
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

VISUALISATION OF HYPERMEDIA SYSTEMS:

AN OPEN APPROACH

By

Mark James Weal

B.Sc.(Hons)

A thesis submitted for the degree of

Doctor of Philosophy

Department of Electronics and Computer Science,

University of Southampton,

United Kingdom.

August 2000

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING

ELECTRONICS AND COMPUTER SCIENCE DEPARTMENT

Doctor of Philosophy

Visualisation of Hypermedia Systems:

An Open Approach

by Mark James Weal

Hypermedia systems are designed to allow links, or connections, to be made

between di�erent media objects. Key issues tackled in early hypermedia systems

included developing tools to help guide users through the material and tools to help

authors maintain the material that they create. The open approach to hypermedia

emerged, where links were separated from the content of documents, allowing a

more modular approach to hypermedia services. The ease of integration of tools in

these open systems promoted the creation of many di�erent types of navigational

aids, designed to help users of the systems to access and maintain the information

contained within them.

The openness and modular nature of such systems creates its own problems

however. Users will often have to interact with a number of disparate interfaces

to manipulate the navigational information. A new approach is presented which

provides an open framework for these interfaces, allowing for a co-ordinated strat-

egy and the modular addition of tools to help manage the screen interface and

reduce the complexity of the interaction for users.

A second approach to the problem is to provide the di�erent hypermedia in-

formation within a unifying visualisation. A novel framework is presented which

allows more open access to the underlying navigational information of hyperme-

dia systems. Visualisation tools can be connected to this framework in a modular

fashion to provide
exible visualisations of the underlying information. By gen-

erating a number of di�erent visualisations, the openness and
exibility of the

visualisation framework approach is demonstrated.

Contents

Acknowledgements xvii

Chapter 1 Introduction 1

1.1 Thesis Structure . 2

1.2 Declaration . 4

Chapter 2 Open Hypermedia 5

2.1 Introduction . 5

2.2 Historical Systems . 5

2.2.1 Memex . 6

2.2.2 NLS and Augment . 6

2.2.3 Xanadu . 7

2.2.4 NoteCards . 7

2.2.5 Sun Link Service . 8

2.2.6 Intermedia . 8

2.2.7 Guide . 9

2.2.8 Other Systems . 10

2.3 Existing Systems . 10

ii

iii

2.3.1 The World Wide Web . 10

2.3.2 Hyper-G and Harmony . 12

2.3.3 Multicard . 13

2.3.4 HyperDisco . 13

2.3.5 Chimera . 14

2.3.6 DeVise . 15

2.3.7 Microcosm . 15

2.4 Linking . 16

2.5 Navigation Tools . 18

2.5.1 Direct Access Tools . 18

2.5.2 Local Maps . 19

2.5.3 Global Maps . 20

2.5.4 The History Tool . 22

2.5.5 Guides, Tours and Trails 22

2.5.6 Search Engines . 23

2.6 De�nition of Closed Systems . 24

2.7 De�nition of Open Systems . 25

2.8 Problems with Open Hypermedia 27

2.9 Conclusions . 27

Chapter 3 Microcosm 29

3.1 Introduction . 29

3.2 Open Architecture . 30

3.2.1 Viewers . 30

iv

3.2.2 Document Control System (DCS) 31

3.2.3 The Filter Manager (FMS) 31

3.2.4 Filters . 32

3.2.5 Document Management System (DMS) 32

3.3 Open Message Format . 33

3.3.1 Some Messages Only Need to be Processed Once 34

3.3.2 There is No Way of Knowing if there is a Recipient 35

3.4 Open Linking . 36

3.5 Topology . 38

3.5.1 The Basic Filter Chain . 38

3.5.2 The Direct Communication Topology 39

3.5.3 The Hybrid Approach . 41

3.5.4 The Active Filter Manager 42

3.6 Open Functionality: Navigation Tools in Microcosm 43

3.6.1 Direct Access Tools . 43

3.6.2 The History Tool . 44

3.6.3 The Available Links Tool 44

3.6.4 The Mimic Tool . 44

3.6.5 Local Maps . 45

3.6.6 The Advisor Agent . 45

3.7 Problems with the Microcosm Architecture 46

3.8 Conclusions . 46

Chapter 4 Screen Management 48

v

4.1 A Brief History of User Interfaces 48

4.2 Multiple Window Environments 49

4.3 The Need for Scalable Interfaces 50

4.3.1 Di�erent Interfaces for Di�erent User Abilities 51

4.3.2 Di�erent Interfaces for Di�erent Environments 52

4.3.3 Di�erent Interfaces for Di�erent Hardware 53

4.4 The Problem of Separating Content from Interface 54

4.5 General Approaches to Interfaces 55

4.5.1 Window Managers . 55

4.5.2 User Interface Management Systems (UIMSs) 56

4.5.3 Toolkits . 56

4.6 Speci�c Systems . 57

4.6.1 Aquanet and VIKI . 57

4.6.2 Pad++ . 58

4.6.3 Style Sheets . 58

4.6.4 Interface Agents . 61

4.6.5 Elastic Windows . 61

4.6.6 Synchronized Multimedia Integration Language (SMIL) . . 62

4.6.7 The Apple Event Object Model 63

4.7 User Interface Tools . 64

4.8 Open Hypermedia Interface Issues 65

4.9 Conclusions . 66

Chapter 5 The Design and Implementation of SHEP 67

vi

5.1 Screen Management and Microcosm 67

5.1.1 Problems with the Basic Microcosm System 68

5.2 Window State . 69

5.2.1 External State . 69

5.2.2 Internal State . 71

5.2.3 State Attributes . 72

5.3 Screen Managers . 72

5.4 Making the State Open to Examination 73

5.5 The Intention Action model . 74

5.6 The SHEP Architecture and Implementation 74

5.6.1 The SHEP and Microcosm Architectures Combined 77

5.6.2 State and the SHEP Protocol 78

5.6.3 Interface Components: The Sheep 79

5.6.4 Screen Handlers: The Shepherds 80

5.7 Examples of Shepherds . 81

5.7.1 Saving State Information 81

5.7.2 Relative Size and Position 83

5.7.3 Restricting Window Positions 84

5.8 Controlling the Number of Windows Using SHEP 85

5.9 SHEP in Use . 87

5.9.1 The Historian's Workbench 87

5.9.2 FIRM : Factory Information Resource Management 92

5.10 Problems with the SHEP Architecture 95

vii

5.11 Conclusions and Future Work . 96

Chapter 6 Visualisation Systems 98

6.1 Introduction . 98

6.2 Visualisation Technology . 99

6.3 Visualisation Tools . 99

6.3.1 The Virtual Reality Modelling Language (VRML) 100

6.3.2 Distributed Interactive Virtual Environment (DIVE) . . . 101

6.3.3 RenderWare . 101

6.4 Visualisation Metaphors . 102

6.4.1 Desktop Metaphors . 103

6.4.2 The Book Metaphor . 104

6.4.3 Library metaphors . 105

6.4.4 Room based metaphors . 105

6.4.5 Spatial Metaphors . 106

6.4.6 In
uences from Literature 108

6.4.7 Which Metaphor to Choose? 109

6.5 Visualisation Applications . 110

6.5.1 SemNet . 110

6.5.2 GraphVisualizer3D . 111

6.5.3 The Information Visualizer 113

6.5.4 VR-VIBE . 116

6.5.5 Lyberworld . 118

6.5.6 Q-PIT . 120

viii

6.5.7 BEAD . 121

6.5.8 Vineta . 122

6.5.9 Habitat . 124

6.5.10 The Information City . 125

6.5.11 Alphaworld . 126

6.5.12 VIRGILIO . 128

6.5.13 Cybermap . 130

6.5.14 AMAZE . 131

6.5.15 3D File System Navigator (FSN) 131

6.5.16 Narcissus and Hyperspace 133

6.5.17 SHriMP Views . 135

6.5.18 StarWalker . 137

6.6 Problems with Current Visualisation Systems 137

6.7 Conclusions . 138

Chapter 7 Minerva : A Framework for Visualisations 140

7.1 Introduction . 140

7.2 Design . 141

7.2.1 Design Criteria . 142

7.3 The Minerva Architecture Design 143

7.3.1 Real World Object Managers 144

7.3.2 The Object Store . 144

7.3.3 Mapping Systems . 145

7.3.4 Virtual Environment Interface (VEI) 146

ix

7.3.5 Movement Interaction Handler 147

7.3.6 Control Systems . 147

7.3.7 Object Handlers . 148

7.4 From SHEP to Minerva . 148

7.5 Navigation Tools . 149

7.6 Use of the Microcosm Hypermedia System 150

7.7 Implementation . 151

7.7.1 A Supporting Metaphor 151

7.7.2 The Object Store . 155

7.7.3 Object Handlers / Object Managers 155

7.7.4 Assistants . 156

7.7.5 Mapping Modules . 156

7.7.6 The Virtual Environment Interface (VEI) 161

7.7.7 Movement Interaction Handler 162

7.7.8 The Control Process . 163

7.8 Existing Navigation Tools . 164

7.8.1 The History Tool . 164

7.8.2 Links . 165

7.8.3 Maps . 165

7.8.4 Guides . 167

7.8.5 Search Tools . 168

7.9 New Navigation Tools . 169

7.9.1 The Gra�ti Tool . 169

x

7.9.2 The Egocentric Visualiser 170

7.10 Conclusions . 172

Chapter 8 Visualisation Using Minerva 174

8.1 The MMRG Publication Database Visualisation 174

8.1.1 The Current Interface . 175

8.1.2 Construction of the Visualisation 176

8.1.3 The Minerva Visualisation 178

8.1.4 Advantages and Disadvantages 179

8.2 The Caerdroia Hypermedia Application Visualisation 180

8.2.1 The Current Interface . 181

8.2.2 Construction of the Visualisation 183

8.2.3 The Minerva Visualisation 185

8.2.4 Advantages and Disadvantages 187

8.3 The Post O�ce Research Group Visualisation 189

8.3.1 The Current Interface . 189

8.3.2 Construction of the Visualisation 191

8.3.3 The Minerva Visualisation 194

8.3.4 Advantages and Disadvantages 195

8.4 A Variety of Layout Techniques 197

8.5 Automatic Visualisation from Scripts 198

8.6 Representation of Links within a Visualisation 198

8.7 Conclusions . 199

xi

Chapter 9 Future Work 202

9.1 The SHEP Architecture . 202

9.2 Minerva Data Objects . 203

9.3 Minerva as a Protocol . 203

9.4 The Web Browser as an Integrating Visualisation 204

9.5 Evaluation of Visualisations . 205

9.6 Synchronisation Issues . 206

9.7 Implementation of Novel Visualisations 206

Chapter 10 Conclusions 208

Bibliography 212

List of Figures

2.1 Diagrams showing textual direct access tools. 18

2.2 A local map. 20

2.3 A global map. 21

3.1 The Microcosm architecture of viewers and �lters. 30

3.2 An example Microcosm message to dispatch a document. 33

3.3 The original �lter chain topology used in Microcosm. 38

3.4 The direct communication topology. 39

3.5 The hybrid �lter chain topology. 42

3.6 The active �lter manager topology. 43

4.1 An illustration of the Pad++ zooming browser based on a screen-

shot in (Bederson et al., 1994). 59

5.1 The external state of a window component. 70

5.2 Using actual size and position information. 70

5.3 Using relative size and position information. 71

5.4 The SHEP architecture. 75

5.5 The Microcosm architecture including the SHEP framework. . . . 77

5.6 The Microcosm viewer locking mechanism. 85

xii

xiii

5.7 The copyright screen management under SHEP. 91

5.8 The synchronisation of document images and textual transcriptions. 92

5.9 The original cluttered screen layout for FIRM. 94

5.10 The SHEP organised screen layout for FIRM. 95

6.1 An illustration of a SemNet screen based on a screenshot in (Fairchild

et al., 1988). 111

6.2 An illustration of the GraphVisualizer3D interface based on a screen-

shot in (Ware et al., 1993). 112

6.3 A typical cone tree visualisation based on a screenshot in (Robert-

son et al., 1991). 114

6.4 An illustration of a perspective wall based on a screenshot in (Robert-

son et al., 1991). 115

6.5 An example of the context+focus table view produced by the table

lens, based on a screenshot in (Rao & Card, 1994). 116

6.6 An example of a VR-VIBE visualisation based on a screenshot in

(Benford, 1995). 117

6.7 An illustration of Lyberworld navigation cones based on a screen-

shot in (Hemmje, 1993). 119

6.8 The QPIT visualisation interface based on a screenshot in (Benford,

1995). 121

6.9 An illustration of a BEAD landscape (birds-eye view) based on a

screeshot in (Chalmers & Chitson, 1992). 122

6.10 The Vineta galaxy visualisation based on a screenshot in (Krohn,

1996). 123

6.11 The Vineta landscape visualisation based on a screenshot in (Krohn,

1996). 124

xiv

6.12 The cartoon look and feel of the Habitat world based on a screen-

shot in (Morningstar & Farmer, 1991). 125

6.13 An art gallery constructed in Alphaworld based on a screenshot in

(Worlds Inc., 1993). 127

6.14 The Alphaworld 3D landscape from a
ying perspective based on

a screenshot in (Worlds Inc., 1993). 128

6.15 The music elevator in the VIRGILIO demo based on a screenshot

in (Massari et al., 1997). 129

6.16 The corridor of musicians forming part of a VIRGILIO visualisation

based on a screenshot in (Massari et al., 1997). 130

6.17 A query visualisation in AMAZE basde on a screenshot in (Benford,

1995). 132

6.18 The File System Navigator interface based on a screenshot found

at (Silicon Graphics, 1995). 133

6.19 An example of the Narcissus visualisation based on a screenshot in

(Hendley et al., 1995). 134

6.20 An illustration of the SHriMP graph layout approach based on a

screenshot in (Storey & M�uller, 1995). 136

7.1 The representation of actual data. 141

7.2 The Minerva architecture. 144

7.3 The implementation of the Minerva prototype 152

7.4 The metaphor as it relates to the Minerva prototype. 153

7.5 The time tunnel of bibliographic references. 158

7.6 Positioning of objects based on their description. 159

8.1 The current Web interface to the MMRG publications database. . 175

xv

8.2 The time tunnel visualisation of the MMRG publications database. 179

8.3 The document browser used to view the Caerdroia documents. . . 181

8.4 The text document containing a button link. 182

8.5 The results viewer presenting a choice of links to the user. 182

8.6 The history viewer presenting the user with a list of previously

viewed documents. 183

8.7 A view of the Caerdroia application with all the documents and

links visible. 186

8.8 Amidst the web of links, a document object is selected. 187

8.9 An example bubble diagram showing cluster connections. 190

8.10 The interface to viewing information about the clusters. 191

8.11 The Post O�ce Research Group visualisation. 195

8.12 The user zooms in and selects a document. 196

List of Tables

7.1 Mapping from type attribute to shape representation. 160

8.1 Mapping from publication type to virtual object colour. 177

8.2 Mapping from document type to virtual object colour. 185

8.3 Mapping from link type to virtual object colour. 185

8.4 Mapping from object type to virtual object colour. 193

xvi

Acknowledgements

I would like to thank my supervisor Professor Wendy Hall, for all her help, encour-

agement and perseverance during the course of this Ph.D., and also for helping

keep me employed within the stimulating and supportive Multimedia Research

Group.

I am of course indebted to the many people who have contributed to the develop-

ment of the Microcosm system which formed the foundations of much of the work

presented here, in particular Ian Heath, Gary Hill, Rob Wilkins, Stuart Goose,

Nick Beitner and Hugh Davis.

Many other members of the lab have provided me with thought provoking dis-

cussions and useful help and assistance, so I would also like to thank Danius

Michaelides, Jonathan Dale, Gareth Hughes, Dave DeRoure, Luc Moreau and

Mark Dobie.

Finally I must thank my family who have been supportive of me for so long and

must have wondered if I would ever �nish writing this thesis. I thank them most

of all for never letting me know if they did.

xvii

Chapter 1

Introduction

The �eld of hypermedia is relatively young, tracing its roots back to the ideas of

Vannevar Bush in the late forties. In this short space of time it has advanced to

a point where providing access to hypermedia via the Internet is quite possibly

the fastest growing industry on the planet. The World Wide Web, a hypermedia

system with a single content base of information spanning the globe, has grown

so fast that in less than ten years, seemingly half the adverts on television or in

print contain URL entry points into the resource base.

Managing content and structure on this scale has been one of the problems that

hypermedia researchers have focussed on and a key concept to come out of this

research is the bene�t of open approaches to hypermedia. In simple terms, the

open approach separates the media content of the hypermedia from the structure

that binds it together, ostensibly the links. By keeping the links separate from

the data, the decision as to where to place the links can be deferred until the user

views the information. This allows di�erent structures to be overlaid on top of the

same content and provides a mechanism for creating user tailored content that

might be based on the user's speci�c interests. Although the separation of the

links does lead to some problems, principally that of maintaining link integrity, it

has provided new avenues for hypermedia designers to explore.

One of the areas of hypermedia that has received little attention is that of interface.

Hypermedia systems have traditionally had their own ad hoc interfaces tied in

to the underlying implementation of the hypermedia system. Open hypermedia

1

2

systems allow the underlying information to be structured in many di�erent ways,

but often only through a single interface. Scalable interfaces which can be modi�ed

to account for user ability, hardware requirements and environment provide even

more
exibility to such systems. This thesis seeks to examine the requirements

of such open interfaces and the bene�ts they can provide to open hypermedia

systems.

Opening the interface can enhance the presentation of the content, but in order to

visualise the information in the systems the openness needs to be taken further.

Even in systems that claim openness, often the information used by the system

is closed and presented in proprietary interfaces. An example of this is the list

of documents which the user has viewed using a World Wide Web browser. This

information can be used to colour links to documents that the user has previously

read, and the user can select from a list of documents if they wish to revisit

them. Outside of these hardwired presentation mechanisms however the history

information is sealed away and cannot be accessed by other parts of the system

or indeed other applications wishing to make use of it. Without this freedom

of access to the information truly open visualisations of the information are not

possible.

1.1 Thesis Structure

Chapter 2 of this thesis will look at open hypermedia systems. An historical

perspective is provided on hypermedia in general and a number of current hyper-

media systems are examined. Navigation Tools within hypermedia systems are

discussed and de�nitions provided for closed and open hypermedia. Concluding

the chapter, a number of problems associated with the open approach are listed.

Chapter 3 takes a detailed look at the Microcosm open hypermedia system, which

will form the foundation for much of the implementation discussed in later chap-

ters. The openness of the system is examined, concentrating on the areas of

architecture, message format, linking and functionality. Some of the navigation

tools provided by the Microcosm system are discussed along with problems arising

from the current architecture.

3

Chapter 4 looks at screen management issues. A brief history is given, and a

number of di�erent approaches to the problem are presented. Speci�c screen

management issues that arise with open hypermedia systems are examined and

the concept of open interfaces is discussed.

Chapter 5 presents a novel architecture for screen management called the Screen

Handler Enabling Process, or SHEP for short. The design and implementation

of the architecture is discussed in detail and examples of its use with real world

problems are presented.

Chapter 6 looks at visualisation systems, both in the general case, and also how

they relate to the �eld of open hypermedia. The use of metaphors in such systems

is discussed along with a number of tools that exist for creating visualisations. A

number of visualisation systems are discussed. Some of the problems of visualisa-

tion systems are described.

