Proc. ESPRIT Conf., Brussels, Belgium, 253-263.

COOPERATION IN INDUSTRIAL SYSTEMS

N.R Jennings
Dept. Electronic Engineering
Queen Mary and Westfield College
Mile End Road
London E1 4NS
n_jennings@eurokom.ie

tel: +44-71-975-5358
fax: +44-81-981-0259

Summary

ARCHON is an ongoing ESPRIT II project (P-2256) which is
approximately half way through its five year duration. It is concerned
with defining and applying techniques from the area of Distributed
Artificial Intelligence to the development of real-size industrial
applications. Such techniques enable multiple problem solvers (e.g.
expert systems, databases and conventional numerical software
systems) to communicate and cooperate with each other to improve
both their individual problem solving behavior and the behavior of the
community as a whole. This paper outlines the niche of ARCHON in
the Distributed Al world and provides an overview of the philosophy
and architecture of our approach the essence of which is to be both
general (applicable to the domain of industrial process control) and
powerful enough to handle real-world problems.

1. INTRODUCTION

After more than a decade of successful exploitation there are now over 100,000
expert systems being used in hundreds of companies all over the world to solve
complex problems in numerous domains [10]. Such systems have been particularly
important and successful in the domain of industrial process control where
conventional software and teams of operators were unable to cope with the demands
presented by rapidly changing, complex environments [13]. However as expert
systems technology has proliferated and individual systems have increased in size
and complexity, new problems and limitations have been noted [20], [24]:

* Scaleability: the complexity of an expert system may rise faster than
the complexity of the domain.

* Versatility: a complex application may require the combination of
multiple problem solving paradigms.

* Reusability: several applications may have requirements for similar
expertise. In a conventional system this has to be coded afresh in each
new situation.

* Brittleness: expert systems typically have a very narrow range of
expertise and are generally very poor at identifying problems which
fall outside their scope.

* Inconsistency: As knowledge bases increase in size, it becomes
correspondingly more difficult to ensure that the knowledge they
embody remains consistent and valid.

One approach designed to circumvent these shortcomings and satisfy the ever
increasing demands for speed, reliability and integration is to compartmentalize the
problem solving into smaller, more manageable components and allow them to
communicate and cooperate with each other (i.e. Distributed AI [2], [12] [14]). In such
systems knowledge, resources, control and authority are distributed amongst
community members who then work together, in a coordinated and coherent
manner, to solve one or several problems.

The ARCHON'! (ARchitecture for Cooperative Heterogeneous ON-line
systems) project [16], [22] is concerned with the development of a framework which
enables multiple problem solvers (some of which may be pre-existing) to be inter-
connected so that they can communicate and cooperate with each other whilst
solving complex, real-world problems. The real-world problems being tackled in the
project are in the field of industrial systems: electricity management, cement factory
control, robotics and control of a particle accelerator.

Within the field of Distributed AI many experimental platforms have already

1. The Archontes were the chief magistrates in Athens around 700BC. At that time there were nine, but with not
very clear cut responsibilities and duties. These Archontes can be said to have formed a loosely coupled
cooperative system with fuzzy boundaries for controlling the state.

been built and these broadly fall into two categories:

* systems which test a specific type of problem solver, a specific
coordination technique or a particular domain

eg ETHER [18], ECO [9], DVMT [19], ATC [4]
* systems which aim to be “general” to some degree
eg MACE [11], MICE [7], CooperA [1]

However the weakness of these “general” systems is that they were not
intended to be used in real-size problems (i.e. they lack the necessary power to solve
large problems). The specific systems however may have the necessary power in a
very narrow domain, but they are not generalizable. One of the major objectives of
the ARCHON project is, therefore, to bridge this gap - to construct a cooperation
framework which is both general enough and powerful enough to be used in a wide
range of real-world industrial applications.

The remainder of this paper describes a typical ARCHON application in the
tield of industrial process control (electricity management) and highlights the
characteristics of this domain which serve as important design forces. Section three
gives an overview of the ARCHON architecture detailing the functionality of the
various components and relating them to the problems identified in the previous
section. Finally section four describes the underlying philosophy of our approach
which leads to a system which is both general and powerful.

