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ABSTRACT

This paper describes the design and implementation of a domain-independent reusable
coordination module. This module is at the heart of the ARCHON architecture and has
been used in the development of cooperating multi-agent systems in a number of real-
world industrial applications including: electricity distribution management, electricity
transportation management, cement factory control, flexible assembly robotic cells and
particle accelerator control. The module is based upon the philosophy of providing a cor-
pus of extensible generic knowledge about cooperation and situation assessment. Special
prominence is given to the problem of controlling the reasoning within the coordination
module.

1. INTRODUCTION

Systems composed of multiple, interacting components (agents) are becoming an
increasingly popular means of building complex industrial control applications. The
majority of these systems are functionally distributed and have subcomponents which
are ordered in some hierarchical fashion with clear, predefined communication links.
Although this modular approach increases the maintainability of the system, it keeps
the overall control at a central location (i.e. a global controller coordinates the activities
of all the subcomponents). This centralisation of control has two particular drawbacks
for industrial control applications (Jennings & Wittig, 1992). Firstly for large applica-
tions with a number of distinct supervisory and control subcomponents, the activation
of tasks in the sub-systems and the decision of what data to exchange between them
depends on the state of the entire process. In a centrally controlled system this assess-
ment requires the controller to take into account the different views of all the relevant
sub-systems and can, therefore, lead to severe delays while the relevant information is
assembled and the appropriate decisions are taken. Secondly it is difficult (sometimes
impossible!) to perform the modifications required to integrate the large number of
pre-existing (legacy) systems which are often found in industrial applications into one
unifying whole.

To alleviate the decision-making bottleneck, increase the flexibility of data exchange
and task activation and facilitate software reuse, the next stage in system design is to
decentralise the control and allow the components to interact directly with one another.
This approach not only allocates more responsibility to the sub-systems, but also
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requires them to coordinate their tasks if the whole system is to interact in a coherent
manner. Such coordination can be hand-crafted for each and every application or it can
be undertaken in a more structured manner by developing a framework which can be
re-used in a number of different scenarios (the approach described in this paper). The
ARCHON (ARchitecture for Cooperative Heterogeneous ON-line systems) frame-
work (Wittig, 1992), which provides the context for this work, has been used to build
cooperative, multiple agent applications in the domains of: electricity distribution
management (Varga et al., 1994), electricity transportation management (Wittig, 1992,
ch. 8); cement factory control (Stassinopoulos and Lembesis, 1993); flexible assembly
robotic cells (Oliveira et al., 1991) and particle accelerator control (Jennings et al.,
1993).

Within the ARCHON framework each agent is composed of a number of functional
components, one of which is responsible for coordination in a decentralised environ-
ment. During the design and development of this Planning and Coordination Module
(PCM) a number of crucial issues needed to be addressed: (i) what are the requirements
for coordination in large, real-world industrial applications? (ii) what types of facilities
should a general-purpose framework provide to an application developer? (iii) how can
the reasoning of the coordination module be controlled so that the agent’s objectives
are satisfied? (iv) how can the coordination module be designed so that it responds rap-
idly to important events but also deals with events in a fair manner avoiding resource
starvation? (v) how can a generic coordination module be tailored to fit a particular
application? (vi) how can such a coordination module be implemented so that it meets
the aforementioned desiderata?

This paper describes how the above issues were tackled and solved within the
ARCHON framework. These experiences and insights are important for a number of
different reasons. From the perspective of Distributed Artificial Intelligence (DAI) this
work represents one of the first serious attempts to build a generic cooperation frame-
work for large scale, real-world industrial applications. From the perspective of
industrial control applications, this work highlights the feasibility of employing a
cooperating systems metaphor and enables the problems associated with building
decentralised control systems to be clearly stated and evaluated.

Section two presents a brief overview of the ARCHON architecture so that the work
on the PCM can be placed in context. Section three details the philosophy of re-usable
generic knowledge which lies behind the PCM and section four describes its imple-
mentation as an object-oriented rule-based system.

2. STRUCTURE OF AN ARCHON AGENT

ARCHON agents have two distinct components; an Intelligent System (IS) and an
ARCHON Layer (see figure 1). The former may be pre-existing or may be purpose built
and solves domain-level problems such as detecting disturbances in electricity net-
works or controlling the blower of a cement factory kiln. In the majority of
ARCHON’s applications, the community contains a number of different types of IS,
including expert systems, databases and conventional numerical software. From the
ARCHON Layer perspective the IS is composed of a number of atomic tasks, although
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in terms of their actual implementation the tasks may themselves be relatively sophis-
ticated problem solving activities involving branching and decision making. The
ARCHON Layer is a meta-level controller which operates on the IS to ensure that its
activities are coordinated with those of the others within the community. The separa-
tion of the domain and cooperation know-how into the IS and the ARCHON Layer
respectively, allows pre-existing systems to be incorporated into the multiple agent
community with relatively few modifications and allows the cooperation know-how to
be re-used in a number of applications. Without this demarcation, extensive changes
would be required to the existing systems in order to provide them with the necessary
knowledge to interact with, and benefit from, the other agents in the community.

Communication between agents is via message passing and is controlled through the
High Level Communication Module (HLCM). This module is deemed High Level
since it not only provides standard communication facilities (achieved through a Ses-
sion Layer implementation) but also embodies services such as intelligent addressing
and filtering. A message passing paradigm was chosen because of the physical distri-
bution of the problem solving agents and the desire to conform to OSI standards.

The Acquaintance Models (AMs) are a representation of other agents in the commu-
nity. Information maintained includes an acquaintance’s skills, interests, current status,
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workload and so on (Jennings et al., 1992). These models are essential when coordi-
nating activity because they provide a characterisation of the social problem solving
context in which the agent has to operate. Much like the AMs represent other agents in
the community, the Self Model (SM) is an abstract characterisation of the agent’s
underlying IS. It contains information about the current state of the IS and embodies a
representation of the sequences of actions which can be executed by the ARCHON
Layer in its underlying IS.

The Monitor organises locally executable activities and is responsible for passing in-
formation to and from the IS. Skills are the coarsest granularity at which these activities
are described. Other ARCHON Layer components deal exclusively on the level of
skills, but within the Monitor they are given a finer structure - corresponding to an OR-
graph in which the named branches specify alternative solutions. The nodes of the
graph are called monitoring units and they correspond to the invocation of individual
tasks within the IS.

The PCM reasons about the agent’s role in terms of the wider cooperating community.
It has to assess the agent’s current status and decide which actions should be taken in
order to exploit interactions with others whilst ensuring that the agent contributes to
the community’s overall well being. Specific examples of the functionality supported
include: deciding which skills should be executed locally and which should be delegat-
ed to others, directing requests for cooperation to appropriate agents, determining how
to respond to requests from other agents and identifying when to disseminate timely
information to acquaintances who would benefit from receiving it.

3. ARCHON’S PLANNING AND COORDINATION MODULE

3.1 Re-Usable Generic Cooperation Know-How

Analysis of a number of industrial control applications, highlighted a surprising
degree of commonality in terms of their status and their characteristics. In the major-
ity of cases studied, there were a number of automated components which were
responsible for a well-defined portion of the overall process. Although the sub-sys-
tems made reference to the same environment, and hence decisions and actions by
one component influenced those of another, they were not integrated. However when
major events occurred (eg lightning storms in the electrical management domains) the
operators of the individual components interacted verbally with one another to coordi-
nate their problem solving activity (Jennings & Wittig, 1992).

In addition to this conceptual similarity at the operator level, the problem solving enti-
ties also had a number of broadly common characteristics. Most important from the
PCM’s point of view was the fact that the sub-systems were able to undertake signifi-
cant amounts of processing in their own right - a consequence of the fact that most of
them were originally intended to operate on their own or with minimal intervention
from an operator. In terms of the cooperating system metaphor, this meant that agents
would spend the majority of their time engaged in domain level computations and
substantially less time on coordination activities and inter-agent communication. Also
the number of cooperative interactions which would be needed were relatively small
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in comparison to the number of activities undertaken within the domain level system.
However interaction with other agents was needed to accomplish tasks that could not
be performed locally and to supply information which was needed for problem solv-
ing but which could not be readily accessed. As well as these necessary interactions,
there were a number of other new interactions, made possible by the sub-system inte-
gration, which could enhance the problem solving of the participating agents. Exam-
ples include: receiving relevant information which helps an agent prune its search
space; agents cross-checking results by performing tasks which produce the same
information using different data or a different approach; and the provision of more
timely/accurate information for injection into the problem solving process. In general
the mandatory interactions mirror those between the stand-alone system and its opera-
tor, whereas the new ones are similar to the types of interactions which took place
between the operators when exceptional circumstances arose.

Within these well-defined constraints, it was decided that the greatest degree of sup-
port could be offered to the developers of ARCHON applications if a significant por-
tion of the cooperative functionality could be provided as a core of inbuilt-knowledge.
Thus rather than providing the developer with just programming features, he is pre-
sented with a library of knowledge about cooperation with which the application can
be constructed1. This core can then be augmented, if necessary, with domain-specific
cooperation knowledge in order to build the coordination mechanism for a particular
multi-agent system (figure 2a). This approach contrasts with the conventional means
of fabricating multi-agent systems in which the application developer is forced to con-

1. This approach has been advocated by a number of researchers concerned with the inherent difficulties
and inefficiencies in the present software engineering development process (see for example (Blum,
1992; Cox, 1990; McDermott, 1990; Neches et al., 1991; Stefik, 1986)).
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tinually re-code a large proportion of essentially the same knowledge in each and
every case (see figure 2b).

This re-usable knowledge approach means that each community member has the
same core know-how about cooperation encoded in its PCM. The majority of the
domain dependent data which is obviously needed to define individual behaviour is
then located in the agent models. Examples of three such generic rules are as follows:

Rule1: if an agent has generated a piece of information i and
it believes that i is of use to an acquaintance

then send i to that acquaintance

Rule2: if an agent has a skill to perform and
it is not able to perform it locally

then seek assistance from another agent

Rule3: if an agent has finished executing skill s and
s was undertaken because of a request from an

acquaintance
then inform the acquaintance that s has finished and

return any results which have been produced

In the case of Rule1, the acquaintance models contain a list of information that the
other agents are interested in receiving and a condition under which they are inter-
ested. If the condition is met, then the second clause of the rule will be satisfied and
the information will be sent. In the case of Rule2, the self model is used to determine
that the agent cannot complete the skill locally and the acquaintance models are used
to identify those agents who are able to furnish the necessary skill. Rule3 is triggered
when the Monitor indicates that a skill has finished. At this point, the self model is
examined to determine the reason for executing the skill. If this reason indicates that
the skill was initiated as a result of a request from an acquaintance, then the informa-
tion that the skill has finished and any relevant results which have been produced are
returned to the originator. All of these rules are application independent and are tai-
lored to a specific domain by the appropriate instantiation of the agent models.

