distribution system in a precarious state with a line
overloaded or in a state such that a subsequent fault
may cause the loss of power to a far greater area. Thus
a Security Agent (SA) was included to check for over-
loads and to consider the network security should sub-
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sequent faults occur. Previously such programs were
not used on line, but integration within CIDIM means
that an up-to-date network model is available (through
the IA) and that the checks can be triggered to run
automatically at suitable times (e.g., after a fault; see
Section 3.2.5).

In comparison to the majority of DAI applications,
the level of granularity of the CIDIM agents is high.
The reason for this is that in CIDIM the ISs stem from
stand-alone systems that were themselves of high com-
plexity, whereas most DAI systems simply build their
applications from scratch without having any bottom-
up design constraints. Obviously, CIDIM’s distinct
functional components could be made into separate
agents, as with the HVDA, but finer decomposition
would require significant re-working of the remaining
structure and would therefore contravene the basic
principle of software reusability. A further constraint
is that several of the pre-existing systems will continue
to be used in stand-alone mode outside CIDIM.
Therefore, if the two versions of the software are sub-
stantially different, then there is a significant extra bur-
den on maintenance.

4.3. Cooperation in CIDIM

One of the major benefits of interaction in this appli-
cation is to automatically collate results between dif-
ferent agents and to ensure that timely and consistent
information can be accessed by all community mem-
bers. For example a switching plan for a routine
maintenance operation may be made one day to be
carried out the next. However, if a fault occurs in that
area in the meantime, the plan will have to be redone.
Within CIDIM all the necessary information is dis-
persed at various sites within the community, but by
instantiating the necessary social interactions these
checks can be carried out automatically. Two other
types of cooperative interaction that enable the multi-
agent community to perform more robustly in the face
‘of missing information and agent failures are detailed
next.

4.3.1. Assistance when Information is Missing or Un-
available. The distribution network is protected from
faults by automatic circuit breakers. The TA, the high-
voltage diagnosis agent (HVDA) and the low-voltage
diagnosis agent (LVDA) can all make assumptions
about the state of these circuit breakers. As the TA
receives telemetry messages when circuit breakers op-
erate, it is usually assumed to have the definitive view
of the network’s state. However, there are three excep-
tional situations where this is not the case: not all circuit
breakers are telemetered; telemetry can go missing and
not be received at the control centre; telemetry from
a whole substation may not be reported for a period
of time.
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In each of these exceptional cases, the HVDA and
LVDA can make assumptions about the network state,
through their own knowledge and by interacting with
their acquaintances and can convey them to the IA so
that a more accurate description of the network is
available to the community. First, the HVDA may use
telemetry from the TA and its knowledge of how the
protection system operates to hypothesise faults as the
cause of the telemetry. It can then simulate them on
its network model and show that a circuit breaker
should have operated but that no telemetry message
was received. Second, the LVDA can combine telem-
etry from the TA with telephone calls from customers
reporting loss of supply in its diagnosis. These two
sources of information can be used by the LVDA to
indicate that a circuit breaker is open even if the cor-
responding telemetry has not arrived. Finally, an ex-
ample involving a more elaborate pattern of interaction
occurs when there is a high voltage fault that would
mean a loss of supply to the low voltage network if it
were permanent. However, the HVDA is uncertain
about the state of a circuit breaker and, thus, the nature
of the fault, due to missing telemetry. Here the HVDA
can interact with the LVDA and the TA, asking the
LVDA if power has been lost in the low-voltage net-
work and asking the TA to reconfirm its opinion of
the state of the circuit breaker (since a communication
failure could have occurred in the telemetry system
and the missing telemetry could have been received
late).