2. INDUSTRIAL PROCESS CONTROL
2.1 An Exemplar Problem

The two main applications within the project are concerned with electricity
management and so a suitably simplified scenario (due to space limitations) will be
used to illustrate the opportunities and benefits for cooperative interaction between
problem solvers in this domain.

The interaction takes place between three problems solvers, each of which is
an expert system in its own right (see figure 1). The low voltage diagnosis expert
system is capable of detecting and diagnosing faults based on information (network
status messages and customer telephone calls) about the low voltage network which
it receives. There is also an expert system which carries out the same role in the high
voltage network. The third expert system is capable of receiving information about
the weather from various sensors around the country and of predicting the weather
in the near future or of recalling (estimating) the weather conditions in a certain area
at a certain time.

These three systems were developed at different times, by different groups of
people and employ different problem solving techniques. However they all share
some common ground which means there is potential for them to interact. The link
between the high and low voltage systems is network connectivity: the low voltage

network being fed exclusively from the higher voltage network. So if there is no
voltage at the higher level then there will also be none at the lower level, meaning
there is no point in the low voltage system searching for a fault. The weather
monitoring system is able to provide useful information for the diagnosing process
because one of the main causes of faults (on both networks) is damaged power lines
and the major cause of such damage is bad weather (either lightning storms striking
plant equipment or strong winds causing equipment to be blown over). If the
weather monitor can provide information regarding bad weather then this may serve
as a focus for the problem solving process or be used to increase the certainty of
hypotheses of equipment near a major storm.

At present the information generated by the three systems is merely presented
to the operator who has to collate it and draw appropriate inferences, a very
demanding task during an emergency. This burden is increased substantially if the
individual sub-systems produce diagnoses which are inconsistent. Therefore it is
desirable that the three systems work together, sharing information and results
directly so that the operator is freed from the drudgery of collating reports and
resolving conflicts and can concentrate on more cognitive, strategic-level tasks.

LOW
VOLTAGE WEATHER
DIAGNOSIS MONITOR

RESULT
INTEGRATION

HIGH

VOLTAGE
DIAGNOSIS

Operators

FIGURE 1 - Cooperative problem solving in electricity management

The objective of ARCHON is to provide a framework into which these
systems may be integrated, enabling the potential for cooperative problem solving to
be realised. In the above example, the main benefits include decreased operator
workload, better utilization of problem solving resource (eg low voltage diagnosis
system will not waste time trying to diagnose a fault which has been caused at the
higher level) and increased confidence in hypotheses (since results have been cross-
checked from several sources).

2.2 Major Design Forces

When targeting a system at a particular domain it is important to identify
those characteristics which are likely to have greatest impact upon the design. After a

careful study of industrial systems the following major design forces were identified:

* There are a large number of existing software systems, each capable of
solving some aspect of the overall problem using a paradigm which is
most appropriate for that activity.

e Typically one (or more) operator(s) has to combine the possibly
inconsistent results of several sub-systems in order to make informed
decisions about the process as a whole.

* Typical applications are composed of many different types of generic
function which have been automated in many different ways [13]:

- Diagnosis: delivering an understanding of a world state given some
information about this world

- Planning: sequence a set of possible actions

- Control: particular case of planning where actions are executable
and low-level

- Supervision: reflecting decision link between diagnosis of a dynamic
system and the alternative actions needed for exceptional situation
handling

Having identified these design forces it is important to analyse their effects.
Firstly, the majority of Distributed Al systems make little or no attempt to integrate
pre-existing systems. However in a domain in which there has been substantial
investment in automation (such as industrial systems) it is clearly desirable from an
economic viewpoint to be able to interconnect such systems. Such re-use has the
additional benefits that software productivity can be substantially improved [3] and
dependability can be increased (due to greater and more diverse usage). It is unlikely
that such integration will be possible without any modification to the sub-system, but
we aim to minimize the changes necessary. Pre-existence also implies that sub-
systems are likely to be fairly sophisticated in nature (cf nodes of a neural network
and Blackboard Knowledge Sources [8], [15]) and will be capable of a significant
problem solving in their own right (they represent a cohesive body of knowledge and
problem solving capability).