3.2 Design Decisions

Being a key functional component of the ARCHON architecture, it is important that
the PCM’s design rationale and philosophy is made explicit and can be scrutinised.
This allows the factors which influenced its internal structure, its representations and
its control mechanism to be evaluated and assessed for appropriateness. Throughout
the entire design process, the primary objective was to develop a domain-indepen-
dent, re-usable mechanism whose operation would be as transparent and extensible as
possible.

Given that the PCM is the overall director of, and broker between, the activity of the
underlying IS and that of the agent’s acquaintances, it has two obvious spheres of
influence. Firstly to interact with other agents there must be an interface to the HLCM
so that messages can be sent and received across the community. Likewise, an inter-
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face to the Monitor is needed so that the PCM can influence the activities of the IS.
This separation of concerns meant that the PCM’s operations could be divided into
two distinct groups; those related to managing the agent’s local activity in a coopera-
tive environment and those related to controlling the agent’s social activities per se.
For reasons of software modularity and clarity of design, these distinct functional
roles were implemented as separate problem solving modules within the PCM - the
former as the Situation Assessment Module (SAM) and the latter as the Cooperation
Module (CM).

In more detail, the SAM is responsible for: deciding how data needed by the IS can be
supplied (start activity locally or enlist the help of an acquaintance?); determining
whether a request for the performance of a skill should be carried out locally; evaluat-
ing which skills should be started, in what order and with what data; deciding whether
external requests should be met by starting a new skill or by exploiting an already ac-
tive one; and evaluating whether new information should be passed onto the relevant
active skills.

The CM has three primary objectives. Firstly it has to establish social interactions. This
involves deciding how requests from the SAM can be best satisfied. Two forms of co-
operation are presently supported: task and information sharing. In the former the
agent asks an acquaintance to execute a skill or produce a specified piece of informa-
tion, in the latter the agent spontaneously volunteers information to acquaintances who
will benefit from receiving it (based on information specified in the acquaintance mod-
els). In both forms of interaction, the CM has to decide with which acquaintances the
interaction should take place (i.e. which agents to request aid from and which agents
to disseminate information to). With task sharing, the CM has to additionally decide
between the client-server protocol and the contract-net protocol (Smith, 1980) as the
means of determining how the task should be awarded to an acquaintance. With the cli-
ent-server protocol the request is directed to just one acquaintance. With the contract-
net protocol the agent advertises the activity it would like to be performed to all of
those acquaintances who are capable of providing it. Upon receipt of the request, each
acquaintance puts together a bid which specifies when and with what quality it could
provide the service. When the originating agent receives all the bids, it evaluates them
and establishes a contract for the activity with the most appropriate agent. The second
primary objective of the CM is to maintain ongoing cooperative activities. So, for ex-
ample, in the case in which an agent agrees to perform a skill because an acquaintance
has asked it to, the social action’s progress must be tracked to ensure that any relevant
intermediate results are returned and that upon completion a final report describing the
status and results of the requested activity is sent back to the originator. Finally the CM
has to respond to cooperation initiations from other agents.

An early prototype of the PCM, called GRATE, which implemented the SAM and the
CM as concurrent processes was built for evaluation purposes and applied to the
domain of electricity transportation management (Jennings et al., 1992) and particle
accelerator control (Jennings et al., 1993). As a consequence of this prototyping activ-
ity, three important points pertaining to the design of the PCM were highlighted (Jen-
nings, 1992). Firstly the process of controlling the reasoning about cooperation and
situation assessment needed to be significantly improved (GRATE just had a simple



8

looping structure and consequently did not respond quickly to important events). Sec-
ondly some organisational structure needed to be imposed on the knowledge embod-
ied within the SAM and the CM if the application developer was to be able to add any
domain specific cooperation know-how (in GRATE all the cooperation knowledge
was just bundled together). Finally it must be possible to specify the objectives of the
PCM so that important events can be more easily recognised. With respect to the final
point, GRATE did not enable the application developer to introduce any bias into the
reasoning process. So, for example, it was not possible to reflect the fact that the
agent’s main role in the community may be to provide services for the others (eg a
database agent which contains large amounts of static information about the process
being controlled). Nor was it possible to reflect the fact that another agent carries out
such an important task that it should not be interrupted by low priority external
requests (eg an expert system planning how the network can be repaired after a major
fault should not be distracted by the receipt of unrequested information which is prob-
ably out of date). In the former case the developer needs the facilities to specify that
external requests should be given a higher priority than locally generated ones and in
the latter case that local activities should take precedence.

To rectify these problems it was decided that the PCM should be decomposed into
smaller, more modular units and that some explicit reasoning about the invocation of
situation assessment and cooperation functions needed to be introduced. Firstly rather
than allowing the CM and the SAM to run as concurrent processes, and hence having
no real control over their relative resource usage, an overall controller was introduced
into the PCM (see figure 3). This controller maintains a high-level description of all
the processing which the PCM has to undertake and decides whether situation assess-
ment or cooperative functionality should be invoked next. As a second step the CM
and the SAM were further divided into two sub-modules according to the interface
which initiated their action. For the SAM this resulted in one sub-module for dealing
with messages arriving from the Monitor and another for dealing with messages from
the CM. Likewise for the CM, one group of operations were activated by messages
arriving from the HLCM and a separate group were related to messages arriving from
the SAM. These sub-modules act on the overall controller’s instructions and use their
more detailed knowledge of that sub-area of the PCM’s operation to decide which
types of functionality should be invoked and for what duration. As functionality invo-
cation is now to occur as a result of reasoned activity, rather than being purely data
driven, the messages arriving at a sub-module need to be stored in a buffer. Rather
than having just one buffer, in which the structure of the activities to be performed
would be lost, each sub-module maintains its own buffer for the messages that it has
to process. Thirdly the individual functionalities of the PCM were represented as dis-
tinct blocks - called operational rule blocks. Thus the CM sub-module which pro-
cesses messages from the HLCM is responsible for controlling the operational blocks
which deal with the arrival of unrequested information, with requests to carry out
problem solving activity for other agents and with the return of information which has
been requested from other agents2. To facilitate the reasoning about invocation, each
operational block is designated as having a particular orientation - SERVES-SELF