4.3.2. Cooperative Query Processing. The LVDA can
improve its diagnosis for overhead line networks by
cooperating with the weather watch agent (WWA) to
determine whether there was lightning at a certain time
near a certain plant item. If there was lightning in the
vicinity, then it is extremely likely that it was the cause
of the fault. However, the WWA is unable to answer
this question on its own because its database only con-
tains information relating the time of lightning strikes
to geographic locations. To determine whether the
strike was near a particular item of plant, the WWA
needs to interact with the IA, which is able to map
between items of plant and geographic locations. The
WWA can determine for itself whether there was light-
ning at a particular time. If the answer is “no,” then
there is no need to seek assistance from the IA and the
LVDA’s query can be answered. If the answer is “yes,”
then the WWA will interact with the IA to determine
whether there was lightning near the particular item of
plant in question and, when this answer is available,
return it to the LVDA, which can incorporate it into
its diagnosis.

This community design is beneficial in that the pre-
existing IS of the WWA can stay as a general purpose
system for lightning location and does not need to be
augmented with knowledge about electrical plant.
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Through cooperation with another agent (the IA), the
WWA can be used in a specific domain (electricity
distribution networks) without decreasing the flexibility
of the original program.

5. INSTANTIATING THE AGENTS AND
BUILDING A COMMUNITY

With the community’s overall structure designed and
each agent’s role specified, the next task is to instantiate
the ARCHON Layer of the individual members. The
agent’s ARCHON Layer then needs to be connected
to the IS to produce a complete agent. Once all of the
agents are completed, they need to be combined into
a community and tested. The present implementation
concentrates on the LVDA'’s diagnosis phase. Particular
attention is given to the diagnosis, using telemetry re-
ceived from the TA and the interaction with the IA to
provide the appropriate model of the network.

5.1. Agent Instantiation

The functional role of each agent devised in the com-
munity design phase is made operational by defining
each agent’s skills. For example, the role of the LVDA
is to diagnose faults in the low-voltage network. To
carry out this task successfully, it needs information
from the TA (DEAL_WITH_TELEMETRY), the IA,
the WWA, and the HVDA (ACCEPT_HV_FAULT),
as well as from direct telephone call inputs from cus-
tomers (DEAL_WITH_TELEPHONE_CALLS). The
telemetry coming from the TA may be delayed or lost
(DEAL_WITH_SUBSTATION_FAILURE), mean-
ing that the final diagnosis may take longer than ex-
pected. The result of the diagnosis is only made avail-
able to the CE after several telephone calls and telem-
etry messages have been received or after a fixed
deadline has expired (REPORT_DIAGNOSIS). Using
this as a basis, the following skills were assigned to the
LVDA:

DEAL_WITH_TELEMETRY: Receive telemetry
from the TA whose operation is autoreclosure (the cir-
cuit breaker opened and then reclosed automatically),
create a network model for the area identified by the
telemetry (using information from the 1A), and refine
the diagnosis.

DEAL_WITH_TELEPHONE_CALLS: Receive in-
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formation about telephone calls from customers, create
a network model for the area identified by the telephone
call (using information from the JA), and refine the di-
agnosis.

REPORT_DIAGNOSIS: After sufficient time has
elapsed so that no more information about a particular
fault is expected, contact the WWA for information
about lightning strikes in the area and produce a final
report for the fault.

ACCEPT_HV_FAULT: Accept information from the
HVDA about the occurrence of high voltage faults that
may affect the low voltage network and use this infor-
mation to refine the diagnosis.

DEAL_WITH_SUBSTATION_FAILURE: Receive
reports of failure in the telemetry system and refine the
diagnosis to take into account the missing information.

Once an agent’s basic units of activity are defined,
the local and social problem-solving behaviour required
for a given application must be encoded through ap-
propriate instantiation of the ARCHON Layer mech-
anisms. There are two main areas that need to be ad-
dressed. First, the agent’s local problem-solving behav-
iour and its data definitions need to be encoded into
the Monitor and the Self Model. Second, all the agent’s
social interactions and global situation assessment ca-
pabilities need to be represented through appropriate
instantiation of the PCM, the Self Model, and the Ac-
quaintance Models.

