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Abstract

The key factor that will determine the speed and
depth to which multi-agent systems penetrate the
commercial marketplace is the ease with which
applications can be developed. One approach is to
use general purpose languages to construct layers of
agent level constructs. Object-oriented languages
have been advocated as appropriate for the
complexity of distributed systems. According to
Gasser and Briot [1992], the key problem with the
common forms of object based concurrent
programming is the fixed boundaries they give to
agents are too inflexible. They do not reflect either
the theoretical positions emerging in Multi-agent
systems, MAS, nor the reality of multilevel
aggregations of actions and knowledge. This paper
advocates the use of a rather different type of object
based concurrent language, stream logic
programming, SLP, that does not have this drawback.

1 Object Based Concurrent Programming

The key factor that will determine the speed and depth to
which multi-agent systems, MAS, penetrate the
commercial marketplace is the ease with which
applications can be developed. The few agent applications
that, presently, exist are hand-crafted from scratch for each
new problem, [e.g. Jennings, 1994]. This means they have
a high overhead as the relatively complex infrastructure for
agent computing needs to be put in place before the rest of
the application can be constructed. A further impediment
to the take up of MAS is many of the tools and techniques
that are currently being deployed appear ill-suited to the
problem - they are not designed for easy and concise
expression of the problem, nor the concomitant complexity,
of agents and agent interactions.

One way of alleviating these problems is to provide high
level constructs and primitives that facilitate the
implementation of agents and multi-agent systems. There
are, essentially, two ways of doing this. Firstly, new
languages are proposed in which agent-level features and
interactions are primitives. For example, Shoham's [1990]
agent-oriented paradigm involves programming agents
directly with intentional notions like beliefs and

commitments. Other languages of this genre include
PLACA [Thomas, 1994] and MAIL [Steiner, 1995]. (This
paper will perpetuate the annoying convention of writing
language names in upper case even when they are not
acronyms.) The second approach is to use more general
purpose languages to build higher layers that provide agent
level constructs. Within this category, object based
concurrent programming, OBCP, has emerged as the major
contender [Gasser and Briot, 1992]. In OBCP, a number of
self-contained concurrently executing objects communicate
by message passing.

The main reason for the rise of OBCP in MAS is the
prospect of better coping with the complexity of running
large programs on distributed systems [Colouris et al.,
1993]. Well-known OBCP languages for programming
distributed artificial intelligence, DAI, systems include
ACTORS [Agha, 1990] and ABCL [Yonezawa, 1990].
ORG [Hewitt and Inman, 1991], is an agent organisational
layer above ACTORS. While admitting that OBCP has
some complementary aims with DAI, Gasser and Briot
[1992] point to some deficiencies. The key problem the
authors identify with the common forms of OBCP is object
identity.

According to Gasser and Briot, the fixed boundaries for
agents which OBCP gives are too inflexible. They do not
reflect either the theoretical positions emerging in DAI nor
the reality of multilevel aggregations of actions and
knowledge. The present paper advocates a rather different
type of OBCP, stream logic programming, SLP, for MAS,
which does not have this drawback. A stream [Kahn,
1974] can be thought of as a message queue [Abelson et al,
1985].

SLP developed from attempts parallelise PROLOG
[Ringwood, 1988; 1989; 1994]. This endeavour was given
impetus by the Japanese Fifth Generation Initiative, FGI.
The FGI realised that the critical application for a kernel
language of any machine is the operating system
[Chikayama, 1993a]. Without an operating system, parallel
hardware is virtually useless. In his thesis, Durfee [1988]
also recognises the converging concerns of distributed
operating systems and DAI. The appropriateness of
streams for systems programming was a principle
justification for their introduction [Kahn, 1974].

At an early stage, SLP was interpreted as OBCP
[Shapiro and Takeuchi, 1983]. The objects of SLP, though,
are ermergent and do not have identitiy. This paper
introduces an exemplar of SLP, Reactive, Guarded,



Definite Clauses, RGDC [Cohen et al, 1992], by means of
simple examples. More complex examples pertinent to
DAI and MAS are gradually developed. Because of the
limits on space, the introduction assumes a little familiarity
with ACTORS and PROLOG.