2. For reasons of clarity, only 12 of the PCM’s operational blocks are shown in figure 3 - those not shown
are related to: the rejection of cooperation requests, the resolution of conflicts and the contract-net
protocol.
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(SS) means that it progresses the agent’s own local objectives; SERVES-OTHERS
(SO) means that it progresses the processing of other community members and
MIXED means that it has elements of both.

3.3 Meta-Level Control of the Coordination Process

Ensuring agents act coherently in an environment in which control decisions are
decentralised is a difficult task which has resulted in the development of a variety of
coordination mechanisms. In terms of the PCM, the major decision which affects the
coherency of the system is the decision of what operational functionality to invoke at
what time and for how long. In order to take this decision a number of factors needed
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to be taken into consideration, ranging from long-term and relatively static informa-
tion about the agent’s objectives, to the immediate and constantly varying status infor-
mation. The PCM’s objectives are determined by examining the designated role of the
agent in the community. Three alternatives are available, an agent’s primary role may
be: (i) SERVES-SELF in which case its main objective is to complete its own prob-
lem solving; (ii) SERVES-OTHERS in which case the agent is predominantly a server
for the other community members; (iii) MIXED in which case the agent has a mixture
of objectives, some of which are related to serving its own needs and some of which
are related to helping others.

As well as invoking the appropriate operational functionality in order to fulfill the
agent’s role within the system, the control regime of the PCM has two other desider-
ata. Firstly it must avoid resource starvation and ensure that messages do not remain
in the system for an unacceptable amount of time without being processed. Secondly
because ARCHON is to be used in industrial applications, the decision making pro-
cess which determines the functions to be invoked should not consume significant
amounts of resource. This means a “satisficing” approach to control decisions is
required in which relatively simple (and computationally cheap) criteria are applied to
produce decisions which are “good enough”. Optimal decisions, though desirable,
may consume considerably more resources to make only marginally better decisions
and may compromise ARCHON’s time-criticality objectives.

The PCM’s overall controller is responsible for selecting which of the four sub-mod-
ules should be processed at any one time and also for determining the amount of
resource that should be consumed during this processing. The decision about sub-
module activation is based on the policy set by the application developer:

ROUND-ROBIN: select the successor of the currently active sub-module until
reach the end of the ordered list, in which case restart with
the first element.

SHORTEST-FIRST: select the sub-module with the fewest messages to process.

BUSIEST-FIRST: select the sub-module with the most messages to process.

The amount of resource which should be consumed during a particular sub-module
invocation depends on the loading of the PCM. If this load is high, then processing
should be evenly spread between the sub-modules to ensure that all the important
events are dealt with in a reasonable amount of time. If the PCM’s load is relatively
low, then some effort can be dedicated to processing less important messages and
hence ensuring that long backlogs do not build up. The three choices which the con-
troller can pass onto the chosen sub-module are as follows:

CLEAR-BACKLOG: clear up any backlogs which have built up.

DEFAULT: process important messages first but also ensure that no messages are
waiting too long before being receiving attention.

IMPORTANT-TASKS-ONLY: only process message types which are important.
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Within the constraints set by the Controller, the chosen sub-module has to decide
which of its associated operational blocks will be invoked and how much processing
each should undertake. So, for example, if the sub-module processing messages from
the HLCM is chosen it may decide to process all of the messages corresponding to
replies for information which have been made to acquaintances, one message provid-
ing unrequested information and no messages which are requests from other agents
for the local agent’s services. This selection will be based on the policy set by the con-
troller, the priority of the individual operational blocks, the orientation of the opera-
tional blocks and the agent’s orientation - see figure 4 for a more detailed description
of the algorithm controlling this process.

3.4 Instantiating the PCM for a Particular Application

The first step when instantiating the PCM is to analyse the inbuilt generic knowledge
to determine whether it contains all the functionality and reasoning required to build
the application. In all of the ARCHON applications which have been built so far, this
generic knowledge has been sufficient and has not needed modification. However, in
general the application builder may wish to augment this knowledge with cooperation
know-how which is specific to the application being developed. In the present imple-
mentation this process is limited to the modification of existing functionality (i.e. the

CONST
AgentOrientation ∈ {SERVES-SELF, SERVES-OTHERS, MIXED};
SubModuleList ∈ {Incoming-Messages, Outgoing-Messages,

Messages-To-Monitor, Messages-From-Monitor};
SelectionCriteria ∈ {ROUND-ROBIN, SHORTEST-FIRST, BUSIEST-FIRST};

LOOP FOREVER
NextActive = select(SubModuleList, SelectionCriteria);
IF NextActive ≠ nil THEN
BEGIN
PCMWorkloadStatus = EvaluateWorkload(SubModuleList);
FORALL OperationalBlk(i) ∈ NextActive DO