The desire to incorporate pre-existing systems combined with the nature and
complexity of the domain means that problems of heterogeneity can occur at many
different levels [21]:

* Hardware Platform: eg SUNs, Symbolics, VAXs

® Operating System: eg UNIX, VMS, MS-DOS

* Programming Language: eg LISP, Prolog, C, KEE, ART

* System Type: eg classical control, databases, expert systems
* Architecture: Expert Systems - Frames, Blackboards

* Semantics: Understanding and distribution of concepts

¢ Purpose: Distribution of capabilities

Typically Distributed Al work has made simplifying assumptions about the
uniformity of problem solvers or their domain of application, but as the above
classification highlights heterogeneity is a pervasive phenomenon in real world
problems. We argue that the form of heterogeneity which has the most significant
impact upon the design of a cooperation framework concerns semantics and purpose
[21], and propose that sophisticated agent and information modelling facilities (see
section 3) are required to cope with these problems.

Many of the typical advantages of distributing both data and control when
problem solving (as expressed in [2], [12] [14]) also apply to ARCHON applications;
however the predominant benefits in this type of environment include:

* Enhanced problem solving

by sharing knowledge and data, systems may be able to make use of
information which would not have been available normally (due to
resource limitations, for example) and thus problem solving may be
faster, of a higher quality, more accurate and so on.

* Ease the burden on the operator

in emergency situations operators are typically faced with a barrage of
possibly contradictory information from multiple sources which they
have to collate, interpret and act upon. By allowing the sub-systems to
communicate with each other directly the operator’s cognitive load is
reduced considerably and he can concentrate on strategic level
considerations.

* Increased reliability

because problem solving capability may be available at multiple sites
within the community, failure at one node does not lead to total system
collapse (i.e. system exhibits graceful degradation of performance).

3. AGENT STRUCTURE

The aim of the ARCHON framework is to create an environment in which social
interaction is possible. However the problem solvers of figure 1 have no cooperative
knowledge, they were conceived and built as stand alone systems and therefore do
not know how to behave or participate in an environment which contains other
entities. All they posses is the domain-level knowledge necessary to solve domain-
level problems, e.g. how to diagnose faults in low and high voltage networks and
how to predict the weather - we call such systems Intelligent Systems. In order for
cooperative behaviour to be realised, the intelligent systems must be augmented
with knowledge which enables them to engage in social activities (eg to initiate,
maintain and respond to cooperative situations, to be able to asses the needs of the
community as well as their role within the community and so on). Within ARCHON,
this social awareness is achieved by enhancing each intelligent system with a series
of modules embodying the necessary social knowledge?. This collection of modules
is collectively referred to as the ARCHON layer and the combination of an intelligent

system and its ARCHON layer as an agent.

WEATHER
MONITOR
ARCHON HIGH
. LOW Layer VOLTAGE | Intelligent
VOLTAGE System
z A DIAGNOSIS Y
% DIAGNOSIS
<
ARCHON ARCHON
Layer Layer
I Y I

Figure 2 - An ARCHON community

The movement to a cooperative environment means a fundamental change in
the requirements of an individual intelligent system, which the ARCHON layer must
support. Whilst in the asocial situation depicted in figure 1, each system plans its
activity exclusively on the basis of domain knowledge; in a social context an agent’s
activities are planned on the basis of both domain knowledge and social knowledge.
An ARCHON agent, therefore, has two distinct (but related) roles to satisfy: that of a
team member acting in a community of cooperating agents and that of an individual.
Much of the early Distributed Al work concentrated almost exclusively on the former
and paid scant regard to the latter; however ARCHON, and contemporary DAI in
general [5], [6], places greater emphasis on the role of the individual. Therefore when
designing the ARCHON layer both aspects should be catered for:

¢ Control (direct) local problem solving component

eg which tasks to launch, when they should be launched, their relative
priorities and how best to interleave their execution, recovery from local
exceptions

¢ Coordinate local activity with that of others within the community component.

eg when and how to initiate cooperative activity, which cooperation
protocol (client-server, contract net, etc.) to employ, how to respond to
cooperative initiations, which activities require synchronization.