2 Clauses as Behaviours

A superficial difference between ACTORS [Agha, 1990]
and SLP is the syntax. Actor like languages generally use
LISP syntax [Tomlinson and Scheevel, 1989] - the LISP
syntax reveals the language in which the interpreters are
written and the ancestor, PLANNER [Hewitt, 1969,
Sussman et al 1971]. McCarthy [1988] claims that
PLANNER can also be recognised as a precursor of
PROLOG. Stream logic languages, naturally, have a
PROLOG-like syntax.

Like ACTORS, a stream logic program consists of a
fixed set of named behaviours. Standard object-oriented
terminology uses the word “class” in place of behaviour.
In logic programming, this is a set of definite clauses with
the same predicate (name) at the head of a clause.

Unlike conventional OBCP, there is no implicit message
queue associated with each object. Rather, there is an array
of message reception slots. The following clause fragment
gives the head of one behaviour for an act object

act(X,Y):- ...

with two message slots (variables) X and Y. As a syntactic
convention of PROLOG, message slot names start with
upper case letters. The scope of the message slot name is
the clause. The symbol, : -, separates the class name from
constraints on the message. A distinction is made between
the same behaviour name with differing numbers of
message slots (arity). For example, act/2 with two message
slots is considered different from act/3 with three message
slots.

In conventional OBCP, there is a queue of message slots
associated with each object. As message slots are explicit
in SLP, there is no implicit merging of incoming messages.
The fixed number of message slots may seem debilitating
but as will be shown it is much more flexible than a
message queue.

2.1 Message selection as condition synchronisation

The general form of a clause is <guard> <- <behaviour>
where the guard is further decomposed <head> :- <boolean
constraint>. The <- symbol separates constraints from the
behaviour which can be enacted if the constraints are
satisfied.

act(X,Y):-X=m <-..

+act(X,Y):-X=n<-...
The + symbol is used as the separator between alternative
condition-behaviour pairs. As with OBCP, each method
specifies the behaviour of an object if it receives a message
with a particular selector. A message in SLP is a term in
the sense of predicate logic. The principle functor of the
term is the selector name. Again selectors are identified by
name and arity.

The above program fragment illustrates the heads of
methods for two behaviours for act/2. If an object of the
class act/2 receives a message m/0 on its first message slot
it adopts the behaviour specified by the first clause.
Alternatively, if it receives a message n/0 it adopts the
behaviour specified by the second clause. As a syntactic
convention of PROLOG, selector and behaviour names
begin with lower case letters. If no other clauses are given
for act/2, an object of the class remains suspended until a
message is received on the first message slot. This is
blocking receive. In this simple example, if a message is
received which is not m/0 nor n/0, the object remains
suspended forever.

Pattern matching is used as a shorthand for equality
constraints. The message selection described for the class
act/2 is:

act(m,Y) <-..

+act(n, Y) <- ...
This pattern matching is not restricted to zero arity
messages, but applies to terms of arbitrary depth (Note this
is pattern matching and not unification as in PROLOG.)

The constraint X=/Y can be used to describe behaviour if
particular messages are not received:

+act(X, Y) :- X=/m & X=/n<- ...

The ampersand denotes conjunction. If an object of the
class act/2 receives a message that is neither m/0 nor n/0, the
object will enact the behaviour specified by the third
clause. If more than one clause guard is satisfied the first
in textual order is chosen. This feature can be used to
program priority and fairness as will be shown in Section
3.1.

An object that fails to receive the messages it is
expecting will remain inactive. This feature can be used to
implement time-outs as illustrated in Section 3.3. A
nonblocking receive can be specified using priority of
clause ordering:

act(m,Y) <-..

+act(n, Y) < ...