CASE PCMWorkloadStatus OF
CLEAR-BACKLOG: Process all messages in buffer;
NORMAL: IF orientation(OperationalBlk(i)) =

AgentOrientation
THEN process all associated messages
ELSE process first associated message;

BUSY: IF orientation(OperationalBlk(i)) =
AgentOrientation OR

high-priority(OperationalBlk(i))
THEN process first associated message;

ENDCASE
ENDTHEN

ENDLOOP

Figure 4: PCM Control Algorithm
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developer can change the way in which unrequested information is processed, but a
new message type cannot be added to the system, nor can the PCM structure be al-
tered). Some examples of possible application specific cooperation knowledge which
could be included for a given application are given below:

Rule1: if decide to seek assistance for skill s and
more than one acquaintance can perform s and
agent A1 can perform s

then select agent A1 to perform s

Rule2: if executing skill s1 and
receive request to do skill s2

then reject request to perform s2

Rule3: if executing skill s and
receive unrequested information i which is an

optional input for s and
i is sent by agent A2

then do not pass i onto s

Rule1 could be added to the make-external-request operational block to indi-
cate that acquaintance A1 is always the most appropriate (fastest, most accurate) agent
to select to complete skill s. This rule may speed up the reasoning process in that it
avoids the overhead associated with setting up a contract-net protocol to establish the
most worthy agent. Rule2 may be included in the service-external-request
operational block if the designer knows that it is impossible to execute skills s1 and s2
in parallel and that after executing s1 it is no longer necessary (or appropriate) to exe-
cute s2. Rule3 could be added to the unrequested-info-available operation-
al block to encode the situation in which the application developer knows that
acquaintance A2 sends unreliable data and hence it should not be used as an input for
a skill which is particularly sensitive to noisy information.

This corpus of knowledge (generic plus application specific) together with its associ-
ated structure (as described in section 3.3) then forms the basis of the working PCM
for a given application (see figure 5). Although the generic knowledge is widely appli-
cable, the functionality which it supports will vary in usefulness between scenarios. So,
for example, in some cases the main form of cooperation will be through the volunteer-
ing of unrequested information to relevant agents; whereas in others most cooperative
interactions will be through explicit requests for services and information. To provide
the necessary degree of flexibility, there are various parameters which the application
builder is able to tweak in order to tailor the PCM to best fit the given problem. At the
finest level, the developer may alter the relative priorities of the operational blocks. So,
for example, the block which deals with unrequested information may be given a high-
er (lower) priority than that of explicit requests. Priority is specified as a number be-
tween 1 and 100 (the higher the number the greater the priority). The developer also
has to specify what constitutes a high priority (eg high priorities are those greater than
80) - since it is important that these functions are processed in a timely and efficient
manner.

The application designer then has to specify what constitutes a small number of mes-
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sages for the PCM to process and what constitutes a large number. In between these
two values, the PCM is operating in normal mode. These parameters are important
because, as figure 4 indicates, the PCM behaves differently if it has a large number of
messages to process, from if it has a normal amount from if it has a small number.
Finally the policy for selecting the next sub-module needs to be fixed.

As figure 5 highlights, the process of tuning the parameters is iterative. The designer
sets up a first approximation for each of the agents and then tests how they perform in
their operational environment. As a result of this analysis, the parameters of one or
more of the agents will be modified. This process continues until the community
attains a satisfactory level of performance.

4. IMPLEMENTATION OF THE PLANNING & COORDINATION MODULE

4.1 Underlying Mechanisms

The PCM’s modular and hierarchical design can be implemented using a number of
different technologies. Alternatives which were considered include: writing simple
procedures to perform each operational function and embedding the control regime
into a fixed calling sequence; utilising a rule-based implementation to express the
generic knowledge as declarative rules; using an object-oriented representation to
encapsulate the various levels of the PCM in a class hierarchy. In order to comply
with the overriding principles of clarity and extensibility, it was decided that both the
operational and the control aspects should be implemented using a rule-based
approach. However to retain the PCM’s well-defined design structure in the imple-

Knowledge built into PCM

Merge

Working PCM

Figure 5: Instantiating the PCM

Fine Tune control
parameters

Iteration

Application Specific
Cooperation Knowledge
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mentation, it was decided that an object-oriented rule based system should be
employed. Such an implementation platform allows the structure of the PCM to be
represented in a unified manner - the control level objects reason about the sub-mod-
ule objects, which in turn reason about operational level objects, which reason about
objects external to the PCM (such as the acquaintance model objects, the self model
objects, the PCM-Monitor interface objects). This underlying mechanism combines
the ease of extensibility offered by the rule based approach, with the modelling capa-
bilities of an explicit class hierarchy.

MIKIC-II, the particular object-oriented rule-based system which was chosen, allows
both a structural and a functional decomposition of the class hierarchy to be devised
(MIKIC, 1991). The structural elements act purely as a source of declarative knowl-
edge (eg the agent models, the interface with the Monitor, etc.); whereas the func-
tional entities, called rulesets, are associated with a particular group of rules and may
be executed. The way in which rulesets are executed is specified by their execution
style - sequence (pass through the rule list once), iterate (continually pass
through the rule list until a halt flag is set) or mutually-exclusive (halt after the
first successful rule firing) - and can be dynamically altered at run-time. Thus, for
example, when a sub module controller is attempting to clear a backlog it will set the
execution style of its operational rulesets to iterate until all of their associated mes-
sages have been processed. In contrast, when the workload is heavier and the sub-
module controller is trying to pick out only the most important messages, it will set
the execution style so that only a single instance of each message type is processed.
The remaining attributes of rulesets can be divided into two distinct groups: (i) those
inherited by all rulesets and which provide execution details; (ii) those specific to a
particular class of rulesets and which contain static or dynamic declarative informa-
tion about an instance. Further details of both types of attributes are provided in the
following sub-section.