These two perspectives provide a design rationale and separation of concerns
upon which the ARCHON layer architecture can be based - see Figure 3. The monitor
is responsible for controlling the local problem solving activity while the planning

2. Using this approach means that the cooperative know-how is also conceived and implemented in a distributed
manner. The alternative, one meta-system controlling all the others, was rejected because such a controller
would become a computational and communication bottleneck and also because the complexity of the problem
being tackled would prevent such a system from maintaining a consistent and complete view of the entire
problem solving process (i.e. it would posses bounded rationality [23]).

and coordination module (PCM) is responsible for controlling an agent’s cooperative
interactions. There is, however, a grey area between these two modules which has to
deal with the impact of local decisions on the global perspective and of global
decisions on the local activity - as choices about such interactions effect both the
monitor and the PCM they are dealt with and agreed by both modules.

SESSION LAYER
HIGH LEVEL COMMUNICATIONS MANAGER
Acquaint
% ance
>~ Model
<
-
% PLANNING & Se
= COORDINATION Model
S MODULE
Eri AIM
MONITOR
INTELLIGENT
SYSTEM

Figure 3: Detailed structure of the ARCHON layer

The other components of the ARCHON layer are there to support these two
modules. The High Level Communication Module (HLCM) supports the types of
dialogue necessary for decentralized problem solving and coordination; offering
facilities such as message scheduling, message filtering and intelligent addressing.
The HLCM interfaces to an extended Session Layer® which means ARCHON
communities can be installed over networks conforming to the OSI standard. AIM
(the Agent Information Management module) provides an object-orientated
information model, a query and update language to define and manipulate the
information and a distributed information access mechanism to support the remote
access and sharing of information among agents.

3. The session layer has been extended to provide facilities appropriate for cooperative problem
solving. For example, the standard does not cater for point to multi-point connections, something which
is essential if broadcasts to groups of agents are required.

8

It is well acknowledged in many fields (including sociology, economics,
politics and Distributed Al) that sophisticated cooperation requires participants to
have some knowledge of other team members. The acquaintance models [2], [11],
[21] provide exactly this knowledge - they are an abstract description of the other
agents with which the modelling agent has to interact and are used by the PCM and
the monitor for determining and mediating cooperative interactions. The type of
information they maintain include: the capabilities of others, their intentions and
plans, current state of processing, what information they can generate/are interested
in and so on [21], [22]. The self model provides a meta-level description of the
underlying intelligent system which the monitor can reason about when controlling
the local system - the information to be maintained includes the status of active tasks,
which tasks are pending, which tasks are waiting for which pieces of information, the
relative priority of the various tasks, for example.

4. ACHIEVING GENERALITY AND POWER: A HYBRID APPROACH

By aiming to produce a cooperation framework which has a degree of
generality, rather than constructing specialized systems for each particular
application, it is important that the approach adopted is flexible yet still expressive
enough. The two main weapons with which we attack this problem are both outlined
in this section:

*Combining pre-compiled behaviours and reflective planning components to
guide agent activities.

*Using domain independent structures with domain dependent instantiations

One way of increasing the power of a system is to compile reasoning and
action [17] - such “chunks” are usually referred to as behaviours. However systems
in which all action is pre-compiled (reactive systems) have certain inherent
limitations, the most pertinent of which is the fact that behaviours are usually specific
to a certain problem and application. In contrast, systems which perform reflective
reasoning and planning at run-time are applicable to a wider range of problems
(particularly if this reasoning is based on domain independent structures - see
below), but are typically more expensive in terms of the resources they consume. The
ideal approach therefore, is to take the power offered by behaviours and combine it
with reflective reasoning (generality) of the appropriate level. The characteristics of
these two problem solving paradigms can then be used in the parts of the
architecture to which they are best suited:

* Monitor: Requires fast response to large number of domain specific events
and is difficult to generalise
=>Predominantly behaviour based
* PCM: Small number of social activities, need to reflect the particular run-
time situation and offers greater scope for general descriptions.