Chapter 7 presents a novel framework called Minerva, which is designed to help

provide visualisations both of a general nature, but more speci�cally of open hy-

permedia systems. The design and implementation of the framework is discussed

in detail. The incorporation into the framework of the standard hypermedia nav-

igation tools discussed in chapter 2, is examined. Some novel navigational devices

are suggested which might take advantage of the openness of the Minerva frame-

work.

Chapter 8 looks at three visualisations of real world problems using the Minerva

framework. Each presents its own unique issues and illustrates the openness of

the framework.

Chapter 9 examines some of the limitations of the current implementation of the

Minerva framework and discusses what future extensions and improvements might

be made to the framework to overcome these problems.

Chapter 10 draws conclusions from the work presented in the previous chapters.

The issues of open interfaces and open visualisations are summarised and possible

ways forward suggested.

4

1.2 Declaration

Although this entire thesis is the author's personal view of the �eld, the original

contributions are described in chapters 5,7 and 8. The work in this thesis has

been conducted within a collaborative research group. It is all the author's own

work, with the exception of that described in sections 5.6.1 and 5.9.2, where other

members of the research group have in some way contributed.

Chapter 2

Open Hypermedia

2.1 Introduction

This chapter provides an overview of the history of hypertext and hypermedia

and the theory behind it. Historical hypertext systems are discussed, illustrating

the development of the �eld of hypertext. Current hypermedia systems are then

covered, examining the methodology and aims behind them. The nature of links

is examined as well as the wealth of navigation tools which have been devised to

help assist users of hypermedia systems. A distinction is drawn between closed

and open hypermedia systems and �nally, some of the problems surrounding open

hypermedia are discussed.

2.2 Historical Systems

Depending on your de�nition of hypertext, the date of birth of hypertext could

vary by a few thousand years. Early versions of the Bible contained frequent

cross-referencing and the Tamulad, an early religious text, made heavy use of

annotations and nested commentaries.

In his article `Hypertext: An Introduction and Survey'(Conklin, 1987), Conklin

proposed that in order for something to be considered true hypertext, navigation

had to be computer-supported. If we agree with this then we need only look back

�fty years for the origins of hypertext.

5

6

2.2.1 Memex

In his seminal paper `As We May Think', published in Atlantic Monthly in 1945

(Bush, 1945), Vannevar Bush wrote, in reference to the way library systems were

organised,

The human mind does not work that way. It operates by associa-

tion. With one item in its grasp, it snaps instantly to the next that

is suggested by the association of thoughts, in accordance with some

intricate web of trails carried by the cells of the brain...

One cannot hope thus to equal the speed and
exibility with which the

mind follows an associative trail, but it should be possible to beat the

mind decisively in regard to the permanence and clarity of the items

resurrected from storage.

The system that Bush went on to describe he called the \Memex". It was a device

in which all books, records and communications of an individual would be kept

on Micro�lm (being the only viable mass storage option at the time). Users could

create trails through the information by linking two documents to each other. At

a later date it would be possible to follow these trails through the material as if

turning through the pages of the book.

He talked about the future, predicting

Wholly new forms of encyclopaedias will appear, ready-made with a

mesh of associative trails running through them.

Although unable to predict the rapid advances in digital technology, the ideas

and working environments suggested by Bush can be seen in many of the systems

around us today.

2.2.2 NLS and Augment

In 1963, Douglas Engelbart wrote `A Conceptual Framework for the Augmentation

of Man's Intellect' (Engelbart, 1963). He proposed a system called H-LAM/T

(Human using Language, Artefacts, and Methodology, in which he is Trained)

which would seek to `amplify the native intelligence of the user'. These ideas were

7

re�ned and eventually became NLS (oN Line System) which ran on complicated

consoles that included a revolutionary input device known as a mouse.

NLS had three main components: a database containing the text fragments, view

�lters, which enabled the viewing of items from the database, and views, which

were used to structure the information. The view �lters could be used to carry

out simple �ltering such as only showing the �le hierarchy to a certain depth, as

well as more complex �ltering such as only showing �les which matched a speci�ed

search.

NLS evolved into a system called Augment, which was commercialised by McDon-

nell Douglas as a system for `knowledge workers'(Engelbart et al., 1973).

2.2.3 Xanadu

Ted Nelson, widely considered as a hypertext visionary, is credited with coining

the term `hypertext'. In developing his ideas for a uni�ed literary environment,

Nelson designed the Xanadu system (Nelson, 1980), named after the mythical

place described in Samuel Taylor Coleridge's poem \Kubla Khan" .

The idea behind Xanadu was to greatly reduce storage requirements by extensive

use of linking. The linking would serve in place of in-line quotes and would

provide versioning, by only storing the original version of a document and links

to the subsequent modi�cations.

Another idea that heavily in
uenced the design was that of maintainable copy-

right. Whenever a link referenced another piece of material, the copyright of

the destination material could be readily established. This would allow for very

accurate royalty payments, with material being paid for whenever it is referenced.

2.2.4 NoteCards

Xerox PARC's NoteCards (Halasz et al., 1987)was one of the �rst widely used

hypertext systems. It was developed as an information analyst's support tool to

assist in gathering and assimilating information.

Users create a series of nodes, or notecards, which are then linked together to

form a web. Although not strictly an open hypermedia system, as will be seen in

8

a later section, NoteCards allows the creation of new node types in addition to

the basic types. An integrated Lisp programming environment enables the open

architecture of NoteCards to be extended to create new applications.

2.2.5 Sun Link Service

One of the �rst implementations of an open hypermedia link service was produced

by Sun (Pearl, 1989). The idea behind the system was to separate the authoring

and manipulation of links from the document management. This allowed the

editing of documents to be carried out by the most appropriate applications with

the links being added by a back-end link service process. This system was therefore

one of the �rst hypertext systems not to rely on document mark-up.

As well as providing a link server program, a protocol was speci�ed and a library

provided which enabled third party applications to be integrated with the system.

The
exible protocol enabled the applications to support as much of the service

as they could, not restricting them to all or nothing compliance. By using native

applications in the editing of documents and accessing of hypermedia functionality,

users were presented with a familiar environment. The disadvantage of this is that

di�erent editors would provide di�erent interfaces to the protocol, which might

be confusing to users.

2.2.6 Intermedia

Developed at Brown University, the Intermedia Project (Yankelovich et al., 1988)

built on the early work of hypertext pioneers like Ted Nelson, such as the Hyper-

text Editing System and FRESS.

One of the goals of the project was to use hypertext systems within the classroom

to support teaching. Documents of di�erent media types could be added to the

system and linked together. The system was designed to be both the authoring

environment and also the end user browsing tool, enabling the students to add

their own material and annotations to the system and link it into the courseware.

As more links and material were added to the system, they could quickly become

too complex for users to comprehend, so to reduce this problem the concept of

webs was introduced. Links belonged to speci�c webs that provided a context for

9

the linking. Users could choose which web they wished to view and only those

links would be displayed to them.

In addition to the basic document display and link following, the Intermedia

Project implemented a number of navigational aids for the users of the system.

Global maps provided the users with overviews of all the material, and local maps

gave the user an idea of what material was linked to the document they were

currently viewing. These navigational tools and others will be discussed in more

detail in later sections.

2.2.7 Guide

The Guide system (Brown, 1987) was created as a research project at the Univer-

sity of Kent, Canterbury, in 1982. It established itself in the hypertext community

and was successfully commercialised on the Macintosh and PC. Research was con-

tinued on the system and many interesting features were devised.

The Guide system was a closed hypertext system in that �les had to be imported

into the system. Links were then made within the documents themselves, appear-

ing as underlined pieces of text. When users click on the link they are transported

to the document at the other end of the link.

Because the text and links are all held within the system, new approaches to

linking were possible. One of these was the replace link, where instead of taking

the user to a new document, the document forming the destination of the link

was embedded within the source document at the point of the link anchor. This

technique of link following has the advantage of showing the linked information

in context.

In order to aid navigation, Guide supported the creation of paths through the

data set, which provided a structured, restricted view of the material for users to

follow. The techniques described above both attempted to convey the structure

of the information to the user without resorting to overview diagrams or maps.

10

2.2.8 Other Systems

There have been many other in
uential hypertext systems implemented, such as

TextNet (Trigg et al., 1986), KMS (Akscyn et al., 1988) and Hyperties (Schnei-

derman, 1987). A detailed review of these systems can be found in (Conklin,

1987).

2.3 Existing Systems

Hypertext and hypermedia have now entered the mainstream. The sections below

examine a number of currently used hypertext and hypermedia systems.

2.3.1 The World Wide Web

To start at the beginning, in 1969 the forerunner of the Internet came into exis-

tence. It was called the ARPANET. The idea behind it was to provide mechanisms

for people to control computer systems and to access information remotely. In

the �rst instance, it was the mechanisms for moving things from a to b that were

concentrated on, and the nature and structure of the system was left uncontrolled.

This meant that in order to access anything you had to know exactly where it

was or you were going to have problems.

Twenty years later, in 1989, the Internet was �rmly in place and there were servers

all over the world. But the fundamental problem still existed. If you wanted to

get information from a particular server you still needed to know an IP address or

site name, which consists of dots and squiggles and a variety of other hieroglyphs.

Once on the server it is then necessary to know the correct sequence of cryptic

commands with which to retrieve the data. This was not a job for a novice

computer user.

In 1989 Tim Berners-Lee was a software engineer at the Centre for European

Particle Physics (CERN). He developed a hypermedia system that has now become

universally known as the World Wide Web (WWW) (Berners-Lee, 1993a).

The Web, as it is often known, uses a system of URLs (Uniform Resource Locators)

(Berners-Lee, 1992). These allow any arbitrary piece of information to be referred

to by a single unique identi�er and therefore give a standard addressing system.

11

In practice, this allows the whole Internet to be viewed as a single repository of

information, rather than as a collection of discrete non-uniform storage facilities,

each with their own access methods.

This doesn't mean to say that URLs are necessarily intuitive, after all,

http://www.iam.ecs.soton.ac.uk/

is not the easiest string in the world to remember but it does have a number of

advantages.

A standardised protocol. Because the Web uses a standard protocol, browsers

can be written which remove much of the retrieval e�ort from the user.

Given that the user can remember the URL the browser is able to go to

the remote machine, download the document, and display it for the user on

the screen by using the HyperText Transfer Protocol (HTTP)(Berners-Lee,

1993b). This is made easier because all the servers and browsers are talking

in the same language.

Simple hypermedia functionality Since every document has a unique address,

it becomes easy to create documents that point to and reference other doc-

uments. This is a simple hypermedia link and is usually implemented in

hypertext browsers so that the user only has to click on the highlighted link

to view the destination document. This removes the need for the user to

deal with the URL, since the only action required on their part is clicking

on a highlighted piece of text.

A number of standard hypermedia tools could also be included in the browsers

such as history devices and forward and back buttons. The extensive use of

bookmarks helps to minimise the requirements for remembering the URLs.

Sites have been created which provide searchable indexes to documents on the

Web. These indexes can be created by the submission of documents for inclusion

in the index, or even by `web crawling', where an intelligent agent moves around

the web following links and adding documents that it �nds to the index. Because

of the variety of ways of collecting the document indexes, the indexes themselves

can be keyword based, or content based.

12

The use of executable code located on the Web servers has also allowed for greater

diversity in the linking mechanisms. It is possible to decide what link to follow at

run time. For example, a set of resources can be con�gured to either text only or

full graphics depending on an initial decision made by the user. With the use of

scripts it need not be necessary to create two sets of documents and links. Instead,

the server can customise the documents and links on the
y before they are sent

to the user. Another example of this is scripts which use the co-ordinates selected

in an image to decide which link to follow.

For reasons that will be covered shortly however, the Web is not an open hyper-

media system in that the links are embedded in the documents. Some systems do

attempt to improve on this as will be discussed in later sections.

2.3.2 Hyper-G and Harmony

Developed at the University of Graz in Austria, Hyper-G is an extension to the

World-Wide-Web and was designed to move hypermedia systems away from sim-

ply being presentation systems and to allow more interactions from the users with

the underlying data (Andrews et al., 1995). The architecture is based around the

concept of a hierarchy of collections that provide more structure than the more

common node and link hypermedia design. Hyper-G has an open approach to link-

ing, with the links being stored separate to the document collections. This allows

for bi-directional links and also guaranteed link consistency. The object-oriented

approach allows greater
exibility in authoring and maintenance and provides

facilities for applying access permissions to links as well as the documents them-

selves. Hyper-G is a multi-user multi-author environment, relying on a back-end

database that resolves all of the issues of concurrent updates and keeps track of

user permissions. The architecture is client server, with readers and authors both

using the same client to carry out their tasks.

Harmony is a client application for viewing Hyper-G that runs under UNIX/X11.

As well as allowing the user to view the documents, the client can provide local

maps that depict the document and its relation to other documents in the collec-

tion. This feature aims to help the user orient themselves within the hypertext by

providing a sense of relative location. The viewer supports many di�erent media

13

types and has explicit support for multilingual user interfaces. This support goes

beyond the content and includes the menus and buttons on the viewer itself.

2.3.3 Multicard

The Multicard hypermedia system provides a hypermedia toolkit that allows

programmers to create and manipulate distributed hypermedia structures (Rizk,

1992). By providing a powerful back-end system, the intention is to allow devel-

opers to continue to use their existing editing and authoring tools while providing

an underlying hypermedia service.

By using a communications protocol, known as the M2000, a variety of specialist

editors can be utilised and assigned to speci�c hypermedia node types. The editors

need not support the whole of the protocol, which allows the system to be
exible

enough to incorporate many third party applications.

A separate hypermedia authoring tool is used to create the hypermedia structures

of nodes and composites, but once authored, the M2000 compliant editors are used

to browse the hypermedia structures and edit the content. In order to promote

the openness of linking protocols, a link in Multicard is viewed as a message event

that can include scripts. The use of a scripting language keeps the linking
exible

and attempts to bring the API closer to the user.

The editor's user interface is not speci�ed by the M2000 protocol and can be im-

plemented in di�erent ways. Although this obviously enables the native interface

of third party applications to be used there can be a lack of coherence within

the overall interface, with di�erent methods being used to carry out the same

underlying hypermedia task.

2.3.4 HyperDisco

The HyperDisco system was developed jointly by researchers at Aalborg Univer-

sity in Denmark and Texas A & M University (Wiil & Leggett, 1996). Wiil and

Leggett state two main objectives met by the system, namely:

� to provide a platform to integrate existing and future distributed heteroge-

neous tools and data formats.

14

� to provide a platform to extend integrated tools to handle multiple collab-

orating users and multiple versions of shared artefacts.

The name HyperDisco is derived from Hypermedia Distributed Collaborative com-

puting environment. The architecture consists of distributed HyperBase Manage-

ment Systems (HBMS), tool integrators and third party tools. The tool integrator

provides a separation between the third party tools and the underlying hypermedia

services. Rather than forcing each tool to adhere to a single model of integration

tools are allowed to have their own specialised model of integration which might

include all or part of the hypermedia services on o�er.

As with Multicard, scripts can be attached to hypermedia components to ex-

tend their behaviour. In order to keep the system as open as possible, multi

user support is provided for concurrency control, locking and noti�cation control

mechanisms.

2.3.5 Chimera

The Chimera system was developed to help provide hypertext services within a

software development environment (SDE) by a research team at the University of

California, Irvine (Anderson et al., 1994). The system was designed to help cap-

ture and visualise the relationships between objects in an SDE. The architecture

is based around the idea of hypertext concepts. These include objects, viewers,

views, anchors, links, attribute pairs and higher level concepts such as hyperwebs.

These concepts are mapped onto the software development environment.

It uses a client server model, with the server being responsible for maintaining the

concepts and hyperwebs and providing access to this information to the clients.

The Chimera system is open in that it supports a clearly de�ned API that allows

access to the functionality from external applications. Developers are free to

implement their own clients which can take advantage of the underlying hypertext

functionality by registering an interest in one or more of the de�ned hypertext

events of the system.

The openness of the Chimera system also facilitates the integration of third party

tools and applications through the
exible API. One of the main problems cited

15

with the system however is the lack of a consistent user interface to the hypertext

due to the diversity of viewers that can be created for the system. The viewers

can choose to implement the hypertext functionality in their own way, which leads

to the lack of a uniform interaction style.

Another reason why Chimera fails to meet the requirements for a fully open hyper-

media system is that the architecture is not extensible, as there are a pre-de�ned

set of hypertext events that cannot be extended.

2.3.6 DeVise

The DeVise hypermedia framework (DHM) was developed at the Computer Sci-

ence Department of Aarhus University in Denmark (K. Gr�nb�k and R. H. Trigg,

1992). The ideas behind the project were to provide tools to support co-operative

system development and design, principally in the �eld of engineering. A number

of requirements were established for the system, which included a shared database,

platform independence, portability, extensibility and tailorability.

The Devise architecture is object oriented, with basic hypermedia objects sup-

ported such as anchors, links and composites. A multi-user object-oriented database

was used to provide the necessary support for co-operative work.

The system was based on the Dexter Reference Model (Halasz & Schwartz, 1990),

parting from the model in its support of dangling link structures, i.e. links which

have a source anchor but no destination.

2.3.7 Microcosm

The Microcosm hypermedia link service(Fountain et al., 1990) was developed at

the University of Southampton and has since been successfully turned into a

commercial product. Like the Sun Link Service, it avoids embedded mark-up

by storing the links separately in linkbases. Chapter 3 of this thesis will look

at the Microcosm system in more detail since it forms the underlying research

framework on which the main work of this thesis was constructed.

16

2.4 Linking

Links form the basic building blocks of hypermedia systems. A link, in its simplest

form, connects a source anchor and a destination anchor (often referred to as start

and end anchors). Links usually carry with them the implication that the two

anchors being joined have a semantic connection. Two classes of links can be

readily identi�ed, explicit and implicit.

Explicit Links

Explicit links have their start and end anchors �xed when they are created. Be-

cause the anchors are pre-de�ned, they can be easily highlighted by the system.

By considering the granularity of the anchors, four categories of explicit link can

be derived.

� Point to point links

� Point to document links

� Document to point links

� Document to document links

Each of these categories has their own particular use. Document to document

links can be useful where the two documents are related as a whole, for example

an image might be linked to a textual description of it. To take a di�erent form of

link, the name of a person occurring in a document might be linked to a paragraph

about them in a large biographical index document. In this case, a point to point

link would be most suitable.

The classi�cations above might suggest that links are uni-directional, but this need

not be the case. Where a link is bi-directional, it is possible that one direction

might be document to point and the other point to document.

Implicit Links

Links that have their start or end anchors dynamically generated by the system

as a result of the user's actions are known as implicit links.

Three categories of implicit link can be identi�ed based on the �xed or dynamic

nature of the anchors.

17

� Fixed to dynamic

� Dynamic to �xed

� Dynamic to dynamic

The category which would complete the set is �xed to �xed, which has been

identi�ed above as an explicit link since both anchors are de�ned at the time of

link creation.

An example of a �xed to dynamic link would be an anchor which causes a search to

be launched. The result of the search is indeterminate when the link was authored

as more material might be added to the system.

Dynamic to �xed might include links where the author enters a term in a dialogue

which is matched against an index held in the system. The result could be the

following of a link to a previously authored destination. The destination is �xed

in advance by the author, but the act of entering the search term to be matched

is dynamic.

Dynamic to dynamic would include searching mechanisms where the user created

source of the link, i.e. the search term, is matched against an index and results

in links being created to destinations suggested by the search. No authoring is

required for these links and they can only be evaluated at search time.