Within the object-oriented structure, individual production rules are created as sepa-
rate instances and are associated with one particular ruleset. Individual rules can be
applied to both specific instances of a class or to all elements of a class. For example,
there are a number of operational rules which relate to the BEHAVIOUR-INTERFACE-
OBJECT class3. One such rule has to identify new requests for information arising
from the underlying IS and so must be applied to all instances of the class. In contrast,
when a specific piece of requested information becomes available, the relevant rule
only needs to be applied to the individual interface object instance which corresponds
to the skill which initiated the request.

4.2 PCM Structures

The overall controller ruleset class has a single instance which is responsible for con-
trolling the top-level operation of the PCM (see figure 6). As stated previously, this
ruleset has to decide which sub-module to launch taking into account the prevailing
conditions and the agent’s long-term objectives. There are a number of attributes
which are specific to this class and which provide information about the PCM’s

3. This is a purely structural class which represents all the details of the interface between the PCM and
the Monitor. Individual instances of the class represent a unique interface to a single skill



15

organisational framework. These attributes are given values by the application
designer when the PCM is configured and include the following entries: policy, agent
orientation, large number of messages, small number of messages and high priority
RP. The meaning of these entries and their effect on the control of the PCM was dis-
cussed extensively in section 3.4. The other class specific attribute is currently active
submodule which stores the name of the sub-module which is currently being pro-
cessed - this is used when executing the round-robin policy of sub-module selection.

The remaining attributes depicted in figure 6 are inherited by all rulesets. Execution
contains a calling function which, when it is evaluated, has the effect of executing the
ruleset. As such, a rule belonging to one ruleset may invoke another ruleset by evalu-
ating its execution attribute - this is in fact the mechanism by which the distribution of
control spreads through the PCM’s distinct control levels. Once a ruleset has had its
execution attribute evaluated, the attributes fwd-rules and bwd-rules are referred to in
conjunction with the execution style in order to actually execute it. The former speci-
fies that the associated list of rules will be executed in a forward chaining mode,
whereas the latter indicates that its associated rules should be executed in a backward
chaining mode. In some cases it is desirable to decompose the operation of a ruleset
into a number of separate functional blocks (subrulesets) each with their own execu-
tion strategy. This is especially useful when, within a single ruleset, some rules pro-
ceed directly from one another but others need to be repeated or are mutually
exclusive. The top level controller has three subrulesets which are invoked sequen-
tially each time a decision has to be made about the next sub-module to launch. Set-
Active-Submodule has two mutually exclusive rules and identifies which submodule
should be launched next (this corresponds to the select function of figure 4). Set-Exe-
cution-Policy updates the execution policy in response to the PCM’s current workload

Ruleset-Top-Level-Control
:name ’Ruleset-Top-Level-Control
:fwd-rules ’(tl-rule-0 tl-rule-1..........rule-n)
:bwd-rules ’(tl-rule-a................)
:sub-rules ’(

(Set-Active-Submodule ( (rules (tl-rule-0 tl-rule-1))
(style mutually-exclusive)))

(Set-Execution-Policy ( (rules (tl-rule-2 tl-rule-3 tl-rule-4))
(style mutually-exclusive)))

(Execute-Submodule ( (rules (tl-rule-a tl-rule-5))
 (style sequence))))

:Execution-Style ’iterate
:Currently-Active-Submodule :MESSAGES-TO-MONITOR
:Policy :BUSIEST-FIRST
:Agent-Orientation :SERVES-SELF
:Large-Num-Messages 35
:Small-Num-Messages 10
:High-Priority-RP 75
:Execution ’(:evaluate-ruleset ’Ruleset-Top-Level-Control)

Figure 6: PCM’s Top Level Control Ruleset
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using knowledge of what is in the chosen submodule’s input buffer and what consti-
tutes a small and large number of messages to process (this corresponds to the Evalu-
ateWorkload function of figure 4). Finally Execute-Submodule launches the chosen
submodule (by invoking its execution attribute) and tries both tl-rule-a and tl-rule-5
(execution style sequence).

The sub-module controller ruleset class has four instances (one for each of the sub-
modules). It inherits the attributes which are common to all rulesets and has the addi-
tional class specific attributes of input buffer and execution policy. The former main-
tains a pointer to the buffer where all the messages to be processed by this sub-module
are stored. The latter indicates the overall state of the PCM (i.e. busy, normal, clear
backlog). This ruleset is responsible for controlling the invocation of the individual
operational rules (this corresponds to the body of the for loop of figure 4).

The final class of rulesets are the operational rule blocks - these have the class specific
attributes of rule package orientation and rule package priority. As an illustration of
this class, the ruleset for handling requests for information from locally executing
skills is shown in figure 7 - as shown in figure 3, this ruleset is part of the SAM.