5.1.1. Instantiation of Local Problem-Solving Activi-
ties. To instantiate the necessary local control, the ap-
plication designer has to encode the skills. Figure 6
shows a portion of the LVDA’s DEAL_WITH_TE-
LEMETRY skill, which accepts telemetry information
and starts a fresh diagnosis activity if it corresponds to
a new fault, or updates an existing diagnosis if it rep-
resents an area that is already under investigation. For
simplicity, only one branch is elaborated. This has two
named subcomponents: GET_NETWORK_DATA
and DIAGNOSE_FAULT. The former ensures that
the relevant portion of the network is loaded, and the
latter actually performs the diagnosis based on the te-
lemetry and the loaded network model.

The leftmost branch of the skill is traversed first.
This means that the first step to be executed is the
GET_NETWORK_DATA plan, which is itself com-
posed of an OR-Graph of monitoring units (MUSs):

PLAN GET_NETWORK_DATA

‘MU

:PRECONDITIONS

:CHILDREN
‘MU

:PRECONDITIONS

:CHILDREN

MU_NEED_NETWORK
NIL
(MU_GET_NETWORK :END)
MU_GET_NETWORK
((:output-match NETWORK_DESCRIPTOR))
(:END)
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ﬁ)IAGNOSE_FAU LT

Monitoring Unit

\ END

FIGURE 6. Specification of DEAL_WITH_TELEMETRY skill.

The root MU MU_NEED_NETWORK is executed
immediately because its constraints on execution (i.e.,
preconditions) are satisfied (in fact, there are none).
This MU invokes a function in the LVES called
TASK_NEED_NETWORK, which is called with the
parameters TELEMETRY (see below). Upon comple-
tion, this task returns a NETWORK_DESCRIPTOR,
e.g., (:message-type NETWORK_DESCRIPTOR
:content ((SUBSTATION SUBI1) (VOLTAGE
11000)), which describes the network needed by the
LVES or FALSE if the relevant portion of the network
has already been loaded.

(define-MU-type

identify the next activity to be performed. In this case
the constraint on the execution of the leftmost branch
(i.e., MU_GET__NETWORK) is examined. If these
preconditions are met (i.e., the output of the previous
MU is a NETWORK_DESCRIPTOR), then this step
is followed. If its conditions are not met, then the next
child is examined. Here it is the keyword :END that
always succeeds.

Assuming that the NEED_NETWORK MU re-
turns a network descriptor and then a new portion
of the network needs to be loaded. Therefore, the
GET_NETWORK MU will be executed:

:name MU_GET_NETWORK
:is-task TASK_CREATE_NETWORK_MODEL

parameters
:output NIL

(define-MU-type
:name MU_NEED_NETWORK
is-task  TASK_NEED_NETWORK
:parameters (TELEMETRY)
:outputs (NETWORK_DESCRIPTORY))

When the plan’s first action is completed, its children
slot MU_GET_NETWORK :END) is examined to

((NETWORK-DATA :para NETWORK_DESCRIPTOR) )

Before calling the task in the IS, the Monitor ensures
that all of the necessary input parameters are avail-
able. In this case, data of type NETWORK-DATA
is not available in the environment of the skill, and
so the Monitor signals to the PCM that this piece
of information is needed and provides the NET-
WORK_DESCRIPTOR as the necessary parameters
for computing the information. The PCM then deter-
mines how this information can be produced and by
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whom (a process described in more detail in the fol-
lowing section). The PCM identifies that the best means
of producing the desired information is to interact with
the IA, and so it sends out the following request: (INFO-
REQUEST NETWORK-DATA :parameters ((SUB-
STATION SUBI) (VOLTAGE 11000)). The 1A will
eventually provide the necessary information to the
LVDA’s PCM, which will signal to the Monitor that
it can restart its execution of the relevant MU. The
CREATE_NETWORK_MODEL function of the IS
is now invoked with the NETWORK-DATA returned
from the IA, and the relevant portion of the network
model is constructed in the LVES. Having finished this
second plan step, its children are evaluated. However,
as the CHILDREN slot contains :END there are none,
and so the plan step has successfully completed.