There are two main drawbacks with implicit linking. Firstly, the concept of bi-

directional linking is lost, in that one or both of the anchors are generated on

the
y. Secondly, it becomes much harder to indicate to the user the anchors

of the link. To give an example of the second case, a user might follow a link

from a source anchor on the text `Lord Mountbatten of Burma loved horses'. The

destination is generated dynamically by a full text retrieval engine. Once the

query has been made a document might be returned which contains the sentence

Lord Mountbatten retained a number of servants in his house in Burma

It is not clear what the system has matched as the destination anchor of this link,

since not all of the text from the source anchor occurs in the sentence, and there is

additional information that did not form part of the source anchor. This becomes

worse when an entire document is presented as the match and it is not easy to

18

discern the reason. Words that occur in the source anchor might be highlighted

to o�er some indication, but with complex search engines where synonyms are

used there is no guarantee that any of the search terms would occur in a matching

document. Because of this, often no indication is given to the user and they may

be left wondering how the system decided this was an applicable document for

them to view.

2.5 Navigation Tools

2.5.1 Direct Access Tools

Direct access tools, or DATs, provide a one to one mapping from a collection of

unique representational objects to the documents within the document set. They

can be divided into two categories based on the nature of the representational

objects, textual DATs and graphical DATs.

Textual DATs

CHAPTER 1

CHAPTER 2

INDEX

SECTION 2.1

SECTION 2.2

SECTION 3.1

1

12

16

18

29

25

7

CONTENTS

CHAPTER 3

INDEX

Virtual Reality

Hypermedia

Links

VRML

Navigation

Information

Cyberspace 18,23,26

1,9,22

14

13,14,15

27,28

20,21,26

4,7,12

(a) A contents page. (b) An index.

Figure 2.1: Diagrams showing textual direct access tools.

Textual DATs present the user with textual descriptions of the objects from which

to choose. A number of layouts are possible in the design of the tool.

19

The textual objects could be laid out hierarchically adding extra semantic infor-

mation about the relationships between documents. An example of this might be

an interface to a �ling system.

Figure 2.1(a) shows a contents page. This is a direct access tool in that the user

of a book can go directly to a particular chapter or section of the book using the

page number given on the contents page. In a similar way, the index provides

direct access to the �ne grain of the information, by allowing the user to locate

individual references to keywords within the body of the text. The index in Figure

2.1(b) is
at, but it is equally possible to create hierarchical indexes. The contents

page illustrated is hierarchical, providing additional structural information about

the document.

Graphical DATs

As the name implies, graphical DATs provide direct access to the underlying

information in the form of graphs or diagrams. There are many types of graphical

DATs including time lines, charts and maps.

The term map can encompass a wide variety of tools. In the context of a hyperme-

dia system the map might visually show linking information (Yankelovich et al.,

1988) or may show the relationship between documents by their proximity on the

map. This latter form is referred to as an a�nity map (Pintado & Tsichritzis,

1990). A third type of map might present the information using more than two

dimensions (Gloor, 1991).

The scope of the map can be varied, giving us either local maps, with a small

scope, or global maps where the scope includes everything. The sections below

describe local and global maps.

2.5.2 Local Maps

Local maps are used to present the user with information about documents that

are within their local context. By restricting the scope to the local area, the map

becomes less complicated. In the case of a hypermedia system this might be all the

documents within one link from the user's current location. The map will display

representations of the documents as well as the links between them. The links

20

shown will often be just the links from the focal document to the other documents,

but there is no reason why the map might not indicate all the links between all the

documents represented on the map. Directional arrows can be used to indicate

the direction of the link, or where appropriate that it is bi-directional. In theory

there is no reason why such a map cannot be extended to show more than this �rst

level of connections. The idea of levels of detail was included in the Intermedia

system (Yankelovich et al., 1988). In practice, however, a two dimensional map

can quickly become too cluttered to be of use.

P

R

E

B

K
H

M

N

L

A

F

C

D

Figure 2.2: A local map.

Because the local map can often be generated dynamically there is no guarantee

that the location of documents on the map will stay the same as the system

is modi�ed. A typical implementation of a local map would arrange connected

documents in a circular pattern around the focal document of the map. The

relative positions of documents have no signi�cance other than to show they are

attached to the central document. An example of such a local map is shown in

Figure 2.2.

2.5.3 Global Maps

A global map is a diagrammatic representation of all the documents and links

within a hypermedia application. If the number of documents or links is large

then the global map becomes di�cult to generate and use (Yankelovich et al.,

1988).

21

C

D

Q

K J

Y

T

N

H

R

E

L

U

W

Z

B

S

G

V

X

M

I

P

A

F

O

Figure 2.3: A global map.

Figure 2.3 shows an example of a global map. Only twenty-six documents are

depicted on the map, yet already it is beginning to become cluttered. As in the

local map, links are shown as lines with arrows denoting the direction of the links.

A number of features can be clearly made out on the global map which were not

previously identi�able on the local map. These are listed below.

Start points : The documents labelled F and C cannot be accessed from other

documents via links. This implies that unless the user starts at these docu-

ments, they will never reach them using just link following as a navigation

method. For this reason they are referred to as start points. It may be that

this is the intended function of the documents, for example a contents page

may well appear on a global map as a document with links leading from it,

but none leading to it.

End points : Two of the documents shown on the global map (E and I) are end

points within the hypermedia document set since once the user arrives at

the documents they cannot follow any more links. These might prove to be

potential problems, or could re
ect the nature of the material. For example

the documents might contain glossary de�nitions and thus once the user has

read the document they are likely to backtrack to their previous position and

carry on browsing from there. This does of course imply that link following

is not the sole form of navigation within the system.

22

Islands : The documents G and J are not connected to the rest of the dataset by

any links. For this reason they would not show up on any local maps unless

they are the centre of the map. The Documents W, X, Y and Z could also

be considered as an island even though they are connected to each other by

links. Using just links, islands can be inaccessible to the user, and global

maps are a useful tool for highlighting this potential problem to authors.

2.5.4 The History Tool

History tools record information about which documents a user has visited while

they have been using the hypermedia system and often the order in which they

were visited. The information can then be presented to the user in a number

of di�erent ways. Commonly, it is in the form of a list of documents sorted

chronologically. Usually the head of the list will contain the most recently visited

documents. The user is shown which documents they have seen but not how they

got from one document to the next. An additional feature of a history tool might

be to indicate to a user that they have visited a document more than once before.

The principle aim of the history tool is to allow the user to retrace their steps

and keep a sense of continuity (analogous to
ipping back through a book.) Users

may decide they need to review previously read material or alternatively, when

o�ered a choice of links, wish to �lter out those documents that they have visited

before.

History tools have also been implemented as a trail of breadcrumbs (Bernstein,

1988). A highlight is used to indicate that a user has been to a document before.

The length of the breadcrumb trail is limited to a �xed number of most recently

visited nodes. The idea behind this is to reduce the chances of the trails becoming

incoherent as more and more documents are viewed.

2.5.5 Guides, Tours and Trails

Guides use some form of heuristics to provide the user with a dynamically changing

tour. Guides suggest new documents to view based upon knowledge of the data set

and information gathered either actively or passively from the user. Information

is actively obtained by asking questions. Information is passively collected by

23

monitoring the user's interactions with the system, for example, which links they

follow or which documents they have already seen.

The simplest method for displaying this information is to provide the user with a

list of �les to see next. The guide can rank these documents based on its current

information, placing the most important document in its opinion at the top of the

list. Providing the user trusts the information the guide is presenting, it removes

much of the navigational overhead from them. It may not always be obvious to

the user why the guide has suggested a document however, since many of the

guide's decision making processes are hidden.

With large systems the possible number of choices of where to go next can often

exceed the optimal `seven plus or minus two' (H. Gleitman, 1986). A principle

objective of guides is to reduce the number of choices presented to the user to a

more manageable number.

The guides discussed above automatically produce navigational information for

the user. Tours are usually authored by domain experts as a means of introducing

users to information that they are not familiar with (Nielsen, 1995)(Bieber et al.,

1997). Much of the work on tours has centred on the educational environment

where the expert knowledge of teachers is encapsulated for use by students when

approaching a new area of study (Shipman et al., 1998)

Trails di�er from tours in that they are created as a by product of the user moving

through the material rather than being explicitly authored (DeRoure et al., 1998).

Trails could be likened more to `beaten paths' as opposed to the laid out walkways

of tours.

2.5.6 Search Engines

It is di�cult to say whether search engines should be considered a navigation tool

within a hypermedia system or an alternative approach. They are included here

for completeness, and because in reality most hypermedia systems will include a

search engine as part of their system.

It could be argued that the if the material contained in the hypermedia system is

fully linked together then a search engine is redundant. This may be true where the

size of the content is small and the linking is very heavily structured. However, in

24

practice, even with automated link creation, where hypermedia systems are large

a search engine can provide a quick mechanism to �nd speci�c material.

Also, quite often the linking of material in a hypermedia dataset is structured to

some speci�c purpose. Where a user wishes to make use of the material but has

di�erent objectives, the links provided may be inappropriate and often a search

mechanism can allow them to �nd the material more easily.

Because of the scale of the World Wide Web, a number of search engines have

been created for it including commercial products such as Alta Vista, as well as

freely available tools such as Harvest and Swish.

2.6 De�nition of Closed Systems

To de�ne what constitutes an open system, we can start by examining what

makes most of the previously discussed systems closed. A number of features can

be identi�ed.

� In most closed systems, the application �les need to be imported into the

system. This often places restrictions on the type of �les that can be used

and may require the �le to be converted to a proprietary �le format.

� It is often di�cult to extend the basic link model. This reduces the
exibility

of the system and restrains both the author and user to operating within

the con�nes of the supported linking mechanisms.

� Link anchors will usually be denoted by symbolic representations embedded

within the documents. Commonly referred to as embedded mark-up, this

enforces the use of particular formats. A good example of this is the World

Wide Web where anchors are embedded within the HTML, for example

Source anchor

Peter Brown (Brown, 1987) summed up some of the problems with closed hyper-

text systems in the following way:

A second reason for failure is that the tool is an island itself and cannot

be combined with other tools. Those of us that expect the whole world

to rewrite its documentation to �t the needs of our new hypertext

systems are unlikely to have our expectations ful�lled. Instead we

25

must capture existing documents and have some way - even if crude

- of automatically imparting structure to it. We must also work with

existing tools such as spell checkers or encryption programs. This is to

some extent a research area but more, I expect, a question of curbing

some of our wilder aspirations so that, following a recurrent theme of

this paper, we �t the world as it is rather than the world as we would

like it to be.

Malcolm expands on this when referring to the needs of industrial strength hy-

permedia systems (Malcolm et al., 1991).

Systems should be designed that enable engineers to link data created

with their own tools rather than by having to use special hypermedia

editors.

2.7 De�nition of Open Systems

In his thesis, Davis (Davis, 1995) attempted to de�ne what makes a hypermedia

system open. He condensed the popular opinion in the �eld into six key areas in

which hypermedia systems should be open.

The term open implies the possibility of importing new objects into a system. A

truly open hypermedia system should be open with regard to:

1. Size:

It should be possible to import new nodes, links, anchors and other hyper-

media objects without any limitation, to the size of the objects or to the

maximum number of such objects that the system may contain, being im-

posed by the hypermedia system.

This is essential if systems are to be able to provide Industrial Strength

Hypermedia (Malcolm et al., 1991). Systems should also be able to cope

with dynamic information that is regularly revised and updated. Where

systems are large in size, it is also quite likely that distribution of the dataset

will be required, an issue discussed in detail by Hill (Hill, 1994).

2. Data Formats:

26

The system should allow the import and use of any data format, including

temporal media.

With new formats appearing all the time, and existing formats continually

undergoing review and improvement, an open hypermedia system must be

able to adapt to these changes and incorporate a wide variety of information.

A system that restricts users to using HTML 1.0 when the rest of the world

operates using HTML 4.0 would not be tolerated.

3. Applications:

The system should allow any application to access the link service in order

to participate in the hypermedia functionality.

Ironically enough, it is often the systems with embedded mark-up which

provide the best access to the link information as it is readily available from

the documents themselves. In many open hypermedia systems, claiming

to be so by virtue of their link separation, the links are stored in a pri-

vate linkbase which is inaccessible from outside the system. This restricts

integration with other services.

4. Data Models:

The hypermedia system should not impose a single view of what constitutes

a hypermedia data model, but should be con�gurable and extensible so that

new hypermedia data models may be incorporated. It should thus be possible

to interoperate with external hypermedia systems, and to exchange data with

external systems.

A number of di�erent data models have been proposed for hypermedia sys-

tems, notably the Dexter Reference Model (Halasz & Schwartz, 1990)(Ha-

lasz & Mayer, 1994). Problems have been highlighted with the Dexter model

however (K. Gr�nb�k and R. H. Trigg, 1992) and it is doubtful that an all

encompassing data model could be found. It is important therefore that

an open hypermedia system be
exible enough to incorporate di�erent data

models.

5. Platforms:

It should be possible to implement the system on multiple distributed plat-

forms.

Cross platform portability has been dramatically improved during recent

years with the rapid advance of distributed programming languages such

as Java and simple communication protocols such as HTTP. This not only

27

enables systems to be used on di�erent platforms, but also allows di�erent

parts of systems to run on di�erent platforms. A link service might be

operating on a large UNIX based �le system, communicating its hypermedia

functionality to a client on a Windows machine.

6. Users:

The system must support multiple users, and allow each user to maintain

their own private view of the objects in the system.

A private view should extend past simple storage of bookmarks, including

such things as display preferences and also personal choices as to the sort of

information to be presented with.

It should be noted that none of the systems described previously meet all six

criteria set out above, but many are considered open as they obey the majority of

the criteria. Moving from closed to open systems does solve some of the problems

that were encountered with early hypermedia systems. There are unfortunately

new problems introduced by open systems that have to be tackled.

2.8 Problems with Open Hypermedia

Many systems address the requirements of openness proposed by Davis and others,

namely scalability, open data formats, application integration, data models, plat-

form independence and user preferences. Indeed, Microcosm has been described

as a system that boasts an open architecture, open message formats, open linking

strategies and open functionality.

One area in which many hypermedia systems fall down is that they have inherently

closed interfaces. The information is provided by each individual module in their

own GUI's, which are often unconnected to other interfaces of the system.

2.9 Conclusions

The relatively new �eld of hypermedia has progressed rapidly in the last decade.

The visionary ideas of people like Vannevar Bush and Ted Nelson are becoming

a reality in the form of hypermedia systems like the World Wide Web.

28

Some of the problems inherent in closed hypermedia systems are being answered

by the open approach that stores the links separately from the documents and

allows them to be processed independently. This modular approach also promotes

the creation of many di�erent navigation tools, designed to assist the user in their

tasks.

In Chapter 3, the Microcosm system will be examined, focussing on the open

approach it has taken and the tools and systems that have been created within

it.

Chapter 3

Microcosm

3.1 Introduction

Microcosm was originally designed to overcome a number of problems that were

identi�ed as being common to the majority of hypertext systems at the time when

work on the system began in early 1989 (Fountain et al., 1990)(Heath, 1992).

Brie
y, these problems were :

� The authoring e�ort required to create and maintain links in large sets of

documents.

� The closed nature of many hypertext systems.

� The constraints that proprietary document formats impose when considering

the portability of information from one hypertext system to another.

� The problems of dealing with information stored on read-only media.

To solve these problems Microcosm was designed to be an open hypermedia system

whose openness shows itself in a number of di�erent ways. These inlcude :-

� Open architecture

� Open message format

� Open linking

� Open functionality

29

30

3.2 Open Architecture

Figure 3.1 illustrates the Microcosm architecture. Four distinct types of module

can be identi�ed, the document viewers, the Document Control System (DCS),

the Filter Manager System (FMS) and the �lters. Underlying all these modules

is a Document Management System (DMS). Each of these components will be

described in turn.

D.C.S

F.M.S

Linker History

Text
Viewer

Image
Viewer

VIEWERS

DOCUMENT CONTROL
SYSTEM (DCS)

FILTER MANAGER
(FMS)

FILTERSLinkbase Linkbase
Available

Links

Figure 3.1: The Microcosm architecture of viewers and �lters.

3.2.1 Viewers

Microcosm viewers are organised by document type, allowing di�erent viewers

to be plugged into the system. In order to promote openness by allowing any

arbitrary document type to be used with Microcosm, three classes of viewer are

catered for.

Fully aware viewers. Specially written for the Microcosm system, these viewers

understand the Microcosm message passing protocol, and may have speci�c

Microcosm features attached to them such as the ability to highlight button

links within documents.

Partially aware viewers. Some applications may be customised to allow for

some degree of Microcosm awareness. An example would be Microsoft Word,

which has an extensive macro language. Using this language, menu items

31

were added which allowed the user to select a piece of text in the document

and then select `follow link' on the menu, triggering the hypermedia activity.

Unaware viewers. Some media types can only be viewed in specialised applica-

tions, which o�er no services for customisation. The DCS can launch these

applications to view the documents but is unable to communicate with the

application once it is running. To try and provide some degree of functional-

ity, Microcosm can be set to monitor the clipboard. If the user sends a piece

of text to the clipboard, Microcosm can treat it as a selection and use it as

part of a \follow" link message. This enables a small degree of hypermedia

functionality even from completely unaware applications.

3.2.2 Document Control System (DCS)

The Document Control System, or DCS, is responsible for starting up the docu-

ment viewers as and when they are required. It also serves as the main communi-

cation point for the viewers and all messages passed to, or from, the viewers are

routed through the DCS. The DCS also sends messages to and receives messages

from the Filter Manager; providing the link between the document interface and

the underlying hypermedia functionality.

3.2.3 The Filter Manager (FMS)

The Filter Manager maintains a chain of �lters, which provide the core hypermedia

functionality of the Microcosm system. It serves as a communication channel

between the DCS (and therefore the viewers) and the �lters. Although shown

in the diagram as a chain where �lters are connected directly to each other, the

messages are in fact routed via the Filter Manager to the next �lter in the chain.

This aids modularity by removing the need for the �lters to be aware of each

other. Filter chain topology and message passing are discussed in more detail in

later sections.

As messages are passed to the Filter Manager, it passes them down the �lter

chain. Any messages passed by the last �lter are sent by the Filter Manager to the

document control system. These in turn, might be forwarded to the appropriate

viewer if that is who the message was intended for.

32

Any messages generated by �lters in the chain are passed on to the �lters in the

chain below the �lter which generated the message. Any �lters in front of the

sending process will not receive the message. This does prohibit a �lter from

sending a message to a �lter lower down in the �lter chain and receiving a reply

to that message. Although restrictive, this practice does greatly reduce the chance

of message loops appearing within the chain.

3.2.4 Filters

The �lter processes provide all the hypermedia functionality in Microcosm. When

a �lter connects to the system by registering with the Filter Manager, it is placed

within the �lter chain. It then sits there receiving messages, which it can examine,

and according to the message type, handle in a number of possible ways. It can :-

� ignore the message and pass it on.

� carry out some processing and then pass the message on.

� carry out some processing and then discard the message.

� carry out some processing and modify the message.

� carry out some processing and create new messages.

All the �lter functionality can be structured around this message passing scheme.

More comprehensive examples of �lters are given in later sections.

3.2.5 Document Management System (DMS)

The Document Management System serves as an underlying database of docu-

ments which can be accessed from all parts of the Microcosm system. It was

added to the system for two principle reasons.