'i)Predominantly reflective

The second method is to make use of domain independent structures. Within

the ARCHON architecture such structures include the communication facilities, the
agent modelling facilities and the information modelling facilities (AIM). However
due to space limitations the discussion will focus on the agent modelling facilities.
The idea behind the acquaintance models is that they should embody most (ideally
all) of the information necessary for supporting social activity and for evaluating the
status of the community from the modelling agent’s perspective. Similarly the self
models should embody the information necessary for controlling the underlying
intelligent system and for assessing the agent’s local situation. The semantlcs of these
models are then given by a more or less generic control mechanism*. Hence
generality is achieved because substantial parts of control mechanism can be
common to all agents, but power is retained because domain complexity is
represented in the models.

To illustrate this point we will return to the electricity management problem
specified in section 2.1. The weather monitor’s model of the low voltage diagnosis
agent will represent the fact that it is interested in lightning strikes when trying to
diagnose faults:

Modelling Agent: Weather Monitor

Modelled Agent: Low Voltage Diagnosis Agent

Slot Name: Interests

Slot Structure: {<Name;, Cond;>,............ <Name,, Cond,,>} (TEMPLATE)

Slot Structure: {<LIGHTNING-STRIKES, (INSTANTIATION)
WORKING-ON(DIAGNOSE-FAULT)>}

The semantics of thls part of the agent model can be provided by the
following generic control rule’:

IF knows (agent(?A), information(?I)) AND
(3 <Name,, Cond,> € INTERESTS(agent(?A), acquaintance(?A2)):
equal(Name,, information(?I) AND
is-true(Cond,))
THEN can-help(agent(?A),
acquaintance(?A2),
send(agent(?A), acquaintance(?A2), information(?1)))

5. CONCLUSIONS

This paper serves as a mid-term progress report for the work currently being
undertaken within the ARCHON project. It highlights those features of the project
which distinguish it from previous work in the field of Distributed Al and hence
defines the project’s niche. The boundary of the range of problems being tackled has
been described and an approach which leads to both a powerful and general

4. The underlying premise is that meaningful behaviour can be defined by the structure of the models
and the actual contents merely provide the context for interpretation.

5. The meaning of the predicates is self explanatory. can-help(al, a2, X) means that agent al is in a
position to help acquaintance a2 by doing X. Whether it actually decides to do X will be based upon the
current situations of al, a2 and the rest of the community.

10

framework has been outlined. The ARCHON architecture, as it exists at present, and
the major design forces which give rise to this architecture have also been described.

At this stage in the project we are engaged on several simultaneous activities:
specifying in greater detail the exact separation of concerns between the various
components of the ARCHON layer, integrating (at the software level) the various
components of the architecture, reconceptualising applications to ensure maximum
utility is made of the cooperating systems metaphor and also verifying our
architecture against the real world scenarios which exist within the project.

ACKNOWLEDGEMENTS

This paper represents the work of the whole ARCHON consortium which
consists of the following partners: Krupp Atlas Elektronik, JRC Ispra, Framentec,
QMW, IRIDIA, Iberduero, Labein, Electricity Research and Development Centre,
Amber, Technical University of Athens, FWI University Amsterdam, Volmac, CERN
and University of Porto.

In particular the following have contributed significantly to the current state
of the ARCHON architecture: Abe Mamdani (QMW), Thies Wittig (Krupp) and Erick
Gaussens (Framentec) to the overall architecture design; Claudia Roda (QMW) to the
HLCM; Jochen Ehlers (Krupp) to the PCM; George Stassinopoulos, T Tsatsaros and
M. Spyropoulou (all Univ Athens) to the Session Layer Work; Francois Arlabosse,
Daniel Gureghian and Jean Marc Loingtier (all Framentec) to work on the Monitor
and Behaviours; Frank Tuijnman and Hamideh Afsarmanesh (both Univ. of
Amsterdam) to work on AIM and Eugenio Oliveira and Long Qiegang (Univ Porto)
to work on generic rules.