As the GET_NETWORK_DATA plan has suc-
cessfully completed, the next plan step is activated. DI-
AGNOSE_FAULT is a plan composed of just one
MU:

PLAN DIAGNOSE_FAULT

‘MU MU_DIAGNOSE_FAULT
:PRECONDITIONS NIL
:CHILDREN (:END)

The plan step DIAGNOSE_FAULT is executed
because its preconditions are satisfied. This results in
the LVES’s DIAGNOSE_FAULT task being invoked
with the TELEMETRY that has been provided from
the TA as input (see below). This task first checks to
see whether the supplied TELEMETRY relates to an
existing hypothesis. If it does not, then a new hypothesis
is created and a timer is started. The length of time
spent on diagnosis depends on how soon the LVES
expects to receive all the data that is normally produced
when such a fault occurs (e.g., telephone calls from
customers who have lost supply). This delay before the
diagnosis is reported is necessary because all of the in-
formation coming from the customers will take a while
to start arriving. If the TELEMETRY relates to an ex-

type_create:

and a typical example is
((TEXT

(TIME 10874390)

(VOLTAGE 11000) )

components: ( (TEXT: STRING)
(TEXT_TIME:STRING)
(PLANT: STRING) (OPERATION: STRING)
(SOURCE: STRING) (VOLTAGE INTEGER))

“ALARM 04SEP90
CIRCUIT BREAKER AUTOREC”)
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isting hypothesis, then the new information is used to
refine the current hypothesis. In the meantime, other
skills (e.g., DEAL_WITH_TELEPHONE_CALLS
and ACCEPT_HV_FAULT) can be running and pro-
viding further refinements to the diagnosis. When the
timer expires, the diagnosis is returned.

(define-MU-type
:name MU_DIAGNOSE_FAULT
:is-task DIAGNOSE_FAULT
:parameters (TELEMETRY)
:outputs (LVDA_DIAGNOSIS))

When this MU has completed, the result
LVDA_DIAGNOSIS will be produced. There are no
further plan steps and so the DIAGNOSE_FAULT
plan has finished. As the last plan in the current branch
of the skill has succeeded, the skill has been performed.

Once the skill has been defined, it needs to be placed
into the Self Model so that other ARCHON Layer
components can reason about it. For example, the
DEAL_WITH_TELEMETRY skill is defined in the
following manner (the triggering condition is dealt with
in section 5.1.2):

Name: DEAL_WITH_TELEMETRY

Trigger: TELEMETRY-TRIGGER-FOR-LVDA
Inputs: ((TELEMETRY :mandatory))
Results: (LVDA_DIAGNOSIS)

PlanName: PLAN_GET_NETWORK_DATA
Children: (DIAGNOSE_FAULT)

In many industrial applications, the data to be ex-
changed between agents has a complex structure. This
structure must be specified in the Self Model and must
be commonly understood by all the agents in the com-
munity. The structure identifies the constituent com-
ponents of the data and defines their type. For example,
the TELEMETRY data used above is an instance of
the class TELEMETRY-MESSAGE-TYPE, which has
the following definition:

TELEMETRY-MESSAGE-TYPE

(TIME: INTEGER)
(SUBSTATION: STRING)

15.50/12.00 RUSKI RUSKINGTON C2

(TEXT_TIME “04SEP90 15.50/12.00”)

(SUBSTATION “RUSKINGTON”) (PLANT “RUSKINGTONC?2”)
(OPERATION “AUTOREC”)