As a means of obtaining a deeper insight into the type of generic knowledge encoded
within the PCM, the rules associated with the SAM-Info-Needed ruleset are listed
in full in figure 8. The first rule to be executed is rule 500 which examines all
instances of the interface object class to determine whether any of them have an out-
standing information request. If such a request is found, then a flag is set. Assuming
that there is some processing to be done, the next step is to determine whether it
should be done locally (rules 501, 502a and sub-ruleset launch-local-behaviour) or
whether it should be handled via cooperative activity (rule 502b and sub-ruleset eval-
uate-cooperation-request)4. The remaining two forward rules (503 and 504) are con-

4. There is a basic assumption contained in the rules 502a and 502b which enforces the notion that when-
ever possible requests should be processed locally. This assumption may be reversed simply by modi-
fying the rule antecedent or it may be weakened through the addition of some application specific rules.
For example, it would be possible to add rules which ensured that requests were always handled locally
unless the agent’s workload was above a certain threshold.

SAM-Info-Needed
:name       ruleset-s-a-internal-info-request
:fwd-rules  (rule-500 rule-501 rule-502a rule-502b rule-503 rule-504)
:bwd-rules (rule-505)
:sub-rules ( (launch-local-behaviour (rules (rule-5010 rule-5011 rule-5012

rule-5013 rule-5014 rule-5015))
(style mutually-exclusive)))

(evaluate-cooperation-request (rules (rule-5020 rule-5021
rule-1022 rule-1023))

(style mutually-exclusive))))
:execution-style iterate :orientation :SERVES-SELF :priority 65

Figure 7: Internal Information Request Ruleset
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cerned with controlling the ruleset’s execution. If the sub-module controller has set
the execution style to sequence, then neither 503 nor 504 will be fired and the ruleset
will have finished executing. However if the execution style is set to iterate then one
of 503 or 504 will be fired and the ruleset will be evaluated again (if there are more
requests) or it will terminate (if there are no more requests).

Once it has been decided whether the information request will be dealt with locally or
whether it will be dealt with by an acquaintance, the relevant sub-ruleset is invoked

:name rule-500
:rule IF        there is a new request message,

THEN flag it as an outstanding request.
:for instances of behaviour interface class.

:name rule-501
:rule IF        there is an outstanding request for information,

AND    the information is locally available,
THEN provide the information and delete the outstanding request.

:for instances of behaviour interface class.

:name rule-502a
:rule IF        there is an outstanding request for information,

AND    it can be produced locally,
THEN call subruleset ‘launch local behaviour’.

:for instances of behaviour interface class.

:name rule-502b
:rule IF       there is a an outstanding request for information,

AND   it cannot be produced locally
THEN   call subruleset ‘evaluate cooperation request’

:for instances of behaviour interface class.

:name rule-503
:rule IF the execution style for this ruleset is iterate

AND backward rule 505 is satisfied
THEN evaluate Execution attribute

:for this ruleset

:name rule-504
:rule IF        the execution style for this ruleset is iterate

AND backward rule 505 is not satisfied
THEN stop iteration.

:for this ruleset

forward rules

:name rule-505
:rule IF        there is a new request message

THEN return ‘true’.
:for instances of behaviour interface class.

backward rule

Figure 8: PCM Situation Assessment Internal Request Handling Ruleset
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(respectively, launch-local-behaviour and evaluate-cooperation-request).

The subruleset launch-local-behaviour (figure 9) contains the PCM’s
generic knowledge about how this processing should proceed if the information
request is to be dealt with locally. It assumes that it is always better to utilise a skill
which is already active, rather than start a new one (rules 5010 and 5011), but if no
such skill is available it is preferable to launch a skill which can be started with the
minimum of effort. Where assistance from other agents is unavoidable, the agent uses
information about its acquaintances in order to make an informed choice about which
skill to launch. For example, rule-5014 looks at the agent’s previous, but as yet unsat-
isfied, information requests to see if they may fortuitously provide the inputs needed
to launch a suitable behaviour.

Subruleset: Launch Local Behaviour
Execution Style: Mutually-Exclusive
:name rule-5010
:rule IF       there is an active local skill that produces the requested info.

AND   the request provides identical execution parameters
THEN append the request to this skill

:for instances of behaviour interface class.

:name rule-5011
:rule IF       there is an active local skill that produces the requested info.

AND   the request provides no execution parameters,
THEN append the request to the first of these skills

:for instances of behaviour interface class.

:name rule-5012
:rule IF       there is a local skill capable of producing the requested info

AND   the mandatory inputs are available for that skill,
THEN create a behaviour interface instance and launch the skill.

:name rule-5013
:rule IF       there is a local skill capable of producing the requested info

AND the mandatory inputs to that skill can be produced locally
THEN create a behaviour interface instance and launch the skill.

:name rule-5014
:rule IF       there is a local skill capable of producing the requested info.

AND the mandatory inputs to that skill have already been requested
THEN create a behaviour interface instance and launch the skill.

:name rule-5015
:rule IF       there is a local skill capable of producing the requested info.

THEN create a behaviour interface instance and launch the skill.

Figure 9: Launch Local Behaviour Subruleset
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As stated previously, the subruleset evaluate-cooperation-request (figure
10) is invoked if it is deemed desirable to satisfy an information request by interacting
with an acquaintance. As with the launch local behaviour sub-ruleset, the objective is
to minimise the amount of inter-agent activity. For example, if the agent has recently
made a request for the same piece of information, then no new request is actually gen-
erated. Rather the agent notes in its acquaintance model that when the request is met,
the information should be passed onto the new skill as well as the originating one
(rule 5020). Rule 5022 demonstrates the pro-active nature of the PCM’s situation
assessment module. If it sees that the desired piece of information could potentially
lead it to starting a new skill, as well as providing an input to an existing skill, then a
request is made. This feature enables the agent to eagerly assemble relevant informa-
tion which it will utilise in its subsequent problem solving activity.