+act(X,Y) <- ...
Clauses have priority given by top to bottom ordering. If
an m/0 or n/0 message is received it will be dealt with by
appropriate clause. If no message or some message other
than m/0 or n/0 has been received, the behaviour of the last
clause will be used.

In SLP, message selection is more refined than is usual
for OBCP. It is possible to invoke an object behaviour
only when it receives a message on two or more message
slots. A class behaviour can be further restrained to be
enacted only if messages satisfy certain primitive test
conditions, called guard constraints. The following guards
for max/2, denote that it requires two numerical messages
to be received on different slots:

max(l,J) :-I>J <.

+max(l, J) - I=<J <- ...
If no other clauses are specified, an object of the class will
remain suspended until messages are received on both
message slots (the constraints cannot be evaluated until
messages have been received). This condition
synchronisation was inspired by the guarded commands of



Dijkstra [1975] but it has an earlier manifestation in
decision tables [Cohen and Ringwood, 1994]. In ACTORS
[Agha, 1990] a conditional expression is used instead of
guards.

2.2 Goals as short-lived objects

An object is a "goal" in logic programming and is an
instance of a behaviour, with a number of named message
slots. The object itself is not named and thus may not be
referred to directly. In Actor-like languages, objects have
names and these can be passed as arguments to newly
formed objects. Message slots are implicit and messages
are sent to named objects. It is not possible to view or
otherwise manipulate the message slots on which messages
are received.

In SLP, message slots are explicit - they have local
names that can be manipulated by the programmer.
Message slots can be sent as messages to newly created
objects. The body of a clause is interpreted as a network of
concurrent objects connected by communication message
slots. This is represented as a list of objects (separated by

).

| <- A<<m | act(A, B) | bet(B, C) | ...

These objects are either new instances of defined classes or
a primitive message-send object. The message-send object
is indicated by the syntax Message-slot<<Message, similar to
C++. Message sending is asynchronous.

The class of objects act/2 introduced above which can
receive different messages on its first message slot can
send appropriate responses to its second message slot as
indicated below:

act(m,Y) < Y<<q

+act(n, Y) <- Y<<r
Behaviour is specified by object replacement in the same
way as ACTORS [Agha, 1990]. Object termination is
specified by a done/0 replacement.

bet(g, Y) <- done
A bct/2 class object can terminate if it receives a q/0
message where the behaviour done signifies no
replacement.

With the behaviours given, act2 and bct/2 can only
suspend, waiting to receive messages. The message send
primitive never blocks. A possible scenario of message
passing and object replacement is as follows:

<- A<<m | act(A, B) | bet(B, C) | ...

<- act(m, B) | bet(B,C) | ...

<- B<<q | bet(B,C)| ...

<- bet(g.C) | ...

<
The underscore indicates objects that are not suspended.
The reception of the message m/0 activates the first clause
of act/2. The object act/2 is replaced by its behaviour,
another message send primitive.

2.3 Emergent long-lived objects and streams

Goal objects are, like Actor objects, ephemeral. Once a
method (clause) is selected, an object is replaced by the
network of objects specified in the behaviour. Once a

message has been received in a message slot it cannot be
used to receive another message (nondestructive).
However, messages are terms and terms may themselves
have message slots - a sort of reply paid envelope.

act(m(X), Y) <-Y<<q(Z)| ect(X, 2)

+act(n(X), Y) <- Y<<r(2) | det(X, Z)

Here, the act/2 object waits to receive an m/1 or n/1
message. These messages contain a message slot within
them. Rather than deal with the message on slot X itself,
the act/’2 object creates an cct/2 or det/2 object to deal with
it. The message slot names used in the body of a clause
may be those from the head of the method, or new ones
that only appear in the body. This is similar to the way an
Actor object handles subsequent messages, by creating new
ACTORS [Agha, 1990]. In combination with guard
priority, this may be used to implement delegation
[Liebermann, 1986]. Delegation is an alternative to
inheritance in OBCP that is better suited to distributed
systems. Instead of passing incomprehensible messages to
a higher class, delegation passes the message onto other
objects to deal with it.