(SOURCE “ALARM”)
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5.1.2. Instantiation of Social Problem-Solving Activi-
ties. Analysis of CIDIM’s social interactions reveals
that the PCM is required to undertake the following
duties: initiate cooperative interactions; select between
local and remote execution of skills; if remote execution
is selected, then choose the appropriate agent; if local
execution is selected, then choose the appropriate skill
(several local skills may provide the desired result) and
service external requests. The reasoning required to
perform these functions is built into the PCM’s generic
rules, and the application-specific details are contained
in the Agent Models. Therefore, instantiating the nec-
essary control of social activities mainly involves setting
up the appropriate agent models. The only feature of
the generic rules that can be modified is the relative
priority of the various social functions: thus, an agent
can be made service-oriented by increasing the priority
of external communication or computation-oriented
by increasing the priority of local activities.

With regard to the LVDA’s diagnosis using telem-

etry, the PCM of the respective agent is responsible for
the following functions:
1. When the IS of the TA generates telemetry, the PCM
must recognise, through its acquaintance models, that
the LVDA is interested in receiving it. Knowing this,
the PCM should volunteer the data as unrequested in-
Sformation.

Interest descriptors indicate information that other
agents would benefit from receiving. They allow the
developer to describe under what conditions infor-
mation should be sent to an acquaintance, thus re-
ducing unnecessary traffic. This specification contains
two parts, the name of the data item and the condition
in which the acquaintance is interested in it. For ex-
ample, the TA’s model of the LVDA specifies that it
is interested in receiving TELEMETRY data that refers
to the low-voltage network (i.e., less than or equal to
11,000 volts). The “!”” and “?X” symbols in the con-
dition are pattern matching primitives; the former
matches against a pattern of arbitrary length and the
latter binds the value of the voltage slot of the telemetry
information to a local variables named X.

Name: TELEMETRY-INTEREST-FOR-
LVDA

Data name: TELEMETRY

Condition: ((!! (VOLTAGE?X) !!)

(<= X 11000))

The associated generic rule that acts upon the acquain-
tance model to produce the desired behavior is:

(rule volunteer-info
(if (and (INFO-AVAILABLE 1)
(ACQUAINTANCE-INTERESTED-IN
N ?ACQ)))
(then (SEND 7?1 TO ?ACQ AS
UNREQUESTED-INFORMATION) ))
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2. To create its network model, the LVDA needs struc-
tural information about the network. When such infor-
mation is required, the PCM has to determine which
acquaintance can provide it and send that agent a re-
quest.

The LVDA knows that the IA can produce the net-
work data for a substation because its acquaintance
model indicates that it can perform a skill whose result
is the NETWORK-DATA.:

Name; GET_NETWORK_FOR_SUBSTATION
Inputs: SUBSTATION
Results: NETWORK-DATA

The associated generic rule that produces the desired
behaviour is:

(rule generate-service-request

(if (and (INFO-NEEDED )
(CANNOT-BE-PRODUCED-LO-
CALLY )
(ACQUAINTANCE-CAN-PRODUCE
N 2ACQ)))

(then (SEND INFOR-REQUEST TO ?ACQ

TO PRODUCE 7M)))

3. When the LV DA receives telemetry whose operation
is autoreclosure, its PCM must trigger execution of the
DEAL_WITH_TELEMETRY skill.

The trigger for the DEAL_WITH_TELEMETRY
skill is defined in the Self Model. It is triggered on re-
ceipt of TELEMETRY whose voltage value is less than
or equal to 11kV and whose operation is autoreclosure
(the pattern-matching primitives are the same as those
used in the interest descriptor).