Firstly, it allows a level of abstraction from the underlying �le system by providing

unique identi�ers for all of the documents in the system. The rest of the Microcosm

system uses these identi�ers to refer to the documents rather than their physical

location in the �le system. This means that documents can be easily moved

around using the Document Management System and any links or references to

the document will remain valid. Maintaining link integrity is one of the major

problems of open hypermedia systems and anything that helps with this task

should be exploited.

33

\Action DISPATCH

\DocType TEXT

\DocName 100.23.34.54.56.34.23.12352

Figure 3.2: An example Microcosm message to dispatch a document.

Secondly, the level of indirection between the Microcosm system and the �le sys-

tem allows for the modular inclusion of distributed �les. Initially, Microcosm only

dealt with �les on the local �le system, but through modi�cation of the Document

Management System only, remote access to �les held on a network, or even on the

web can be seamlessly incorporated without major recompilation of the system

(Hill, 1994).

3.3 Open Message Format

The Microcosm message passing system provides a very
exible and powerful

method for communicating between modules in an open system. It does however

have its quirks and idiosyncrasies. Because it is an underpinning tool in the

research described later, it is worth covering it in some detail here.

At the simplest level, a Microcosm message is a series of tag and value pairs. The

content of messages is open in that a message may contain any arbitrary tags.

Although there are no required tags in a message, virtually all Microcosmmessages

will contain an action tag that indicates the type of the message. Example action

tags are FOLLOW.LINK, CREATE.LINK and CLOSE.FILE.

Figure 3.2 shows a typical Microcosm message. The example message contains

three tag value pairs. The �rst is the Action tag. The DISPATCH action is a

request to launch a document. If the DCS receives this message it will launch a

viewer to display the document. The DocType tag indicates to the DCS what

type the document is and it can choose the appropriate viewer to display the

document. The DocName is in the form of a UniqueID that is mapped by the

Document Management System (DMS) to a path and �lename.

The message format is open in that any arbitrary information can be placed in

a message. Tags might be added by speci�c modules and contain information

which only they are in a position to interpret. The other modules in the system

will happily ignore this information.

34

There are a number of problems that can occur with this form of message passing

system in conjunction with a �lter chain approach.

3.3.1 Some Messages Only Need to be Processed Once

Because of the way messages are routed through the �lter chain, it is possible for

two �lters to process the same message. In some cases this is inappropriate. For

example, when a new link is created a message is sent through the �lter chain

asking for the link to be stored in a linkbase. If there is more than one active

linkbase in the chain and the message was passed through as normal, the link

would be stored in every active linkbase. This is clearly not the desired behaviour

of the system. In order to ensure the link is only stored in one linkbase, a number

of possibilities exist :-

� The �rst linkbase to receive the message processes it and then removes the

message from the chain. This is what happens in the current Microcosm

system. The user knows that any links created will be placed in the �rst

linkbase in the �lter chain. In order to add links to the other linkbases, the

order of the �lters needs to be altered.

� The �rst linkbase to receive the message processes it and stores the link.

Before passing the message on however, it is modi�ed to re
ect the fact that

the link has already been stored. This provides additional noti�cation for

the other �lters which might process the message in a way that doesn't lead

to the creation of the link, for example notifying the system that the link

has indeed been created (which will be expanded on in the next section).

� A third alternative would be to target the link creation message at a partic-

ular linkbase. This could be achieved by adding an additional tag into the

create link message which indicates which linkbase should create the link.

When this linkbase receives the message and recognises its name it stores the

link. Other linkbases in the chain would ignore the message. This method

does not require the message to be modi�ed and allows it to continue the

length of the �lter chain. It does however require an addressing system for

�lters.

35

3.3.2 There is No Way of Knowing if there is a Recipient

One problem with this un-addressed message passing is that there is no way of

knowing if there is a recipient for the message. A create link message can be

sent by the link creation tool, but if there is no linkbase in the chain the message

will pass along the whole chain, being ignored, and �nally disappear. Unless the

message has a response message associated with it, the link creation tool will

be unaware that the link was not stored. There are a number of approaches to

alleviating this problem :-

� The ability to reply directly to the sender of the message could be imple-

mented. Once a message is processed, the processor replies to the sender

indicating that it has carried out its task. This could result in a number

of replies for a single message if the message is processed by more than one

�lter. A direct reply would be required to circumvent the natural topology

of the �lter chain, which precludes messages passing to �lters in the chain

which precede the sender. Without knowing how long it takes to process the

message, the sender would have to guess how long to wait before assuming

the message has not been processed.

� Unprocessed messages are returned to sender. If the �lter manager is made

aware of what messages are removed from the chain when they are processed,

it could make sure than any messages that arrive at the end of the �lter chain

unprocessed are returned to the sender of the message.

� Filters register what messages they will process and this information is made

available to other processes in the system. The link creation tool could then

check that something exists to process the create link message and store

the link. This has been partially implemented in Microcosm in that �lters

can register menu items for viewers to indicate what actions the user could

successfully carry out. The registration process gives rise to alternative

topologies that will be discussed in a later section.

� A �nal alternative would be to provide a dynamic start up system for �lters.

If the �lter manager were aware of which �lters could process messages, it

could start up a �lter to handle a message which currently has nothing to

actively processes it. This scheme is exploited in the direct communication

topology discussed later in this chapter.

36

3.4 Open Linking

One of the original distinctions between a closed and open hypermedia system

was whether the links were embedded in the documents. In Microcosm the links

are stored in separate link databases, or linkbases.

Examples of implicit links in the Microcosm system are generic links and computed

links. In the case of generic links, the destination is �xed, with the start anchor

being de�ned dynamically by the user. For example, the user selects the word

`Membrane' in a document and asks the system to �nd them some links. A link

was previously authored as a generic link on the word `membrane' so the link is

matched as the source anchor. The name of the source document is irrelevant for

a generic link, where only the selection is matched. The user is then returned the

destination of the link, in this case perhaps a biology dictionary that contains the

de�nition of a membrane.

Computed links can have a dynamically generated destination based on a user

de�ned start anchor. Here, if the user selected the word `membrane' and asked

the system to compute links on the selection, the full text retrieval system will

examine its index and dynamically create a set of useful destinations based on a

correlation between the selection and items in the index. These links only exist

at the time of calculation and if new documents are added to the system and the

index regenerated the same query might not produce the same set of matches. In

the Microcosm system, a full text retrieval process known as the computed linker

(Li et al., 1992) is used to generate implicit links whose end anchors are derived

from a selection made by the user.

There are a number of substantial bene�ts of storing links separate to the docu-

ments.

The original documents are not modi�ed. This removes any restrictions on

document types and allows the users of the system to edit the documents

using the most appropriate editors. Furthermore, as the links need not be

embedded in the document it is possible to use read only media such as

data on DVD-ROMs or CD-ROMs. This would not be possible otherwise

without making copies of the data which could be modi�ed.

37

Multiple link databases can be applied to documents. As the links are stored

separately, many di�erent linkbases can be created and applied to the same

document set. For example, users might choose to have their own per-

sonal linkbase, which only they would use. As the links are not embedded,

other users viewing the documents would not be presented with those links.

Linkbases can also be used to provide di�erent tutorials based on the same

dataset. By choosing which linkbase to use, di�erent paths will be presented

through the data as the documents are viewed. This would require copies

of the datasets if constructed using a closed hypermedia system.

Link information can be analysed separately. By having the link informa-

tion separated from the documents rather than distributed throughout the

dataset it makes it easier to carry out analysis on the information. This

central information resource could prove a powerful tool for expert systems

to use when pro�ering suggested viewing material.

There are a number of problems that can be identi�ed with open linking strategies

however.

Possibility of link inconsistency. Where link information is stored which re-

lies on document content information, such as a character o�set into the

document, the possibility exists for the document to become out of synch

with the links. By editing a paragraph in a text document a link's o�set

may change, or at worst, the source anchor for the link could be removed

entirely. As the link only exists within the linkbase, the system might not be

aware of this inconsistency until it tries to place the link. To overcome this,

link aware editors could be created which update the linkbases to re
ect the

changes made to the documents, but with the possibility of many linkbases

distributed throughout the system, even this does not provide a total answer

to the link integrity problem. Issues of link integrity are discussed in much

greater detail in the work of Davis (Davis, 1995).

Need to update local knowledge. While users are using the system they can

be considered to view a snapshot of the information. If a link is added to

the system which has a source in a document that is currently displayed,

the system needs to inform the viewer of the changes that have occurred.

This also applies to navigation tools that may need to be made aware of

38

modi�cations to the underlying information. For example, a linkbase might

wish to be informed that a document has been removed from the system.

This would allow it to search its database and remove any links that refer

to the document, or at least
ag them to avoid returning them as the result

of a query. The separation of link data from documents makes the update

issue more di�cult.

3.5 Topology

A number of di�erent topologies have been tried with the Microcosm architecture.

Each has its own advantages and disadvantages. The sections below describe the

topologies and look at some of the pros and cons associated with them.

3.5.1 The Basic Filter Chain

The basic �lter chain topology is the one discussed in section 3.2.3. As shown in

�gure 3.3, the �lters are placed in a single chain, with the messages passing down

the entire chain. Some messages will invariably be blocked by the modules and

other messages spawned during the processing. Rather than discuss this topology

in detail, it will serve as a reference to compare the alternatives below to.

D.C.S

F.M.S

Linker History

Text
Viewer

Image
Viewer

Linkbase Linkbase
Available

Links

Figure 3.3: The original �lter chain topology used in Microcosm.

39

3.5.2 The Direct Communication Topology

As the name implies, the direct communication model removes the �lter manager

entirely and allows all the modules in Microcosm, be they �lters or viewers, to

talk directly to each other. With no permanent lines of communication, Figure

3.4 illustrates some of the possible communication patterns that might take place

using the direct communication model. The labelled arrows indicate the messages

being passed between the modules.

D.C.S

Linker

HistoryText
Viewer

Image
Viewer

C
re

at
e

Li
nk

C
re

at
e

Li
nk

Dispatch

Sta
rt

Li
nk

End Link Open Docum
ent

O
pe

n
D

oc
um

en
t

Open Document

Autodispatch

Dispatch

Au
to

di
sp

at
ch

Linkbase

Linkbase
Available

Links

Figure 3.4: The direct communication topology.

The Microcosm modules register with a central communications broker that routes

the messages. As part of the registration process, the modules supply a name,

and various topics on which they wish to communicate. These roughly equate to

the message actions of the standard Microcosm set-up. As part of the registration

process the modules are assigned a unique identi�er. Once connected to the system

the modules can communicate with each other via the broker.

There are four ways in which processes can communicate using the direct com-

munication model :-

Broadcast. This involves sending the message to every process that is registered

with the communications system. A SHUT.DOWN message would be a

good example of this, being used to clear up when the session is �nished.

40

Delivery by topic. This is where the message is passed to every process that

has registered to talk about a particular topic i.e. FOLLOW.LINK.

Delivery by name. The message is sent all processes registered with the given

name. The name could be obtained from the communication process, or

might be included in a previously received message to allow for direct reply.

Delivery by unique number. Rather than use the process name, the sender

might use the unique number, which is allocated at registration time. Where

a process processes more than one type of message this can provide an

easy way of di�erentiating between the received messages. The process can

register multiple times and use the unique number to di�erentiate between

the messages it receives. This is the only form of message passing which is

guaranteed to be process to process as more than one process can register

for a give topic or even name.

This topology greatly reduces the number of messages that are sent around the

system since processes are no longer reliant on returning messages via the �lter

manager. The average distance a message travels is far shorter since �lters that

are not registered for the message will not receive it.

The system also allows for more sophisticated message passing. A �lter might put

a request out on broadcast and be answered by another �lter in the system. Once

the original �lter has the reply, it can use the information contained within it to

open a direct communication path with the other �lter. In this way, the direct

communication process can act as a basic form of brokering service, connecting

processes that wish to communicate.

The direct communication model also allows for the Microcosm system to be used

in di�erent ways. With the original topology it was necessary for all the �lters to

be started in advance. With the direct communication system more
uid start-up

could be achieved. The user could open a �le in their �le system that causes

the Microcosm viewer to be launched. The viewer then asks for any button links

in that document. When the broker receives the FIND.BUTTONS message and

discovers it has no processes to deliver it to, it could consult a list of processes and

start up the relevant process to handle the message. Providing default handlers

are given for the possible messages, the system will start up as and when it is

required.

41

Unlike the original �lter manager topology however, it is harder to �lter out mes-

sages from the communication system. Under the original topology, a �lter could

be written which sits between the linkbases and the dispatcher, which removed

links according to some pre-determined heuristics to reduce the cognitive load on

the user. One hundred DISPATCH messages would be sent by the linkbases and

only ten would appear at the dispatcher due to the �ltering mechanism.

Under the direct communication model, one hundred DISPATCH messages would

be sent by the linkbases and all one hundred would arrive at the dispatcher.

If the specialised �lter were added to the system, it could register to receive

the DISPATCH messages, but would receive them in parallel to the dispatcher

and be unable to block them. To overcome this, linkbases could send POSSI-

BLE.DISPATCHmessages, which could then be converted into actual DISPATCH

messages by the �lter if it deems them appropriate. The end result would be as

before, however it is necessary to add new message types to accomplish this and

the �lter would need to run at all times in order for any of the links to arrive at

the dispatcher. This runs against the open modularity approach of Microcosm,

but would be necessary to replicate the �ltering which is so easily achieved using

the original topology.

The direct communications model is described in far greater detail in the work of

Robert Wilkins (Wilkins, 1994).

3.5.3 The Hybrid Approach

The hybrid approach was initially adopted to avoid having to modify all the

existing �lters to the direct communication model. The direct communication

system operates alongside the original �lter manager topology and �lters can use

either system as a means of communication. This is illustrated in Figure 3.5.

By using the combined topology, �lters are still able to sit in the chain and a�ect

messages which pass through them, but they also have the ability to directly

communicate with other processes when the chain mechanism is not needed. For

example, linkbases might return buttons directly to viewers to bypass the end of

the �lter chain, but links would be sent using the traditional route to allow other

processes to intercept and possibly �lter them. This would assume that buttons

are not to be �ltered by �lters further down the chain.

42

D.C.S

F.M.S

Linker History

Text
Viewer

Image
Viewer

F
ou

nd
 B

ut
to

n

Fo
un

d
B

ut
to

n

Linkbase Linkbase
Available

Links

Figure 3.5: The hybrid �lter chain topology.

By using a hybrid system, only those �lters wishing to take advantage of direct

communication needed to be modi�ed, with the remaining system behaving as

normal. This di�ered from the direct communication and the active �lter manager

discussed next, which both required all of the existing modules to be modi�ed in

order to work with the new topology.

3.5.4 The Active Filter Manager

The active �lter manager was developed by Hill (Hill, 1994) as a means to reduce

the number of messages passed through the system yet maintain a �lter chain

which permits new modules to intercept messages.

As with the direct communication topology, �lters register with the �lter manager

and state which messages they would like to receive. The �lter manager creates

a separate chain for each message type, containing only those �lters that have

registered for that message. Filters can, and usually will, appear in more than

one chain. Figure 3.6 illustrates the active �lter chain topology.

When a message arrives at the �lter manager it is passed through the appropriate

chain. In his thesis (Hill, 1994), Hill shows how this can signi�cantly reduce the

number of messages passing through the system. Unlike the direct communica-

tion model however, a chain still exists. So to use a previous example, if the link

creation tool sends a CREATE.LINK message, it will be passed to each registered

43

D.C.S

F.M.S

Linker History

Text
Viewer

Image
Viewer

Start L
ink

Fo
llo

w
 L

in
k

Dispatch

O
pen D

ocum
ent

Linkbase Linkbase Linkbase
Available

Links

Figure 3.6: The active �lter manager topology.

linkbase in turn rather than simultaneously as is the case with the direct com-

munication model. The �rst linkbase can therefore store the link and discard the

message ensuring that the same link doesn't get stored in multiple linkbases.

3.6 Open Functionality: Navigation Tools in Microcosm

One of the reasons for the Microcosm �lter chain architecture was to allow the

modular integration of navigational tools. This provides open functionality in

that the user can con�gure the system to provide the facilities that they want

without the need for recompilation. Microcosm formed a testbed that could be

used to experiment with a variety of navigational tools and strategies. A number

of navigational tools were implemented as �lters for the Microcosm system. Each

tool was constructed to collect one type of navigational information and provide

this to the user through its own interface. I will brie
y discuss some of the key

tools provided. A more detailed description of navigation tools in Microcosm can

be found in (Wilkins, 1994).

3.6.1 Direct Access Tools

A front-end interface is provided to the underlying Document Management System

(DMS), which enables users to browse all of the documents in the dataset. The

44

ability to add a hierarchical structure to the organisation of the documents allows

the authors to create contents lists.

Furthermore, authors can create text documents to act as indexes into the data,

with links providing quick access from an item in the index to its appearance in

the content. The reverse can also be used to create glossaries, where generic links

are created from a glossary term to its description in a glossary text �le.

3.6.2 The History Tool

The Microcosm history tool keeps track of the opening and closing of documents

by the system. The user can view a list that shows all of the documents that have

been opened during the current session. Documents that are currently open are

shown in bold, di�erentiating them from documents that have been closed.

Double clicking on one of the documents in the list will cause it to be re-opened.

The list will update automatically to re
ect this.

3.6.3 The Available Links Tool

The available links tool provides the user with a selection of links when their

actions have resulted in a number of alternative destinations. The links might

have been generated by linkbases or possibly by automatic link creation �lters

such as the computed linker.

The list enables users to go through all of the alternative destinations if they

choose, rather than forcing them to backtrack and carry out the previous action

which resulted in the list of links.

3.6.4 The Mimic Tool

The mimic tool of Microcosm was designed to help authors to construct guided

tours, or trails, through the material. The author can generate a mimic tour either

by example, or by explicitly choosing the documents and the order in which they

are shown.

A tour consists of a series of documents that can be automatically triggered on a

timer as in a slide show, or that can be stepped through by the user using a simple

45

console. Mimic tours are treated as documents by the system, so they could be

the destination of a link if desired.

3.6.5 Local Maps

Microcosm local maps provide the user with a simple view showing an icon rep-

resenting the current document in the centre and icons for all documents that

can be reached from this document by links arranged in a circle around it. By

clicking on any of the document icons on the map, the document will be launched

in an appropriate viewer and the focus of the map will shift to the new document.

To reduce the complexities of the map only documents one link away from the

current document are displayed.

3.6.6 The Advisor Agent

The Advisor agent was developed by Robert Wilkins as a means to integrate the

information from a number of di�erent navigational tools into one coherent piece

of advice (Wilkins, 1994). Each of the navigation tools in Microcosm concentrates

on collecting one type of navigational information and presents this information,

or a summary of it, to the user in its own interface.

The aim of the advisor agent was to pool this information and provide it to the

user through one uni�ed interface. It achieved this by sending messages to the

various navigational tools, requesting a rating for a particular document based

on how important the tool considered it. For example the history �lter would

respond with negative ratings for documents that the user had already seen. The

linkbase would give a positive rating for documents that had large numbers of

links that started or ended with the speci�ed document.

All of these ratings were collated by the advisor agent and presented to the user

as a list of documents that had the highest rated document at the top. The user

could weight the advice given by the di�erent navigation tools, perhaps increasing

the weight of the advice from the history �lter if they felt they were unlikely to

need to read a document twice.