Messages may be multicast by using multiple
occurrences of message slots in the body of clauses.

<-X<<m|act(X, ...) | bet(..., X, ...) | ect(..., X)
An object may reincarnate itself by replacing itself with
a recursive copy:

bet(q(X), Y) <- bet (X, Y)
effectively creating a long lived object that can receive a
stream of /1 messages. A stream is a potentially infinite
message buffer. Tail recursion can be implemented as
efficiently as repetition. A recursively reincarnated object
can send itself a message:

bet(q(X), Y) <- Z<<r(X) | bet(Z,Y)
This is similar to the capacity offered by languages such as
SMALLTALK [Goldberg and Robson, 1983] for an object
to send a message to itself using the special message queue
seff. A more efficient specification having the same effect
is:

bet(g(X), Y) <- bet(r(X), Y).

The class max/2, above, illustrates how objects may wait
for messages on two message slots simultaneously. The
pattern matching ability of guards can be used to select
methods that are only invoked by objects that receive
consecutive messages on the same stream:
bet(s(t(X)), Y) <- bet(X, Y)

This can be used to program atomic transactions for which
several messages are required [Cohen et al, 1992].

Binary messages can be used to create, a perhaps, more
readable syntax for channels or streams. For example,
using a right associative, binary infix functor :/2 the
necessary receipt of two unary messages can be specified
as:

bet(s:tX, Y) <- bet(X,Y)
Parentheses are avoided by taking :/2 to be right
associative. PROLOG-like list syntax may also be used
where [X|Y] is a binary message:

bet([s, t [X], Y) <- bet(X, Y)
The notation [X,Y|Z] is shorthand for [X|[Y|Z]] Streams in
SLP are often explained as PROLOG lists [Shapiro and



Takeuchi, 1983]. This exposition has deliberately not done
this to illustrate that this is far too narrow a view of the
capability afforded by messages with embedded message
slots.

3 Naive Agents

SLP has now been sufficiently explicated to give an
example of negotiation between naive agents. Below is a
RGDC program for the Winograd and Flores [1986]
haggling protocol:

S:propose  B:accept
>0
B:coyter S:coupfer
B:rejec
S:accept
Sireject

Figure 1: A Winograd Flores labelled digraph
The buyer and seller start concurrently with a message
for the buyer, the seller's asking price, already waiting:
<-seller(100, Counter, 50) | buyer (30, 100:Counter, 60)
As with C++, comments are indicated by lines beginning
with a pair of slashes
IIseller (Current_Asking_Price, Offers, Lower_Limit)
Comments are usually limited to explaining the type of
messages the message slots are expecting.

The seller is specified as long lived object with a
message stream of offers to buy. If the seller receives an
offer greater than its lower limit, a message agreeing the
price is sent.

seller(Ask, Offer:Counter, Lower_Limit)
- Offer>Lower_Limit
<- Counter<<accept(Offer)
| seller (Ask, Counter, Lower_Limit)

If the seller receives an offer less than the lower limit it
makes a counterbid that is half of the previous asking price
and the buyers offer.

+ seller (Ask, Offer.Counter, Lower_Limit)

- Offer<Lower_Limit & New_Ask:=(Ask+Offer)/2
& New_Ask>Lower_Limit
<- Counter<<New_Ask:New_Counter
| seller (New_Ask, New_Counter, Lower_Limit)
The previous asking price is a self message. Simple
arithmetic, such as NewAsk:=(Ask+Offer)/2, is performed in
the guard.