4.3 PCM In Action

To provide an intuitive feel for the PCM’s operation, an example of the interaction
between the CM, the SAM and the other ARCHON layer modules will be given.
Imagine that the Monitor has indicated, via the appropriate behaviour interface object,
that it requires a particular piece of information to proceed. The first task is for the
PCM’s top level control ruleset to examine the status of each submodule and launch
the most appropriate. For our purposes assume that the agent’s orientation has been
set to SERVES-SELF and that it is selecting sub-modules on a BUSIEST-FIRST basis. By
examining each submodule’s input buffer, the controller is able to identify the busiest

Subruleset: Evaluate Cooperation Request
Execution Style: Mutually-Exclusive
:name rule-5020
:rule IF       the request is identical in every respect to any outstanding request

THEN record the request as sent but do not send to the cooperation module
:for instances of behaviour interface class.

:name rule-5021
:rule IF       the request is for mandatory input to the requesting skill.

THEN pass the request to the cooperation module
:for requesting instance of the behaviour interface class.

:name rule-5022
:rule IF       the request is for information that may trigger a local skill

THEN pass the request to the cooperation module
:for instances of behaviour interface class.

:name rule-5023
:rule IF       none of the above

THEN reject the request
:for requesting instance of the behaviour interface class.

Figure 10: Evaluate Cooperation Request Subruleset
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and hence the one which should be processed next. In this case assume that the situa-
tion assessment submodule MESSAGES-FROM-INTERFACE-OBJECT is the busiest and,
because there are a large number of events to process, it is launched with an execution
policy of IMPORTANT-TASKS-ONLY. As shown in figure 4, with this policy the submod-
ule executes only those operational rulesets that have the same orientation as the agent
and it uses a sequence execution style to ensure that only one instance of each mes-
sage type is processed. As processing a request for information from a local skill is
seen as a self serving function, the operational ruleset designed to handle such events
(i.e. SAM-INFO-NEEDED) will be invoked by the submodule controller.

Once called, the SAM-INFO-NEEDED ruleset has to determine how the request should
be met. Firstly it must decide whether it should be dealt with locally, through execu-
tion of a new skill or through an association with an already active one, or whether it
is necessary to request the assistance of an acquaintance. For explanation purposes it
is assumed that the desired information cannot be provided locally and that although it
is not a mandatory input to the requesting skill it may trigger other local activity when
it is received. Under the rules given in figure 10 this would result in an appropriate
cooperation request being placed in the input buffer of the submodule designed to
handle events coming from the SAM (i.e. MESSAGES-FROM-SAM). Once the currently
active submodule has launched each of its correctly oriented operational rulesets, con-
trol returns to the top level where the process of choosing a new submodule and its
execution policy is repeated. At some point, control will pass to the submodule which
has the example cooperation request in its input buffer and the operational ruleset
whose role is to determine which agent the cooperation request is best handled by (i.e.
MAKE-EXTERNAL-REQUEST) will be launched.

The operational ruleset MAKE-EXTERNAL-REQUEST examines each of its acquain-
tance models and compiles a list of agents capable of satisfying the request. This
ruleset must then select the most appropriate means of obtaining the information - this
may be through the use of a contract-net protocol or it may be through the use of a
simpler client-server protocol. Whichever mechanism is chosen, a message (or mes-
sages) conveying the need for information is sent out via the HLCM. When the infor-
mation request is received by an acquaintance it goes through a number of phases.
Assuming that the message is processed successfully it will take the following path:
(i) from the HLCM to the cooperation module’s INCOMING-MESSAGES submodule
where it is processed by the EXTERNAL-GOAL-REQUEST operational ruleset; (ii) from
the EXTERNAL-GOAL-REQUEST ruleset to the SAM’s MESSAGES-TO-MONITOR sub-
module where it will be dealt with by the SERVICE-EXTERNAL-REQUEST operational
ruleset; (iii) when the information has been produced it will be placed, by the appro-
priate skill, into the MESSAGES-FROM-MONITOR submodule where it will be processed
by the SKILL-COMPLETED operational ruleset; (iv) from the SKILL-COMPLETED ruleset
it will be placed into the OUTGOING-MESSAGES submodule where it will be processed
by the REQUEST-ANSWER operational ruleset; (v) the REQUEST-ANSWER-RULESET
will send the message back to the originating agent via the HLCM.

When returned to the originator, the desired information will flow from the HLCM to
the INCOMING-MESSAGES submodule where it will be processed by the REQUESTED-
INFO-AVAILABLE ruleset. From here it will pass to the MESSAGES-TO-MONITOR sub-
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module where it will be passed to the appropriate interface object by the situation
assessment’s REQUESTED-INFO-AVAILABLE ruleset.

5. CONCLUSIONS

This paper has described the design and implementation of ARCHON’s Planning and
Coordination Module. This coordination module has been used to instantiate coopera-
tion in a number of real world, industrial applications. The philosophy of utilising a
corpus of inbuilt generic knowledge has been explained and its implementation in an
object-oriented rule-based system detailed. There are still a number of issues associ-
ated with this approach which require further investigation: (i) the types of cooperative
interactions are relatively straightforward, how will this approach cope with more
complex scenarios?; (ii) will the corpus of general knowledge be appropriate for appli-
cations other than industrial control?; and (iii) the empirical effect on local and social
problem solving of varying the PCM’s control parameters needs to be analysed in a
systematic way.
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