46

3.7 Problems with the Microcosm Architecture

By virtue of its implementation in the Windows operating system, Microcosm's

interface consists of a number of disparate windows in which information is pre-

sented to the users. The architecture makes it di�cult to present a coherent

interface to the user, as there is no communication between interfaces and no

underlying strategy. A look and feel has been attempted through use of icons and

dialogue styles but this is not enforced by the system.

The Advisor agent discussed previously, does serve to highlight another important

issue. For a hypermedia system to be truly open, the information it holds needs

to be accessible. The Advisor agent got around the problem by enabling the

navigation tools to send their information directly to the Advisor agent but this

is not a modular solution as other modules would not be able to take advantage

of this information. The information was also normalised, to a number between 0

and 100, which potentially reduces the expressiveness by discarding information.

3.8 Conclusions

The Microcosm system was developed as an architecture to research issues and

problems with open hypermedia. The Microcosm architecture tackled a number of

aspects of openness, including open architectures, open linking services and open

functionality. One of the problems encountered with the Microcosm system was

that the interface was fairly ad hoc, as each module in the system was responsible

for its own interface.

Chapters four and �ve of this thesis will examine screen management issues and

describe a new architecture which helps to integrate the diverse interfaces of the

Microcosm system into better managed, more user friendly interfaces. Although

approached in terms of the Microcosm system, the principles could be easily ap-

plied to many windowing systems where individual modules provide their own

interfaces within a larger system.

Chapters six through eight extend this interface abstraction one stage further by

separating the underlying hypermedia information from the mechanisms used to

display it. Most hypermedia systems remain closed when it comes to accessing the

47

hypermedia information contained within the system. By allowing open access to

the underlying information, the way is left open for novel interfaces to be provided

as front ends to open hypermedia systems.

Chapter 4

Screen Management

4.1 A Brief History of User Interfaces

Before delving into the issues of screen management and in particular the manage-

ment of multi-window environments, a brief history of Graphical User Interfaces

(GUIs) will be covered.

Ironically, one of the �rst people to recognise the need for closely coupled human

and computer interaction was the father of hypermedia Vannevar Bush. In his

seminal paper 'As We May Think'(Bush, 1945), he says

If the user wishes to consult a certain book, he taps its code on the

keyboard, and the title page of the book promptly appears before him,

projected onto one of his viewing positions.

In the 50's Licklider extended the ideas, referring to a 'man-computer symbiosis'

(Licklider, 1960). His ideas suggested that the current way in which computers

were used was restricting the human's ability to participate in the process. While

computers were useful for dealing with problems that could be thought out and

planned in advance, they were not able to cope with problems that are better

suited to a trial and error approach where a user can correct the program as it

comes across problems. This was a de�nite move away from the idea of batch

processing where the program was produced, the data was fed into the computer,

and then some time later a set of results would arrive.

48

49

In the early sixties Ivan Sutherland, while working at MIT Lincoln Laboratory

produced a system called Sketchpad(Sutherland, 1963). The Sketchpad system

pioneered ideas such as graphical representation of internal hierarchical structures,

the use of a light pen for picture construction and the separation of the coordinate

system in which a picture is de�ned from the coordinate system on which it is

displayed. These principles and many others helped form the foundations of mod-

ern GUIs. Sutherland was also behind the development of new input and display

technologies such as the forerunner of full immersion virtual reality (Sutherland,

1968).

One of the main applications that utilised the rapidly growing technology of in-

teractive computing was that of word processing. A key �gure in exploiting this

potential was another hypertext visionary Douglas Engelbart. His Augment sys-

tem allowed users to interactively construct and view documents using a keyboard

and his new device, a mouse(Engelbart, 1963).

Perhaps the leap in technology that is most associated with Graphical User Inter-

faces is the work which came out of Xerox's Palo Alto Research Center(PARC) in

the early seventies. Xerox developed the �rst personal workstations, which came

complete with a display, keyboard and mouse and resembled fairly closely the

personal workstations that we use today. Alongside this research, Alan Kay was

developing his idea for the 'Dynabook'(Kay & Goldberg, 1977), a device which

would be recognised today as a hand held computer.

All of this research eventually culminated in the release of the Apple Macintosh in

1984, which was the �rst implementation of the interface style developed by Xerox

to be a commercial success. This interface style has been utilised by many of the

systems we see running today, including Microsoft Windows in all its incarnations

and the wide variety of X servers available on UNIX systems.

4.2 Multiple Window Environments

When people talk about GUIs, they are almost certainly referring to an interface

where multiple windows can exist on the screen at the same time. Each window is

constructed from a number of basic tools. These can include, but are not limited

to, scrollbars, menus, buttons and text areas.

50

Each window will display certain information, referred to as the content. This

content might be a piece of media, a text �le or a graphic, or it might be a

dialogue for interacting with the user, containing various buttons and lists. In

nearly all windowing systems, the manipulation of the content of the window is

handled by the application. A window manager controls the manipulation of the

window itself. The window can be manipulated by moving it, changing its size or

perhaps minimising it to an iconic representation.

The ability to manipulate the window gives rise to a number of potential prob-

lems however. Firstly, the window manager will not usually have any control or

knowledge of the content of the window. The window manager may allow the user

to move the window half way o� the screen even though it obscures the content of

the window. Similarly, if a window is resized, the content may no longer �t within

the window and, if the application cannot rescale the content, will be cropped

resulting in a partially obscured image or perhaps unreadable text.

A second problem is that each window will be dealt with on its own merits and

any connection or interaction with other windows will be ignored. The movement

of one window might obscure the contents of another. A window containing an

image and a second window with text describing the image might be on either

side of a screen with no visible connection between the two.

A �nal problem, and one that will be discussed in detail in the next section is that

there may be di�erent requirements of the interface under di�erent circumstances.

This can be referred to as the scalability of the interface.

4.3 The Need for Scalable Interfaces

Interfaces that are adaptable to users and environment are by no means restricted

to computer software. A good example of a scalable interface is the interface to

driving a car. Taking just two of the basic components, we have a steering wheel

and a gear stick. Anyone who learns to drive in Britain will be familiar with

sitting at the steering wheel and changing gear with their left hand. If however

the person goes to the United States and hires a car, the interface will be di�erent,

the reason being that the in the USA cars drive on the right and the driver is seated

closest to the centre of the road. The interface is di�erent in that the gear stick

51

is now located to the right of the driver. Everything else however, pedal order,

gear selection positions, remains unaltered as the interface only needs to change

to adapt to the new position of the driver.

If a car driver is unhappy with having to change gears, they can always get an

automatic. Here again, the interface is modi�ed to help the user. The gear stick

becomes a simpler selector with perhaps with only park, neutral, and drive. The

clutch pedal is now redundant and removed. The rest of the interface remains the

same as it was before.

In the car example above, the interface is adapted to changes in environment and

user ability. This change, though immediately noticeable to the user, does not

require the underlying system to be changed. The principle of scalable interfaces

becomes very applicable when dealing with multiple window environments.

4.3.1 Di�erent Interfaces for Di�erent User Abilities

When an interface is created, one of the key factors that has to be taken into

account is the ability of the target user. A video player for example, is a complex

piece of hardware containing video and audio boards for extracting a coded ana-

logue signal from a magnetic tape and outputting a signal that can be understood

by a television set. The user however does not need to know how all this works.

They are presented with an interface, that when distilled to its basic components

involves placing a tape in the slot provided and using a control which o�ers play,

stop, forwards and backwards. This is enough to be able to harness the power of

all of the complicated hardware underneath. Admittedly, the interface presented

to the user will invariably contain dozens of other functions most of which the user

will neither understand nor have any use for, but the basic interface is designed

to be usable by practically anyone.

Interfaces to computer software are no di�erent. They are often designed for the

lowest common denominator. The problem with this is that when an expert user

comes across such an interface it can get in the way of them carrying out the task

they want to carry out. The classic example would probably be the Windows

operating system. Ask any UNIX hacker what they hate most about Windows

and chances are they will complain about the inability to `get in there' and just

52

type the commands. The abstraction of the interface is removing the ability of

someone who knows what they are doing to get the job done more quickly.

To take a real world example, in the majority of current web browsers, when

a link is clicked on by the reader by default the currently viewed document is

replaced by the destination document of the link. This is essentially designed

for ordinary users who are happier with only one document open at a time and

don't want to have to continually juggle multiple windows on their desktop. Some

users however might like to keep documents open, perhaps for comparison with

the document at the destination of the link they have followed. In Microsoft

Internet Explorer, a common browser, this can be achieved by right clicking with

the mouse presenting a menu from which the user can then choose to open the

document in a new window. This functionality takes more steps to achieve as it

is not the default functionality. Were the browser a scalable interface the more

experienced user who might choose to open a new window by default would be

able to con�gure it always to open the document in a new window. This scalability

does not appear to be available in any of the major web browsers. The interface

behaviour has been decided at design time and cannot be altered.

Most interfaces are designed with a speci�c user in mind. Providing an interface

that can adapt to a users abilities either dynamically or by user con�guration is

going to add to the cost of producing the interface. By separating out the interface

more from the application, the possibility exists to supply a modi�ed interface to

users of di�ering abilities rather than having to supply whole new applications.

4.3.2 Di�erent Interfaces for Di�erent Environments

When designing and creating a hypermedia application, the author will have to

take into account the environment in which the application is going to end up

running. For example, the curator of a museum may decide to provide an in-

formation kiosk as part of an exhibit, which allows users to �nd out additional

information about the items on display. The hardware for such a kiosk could well

be a touch screen interface, but for this example we will assume a normal PC,

which provides the users with a simple interface to browse the information. A

typical interface might allow the user to choose from a limited number of choices

which results in a short series of pieces of media on the subject. The user moves

53

through the sequence by clicking on a button with Next on it. A simple system like

this would allow novice users to quickly learn how to use the system and remove

the added complication of peripherals such as a keyboard. This is important in

an environment where a user new to the system will have to learn the interface

and get the information they want in a very short period of time.

Having viewed the exhibit and interacted with the kiosk, the visitor may wish to

take this information with them when they return home. The museum curator

may decide to have a CD-ROM available for purchase in the museum shop, which

contains the hypermedia application and perhaps additional information about

the exhibit. At home however, the visitor has their own PC that has a keyboard

and mouse and all the additional functionality that comes with it. In addition,

when at home the user will also have more time to learn a more advanced interface.

If the simple interface is hardwired to the kiosk application, a completely separate

hypermedia application will need to be created for the CD. If however the interface

is separated from the application, the same underlying hypermedia application can

be used in both environments. An example of the scalability might be that if a

keyboard is available the user might type a text search, whereas in the kiosk

environment the user has to select from a series of options.1

If the content and functionality of the application can be clearly separated from

the interface, only one hypermedia application need be created. The kiosk can

then have a di�erent version of the interface to the CD ROM application without

greatly duplicating e�ort.

4.3.3 Di�erent Interfaces for Di�erent Hardware

In the example above, the museum may have opted for a touch screen system

for their kiosk. This presents an additional problem in that even if the interface

designer wishes to only have one way of accessing the content, the interface will

need to be di�erent depending on the hardware.

Another example of this is the hypermedia system used in their factory environ-

ment by Pirelli cabelling (Crowder et al., 1993). The hypermedia system is used

1This is a greatly simpli�ed case of course and it is possible that the material presented in

the two cases might need to be di�erent, however the underlying principle is still valid.

54

for fault �nding and maintenance. The content is created and maintained us-

ing standard PC's in an o�ce environment and can be accessed in this way. In

addition to this however the shop
oor operators also need access to the same

information while they are at the cabelling machines on the shop
oor. The ap-

proach taken was to use portable computers with a simple pen interface. The

content being accessed is identical to that accessed using the o�ce system, but

the hardware requirements necessitate modi�cations in the interface. When using

the portable computer, documents occupy the whole screen as shu�ing around

windows is both more di�cult using the light pen and the operator has a much

smaller screen to work with. Also, it quickly became apparent that sound is un-

usable as part of the interface for use on a shop
oor where heavy machinery is

operating.

By providing an interface that is abstracted from the content and scalable to the

users requirements, these hardware issues were overcome. More details of the

Pirelli system are given in section 5.9.2.

4.4 The Problem of Separating Content from Interface

Perhaps the greatest problem facing interface designers is separating the content

from the interface. What we are talking about here is data abstraction. The

object of this abstraction is to hide the low-level implementation from the user and

present the information to the user in a more easily understandable form. To use

a previous example, when the user presses the play button on their video recorder,

they are not expected to know that this starts a motor inside the machine, which

pulls the tape between the playback heads, generating the picture for the television

to display. This process has been abstracted away to the user metaphor of press

this button and the contents of the video will appear on the screen.

One advantage of data abstraction is that when a new technology comes along

where the picture is stored on a di�erent media for example with Digital Versatile

Disc (DVD), the data abstraction is still valid and the interface for the user can

remain the same. Press the play button and the picture appears on the screen.

The fact that the underlying mechanism has changed is hidden from the user.

55

Sometimes however it is not easy to �nd a suitable data abstraction that keeps

the content and presentation clearly delineated. Often, attempts to do so simply

lead to confusing and muddled metaphors that are less useful than more accurate

depictions of the data. A classic example would be the trashcan on the Mac-

intosh operating system (MacOS). In an attempt to over simplify the interface,

the designers of MacOS decided that to eject a
oppy disk the user should drag

an icon representing the disk to the trashcan icon on the desktop, a metaphor

which they would be familiar with for deleting �les. This proved to be far from

intuitive. In practice, a simple eject
oppy menu item might have been more

useful to the user. A fuller discussion of this aberration can be read in (Erickson,

1990). Rather than solving a problem, the abstraction had only served to make

the interface more confusing.

4.5 General Approaches to Interfaces

There have been a number of general approaches to interface design. A few such

techniques are discussed in the sections below, with particular reference to their

approach to data abstraction.

4.5.1 Window Managers

Window managers in their simplest form provide a data abstraction, separating

out the window behaviour from the behaviour of the application underneath.

Typically this will include functions such as moving and sizing of the windows

but will not include control over the content of the window. The window manager

will often provide facilities for positioning a number of windows such as tiling, or

ensuring that all the windows are on the screen. Without knowledge of the content

however, or the ability to provide constraints, the content can often be obscured or

clipped by the window manager. This is due to the decision taken by the designers

of window managers that the domain covered by the window manager is that of

inter-application screen management and the general relationships between the

windows. The content and application speci�c nature of the window is left to the

individual application.

56

4.5.2 User Interface Management Systems (UIMSs)

User Interface Management Systems (UIMSs) emphasise the abstraction of the

syntactic level (dialogue) from the semantic level (application), using notations

for the dialogues, for example state transition diagrams or formal grammars.

Two major di�culties have been identi�ed with UIMSs however (Took, 1990).

� It is often di�cult to model complex dialogues where the user is interacting

simultaneously with a number of di�erent dialogue boxes. By providing

formal languages with which to model the dialogue, the interaction becomes

far more prescriptive for the end user.

� If the dialogue is abstracted from the underlying objects being manipulated

problems can occur with semantic feedback. It is often di�cult to maintain

consistency between the state of the dialogue and the state of the underlying

data.

The abstraction of UIMSs is concerned with the dialogue between the user and the

applications. This formalisation fails to cover the interaction between applications

or speci�c abstraction of the underlying information.

4.5.3 Toolkits

Toolkits provide a set of basic building blocks such as menus, scroll bars and

dialogue boxes. The designer can construct their interface from these basic com-

ponents or sometimes modify them to create new components. An example of a

toolkit, is the swing toolkit that forms part of Java 1.2.

Toolkits also su�er from a number of problems (Took, 1990).

� It is often di�cult if not impossible to create completely new classes of

interface objects. More normally, existing objects are modi�ed to meet the

new requirements. This places the onus on the toolkit to provide a decent

set of basic components to work with.

� In order to synchronise the presentation of the interface it is often necessary

to provide global input and presentation objects which pass interactions

down to the lower level components.

57

� Sometimes toolkits do not provide enough abstraction between the interface

objects themselves and the underlying information they are controlling.

The data abstraction of toolkits tends to concentrate on the basic functionality

building blocks of applications. Interaction between applications or the user and

the application are left to the individual functionality of the applications. Where

the toolkits can fail is where the attempted commonality forces the designer to

use tools that are not quite appropriate for the task, such as the many di�ering

uses of the trashcan icon on the MacOS desktop.

4.6 Speci�c Systems

Aside from the general approaches to screen management discussed above, a num-

ber of systems have been devised which seek to tackle some of the more speci�c

issues of interface design and screen management. Some such systems are brie
y

discussed in the sections below.

4.6.1 Aquanet and VIKI

The interface to the Aquanet system (Marshall & Shipman III, 1993) was a direct

rendition of the underlying structure of the information in the system. The users

directly manipulated instances of objects in a shared space. The system allowed

multiple references to the same object to exist within the space.

Aquanet objects include the concept of composite objects, which represent a group

of objects. This helps reduce the complexity of the space, with users being able to

investigate the contents of composite objects if they wish to. The representation of

the space is relatively informal, with no automatic grid or alignment mechanisms.

The interface can often end up looking like a true desktop with objects aggregated

in piles or spread out in user driven layouts.

Whereas many spatial interfaces take over the task of organising the information

for the user based on a wide variety of layout techniques, Aquanet simply provides

the users with a set of tools which allow them to organise their information in a

manner which they �nd intuitive to use.

58

VIKI is another spatial hypertext system that aims to support the emergent struc-

ture of the information it contains (Shipman III & Marshall, 1995). The user

manipulates the graphical objects that are organised in hierarchical collections

or workspaces. The system provides tools for the user which help identify im-

plicit structure in the information and can suggest groups of information that

might suitably be converted into an explicit collection. The tools of VIKI work on

document analysis, extracting structure and knowledge from the document and

presenting this graphically to the user in the interface.

4.6.2 Pad++

Pad++ (Bederson et al., 1994) the successor to Pad (Ken Perlin and David Fox,

1993), provides an interface to structured information which uses zooming as a

principle method of acquiring more information. The term Zooming User Interface

(ZUI) has been coined to describe such a system. The user can move around a

large planar information space where information is laid out spatially. The work

builds on the multiscale interface research of Furnas et al (Furnas & Bederson,

1995). The user can zoom in on interesting information, leading to more detailed

information being revealed. For example, if the user is viewing an annotated

diagram, as they zoom in on a label on the diagram it might change to represent

a more detailed description of the feature. Continued zooming might lead to

whole documents on the subject. The principle applied here is that the screen

can only show a certain amount of meaningful information at any given time. As

objects become larger through zooming, the screen resource available for providing

information about the object increases. This allows more information about the

object to be displayed. This is illustrated in Figure 4.1.

The system provides a novel approach to screen management, and has been ap-

plied to a number of di�erent application areas ranging from web browsing with

PadPrints(Hightower et al., 1998), to hypertext artwork �ction such as Grey Mat-

ters (Wardrip-Fruin et al., 1997).

4.6.3 Style Sheets

When talking about the interface to the World Wide Web, it is important to re-

member that so much of the presentation is left to the browser to decide on. The

59

Figure 4.1: An illustration of the Pad++ zooming browser based on a screenshot in

(Bederson et al., 1994).

original version of HTML, HTML 1.0, had a very limited capability for specifying

page elements. Essentially, the language described the structure of documents

allowing the author to delimit paragraphs, quotes, lists etc. but leaving the ren-

dering of the document to the browser. Where the author is only concerned with

the content of the document that was �ne but some authors wanted more control,

and the desire that the document should look the same to all users (Andrew B.

