Interactive Anomaly Detection in Large Transaction History Databases


Allen, P, McKendrick, R, Scott, C, Buonanno, M, Mostacci, P, Naldini, C, Scuderi, V and Stofella, P (1996) Interactive Anomaly Detection in Large Transaction History Databases. High Performance Computing and Networking (HPCN Europe 1996), Brussels, Belgium, 15 - 19 Apr 1996. Springer, 143-150.

Download

[img] PDF
Restricted to Registered users only

Download (144Kb)

Description/Abstract

The scale of financial sector crime today makes the detection of anomalous financial flows into, out of and within, a nation one of the most important functions of modern government. The analysis necessary for detection of such criminal activity depends on the existence of a central IT infrastructure capable of maintaining historical transaction records and capable of enabling the application of advanced analysis techniques to large data volumes. We describe a software tool developed to aid the rapid, error-free transformation of data held in aggregated transaction history databases into matrices for analysis by fraud detection experts. We also present some initial results of performance characterisation studies which will provide the basis for guidelines on how transformations can be tuned to make best use of underlying parallel database systems.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Additional Information: Lecture Notes in Computer Science Event Dates: 15-19 April 1996
ISSNs: 3540611428
Divisions: Faculty of Physical Sciences and Engineering > Electronics and Computer Science
Faculty of Physical Sciences and Engineering > Electronics and Computer Science > IT Innovation Centre
ePrint ID: 252521
Date Deposited: 21 Mar 2003
Last Modified: 27 Mar 2014 19:54
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/252521

Actions (login required)

View Item View Item

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics