Nonlinear J-lossless conjugation and factorization


Baramov, L. and Kimura, H. (1996) Nonlinear J-lossless conjugation and factorization. International Journal of Robust and Nonlinear Control, 6, 869-893.

Download

Full text not available from this repository.

Description/Abstract

A new definition of nonlinear local J-lossless factorization is introduced, which plays a crucial role in nonlinear $H^\infty$ control theory. Sufficient (and in two special cases also necessary) conditions for the existence of this factorization and state-space formulae of the factor systems are given here. The main tools for the J-lossless factorization are the local right and left J-lossless conjugations, introduced in this paper. The former corresponds to the standard linear J-lossless conjugation, while the latter has no counterpart in the linear theory where it is completely dual to the former one and hence conceptually redundant. In the nonlinear case, however, this duality is much weaker and therefore the left J-lossless conjugation is essential for solving the local J-lossless factorization for unstable systems. This factorization requires a transformation of the given system to a special form and solving two independent Hamilton-Jacobi partial differential equations. Solutions of the two Hamilton-Jacobi equations have to satisfy a simple coupling condition.

Item Type: Article
Divisions: Faculty of Physical Sciences and Engineering > Electronics and Computer Science
ePrint ID: 252463
Date Deposited: 29 Jan 2000
Last Modified: 27 Mar 2014 19:54
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/252463

Actions (login required)

View Item View Item