King, 1999). As early as 1993, the idea of "style sheets" was discussed as a way

to formalise the presentation of HTML (Alan Taylor, 1999).

Hakon Lie sent a proposal to W3C, the World Wide Web Consortium, that de-

scribed "Cascading HTML style sheets". The concept of cascading style sheets

means that the browser uses a hierarchy of style sheets that are prioritised. This

gives users the
exibility to override the style imposed by the author of the doc-

ument. Cascading stylesheets have evolved into the speci�cations CSS1 which

deals with the style of the document and CSS2 which is concerned with the lay-

out. Both are supported by the latest versions of Microsoft Internet Explorer and

Netscape Navigator, the leading browsers on the market.

60

Style sheets use common desktop publishing terminology, with formatting instruc-

tions to deal with margins, fonts, spacing etc. Unlike languages such as postscript

and PDF however, stylesheets should be viewed as in
uencing the look of a doc-

ument rather than specifying it, as style sheets can be overridden and di�erent

browsers will not always interpret the style sheet in an identical manner.

The separation of the content from the style is what gives style sheets their power.

By changing one style sheet the author can change the look of a single page or

perhaps an entire web site. This provides a simple clean mechanism for imposing

a default style across a whole range of documents, ideal for imposing a company

image on a web site with the minimum of e�ort.

Another bene�t of this `openness' is that individual users can use style sheets to

a�ect how they view all documents. This is invaluable where a user has special

requirements. For example a partially sighted user can use a style sheet to increase

the font size of all the documents they view in order to make the text more

readable. Style sheets have also been used to adapt pages for use by specialised

speech plug ins, providing more usable interfaces for blind users.

One of the problems that has been identi�ed with stylesheets is the issue of con
ict

resolution where multiple style sheets a�ect a single document (Jukka Korpela,

1999). The browser examines style sheets based on a precedence system. Without

examining this in detail, the order of action is as follows.

1. author's important declarations.

2. reader's important declarations.

3. author's normal declarations.

4. author's implicit declarations expressed in HTML.

5. reader's normal declarations.

6. user agent defaults.

Because both the reader and the author are aware of this precedence, a tug-of-war

can ensue with both trying to ensure their preferences are used. An author can

ag everything as important to make sure that readers can't override what they

consider to be the correct style. In this case the style sheet looses much of its

openness as the author has essentially hard-wired the style. Faced with this, the

reader might simply choose to switch o� the style sheets and then any possible

61

bene�t is lost. Alternatively readers might
ag their own style sheet as important,

thus overriding any normal declarations made by the author. Even if authors and

readers use the system as it was intended, it is not clear that the sum of all the

style will necessarily lead to the best overall style. Clearly if the author speci�es

that the background should be blue and the reader declares that the text should

be blue, the resultant document will not be easy to read.

4.6.4 Interface Agents

An interface agent is a process that operates within the interface, assisting the

user with their task. One of the key criteria of an interface agent is that it can

act autonomously rather than simply reacting to the user. The agent can a�ect

the objects in the interface independently of the user. To inform its decisions the

agent monitors the users inputs to the system over a period of time and modi�es

its behaviour accordingly. A context sensitive help system is one example of an

interface agent. A more complex example is the Letizia system (Lieberman, 1997),

which assists users in the task of web browsing. In recording the URLs browsed

by users, a pro�le of user interest is compiled. The agent uses this information to

search the web to �nd information containing similar content for the user. This

information is presented to the user in a separate section of the web browser.

4.6.5 Elastic Windows

The elastic windows approach of Kandogan and Shneiderman (Kandogan & Shnei-

derman, 1997) is based on three principles:

hierarchical window organisation This allows users to group all of the win-

dows related to a single role or activity into one area. By using nested

groups, sub tasks can be gathered together. The border colours of the win-

dows is used to di�erentiate between the groupings.

The use of hierarchical grouping allows the folding of whole hierarchies down

to individual icons providing a very scalable approach to screen management.

Users also have the ability to make any single window in the interface full

screen. This might be an individual task window, or a hierarchy representing

a particular role.

62

space-�lling tiled layout Giving the system its name, the windows will stretch

elastically to �ll the available space. The non-overlapping approach was

adopted to avoid wasted space and also potentially disturbing overlaps,

which can obscure content.

multi-window operations In Elastic Windows, a window operation can be ap-

plied to a whole hierarchy, with the action propagating down to the lower

level windows recursively. This allows whole hierarchies to be resized or

closed with a single user action.

4.6.6 Synchronized Multimedia Integration Language (SMIL)

The Synchronized Multimedia Integration Language (SMIL), pronounced `smile',

was developed by the World Wide Web consortium with the aim of allowing a

broader audience to author multimedia presentations using the Web (Hoschka,

1998).

SMIL is a text based language, built on the Extensible Mark-up Language (XML).

This gives it the advantages of being easy to write, only a text editor is required,

and it is also easy to make it compatible with HTML, which shares a similar base.

The SMIL language separates the content of the presentation from the layout

by including two separate sections in a SMIL document. The content of the

presentation is structured using commands which describe how the content is laid

out temporally, i.e. media objects can be presented in sequence or in parallel and

synchronisation can be achieved using begin and end timing information.

The layout of the presentation is covered in a separate area of the SMIL document,

where regions can be speci�ed which can then be used to position the media

objects on the screen. Region information can include the top and left position

of the region, height, width and z-order information, allowing regions to overlap

each other. The media objects of the presentation can have anchors and hyperlinks

associated with them allowing users to browse associated material, pausing the

presentation if appropriate.

One of the more interesting aspects of the language is the ability to provide sys-

tem dependant versions of documents to cater both for di�erences in hardware

63

capability and also possible disabled users. This relies on the presence of alter-

native media objects that can be chosen according to the active system state.

For example, if a machine is su�ering from network bandwidth problems it might

choose to display a still image and audio commentary rather than try to stream

digital video across the network. The same facility can be used to supply subtitles

to audio and video for users with hearing di�culties. In this case, the captioning

would be requested by the user rather than being based on system monitoring.

4.6.7 The Apple Event Object Model

The Apple Event Object Model (AEOM) consists of a number of standardised

sets (or suites) of messages and abstract data objects. They are designed to cover

both the inter-application exchange and manipulation of data, and the external

control of applications.

There are two de�ned suites which applications are encouraged to adhere to,

known as the required suite and the core suite. The required suite is a set of four

basic messages that every Macintosh application is required to support. These are:

Open Application, Open Document, Print Document and Quit Application. The

core suite must be supported by every AEOM compliant application. The mes-

sages allow chie
y for the retrieval and modi�cation of data within applications,

plus closing documents, and the making of selections.

Other suites are de�ned for speci�c data types, including text, pictures, tables,

Quicktime and sound. Applications are of course allowed to de�ne their own

suites, which can then be utilised by other applications.

Most suites de�ne a set of objects to cover the data type that they handle. An

application's data is arranged as a hierarchy of these objects. For example: at the

top of the hierarchy is the `application' object. This will have a set of `window'

elements. A window within an application can be speci�ed by name, or by order:

window 1 will be the front most, window 2 the second from the front, etc. A

window has a number of properties, including name, position, bounding rectangle

etc., and selection.

An external application can therefore retrieve the position and size of a window

by calling the relevant apple event. This would allow limited screen management

64

functionality by allowing external processes to a�ect the positioning of other win-

dows on the screen.

Like most protocol's apple events is only as good as the applications written to

use. If applications choose not to support it then many of the bene�ts of the

system are lost. With respect to the overall management of screen resources, this

would only be possible if all of the on screen applications were compliant with the

protocol.

4.7 User Interface Tools

The systems described above all attempt to deal with the whole problem of screen

management. There have also been a number of research projects that have

developed tools that can be utilised by such screen management systems. A

number of these projects are brie
y covered below.

The work of Harrison and Vicente suggests that the use of transparency in user

interfaces can make better use of the screen space available(Harrison & Vicente,

1996). In an application where a user works on a main view but has various tools

available, the use of transparency for the tool windows made them less distracting

and enabled more of the main view to be seen.

Mereu and Kazman showed in their research that 3D interfaces used by visually

impaired users can be enhanced by using audio(Mereu & Kazman, 1996). Al-

though the visually impaired users took longer to carry out the tasks they were

able to do so with the same degree of accuracy as a sighted user. This was achieved

through a simple modi�cation to the interface and did not require the underlying

application to be modi�ed.

The work of George Furnas concerns the use of �sh-eye views and space-scale

diagrams to help present the maximum amount of information in the minimum

available screen area (Furnas & Bederson, 1995). This approach has been used

in many information layout systems such as the Document Lens (Rao & Card,

1994) and the Perspective Wall (Mackinlay et al., 1991), both of which will be

discussed in more detail in Chapter 6. The underlying principle of such systems is

to allow the focus elements of the information to occupy more screen space than

the information that is of less relevance.

65

All of the tools above may well be useful tools for interface designers to use however

because of the closed nature of interfaces, it would be necessary to re-implement

the tools within the chosen interface. Since these tools are in essence generic and

applicable to a wide range of interfaces, modularity of interface would be highly

desirable enabling interface designers to take these tools and plug them directly

into their interface without needing to modify the underlying application.

4.8 Open Hypermedia Interface Issues

Hypermedia systems may often be composed of a number of di�erent interfaces

with a commonality of purpose. Documents in the system must be presented

to the user and the variety of media types available may necessitate a number

of di�erent document viewers. Navigation within the system may require the

user to interact with the system using an interface that allows them to type in

searches. Alternatively the user might wish to browse the hypermedia structures

using hierarchical lists or perhaps a graphical browser. The results of queries and

searches will need to be presented to the user in a way that allows them to make

a choice based on the results. Other navigational information such as lists of

previously viewed documents might be provided for the user and this again will

require an interface.

In a closed hypermedia system all these interfaces can be combined to provide

a single interface for the user. The best example of this is a web browser. The

browser displays the documents, can be used to provide forms for the user to

enter queries, and indeed displays the results to the user with links giving access

to the documents. History lists can be accessed from menus along with bookmarks

and various other navigational tools. Because all of the functionality is �xed, the

interface can be easily integrated.

With open hypermedia systems, their very nature prevents the interface being

designed as a single unit. Where the openness of a hypermedia system extends to

the ability to add new media types and new functionality, unless the interface is

rebuilt with every addition, the interface needs to take on a new form.

In Microcosm for example, each media type has its own viewer associated with

it. This might be built speci�cally for Microcosm, or could just be a third party

66

application. Because of this, each document is viewed in a separate window. The

ability to plug in new navigational tools also makes it di�cult to present a single

interface. The history information is presented by the history tool in its own

dialogue box. The Microcosm system encourages a common look and feel to the

interfaces, with dialogue boxes using similar styles, fonts and icons. Ultimately

though, the systems interface is a collection of windows which are not managed

as single application but instead left to the operating systems window manager to

organise. The interface is closed in that new modules are responsible for sorting

themselves out and no support is given for creating a cohesive interface for the

application as a whole.

4.9 Conclusions

Screen management issues have been around since computers �rst placed text

onto monitors. Initially the problem was simply getting as much of the text onto

the screen at a given time and allowing the user to move around the text as easily

as possible.

The windowing systems of GUI interfaces added a new dimension to this problem.

The information from di�erent programs running in the operating system could

appear in their own windows, which could be moved around and indeed overlapped

by the user to give the appearance of much more information being present on the

screen than there actually was. By adopting a `desktop' metaphor, an attempt

was made to ground the user in a familiar environment and explain why the

information presented to them looked so cluttered and confused.

A number of di�erent approaches were taken to alleviate these problems and to

cater for the fact that di�erent users on di�erent systems had di�erent require-

ments. Open hypermedia systems are often modular in their nature and screen

management problems can be identi�ed within the application itself.

The next chapter introduces a novel approach to overcoming some of these prob-

lems and suggests an approach to open interfaces that enables the designer of the

interface to build tools that can exist separately within the system and do not

prohibit the addition of new modules.

Chapter 5

The Design and Implementation

of SHEP

5.1 Screen Management and Microcosm

The Microcosm system was designed and implemented as a modular architecture.

This provides
exibility to add and remove utilities from the system on the
y,

and provides an extensible framework for further research and development. The

modularity also extends to the document viewers, with separate viewers being

used to view documents of di�erent types.

Many of the components of the Microcosm framework have visible interfaces, be

they windows displaying documents or dialogue boxes allowing the users to change

the options on a module. Each component is in charge of managing its own inter-

face under the umbrella of the Windows operating system. The Windows manage-

ment built into the operating system treats each window as a separate application

since the modules of Microcosm form no hierarchy in the normal parent/child

sense.

Some interfaces within the Microcosm system do carry out their own screen man-

agement. A number of viewers provide the user with the option to save the size

and position of the window displaying the current document. When the docu-

ment is viewed again, the previous size and position is recalled and the window

displayed as it was before. This simple system provides an author with the ability

67

68

to set the default window size and position for the documents of an application.

Once a user views a document, they will then have the ability to save the win-

dow at a di�erent size and position. A similar principle extends to some dialogue

interfaces that the user can con�gure to their own preferences.

5.1.1 Problems with the Basic Microcosm System

There are a number of signi�cant disadvantages to the approach described above

however. These can best be illustrated using some examples, in some cases from

actual applications implemented in the Microcosm system.

Firstly, there is no logical connection between the various windows on the screen

even though they may form part of the same application. For example, a user

selects a piece of text in a viewer and asks the system to �nd some links. This

might result in a new link appearing in a window on the other side of the screen.

When the events occur in quick succession the user may intuitively connect the

action of asking for links with the arrival of the new links in the other window. If

however the link doesn't arrive for some time, the user may not be sure whether

the link has arrived as a result of their action or perhaps as a result of some other

event unseen by the user.

Secondly, Microcosm is tied in to the windowing metaphor of the operating system,

where a user can overlap windows, move them partially o� of the screen and

minimise and maximise them. This is often too complicated for less computer

literate users and they may well want a more organised approach. By having

modules manage their own interfaces, any new metaphor or approach must be

implemented in all the modules which have interface components.

Furthermore, there are no facilities within the system to synchronise the display

of documents. When images are displayed as part of an application, the author

may wish to display a text commentary that describes the image, or perhaps gives

the copyright clearance for the image. The author can set the initial positions of

the image and text documents so that they complement each other, but once

the user moves the image window, the association is lost. The association is

merely an artefact of their initial position rather than a semantic connection that

is maintained by the screen management system.

69

It may also be useful to synchronise the contents of two document viewers. The

user might be viewing a facsimile image of a document in one window, and have

a transcription of the document in a second window. As they scroll down the

transcription, it would be useful if the image was scrolled to display the relevant

portion of the facsimile. Without the ability to externally control the viewers,

this is not possible.

What is needed is an interface that can be customised to suit the users abilities, yet

doesn't require modi�cation to the underlying application with each new screen

management tool added. Being an open hypermedia system, Microcosm is ideally

suited to this, as the architecture is designed to be
exible. Additions are therefore

needed that extend the Microcosm framework to include an open approach to

screen information in the same way that it exists for linking.

5.2 Window State

In a windowing system, each window can be said to have, at any given time, a

state. This state represents a number of properties, or attributes, of the window.

These attributes should provide all the information necessary to exactly recreate

the window as it currently appears. As such, the information should include both

external state information and internal state information.

5.2.1 External State

Two such properties might be the height and width of the window. Since the

window can be moved without changing its height and width, a position must

also be included which de�nes where the window is in relation to the desktop.

This position is usually given relative to the top left hand corner of the desktop,

(0,0) in the coordinate space. These state attributes are illustrated in Figure 5.1

Window size and position can be considered the external state of the window.

In most window management systems, this is the only information used. When

considering a 2D layout such as the desktop, the important question is `How

much screen is the window occupying?' What it does with the area of screen is

less important.

70

Height

Width

Y Position

X Position

Figure 5.1: The external state of a window component.

SCREEN

568

550

100

200

1024

768

SCREEN100

200

800

600

568

550

(a) The viewer before the screen reso-

lution is changed.

(b) The viewer after the screen resolu-

tion is changed.

Figure 5.2: Using actual size and position information.

The size and position of a window need not be expressed in absolute co-ordinates

and measurements however. Indeed, where the size of the desktop can change,

using absolute measurements can cause problems. Consider the case where the

window manager stores information about the windows external state in order to

recreate the window exactly, next time it is used. If the user modi�es the size

of the desktop, for example by changing the screen resolution, the window that

is recreated shares the same state as the previous window but appears markedly

di�erent, as shown in Figure 5.2. Because the height has been maintained the

window no longer �ts on the screen and part of the window has been cropped.

To overcome this, rather than storing absolute measurements, relative measure-

ments could be used. In the example illustrated in Figure 5.3, the height and

width are expressed as a percentage of the screen. The position is also expressed

71

SCREEN

80%

70%

10%

15%

1024

768

SCREEN

80%

70%

10%

15%

800

600

(a) The viewer before the screen reso-

lution is changed.

(b) The viewer after the screen resolu-

tion is changed.

Figure 5.3: Using relative size and position information.

relative to the overall size of the screen. When the window is recreated at the lower

screen resolution it appears the same although in practice the absolute dimensions

of the window will have shrunk.

Although in some cases this would seem like a better solution, the use of relative

measurements makes an important assumption about the contents of the window;

that they are scalable. Whether this is true depends on a di�erent set of attributes

of the window, its internal state.

5.2.2 Internal State

The internal state refers to attributes of the content of the window. If a window

is constructed from a number of panes (or areas), this might include their relative

positions. In the case of image viewers a magni�cation ratio, or zoom factor, might

be an attribute of the internal state. Unlike external state, the internal state is

much more subjective and a �xed set of attributes cannot be easily derived.

One function of the internal state would be to allow a window to be recreated

exactly as it was before. If this were taken as a goal, then for document viewers,

properties such as the position within the document would be needed. Depending

on the media type of the document, the position might be represented in di�erent

ways. For a text document, an o�set into the �le might be recorded which locates

the top visible line of the document. For an image that is larger than the window

displaying it, the visible area might be stored. In the case of video, a time o�set or

frame o�set would be appropriate. There are other examples of attributes where

72

the value is speci�c to the particular type of window and it will be important to

di�erentiate between them.

5.2.3 State Attributes

A number of di�erent types of state attributes can be identi�ed in Microcosm. It

is perhaps useful to de�ne categories that the attributes can be grouped into. It

should be noted that some attributes fall under a number of categories.

General Attributes: These attributes can be identi�ed in the state of all win-

dows. Most external state attributes fall into this category such as size and

position.

Representation Speci�c: Some values of some attributes will need to be han-

dled di�erently depending on the type of window. For example, the o�set

attribute that indicates which part of the current document is being viewed

will di�er depending on the document type. In the case of text it might

be a character o�set whereas in the case of an audio �le it might be a time

reference. The attribute value can only be understood in the context of the

type of document it is applied to.

Media Speci�c: Some attributes will only be applicable to certain types of doc-

ument. A volume attribute would have little meaning in the context of a text

document, and likewise font would be of no importance if video were being

displayed. These media speci�c attributes are only used in state information

when applicable.

The question of where state ends and content begins is an interesting one. If

the goal is to be able to recreate a window exactly, then the content or at least

a pointer to the content of the window could also be included in the state of a

window where applicable. In practice, the state of viewers in Microcosm is stored

in the registry in reference to the particular document and this information is used

in retrieving the state. In this sense, the state and document are already linked.