REFERENCES

[1] AVOURIS,N.M., LIEDEKEKERKE M.H.V. & SOMMARUGA, L. (1989). Evaluating
the CooperA Experiment. Proc. of 9th Workshop on Distributed Artificial Intelligence,
Seattle.

[2] BOND,A .H. & GASSER,L. (1988). Readings in Distributed Artificial Intelligence.
Morgan Kaufmann.

[3] BROOKS,E.P. (1987). No Silver Bullet: Essence and Accidents of Software Engineering.
Computer 20 (4) pp 10-19.

[4] CAMMARATA,S, McARTHUR,D. & STEEB,R. (1983). Strategies of Cooperation in
Distributed Problem Solving. Proc IJCAI 1983, pp 767-770.

[5] DEMAZEAU,Y & MULLER,J.P. (1990). Decentralized Al. Elesevier Science Publishers.

[6] DEMAZEAU,Y & MULLER,J.P. (1990). Decentralized Al Vol II. Elesevier Science
Publishers.

[7] DURFEE,E.H. & MONTGOMERY,T.A. (1989). MICE: A Flexible Testbed for Intelligent
Coordination Experiments. Proc. of 9th Workshop on Distributed Artificial Intelligence,
Seattle

[8] ENGELMORE,R. & MORGAN,T. (1988). Blackboard Systems. Addision Wesley.

11

[9] FERBER,J. (1989). Eco-Problem Solving: How to Solve a Problem by Interactions. Proc.
of 9th Workshop on Distributed Artificial Intelligence, Seattle

[10] FEIGENBAUM,E.A., McCORDUCK,P. & NII,H.P. (1988). The Rise of the Expert
Company. Times Books.

[11] GASSER,L., BRAGANZA,C. & HERMAN,N. (1988). Implementing Distributed
Al Systems Using MACE. in [14].

[12] GASSER,L. & HUHNS.M.N. (1990). Distributed Artificial Intelligence Vol II
Pitman.

[13] GAUSSENS,E. (1990). Needs and Opportunities for Expert Systems in the
Process Control Field. Vacation School for Process Control, University of Strathclyde,
Scotland.

[14] HUHNS.M.N. (1989). Distributed Artificial Intelligence. Pitman.

[15] JAGANNATHAN,V., DODHIAWALA,R & BAUM,L.S. (1989). Blackboard
Architectures and Applications. Academic Press.

[16] JENNINGS,N.R. (1991). An Architecture for Cooperating Systems. Artificial
Intelligence and Simulation of Behaviour Quarterly, Special Issue on Distributed Al,
76.

[17] KISS,G. (1991). Layered Architectures for Intelligent Agents. IEE Colloquium on
Intelligent Agents.

[18] KORNFIELD,W.A. & HEWITT,C.E. (1981). The Scientific Community Metaphor.
IEEE Trans. on SMC. 11, 1, pp 24-33

[19] LESSER,V.R. & CORKILL,D. (1983). The Distributed Vehicle Monitoring Testbed:
A Tool for Investigating Distributed Problem Solving Networks. Al Magazine, pp15-
33.

[20] PARTRIDGE, D. (1987). The Scope and limitations of First Generation Expert
Systems. Future Generations Computer Systems, 3, 1, pp 1-10.

[21] RODA,C., JENNINGSN.R. & MAMDANI, EH. (1991). The Impact of
Heterogeneity on Cooperating Agents. Proceedings AAAI Workshop on Cooperation
among Heterogeneous Intelligent Systems, Anaheim, Los Angeles.

[22] RODA,C., JENNINGSN.R, & MAMDANLEH. (1990). ARCHON: A
Cooperation Framework for Industrial Process Control. in Cooperating Knowledge
Based Systems 1990 (ed DEEN,S.M.), pp 95-112, Springer Verlag.

[23] SIMON,H.A. (1957). Models of Man. Wiley.

[24] STEELS,L. (1985). Second Generation Expert Systems. Future Generations
Computer Systems. 1, 4, pp 213-221

12