Name: TELEMETRY-TRIGGER-FOR-
LVDA
Data name: TELEMETRY
Condition: ( (1! (VOLTAGE 7X) !!
(OPERATION ?70P) !))
(<= X 11000) (OP = AUTO-
REC))

The associated generic rule is:

(rule start-skill
(if (and (RECEIVE-INFO M)
(INFO-IS-SKILL-TRIGGER 7?1 ?SKILL)
(TRIGGER-SATISFIED 7SKILL)))
(then (EXECUTE-SKILL ?SKILL)))

5.2. Interfacing the ARCHON Layer and its
Intelligent System

When the relevant parts of the ARCHON Layer have
been instantiated, a connection with the IS needs to
be established. In the case of purpose-built ISs, this is



Cooperating Community for Electricity Distribution

a relatively straightforward activity because they are
designed to be controlled from the ARCHON Layer.
In this case, invoking an IS task is similar to an asyn-
chronous function call.

In case of pre-existing systems, however, connection
with the ARCHON Layer can be a substantially more
demanding job. One reason for this is that the IS’s
control regime is embedded in the software alongside
its problem-solving expertise. From a multi-agent point
of view, this is unsatisfactory, the ARCHON Layer
should be taking the major control decisions, since it
knows about the other community members and the
effects that local decisions will have on global coher-
ence. Therefore, the IS will need to be altered to make
the control more accessible and amenable to manip-
ulation. For example, in the particle accelerator appli-
cation, once the diagnosis expert systems were started,
they remained in a continuous loop, and control could
only be achieved by injecting items into their agenda
(Jennings et al., 1993). To incorporate these systems
into a cooperating community, the basic steps of the
loop were identified as skills and then the top-level
control loop was removed from the IS and placed in
the ARCHON Layer. An example from CIDIM is that
the LVES originally had its own data sources. However,
when the LVDA was integrated into the cooperating
community, other agents became responsible for pro-
viding the information it needed. Thus, the control of
when such information was incorporated into the rea-
soning process was undertaken by the ARCHON
Layer, rather than by the IS, where it had previously
resided.

5.3. Introducing the Agents to Each Other

Once all the agents have been instantiated, they can
be integrated into a community. Ideally, this final phase
just involves loading the agents into the target envi-
ronment, specifying the network addresses, and starting
the whole system. However, before this is carried out,
it is advisable to perform a few simple consistency
checks on the Agent Models—especially if each agent
has been developed by a different team. Pertinent
checks include ensuring that interacting agents have
consistent information definitions for data they are to
exchange and ensuring that each agent’s requests for
services are capable of being executed by at least one
community member.

Once the agents are plugged together, they have to
be tested. This can be carried out in two ways: if the
real process allows on-line experimentation, then this
should be used as the test environment (as was the case
with CERN’s particle accelerator controller). Alter-
natively, a simulated environment must be developed
and used as the basis for testing. In CIDIM, testing was
based on simulated inputs, which were sampled from
real events because the distribution network can run
for long periods of time before a disturbance occurs.
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The purpose of this community testing phase is to en-
sure that each agent’s individual modules have been
coded correctly and also that the interactions between
community members have been successfully captured.

In many applications nonfunctional requirements
such as performance are an important component of
the final system. For this reason, the cooperating com-
munity must meet the desired performance character-
istics as well as operating correctly. Bottlenecks may
occur in the computation resources of individual agents
or in the communication channels between them, and
this can only be detected by monitoring the perfor-
mance of the working system. When such bottlenecks
are detected, the designer must take appropriate steps
to alleviate them. In an early version of CIDIM, for
example, the TA would send all the generated telemetry
to both the HVDA and the LVDA. This meant that
large amounts of data were needlessly being sent to
agents who simply discarded them. This problem has
been overcome in the present implementation by al-
lowing more expressive statements to be included in
the conditions of interest descriptors (see Section 5.1.2).
Another example is that the switch-checking agent was
introduced into CIDIM to reduce a resource bottleneck.
The SSPA is capable of rechecking switching plans,
but if the user is in the process of creating a schedule
(the SSPA’s main activity), then there will be a major
resource conflict. By increasing the availability of the
scarce resource (the ability to recheck switching plans),
CIDIM can operate more efficiently.

6. CONCLUSIONS

CIDIM can be regarded as typical of a whole class of
industrial applications that are ripe for a multi-agent
approach. It has many features that are often observed
in this type of application: some of the ISs were pre-
existing, and some needed to be purpose-built for the
integrated system; there was some interaction, through
the operators, before the cooperating community was
implemented, although there was significant scope for
improvements in the quality of such exchanges. De-
velopment of CIDIM represents an important contri-
bution in that DAI (and Al) techniques are rarely ap-
plied to real-world problems. Consequently, many of
the bottom-up design and implementation issues high-
lighted here remain hidden when systems are built for
toy or highly idealised domains. A further contribution
1s in highlighting the types of cooperation that can be
expected when semi-autonomous agents interact on a
common problem. This aspect provides an important
means of verifying the applicability of the various
theoretical models of cooperation that exist within the
DALI literature. In this type of application, the forms
of interaction that are most beneficial are the timely
sharing of relevant information and the ability to ask
acquaintances to carry out tasks or provide information
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that the local agent is unable to perform or provide for
itself.

As a consequence of building CIDIM and several
other industrial applications, a series of issues and de-
sign forces were identified as central to the process of
developing real world multi-agent systems. Guidelines
are given relating to the analysis of an application from
a multi-agent perspective, and important design choices
concerning the composition of a cooperating com-
munity are identified. At this stage, the methodology
cannot be regarded as a final, neither for creating AR-
CHON applications nor for constructing multi-agent
communities for industrial control. However, it is now
sufficiently mature that still greater experience only re-
sults in slight modifications.

Future work aims to incrementally extend the CI-
DIM implementation. The remainder of the interac-
tions relating to diagnosis will be coded, and work on
incorporating the full functionality related to switching
plans and security analysis will begin. Once a suffi-
ciently complete cooperating community has been
built, a 3-month trial will be conducted at a Regional
Electricity Company to see how the system copes with
on-line management of the distribution network and
how it compares with the present mode of operation.
This initial implementation highlighted a number of
deficiencies in the ARCHON system, which need to
be ironed out for the final version. In particular, run-
time control of the various social and situation assess-
ment functions needs to be improved so that agents
can respond in a more timely fashion to urgent events.
Second, a limited form of conflict resolution is needed,
so that discrepancies can be resolved by the community
at run-time rather than attempting to engineer them
all out at design time, as occurs with the present im-
plementation.

When CIDIM is complete, it will enhance the job
of the CE by automating tasks that are at present ex-
tremely tedious to perform. For example rather than
seeing all telemetry messages, as is the case at present,
Jjust fault diagnoses can be presented. In the worst case,
this will mean being shown tens of faults in a day of
which the important ones will be highlighted. This
contrasts with the thousands of telemetry messages that
are currently presented on an average day. Confidence
in diagnoses will increase because lightning information
will automatically be collated with faults. At present,
this requires a time-consuming look-up, which is often
not undertaken when the CE is busy. These and other
automated exchanges of information will allow the CE
to concentrate more on supervision of maintenance
and repair work and will also allow more time to be
spent on preventative actions.

In the long term, the adoption of a cooperating sys-
tems approach, coupled with other changes in the con-
trol room (such as graphical information systems),
means that there will be less need to have centralised
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control and also that there will be greater opportunities
for dynamically switching control from one centre to
another. At present the latter capability is limited (un-
less it has been preplanned like the changeover of con-
trol at night) because all of the necessary information
is not portable (e.g., a Control Centre is responsible for
one region and has large wall diagrams of the network
for that region). This ability to transfer control will be
of use as a back-up procedure or to share the workload
during severe fault conditions.

Finally, with the advances in telecommunications
and radio links, it will soon be possible for the field
engineer to have full access to network diagrams, safety
checking, lightning data, and all the services of CIDIM
whilst he is on location. Indeed, the role of the CE may
change dramatically with more local decisions being
taken because of the increased availability of infor-
mation.
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