5.3 Screen Managers

Windowing systems concern themselves solely with window management. In order

to achieve this they only need the ability to manipulate the external state of the

73

windows. This enables them to tile windows or maximise and minimise windows,

but is not concerned with the contents of the windows.

The Microsoft Windows operating system is a good example of a window man-

agement system. Windows can be moved around and controlled by users inde-

pendently but do not interact, other than to obscure each other providing a sense

of front and back, a perceptual 3D cue on an otherwise 2D desktop. Facilities are

provided which tile all the open windows, or list them on a task bar, but these

features are embedded in the operating system and the information that these

tools utilise is not exposed outside of the operating system.

5.4 Making the State Open to Examination

To enable external screen management processes to a�ect the state of windows,

interface components will have to publish their current state. Furthermore, the

responsibility falls on the interface component to publish any changes in their

state when they occur.

This will provide open access to the state information of windows, either by view-

ing a list of window states or by direct querying of interface components to es-

tablish their current state. But, if solely relying on interfaces to publish the in-

formation, the state would only be
owing in one direction. To allow the external

processes to a�ect the state of the windows, the interface components must also

be in a position to receive new state information and modify their presentation

accordingly.

The easiest way to achieve this is to provide a message handler within each of the

interface components that can receive messages concerning state. If this message

interface is a rigidly de�ned format then all interface components can be accessed

in the same manner. The same message interface could be used to query the

interface component for its current state.

The ability to send and receive state messages provides the open access to the

state of the interface components that is needed.

74

5.5 The Intention Action model

We now have a two-way communication between the interface components and

the screen handlers, but an issue of overall control still needs to be resolved.

Ultimately we wish the screen handlers to be in overall control of the interface

components. To achieve this, we must ensure that the interface components do

not act on any state changes until the screen handlers have had the opportunity

to approve or indeed modify the new state.

To take an example, a new document viewer is launched to display a document.

It has an initial state that it publishes. A screen handler has saved a previous

window state for this document, which it retrieves and sends to the interface

component. The window is then moved to re
ect the new state. The resultant

appearance to the user is of the window starting up in one position and then

jumping to a di�erent position as a result of the screen handler's action.

In order to give the screen handlers total control, an intention action model can

be adopted. Using the previous example, the new document viewer is launched

to display the document. Rather than acting on its initial state it �rst informs

the screen handlers that it intends to move to the position speci�ed in its initial

state. The screen handlers can then choose to modify the state or replace it with

an entirely new state. This state is returned to the interface component and the

window is modi�ed to re
ect the new state. Finally, the interface component

publishes its new state.

The subtle distinction is that when the viewer appears on the screen it appears in

the correct position and the user only observes the �nal state. The screen handlers

are free to modify the state during the intention message loop and only once this

has been returned does the interface component act on the state information.

Examples of screen handlers described in later section will give more detailed

descriptions of this intention action model.

5.6 The SHEP Architecture and Implementation

SHEP stands for Screen Handler Enabling Process. It was also the name of a

sheepdog on the BBC program Blue Peter and the sheepdog analogy is a �tting

75

Text
Viewer

Image
Viewer

History
Dialog

Available
Links
Dialog

SHEP

SHEP Communication with Interfaces

1st
Shepherd

2nd
Shepherd

3rd
Shepherd

SHEP Communication with Shepherds

Figure 5.4: The SHEP architecture.

way of describing the underlying architecture.

The three key components in the SHEP architecture are:

� The interface components (sheep).

� The screen handling processes (shepherds).

� The communications process, or SHEP.

Figure 5.4 illustrates how the SHEP module connects the various interface com-

ponents and the screen handlers.

The interface components in the SHEP architecture can be considered as sheep.

They can be given explicit screen management instructions, for instance go to

the top left hand corner of the screen, and they will carry those instructions out

to the best of their ability. Whenever they are ordered to do something by a

user, for example a user tries to drag the window across the screen, the interface

component will communicate with SHEP to �nd out if it is allowed to move

or whether SHEP has overriding instructions for it. The interface component

cannot carry out any screen management actions without checking with SHEP,

the virtual sheepdog. Each of the interface components has a direct two-way link

to the central communications hub as is shown in Figure 5.4.

76

On the other side of SHEP we have the screen handlers, or shepherds. It is their

job to organise the sheep. They can't talk to the sheep directly however, so they

give their orders to SHEP, which passes them on. SHEP also passes any requests

from the interface components to the screen handlers, which can then decide on

any action that is required. As can be seen in Figure 5.4, the screen handlers are

arranged in a chain primarily to avoid con
ict. The chain also has side e�ects

which can be exploited to provide specialist screen management functionality as

will be discussed in later sections. The mechanics of the shepherd chain is perhaps

best explained by an example.

The user clicks on a window title bar and tries to move the window to the right.

When the user lets go of the mouse button the interface component tells SHEP

that it intends to move to the new position. SHEP sends this to the �rst screen

handler in the chain. This screen handler is only concerned that the window

doesn't change in size. Since it doesn't, the screen handler decides to let the

window move to the new position and lets the request go. The request then goes

to the next screen handler. This screen handler is concerned that the window

would be partially o� the screen so modi�es the request by resizing the window

so that when moved to the new position the whole of the window is still on the

screen. The modi�ed message is then sent back via SHEP. Finally, the interface

component carries out the modi�cations suggested by the screen handlers.

If however the shepherds had been in the opposite order, the �rst modi�cation to

the request would involve resizing the window in order to keep it on the screen.

The other screen handler, which is concerned with resizing, would then receive the

request and decide that it would rather not allow the interface to be resized. The

result might be changing the �nal position of the window to retain the original size

or alternatively just restoring the original size resulting in the interface component

ending up o� of the screen.

As can be seen from the simplistic example above, the use of a chain prevents

con
icts in screen handling processes resulting in deadlock by allowing handlers

later in the chain to take precedence over the screen handlers before them. The

side e�ect of this is that di�erent orderings of the same screen handlers can result

in di�erent perceived behaviour in the interface components. Furthermore, if it is

not at the end of the chain a screen handler cannot be guaranteed of meeting its

77

D.C.S

F.M.S

Linker
Mimic
Engine

History

Text
Viewer

Image
Viewer

Linker
Dialog

Text
Display

Image
Display

History
Dialog

Available
Links
Dialog

SHEP

Existing Microcosm Architecture

Process/Interface link

SHEP Communication with Interfaces

1st
Shepherd

2nd
Shepherd

3rd
Shepherd

SHEP Communication with Shepherds

SHEP Communication with DCS

Linkbase
Available

Links

Figure 5.5: The Microcosm architecture including the SHEP framework.

own personal objectives of screen management. In practice the chain is usually

constructed to ensure an overall screen management strategy.

5.6.1 The SHEP and Microcosm Architectures Combined

If the SHEP architecture displayed in Figure 5.4 is compared to that of the Mi-

crocosm architecture as presented earlier in Figure 3.1, the similarities are clear.

In both cases a central hub communicates with di�erent processes. In the case

of Microcosm it is the DCS / Filter Manager System combination, in the case of

SHEP it is the central SHEP component. On one side of the hub sit a number

of processes which communicate with the hub directly. These are the viewers in

the case of Microcosm and the interface components in the case of SHEP. On the

other side of the hub sit a number of processes which are arranged in a chain.

For Microcosm this is the �lter chain, for SHEP it is composed of screen handlers

linked together.

Figure 5.5 shows how the SHEP architecture overlays on to the Microcosm ar-

chitecture. Each of the Microcosm modules which has an interface component

connects directly to SHEP. To make this clearer, the interface components have

been shown as external components of the individual modules. The shepherds

78

only connect to the central SHEP component and do not interact with any other

part of the Microcosm system other than through their processing and replying

to messages sent to them.

5.6.2 State and the SHEP Protocol

An integral part of the SHEP system is an extensible de�nition of state. This

forms part of the SHEP Protocol and aims to provide a common language for

sheep and shepherds. Most interface components will provide the core state in-

formation of size and position. Some interface components will also supply more

speci�c information, for example an interface which generates audio information

may choose to include volume as part of its state. Because the state information

is not a �xed structure, the majority of shepherds may not understand or choose

to deal with volume information, and ignore that part of the state. A speci�cally

written audio shepherd however can take advantage of this information.

The protocol de�nes a number of standard messages that can be sent around the

system. The messages are identi�ed by their SHEPAction tag, which is examined

by the shepherds in order for them to assess whether they can process the message.

A few of the messages that are passed around the SHEP system are described

below.

NEW.SHEEP This message is automatically sent by SHEP round the shepherd

chain to indicate that a new sheep has registered.

STATE.CHANGING A sheep sends this message to indicate it intends to

change its state to the state contained in the message. This is the `Intention'

message.

STATE.CHANGED A sheep sends this message to inform the shepherds of the

state it has just changed to. This is the `Action' message.

STATE.SAVE This message is sent by a sheep to indicate that it would like

its state to be stored for future use. If there is a shepherd in the chain to

process this message the state will be stored.

STATE.REQUEST A shepherd can send this message to a particular sheep to

�nd out what its current state is. This can be useful for a shepherd that

is carrying out global screen management as opposed to just local screen

management on an individual window.

79

5.6.3 Interface Components: The Sheep

The sheep of the SHEP architecture include any component of the system that

has an interface. For the purpose of SHEP, interfaces need not be restricted to

simply windows on the screen, but might include audio or even haptic devices.

This section illustrates how an interface component might interact with the SHEP

architecture.

When the interface component starts up the �rst thing it does is register with

SHEP. This sets up a line of communication for the component to send and receive

state information. The sheep registers its name and an information message. This

information message describes the component and is made available via SHEP to

the shepherds. The message might indicate that the interface cannot be resized,

as would be the case with some dialogs, or perhaps that the interface cannot be

minimised. This information can be utilised by the shepherds when carrying out

their screen management.

Once it has registered, the interface component asks SHEP for its initial state.

SHEP can then ask around any registered shepherds and pass the state back to

the component. The interface can then be rendered on the screen. If there are no

shepherds registered, the interface component will use its default settings. Once

registered, the interface component sends messages to SHEP whenever its state

is about to change, and whenever its state has changed. These two messages are

quite distinct and will be handled di�erently by the shepherds.

When a sheep noti�es SHEP that it is about to change state, the state contained in

the message is where the sheep intends to end up. The action STATE.CHANGING

is included in the message to indicate this intention. This state can be modi�ed

though, and the sheep will move to wherever the returned state indicates. Alter-

natively, the returned message may inform the interface not to change states at

all.

Once a sheep has changed its state, it sends a second message that informs SHEP

of its new state. This is purely an information message and the sheep will not

act on any state modi�cations made by shepherds to the message. To indicate

this, the action STATE.CHANGED is contained within the message. This two-

stage intention/action message noti�cation is designed to reduce the possibility of

80

deadlock or in�nite loops.

Shepherds, via SHEP, can also send sheep messages. A sheep might receive a

request for its state, which it can return as the reply to the message. This might

be important for shepherds that are interested in global screen management as

opposed to window management on a window by window basis. A sheep can

also be told to move to a particular position on the screen. In order to give all

of the shepherds in the shepherd chain a chance to approve the move, the sheep

will respond by sending a STATE.CHANGING message. Once the state has been

passed to all of the shepherds, the sheep will act on the modi�ed state and send

its STATE.CHANGED information message.

5.6.4 Screen Handlers: The Shepherds

A shepherd will be created with one or more speci�c screen management roles

in mind. By having a chain of shepherds, in most cases it removes the need

for an individual shepherd to be aware of the actions of the other shepherds in

the chain. As I will explain below, there are situations where the ordering of

shepherds becomes important and modifying the order of shepherds may modify

the resulting screen management e�ect.

The �rst thing a shepherd must do is register with SHEP. This process allocates

a unique identi�er for the shepherd and initialises a two-way communication be-

tween the shepherd and SHEP. As part of the registering process, a shepherd

assigns itself a priority that equates to where in the shepherd chain it would like

to be placed. The priority is a number between -100 and 100. A priority of -100

will place the shepherd at the front of the shepherd chain and a priority of 100 will

place the shepherd at the end of the shepherd chain. If a shepherd is not worried

where it appears in the chain then the priority should be set to 0. It should be

noted however that even if a shepherd registers with a priority of 100 it is not

guaranteed to end up at the end of the chain since any shepherd registering with

the same priority afterwards would usurp the original shepherd from its position.

It could be argued for notifying a shepherd that it is no longer at the end of the

chain, however this might encourage the sly programmer to un-register and then

re-register the shepherd to regain its forfeited position. This would seem to be a

tailor-made scenario for deadlock as shepherds start to leap frog each other in the

81

shepherd chain ad in�nitum. Examples of shepherds for which chain position is

important are given in later sections.

Once registered, the shepherd sits and waits for messages from SHEP. When SHEP

receives a message from a sheep it passes the message on to the �rst shepherd in

the chain. The shepherd may choose to ignore the message, modify the message

and even generate new messages, however the message should be forwarded once

the shepherd is �nished with it. There are of course exceptions to this where a

message should only be processed once. Again, these are dealt with later on.

When SHEP receives a message back from a shepherd it is passed on to the next

shepherd in the chain. When the last shepherd has returned the message it is

passed back to the sheep which originated the message. The sheep can then act

on the information it has been provided by the shepherds.

5.7 Examples of Shepherds

The sections below describe a number of di�erent shepherds that were created to

operate with the SHEP system as implemented within the Microcosm architec-

ture. Although representing relatively simple screen management functions they

hopefully serve to illustrate the SHEP mechanisms and provide an insight into

the possibilities provided by the SHEP architecture.

5.7.1 Saving State Information

Since documents contained in a hypermedia system are all di�erent shapes and

sizes it is extremely useful for the viewers to be able to remember the state they

were in the last time the document was viewed. Some users won't mind viewing

a text document in a small window where as others prefer to have the viewer

as large as possible. These personal preferences must be stored if users are to

avoid resizing the windows every time they are displayed. The same is true of

navigational interfaces such as the history window, or the document selection

dialogue.

State information in Microcosm is saved in the Microcosm registry. By using a

hierarchical approach, similar to that of the Windows registry, the settings can

82

be stored under a separate branch for each user, allowing personal pro�les to be

constructed.

Under the original implementation of Microcosm it was the responsibility of the

individual interfaces to store their information in the registry. This required every

module that wished to save information to understand the workings of the registry

and to make decisions as to where to place the information.

Using the SHEP architecture, the interface component simply sends a message to

SHEP containing its state and requests that it be saved. SHEP passes this message

along the chain of shepherds, where a shepherd charged solely with interacting

with the registry to load and save settings will carry out the request. When

the interface component loads up a new document it sends a message to SHEP

asking for the saved state of the document. This time the shepherd will retrieve

the information from the registry and pass it back to the interface component via

SHEP. This new method has a number of advantages over the original architecture.

� The interface components no longer need to be aware of the workings of the

registry. Should the registry be modi�ed in a way that a�ects its interface,

only one shepherd need be changed rather than every interface component.

� By using the shepherds to load and save the information, improved screen

management techniques can be added in a modular way without a�ecting

the interface components, for example using relative rather than absolute

size and position. This is described in more detail in the section below.

� There now exists a central control point as to where to write the settings in

the registry. Before, the settings were always written to the users branches

in the registry, which is appropriate when building personal pro�les. Often

however, the author of an application would wish to de�ne default initial

settings for the positions of documents. They may decide they want all text

documents to appear on the left side of the screen with images appearing

on the right. This would often involve the author saving all of the settings

in their own personal pro�le and then using a registry editor to copy all of

their personal settings into the application area of the registry. Once copied,

they would become the default settings for users who have not built up a

personal pro�le. By using a shepherd to control the writing to the registry,

an author need only change a single setting to let the shepherd know that

83

the settings should be stored directly in the application branch. Without

the use of SHEP, each interface component would have to be modi�ed to

handle this situation.

There is one disadvantage to the system however. If the save size and position

shepherd is not in the shepherd chain, the size and position information is not

stored. The interface components will only be aware of this when they try and

retrieve the information only to be returned an empty state message. In order

to accommodate this situation, when requesting for a state to be loaded, the

interface component supplies a default state which it will use unless it is modi�ed

as a result of loading information from the registry.

5.7.2 Relative Size and Position

One particular problem encountered by authors of Microcosm applications was

being able to achieve a prescribed layout for documents on the screen. For exam-

ple, an author decided that all text �les should occupy the left hand side of the

screen and all images when they are viewed should occupy the right hand side of

the screen. This could be achieved by setting the size and position of each text

document to the left and image document to the right. Unfortunately, the Micro-

cosm viewers save absolute screen size and position, since this is the information

they operate with. Therefore, when a user views the application on a screen with

a higher resolution, the text appears in the top left hand corner and the images

somewhere in the middle at the top.

Using the SHEP protocol, a shepherd was written that converts from absolute

screen co-ordinates to relative co-ordinates and vica versa. The relative co-

ordinates are based on a virtual screen size of 32 000 by 32 000. This could

have been implemented as a library, which all of the interface components called,

but this would require modi�cation of all of the interface components. If it were

a library, the save/load shepherd could call it, or alternatively it could be incor-

porated into the save/load shepherd. In order to create greater
exibility, and to

help test the chain mechanism, it was implemented as a separate shepherd.

Unlike most other shepherds, the relative size and position shepherd registers

twice. It registers once at the start of the shepherd chain and once at the back of

84

the shepherd chain. Because each time it registers it receives a unique identi�er

it is a simple process to keep track of the two separate registrations.

When the shepherd receives a message at the front of the chain, it reads all size

and position information and generates relative size and position state information

based on the current screen resolution. This new information is added to the

message in di�erent tags to ensure that the relative values are not inadvertently

processed as absolute values. At the back of the chain it looks for relative size and

position information and if it �nds any it converts it to absolute size and position,

again based on the current screen resolution.

This has the overall e�ect that all shepherds between the two registered relative

size and position shepherds can deal with relative rather than absolute size and

position. In the case of the save load state shepherd, it is not interested in the

contents of the state message but simply stores and retrieves it.

Taking the previous example, when the author stores the state of the windows it

is stored as a relative size and position, which would equate to half the width of

the relative screen. When the window is viewed by a reader and the state restored

from the registry, the relative size and position is converted to an absolute size

and position which would still appear as half the screen, irrespective of the current

screen resolution.

5.7.3 Restricting Window Positions

For nâ�ve users, reducing the complexity of window management can be a real

bene�t. A shepherd was created which attempted to do this by restricting the

way in which users can manipulate windows. It sought to address three common

problems of window management.

� Users minimising windows and then being unable to �nd them again, a

problem exacerbated by the Windows98 task manager's ability to hide itself.

� Users maximising windows and then not being able to see or interact with

any other windows.

� Users moving windows partially o� of the desktop obscuring their contents.

85

(a) The viewer displaying the locked

icon.

(b) The viewer displaying the un-

locked icon.

Figure 5.6: The Microcosm viewer locking mechanism.

Whenever a user attempts to modify the size and position of a window, the window

sends a message to SHEP containing the state that it wishes to change to. The

shepherd examines this new state, and if it �nds that the window would be o�

of the screen, it modi�es the state to keep the window on the screen, by altering

the windows position. If the new state includes a minimised or maximised screen

position, this can be blocked by the shepherd preventing the window from ending

up in either of these states. The functionality can be customised for each user, so

more experienced users are able to modify their settings to allow greater
exibility

in their window management.