If the seller receives an offer less than its lower limit, it

sends a message denying agreement is possible.
+ seller (Ask, Offer:Counter, Lower_Limit)
- Offer<Lower_Limit & New_Ask:=(Ask+Offer)/2
& New_Ask<Lower_Limit
<- Counter<<reject(Offer)
| seller (Ask, Counter, Lower_Limit).
The code for the buyer is similar.
Ilbuyer (Current_Offer, Asks, Upper_Limit)
buyer(Offer, Ask:Counter, Upper_Limit)
- Ask<Upper_Limit

<- Counter<<accept(Ask)
| buyer (Offer, Counter, Upper_Limit)
+ buyer(Offer, Ask:Counter, Upper_Limit)
:- Ask>Upper_Limit & New_Offer:=(Ask+Offer)/2
& New_Offer<Upper_Limit
<- Counter<<New_Offer:New_Counter
| buyer (New_Offer, New_Counter, Upper_Limit)
+ buyer(Offer, Ask:Counter, Upper_Limit)
.- Ask>Upper_Limit & New_Offer.=(Ask+QOffer)/2
& New_Offer>Upper_Limit
<- Counter<<reject(Ask)
| buyer (Offer, Counter, Upper_Limit).
The clauses for the behaviours when the seller and buyer
receive accept or reject messages have been omitted.
(Presumably they proceed to the exchange.)

The clauses of a program can be interpreted as decision
tables [Cohen and Ringwood, 1994]. Each clause is a rule
of a table and each guard the condition of a rule. The body
of a clause gives the action to be performed if the condition
is satisfied. Decision tables are often used to specify finite
state machines. A connection between the Winograd
Flores network diagram and finite state machines is readily
apparent.

The given initial object network results in the following
message exchange scenario:

<- seller(100, Counter, 75)
| buyer (40, 100:Counter, 80)

<- seller(100, Counter, 50) | Counter<<70:Counter1
| buyer (70, Counter1, 80)

<- seller(100, 70:Counter1, 75)
| buyer (70, Counter1, 80)

<- seller(85, Counter2, 75) | Counter1<< 85:Counter2
| buyer (70, Countert, 80)

<- seller(85, Counter2, 75)
| buyer (70, 85:Counter2, 80)

<- seller(85, Counter2, 75) | Counter2<<77.5:Counter3
| buyer (77.5, Counter3, 80)

<- seller(85, 77.5:Counter3, 75)
| buyer (77.5, Counter3, 80)

<- seller(85, Counter3, 75) | Counter3<<accept(77.5)
| buyer (77.5, Counter3, 80)

<- seller(85, accept(77.5), 75)
| buyer (77.5, accept(77.5), 80)

3.1 Fair merge

In the haggling protocol above the objects communicate
directly with one another. More usually, it is convenient
(particularly with input/output) to determine or change at
runtime the number of objects communicating. In usual
object languages, messages to an object may come from
several different other objects and are implicitly merged
into one input message queue. There is no implicit
merging of messages in SLP but fair merges can easily be
programmed:

lImerge(In_Stream1, In_Stream2, Merged_Stream)
merge (Item:S1s, S2s, Ms)

< Ms<<ltem:M1s

| merge (S2s, S1s, M1s)
+ merge (S1s, ltem:S2s, Ms)

< Ms<<ltem:M1s

| merge (S2s, S1s, M1s)



In usual message passing systems, the order of arrival of
messages is not necessarily the order in which they were
sent. However, with the merge/3 object, above, the relative
order of terms produced by sources is preserved.

When there are messages on the two input streams of the
merge/3 object the arguments are reversed in recursive
incarnations. This prevents starvation. With a fixed order
of testing of alternative guards, changing the order of
arguments causes the list from which an element is taken to
alternate. This serves to effect fairness. A biased merge
(without interchanging the streams) gives a way of
programming priority to a stream.

If the message done/0 is interpreted as closing the stream,
then adding the methods

+ merge (done, Ss, Ms) <- Ms<<Ss

+ merge (Ss, done, Ms) <- Ms<<Ss.
causes message redirection. Here a message slot is sent as
a message.

3.2 Subservient agents

An important form of interaction between agents is
client-server co-operation in which several agents ask
another agent to perform a service on its behalf. In such
interactions, it is common that several agents require the
same service. Using a fair merge to communicate requests
for service, the archetype server objects can be specified:

lIserver(Request:More_Requests, Database)

server (R:Rs, D)

<- transaction(R, D, New_D) | server(Rs, New_D)

The first argument of the server/2 is a stream of
transactions from clients. The second message slot is a self
message that represents the state of the server. The self
message is to be generated according to the form of
transaction stipulated in the transaction message. Because
the task and the server run concurrently, the server can
respond to new requests before a prior one is completed.
Concurrency rather than sequencing is the default in SLP.

In procedural languages, remote procedure calls are
often used to implement servers. With a remote procedure
call, the client has to wait for a reply from the server before
continuing. The client can be made to wait until the
transaction is complete by supplying a reply message slot
together with the task:

Iclient (State, Requests, Reply)

client(N, Rs, done) :- N1:=N+1

<- Rs<<do(N, Reply):Ts | client(N1, Ts, Reply)
Here the client state is a simple count of the transactions.
The client/3 is forced to wait until it receives a done/0
message before it can continue. The server can be forced
to wait until the transaction completes in a similar way:
server1(R:Rs, data(D))
<- transaction(R, D, New_D) | server1(Rs, New_D)

For simplicity assume that the state of the server is just a
record of the requests processed:

transaction(do(Job, Reply_to), D, D1)

<- D1<<data(Job:D) | Reply_to<<done

If the transaction is not as simple as the one here there is
no guarantee that it will complete before the reply is sent.
Even as it stands, there is no guarantee that the data/1
message will be sent to itself before the done/0 message is
sent to the client. There is limited sequencing in SLP due
to the guard but more than this has to be programmed with
continuations. Continuations arose in denotational
semantics to define the meaning of sequencing [Strachey
and Wadsworth, 1974]. As message send is a primitive a
three message slot version is needed to specify a
continuation. The disfix primitive object X<<M;Cont sends
a message M to a message slot X and asynchronously
continues as the object specified by Cont. Here Cont is a
metamessage that ranges over networks of objects (goals).

transaction1(do(Job, Reply_to), D, D1)

<- Reply_to<<done;(D1<<data(Job:D))

In this simple example, a more sophisticated alternative
to making the server suspend waiting for a data/1 message
is to send a more complex message containing a
continuation:

server2(do(Job, Reply_to):Rs, D)
<- Reply_to<<done;server2(Rs, data(Job:D))

3.3 Market forces

Another much vaunted co-operation protocol is the
contract net [Smith, 1980]. In this, politically correct
example of market forces, a customer requests contractors
to tender for a specified job.

llcontract_net (Specific_Job, Set_of_Contractors)

contract_net(Job, Contractors)
<- tender(Job, Contractors, done, Tenders)
| time (5, Time) | wait(Time, Tenders)

The tender/4 distributes the Job description to the set of
contractors with a unique reply message slot (as in the
client/2 example above).

Iitender (Job, Contractors, Replies, Tender_Reply_Pairs)

tender(Job, Contractor:Cs, Replies, Tenders)

<- Contractor<<offer(Job, Reply)
| tender(Job, Cs, Reply:Replies, Tender)
+ tender(Job, end, Replies, Tenders)
<- Tenders<<Replies
Reply message slot pairs are accumulated in the self
message Tenders.

The object time/2 is a primitive object which
immediately it is spawned initialises a realtime clock.
After the designated 5 time periods have elapsed, time/2
sends a message time_up on the message slot Time.

[lwait (Time, Set_of__Tender_Reply_Pairs)

wait (time_up, Tenders)

<- select(Tenders, Best_offer)
Man [1993] describes analysis techniques that, he claims,
makes SLP suitable for hard realtime systems.

4 More Sophisticated Agents

Reflexive or metalevel architectures, where some part of
an agent reasons about and influences some other part, are
often advocated for MAS [Maes, 1988; Ferber and Carle,



1992]. REACTTALK [Giroux and Sentini, 1991] is a
reflective OBCP based on ACTTALK, itself an extension
of SMALLTALK. REACTTALK uses reflection to
decompose the behaviour of an aggregate agent into
organisations of objects to produce higher level adaptive
agents. SLP shares with PROLOG and LISP an affinity for
meta-interpretation. The simplest form of meta-
interpreter, the vanilla interpreter, emulates the underlying
computational model:
flexec (Queue_of_goals)
exec(done)<- done
+ exec(user(Goal) | Rest_Goals)
<- clause(user(Goal), Body) | exec (Body)
| exec (Rest_Goals).
where a clause of the form
head:-c1&..cn<-b1|.|bm
is represented in the meta-interpreter by
clause (user(Head), Tail)
=cl&...cn
<- Tail<<(user(b1) |... | user(bm) | done)
Tanaka and Matono [1992] describe a simple reflective
extension of GHC (Guarded Horn Clauses, an FGI
manifestation of an SLP) where a reflective tower can be
constructed and collapsed dynamically.

4.1 Intelligent agents

The top level for a Shoham agent [1990] in a RGDC
would be similar to the subservient agent described
previously:

Illagent0 (Message_Stream, Mental_State)

agent0(Message:Stream, Mental_State)

- <conditions on messages and mental state>

<-exec(Message, Mental_State, New_Mental_State)

| agent0 (Stream, New_Mental_State)
Simple commitment conditions on the messages received
can be represented in the guard of a clause. Indeed,
choosing which clause to reduce a goal is often called
commitment in SLP. More complex commitment
conditions on the message and the mental state are
represented in the exec/3 object (which is not defined here).
It is similar the transaction/3 object of the subservient
agent above.

The exec/3 behaviour may involve sending a message
and or updating the mental state. The mental state could
consist of a pair {Beliefs, Common_Beliefs} of the agents own
beliefs and what it believes about other agents. The
messages a Shoham agent can send are inspired by speech-
act theory [Searle, 1969]. Sending an inform message
could be coded as the object:

[linform(Time, Agent, Fact)

inform (time_up, Agent, Fact) <-
Agent<<inform(Fact).

Here Agent is a message slot known to the recipient
agent, possibly a reply slot. Rather than a realtime clock
driving an agent, time is measured by events and events are
the sending of messages. The message reception slots are
monotonic and thus behave like a clock. A realtime clock
is a concept, like inheritance, that is not well suited to
distributed systems. Rather than regarding history as the

passage of time, time is considered as the passage of
history. If no events have taken place no time has passed.
This is the philosophy of discrete event simulation. The
Time message could be connected to a clock primitive
time/2, described previously, but the present interpretation
seems preferable.

5 Conclusions

The paper has attempted to illustrate that SLP has all the
power of OBCP for MAS. The arguments in favour of SLP
are the same as for OBCP [Gasser and Briot, 1992]. As
with ACTORS, the process structure is small and therefore
scalable. SLP can model fine entities such as neurones
[Kozato and Ringwood, 1992]. This paper illustrates
budding [Hewitt and Inman, 1992] in which an SLP object
can transform itself into a network of objects, in this case a
neural net. An agent can be built, not from a single long-
lived object, but from a network of distributed objects that
are created and destroyed dynamically. This accords with
symbolic interactionist sociology [Mead, 1934] where
agents are perceived as dynamic and evolving with many
components.

There have been a number of papers comparing SLP and
actor languages [eg Hewitt and Agha, 1988] but these have
not recognised the ontological differnce. Rather than a
message queue, SLP offers an array of message reception
slots. The vital ingredient that leads to stream capability is
that messages may contain message slots. Some actor
languages such as ABCL [Yonezawa, 1990] provide two
message queues with each object, but this doesn't compare
with the flexibility afforded by message slots.

Rather than the conditional expression of ACTORS, SLP
provides guards to discriminate received messages and
choose between alternative behaviours. SLP guards
provide a complex form of pattern matching. Guards are
also found in ABCL [Yonezawa, 1990]. But, unlike SLP,
ABCL can only specify constraints on a single message.

It can be the case that judging between languages is a
matter of taste. Those trained or experienced in one
paradigm feel that it is the most “natural” way to program
or even write a specification. Others not used to that
paradigm find it awkward and unnatural. The superficial
difference in syntax between OBCP and SLP has the
danger of degenerating into the LISP-PROLOG wars.

Proposals have been made for Actor-like syntaxes for
SLP: Vulcan [Kahn et al, 86], Mandala [Ohki et al, 1987]
and Polka [Davison, 1992]. However, one of the authors of
Vulcan [Kahn, 1989], later recants on this tendency
because of the loss of simplicity and flexibility. These
criticisms are remarkably similar to the short comings of
OBCP for DAI reported by Gasser and Briot [1992].

The essential distinction between ACTORS and SLP is
the ontological status of objects. In ACTORS, objects are
first-class entities. They may be assigned to variables and
passed as parameters. In SLP, message slots are the first
class entities that can be passed as parameters. However,



with continuations, SLP objects and networks of objects
can also be passed as messages.

Stream logic objects are only identified by the message
slots on which they can receive messages. In this and other
respects, SLP is similar to process algebras such as the pi
calculus [Milner et al, 1989]. This again accords with
symbolic-interactionist sociology [Mead, 1934] which
proposes that interactions and not individuals are the
primary units of analysis. Objects and message streams in
SLP emerge from interaction and not vice-versa.

With OBCP it is generally recognised that the objects are
too fine grained to be agents Aggregates of objects have
been proposed as agents as in ORG [Hewitt and Inman,
1991]. The key problem with the common forms of OBCP
is directing messages to agents which are aggregates
[Giroux and Sentini, 1991]. Aggregates of SLP objects do
not have this problem as the interface is determined by the
message slots visible outside a network of objects.

Another advantage of SLP is the extreme simplicity of
the language. It is even simpler than Actors. This
simplicity it partly inherits from PROLOG. But SLP is
much simpler than PROLOG: there is no backtracking, no
unification and no negation as failure. Although the
computational model is simple, condition synchronisation
gives the ability to model all other forms of
synchronisation. Even higher order functions can be
specified in SLP [Reddy, 1994].

More recent languages, such as AKL [Janson and Haridi,
1991] or OZ [Henz et al., 1993], claim to offer all the
advantages of SLP, plus those of PROLOG and constraint
solving. Such languages have three or more computational
mechanisms that make deadlock detection a nightmare.
They do not offer anything that cannot be programmed in
SLP. The unbounded automatic backtracking of PROLOG
is of doubtful use in MAS. Distributed unification and
constraint solving require substantial overhead in locking
and deadlock avoidance and none of this is accessible to
the application programmer.

Durfee [1988] recognises the common concerns of
distributed operating systems and DAI and claims that they
are merging technologies. As evidence of its capability,
SLP has been used to implement a large distributed
operating system, PIMOS, Parallel Inference Machine
Operating System of the Japanese Fifth Generation
Initiative. This machine has hundreds of processors.

Until recently, SLP has not been considered for building
DALI systems. Linney [1993] uses a commercial SLP for
multi-agent planning in a biomedical imaging system.
Cohen and Ringwood [1993; 1994] show how to use SLP
to combine independent databases into a distributed
database. Apart from these examples, SLP has received no
significant exposure in DAI. The authors contend that SLP
is a potentially natural and useful basis for implementing
MAS. The principle advantage over OBCP is the principle
difference between them. Because message slots are the
first class entities, there is no difficulty with referencing
adaptive, dynamically evolving, multi-object, agents.

A commercial version of a distributed SLP language is
STRANDSS [Strand Software Technologies Ltd, 1988].
The implementation offers an abstract machine that is
interpreted in C. It runs on iPSC Hypercube, Sequent
Symmetry and networks of Unix workstations. A public
domain SLP is, KL1C, from the FGI. This version is not
interpreted but compiles directly to C. This proves to be a
real advantage for speed, portability and the interfacing of
other software. KL1C [Chikayama, 1993b] is available by
anonymous ftp from ICOT.
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