5.8 Controlling the Number of Windows Using SHEP

As well as controlling the position and appearance of windows once they appear on

the desktop, a screen management system would want to have some control over

the number of windows that are displayed at any one time. One possible way of

achieving this would be to use the system described above to ensure that if a new

window appears which exceeds the desired limit for windows on the screen an un-

used window is minimised. This does not provide a complete solution however as

users could rapidly accumulate unwanted minimised windows, which will quickly

use up the resources of the machine.

In Microcosm there exists a distinction between viewers, used to view documents,

and navigational interfaces, for example the history list. As a way of limiting

the number of viewers which a user can have open at any given time, a locking

mechanism was devised. This appears as a small icon on the menu bar of the

viewer shown in Figure 5.6. The icon is a representation of a page, with the

86

corner folded over if the user wants to `lock' the document and prevent it being

replaced. If a document is not locked and the user opens a new document, the new

document is opened in the existing viewer rather than spawning a new viewer.

The user can toggle the locked state of a document by clicking on the icon. The

default lock state can be speci�ed in advance.

One problem with this system was that the locking mechanism only applied to

documents of the same type. Because di�erent viewers were required for media of

di�erent types, if the user opened an image, but had a text document unlocked, a

new viewer would be spawned for the image and the text document remained. If

a new text document had been opened, the previous text document would have

been replaced. This therefore partially broke the metaphor of document locking,

and meant that the user would be able to have at least one document of any media

type on the screen implying that the user could not be restricted to one document

at a time for instance.

In order to overcome this, the SHEP architecture was extended to encompass

the document dispatching components of the Microcosm system. In the original

Microcosm system, when the user requests a document to be launched, the dis-

patcher examines its table of opened documents. If it �nds an open document of

the same type, which is unlocked, it sends a message to the viewer to open the

new document. The previous document is replaced.

The Microcosm dispatcher was modi�ed to register with SHEP as a sheep. As

with the viewers, the dispatcher publishes its state, which rather than having

size and position information, contained information on the current viewers and

documents that were open. Whenever it was about to launch a new document

it would �rst send its dispatch message to the shepherds via SHEP. A shepherd

could then modify the message to stop the document being launched, force the

document to be opened in an existing viewer, or possibly close an existing viewer

to make way for the new one. The dispatcher would receive the returned message

and execute the instructions within it.

By providing a hook into the dispatching mechanism, other screen management

activities could be carried out such as preventing the user from closing all the

documents by trapping close document messages and discarding them if it is the

87

last remaining document on the screen. This facility can be important where the

sole navigation method around the dataset is intended to be link following.

5.9 SHEP in Use

The SHEP framework was implemented as part of an active research tool and

has been utilised by a number of di�erent projects. The sections below brie
y

describe two such projects and the way in which SHEP was applied to provide

open screen management.

5.9.1 The Historian's Workbench

The historian's workbench consisted of a number of historical applications con-

structed using the Microcosm system. Applications could consist of a variety

of images including paintings, cartoons, newspaper articles and maps, as well as

textual material obtained from primary sources or speci�cally authored for the

package. Where appropriate video and audio materials were also included. One

of the aims of the project was to provide a more user-friendly interface than the

basic Microcosm system provided.

A number of speci�c interface issues needed to be addressed due to the nature

of the application. The �rst approach to these problems was to create a new

interface using Visual Basic, which the application could be viewed with. This

proved to be both in
exible and problematic and a more elegant solution was

obtained using the SHEP framework. The following sections discuss a number of

interface problems that arose with the historian's workbench, and the solutions

that were achieved using SHEP.

Varying Levels of User Ability

The application was designed to be used by a wide variety of prospective people.

These ranged from school children, who are becoming increasingly more computer

literate, to academics that might not be familiar with the windows environment

at all.

The context in which the application will be used also a�ects the interface. If the

package is to be used in a University environment where students will be spending

88

a number of hours using the package, it is more acceptable for them to have to

learn how to use the interface. Indeed, they will also expect more functionality,

such as the ability to compare images or have multiple documents open at the

same time.

If the same package were to be used in a museum as an information kiosk providing

additional information about an exhibit, the interface would probably need to

be quite di�erent1. Firstly, the users would spend a few minutes rather than

many hours with the package so the interface would have to be very intuitive and

straightforward to use. It is more than likely that the package would be used in

combination with a touch screen display so the interface would have to avoid the

need for any complicated clicking or dragging which would best be achieved using

a mouse. Finally, because of the varying levels of abilities of the users the system

would have to cater for the lowest common denominator and a simple page-turner

style interface would be the obvious choice.

A number of shepherds were created which could be switched on or o� depending

on user preference. The shepherds each focussed on one aspect of screen manage-

ment and in combination could be used to make the interface more straightforward

to use. The functionality provided by the shepherds was :

� The ability to prevent the user from minimising or maximising windows.

This can prove confusing for nâ�ve users.

� Restricting the windows to the screen area by preventing the user from

moving any part of the window o� the screen.

� Restricting the user to only having one document on the screen at a time.

If a new document is opened the previous document is closed.

� Ensuring that there is always a document on the screen. Initially, this op-

erated by preventing the user from closing a document if it was the only

document left on the screen. Eventually, an alternative, less confusing, ap-

proach was adopted whereby if the user closed the only remaining document

a contents page document was opened for them allowing them to follow new

1The di�erent context may well necessitate di�erent styles of documents as a museum kiosk

would be more likely to present bullet points and card �le style text than textual essays, however

an open hypermedia system such as Microcosm would not prohibit the use of a variety of

document styles within the same application and the content of the package is not the focus of

this chapter.

89

threads through the application. In a kiosk environment this also provides

an easy way to reset the machine for the next user.

� Preventing documents from overlapping. When receiving information from

a viewer that its state was about to change, the shepherd examines all the

other interface components to see if they will be overlapped when the viewer

moves to its new position. If they will, they are moved out of the way of the

viewer, reducing the window in size if necessary. The shepherd was careful

to ensure that by moving the component out of the way it wouldn't overlap

other windows, causing a chain reaction that might well lead to an in�nite

loop.

Copyright Notice Requirements

Many of the images used as part of the content for the application were owned

by publishers. To use the images, copyright clearance was required and the terms

of the clearance varied from publisher to publisher. Frequently however, one of

the terms was that the copyright notice had to be displayed whenever the image

is visible on the screen. One approach would be to add the copyright notice to

the bottom of all of the images. At �rst glance this appeared a straightforward if

laborious solution, but problems quickly arose if the image was resized or if the

user zoomed in to view details of the image. It was easy for the copyright portion

of the image to be obscured or scrolled out of view, which technically broke the

terms of the copyright agreement.

To overcome this, a separate text �le was created which held the copyright infor-

mation. This could then be viewed in a separate viewer to the image. A special

shepherd was used to control the copyright windows and treat the image viewer

and text viewer as single entities. The shepherd used the following rules to control

the copyright features.

� Whenever the image viewer was moved the text viewer holding the copyright

was also moved to keep it next to the image viewer. (The copyright window

was always positioned beneath the image viewer.)

� The user was prevented from moving the image viewer into a position where

the text viewer holding the copyright information was pushed o� of the

screen.

90

� If the image viewer was closed the text viewer was also closed.

� Likewise, if the text viewer was closed the image viewer was closed.

� The text viewer was kept to the front to avoid it being obscured by other

windows while the image was still visible.

� If the image viewer was minimised the text viewer was also minimised, and

likewise both were restored to normal size at the same time.

These rules obeyed the copyright terms to the letter, even though in practice,

keeping the text window permanently to the front reduced the available screen

resource for other windows. Figure 5.7 illustrates the a�ect these rules have on the

interface to the application. The copyright window is always positioned just below

the image viewer window as shown in Figure 5.7(a). Figure 5.7(b) shows the a�ect

of preventing the user from moving the copyright window o� of the screen, the

bottom left hand corner being the furthest the user can move the window. Even

when the image window is manipulated to zoom in or scroll around the window,

the copyright text remains una�ected as shown in Figure 5.7(c). This would not

be the case had the copyright information been added to the bottom of the image.

Finally, Figure 5.7(d) illustrates the inability of the user to obscure the copyright

information with other windows.

It would have been possible to achieve the same results by producing a modi�ed

version of the image viewer which had a separate pane attached to the bottom of

it that could hold the copyright information. This would solve the problem, but

would require producing a new version of the viewer. In addition, the copyright

problem also applies to sound and video �les, which are viewed (or heard) using

di�erent applications.

A �nal approach to the copyright problem would have been to display all the

copyright information in a permanent task bar window along the bottom of the

screen. Although this meets most of the requirements laid down in the copyright

terms, there would be a dissociation between the copyright information and the

piece of media that it refers to.

Synchronising Text and Image Representations of Documents

In order to provide primary sources for historians to work with, the applications

will often contain images of documents, possibly hand-written. These images

91

Screen

IMAGE VIEWER

COPYRIGHT NOTICE

Screen

IMAGE VIEWER

COPYRIGHT NOTICE

(a) The positioned copyright notice. (b) The user cannot move the copy-

right notice o� of the screen.

Screen

IMAGE VIEWER

COPYRIGHT NOTICE

Screen

IMAGE VIEWER

TEXT FILE

COPYRIGHT NOTICE

(c) The image can be scrolled and

rescaled without a�ecting the copy-

right notice.

(d) The copyright must be visible even

if only part of the image is visible.

Figure 5.7: The copyright screen management under SHEP.

are not always legible to everyone using the system and textual transcriptions

are frequently provided. Figure 5.8 shows a typical screen where the image of the

document is displayed on the left and the accompanying transcription is presented

to the user in a text viewer on the right.

One of the goals of the historian's workbench was to maintain the semantic re-

lationship between these two disparate viewers, presenting a uni�ed interface to

the user. Both the image and the transcription can be scrolled independently of

each other, and the objective was to keep the two documents synchronised.

One approach would have been to create a new viewer that displays both doc-

uments. This however would be a hardwired approach involving large amounts

of work to provide the full functionality of the current image and text viewers.

Instead, using SHEP, a shepherd was written that monitored the internal state

of the two viewers and kept them synchronised. A simple approach has the two

viewers supplying state information on their scrollbars. If the image viewer is

scrolled and informs the shepherd of the new scrollbar position i.e. 50% of the

92

Screen

TEXT TRANSCRIPTIONIMAGE VIEWER

Figure 5.8: The synchronisation of document images and textual transcriptions.

way through the document, then the state of the text viewer can be altered to

match this.

As well as providing synchronisation for images and text, the same technique, and

possibly even shepherd, could be used to synchronise between two text documents.

One might be a document in French, and the other the English translation. If the

text viewer is able to give o�set information in terms of paragraphs (which would

presumably be preserved in the translation process) then the synchronisation can

be more �ne-grained than using the scrollbar position. Similar techniques could

also be used to synchronise audio or video �les to a scrolling commentary in a

text �le.

5.9.2 FIRM : Factory Information Resource Management

The FIRM project aimed to use open hypermedia principles to develop new tech-

niques for integrated information management in the manufacturing environment,

in particular to ease maintenance and fault-diagnosis problems. This involved the

creation of a large factory-wide database of multimedia information, potentially

available to other sites in the organisation through the use of appropriate com-

munication technology.

As part of the project, a case study hypermedia application was constructed in

Microcosm from the maintenance and operator set-up manuals for a large cable

making machine at Pirelli cables in Aberdare. The application included a wide

range of electronic documents including text manuals, engineering drawings and

93

data tables. The documents were linked together using a number of open hyper-

media approaches.

One of the reasons for using SHEP was that the system needed to be targeted at

a number of di�erent groups of users, such as :-

Shop-
oor operators: These skilled operators use the system to aid them in

setting up the machine, basic maintenance such as cleaning and lubricating

the machine and loading the machine with the packaging components.

Maintenance personnel: These are highly skilled personnel who use the sys-

tem for preventative and predictive maintenance, corrective maintenance

(fault�nding) and resetting the machine once faults have been cleared.

Sales and Marketing: Outside of the factory environment the sales and mar-

keting teams also need access to the information held within the multimedia

information system. Their focus is di�erent from that of the operators and

they require quick access to the information at a less detailed level than the

shop
oor personnel.

The variety of users presents two key interface problems.

Firstly, marketing and maintenance personnel may wish to access the machine

in an o�ce environment where the use of keyboard and mouse is most likely.

The shop-
oor operators on the other hand will most likely be accessing the

information as they are working on the machinery. The combination of a dirty

working environment and the need for portability lends itself to the use of hand

held pen based computers, or even voice operated hands free systems. These two

di�erent types of platform would necessitate two very di�erent types of interface.

Secondly, the sales and marketing personnel are likely to be reasonably computer

literate and have fewer problems working with a window based operating system.

The shop
oor operators are less likely to be familiar with such operating systems

and rather than force them to use a complicated windowing system using a hand-

held pen based computer which would probably require additional training, it

seems more sensible to provide as straightforward an interface as possible.

With these di�ering requirements either a number of di�erent interfaces could be

created, or SHEP can be used to provide a variety of possible screen management

94

Screen
IMAGE VIEWER

VIDEO VIEWER

TEXT VIEWER

TOOLBAR

Figure 5.9: The original cluttered screen layout for FIRM.

scenarios which are appropriate to the users of the system.

Figure 5.9 illustrates a typical FIRM screen in Microcosm, with only the standard

screen management being provided by the Windows system. This layout may

well suit the technical authors who are modifying the system as they can shu�e

documents around on the desktop and have a mouse and keyboard to interact

with the information.

This interface would not suit the shop
oor operator, who might be using a simple

hand held machine with a pen interface or tracker ball. The windows would be

too �ddly to move around the desktop and the smaller screen resolution compared

to a large monitor in the o�ce would reduce the screen resource available to the

windowing system.

Instead, SHEP was used to create a �xed window layout as illustrated in Figure

5.10. Here, the toolbar always resides at the bottom of the screen keeping the

functionality easily accessible. Documents are displayed in two windows, images

on the left and text on the right. The windows cannot be moved or resized, re-

ducing the screen management burden on the user. Although only two documents

can be viewed at a time, this is more than adequate for the shop
oor operator

to carry out their maintenance tasks. By �xing the windows, the users tasks are

reduced to clicking on the buttons on the tool bar or links in the documents. The

interface is therefore simpli�ed, removing more complicated mouse oriented tasks.

95

Screen
IMAGE VIEWER

TOOLBAR

TEXT VIEWER

Figure 5.10: The SHEP organised screen layout for FIRM.

5.10 Problems with the SHEP Architecture

One of the problems with the SHEP architecture is the sheer volume of messages

that can be generated by the system. The interface components will o�er state

information whenever the user makes the smallest change to the window. This

could include scrollbar position changes as well as changes to the external state

of the window. Ideally, if there are no shepherds registered which will utilise

particular state information, the interface components should be informed that

they don't need to send that particular piece of state information every time it

changes. This would reduce the number of updates taking place within the system.

One way of achieving this would be to have the shepherds register which state tags

they are interested in. SHEP could then collate these into a list that is available

to all of the interface components. This would allow them to only send updates

to the system when a state tag on the list has changed. Since state information

can be stored from sessions to session, when the state is sent for storage it should

include all state information even if there are currently no shepherds that make

use of it.

Also, the presence of a central communications hub that every message must pass

through presents a potential bottleneck in the system when message tra�c is high.

To reduce this, the SHEP library could act more as a broker than as a router. For

instance, when a shepherd sends a message asking for the state of a sheep, the

96

sheep is given a direct communication channel to reply to the shepherd through.

This avoids the need for returned messages to pass through SHEP.

One last possible improvement would be in the arrangement of the shepherd chain.

In the current system, each message is passed along the entire set of shepherds in

the chain whether they are able to process them or not. If the shepherds were to

register which messages they are able to process, SHEP could construct a separate

chain for each message (possibly on the
y). This is equivalent to the Active Filter

Manager topology described previously in Section 3.5.4. The message would then

only be passed around those shepherds who can handle it. This would reduce the

total number of messages passed through the system and speed up the response

time to messages sent by the interface components.

5.11 Conclusions and Future Work

The problems of screen management are well documented. The advent of win-

dowing systems both helped, in that by layering windows the illusion of more

information being present than was actual currently visible could be achieved,

but also hindered in that users had to develop new skills to manipulate these

windows on the screen.

One of the problems open hypermedia systems have is that because of their mod-

ular nature they often have a number of interfaces present at the same time,

displaying a variety of information. This presents a variety of problems for the

user in that they may have to look in a number of places in order to �nd the infor-

mation they are looking for, and sometimes there is no clear connection between

two pieces of information which are related. For example, a copyright notice for

an image may appear in a di�erent window to the image itself.

To help overcome some of these issues, an open framework called SHEP was cre-

ated which enabled the modular construction of tools to help control the screen

and assist both the user and interface designer in their tasks. The framework was

constructed as part of the Microcosm open hypermedia system and a number of

modules in the system were adapted to take advantage of the framework. Finally,

two example applications were looked at, and the bene�ts provided to the appli-

cations by the SHEP framework were considered. A number of problems can be

97

identi�ed with the framework and these were also examined.

The practical applicability of the SHEP architecture has been demonstrated by

its integration into the commercial product Microcosm Pro by Multicosm limited.

Once integrated with the commercial system it was used to construct an inter-

face for a wearable computer produced by Xybernaut Inc, a US company based

near Washington DC. The wearable computer uses the Microcosm system as its

operating system, displaying the interface on a heads up display for the user to

view. Interaction with the wearable machine is through voice communication via

a microphone attached to the users headset. A shepherd was written that took the

output of the voice analysis and converted the results into interface movements

where applicable. The user can instruct the system to minimise or maximise win-

dows and SHEP carries out the commands with the currently selected interface

component.

The
exibility of the SHEP architecture enabled this functionality to be added

through the implementation of a single shepherd that connected directly to the

modular system. Existing shepherds were also con�gured to tailor the Microcosm

interface to the 640x480 screen that was available in the head up display. This

customisation only required the modi�cation of a few entries in the Microcosm

registry.

The use of the SHEP architecture within a commercial framework serves as a tes-

tament to its usefulness, as the
exibility of the system has already been demon-

strated in the construction of the Xybernaut wearable computer interface to Mi-

crocosm Pro. In addition, it's use with FIRM project further demonstrates its

practical application and user trials of the system constructed using SHEP have

been published (Crowder et al., 1997).

Providing increased control over the interface does help alleviate some of the prob-

lems of screen management, but sometimes the problem is more deeply rooted.

Rather that seeking to place two interfaces together because the information they

contain is related, a better approach might be to manage the information at a

lower level. By combining the information rather than interfaces we can move

towards true visualisations of the information. The remainder of this thesis will

investigate this approach.

Chapter 6

Visualisation Systems

6.1 Introduction

One of the underpinning goals of hypermedia is to allow authors to construct

cognitive pathways through information. Unless these pathways can be presented

to the readers of the hypermedia, their function is lost. Traditionally in systems

such as the World Wide Web, the pathways are shown by simply highlighting the

beginning of a link, suggesting to the user that they may wish to look here for

some relevant information. This is a basic form of visualisation, only a short step

away from the inclusion of a full reference, but arguably it does not help the user

to construct a mental map of the information.

This chapter investigates the roles of visualisations in hypermedia and examines

both the mechanical process and the psychology involved in the creation of visu-

alisations of open hypermedia. First, a brief overview of some of the technology

used to create visualisations is given. This is followed by a brief look at some of

the software tools with which to construct visualisations. Next, the concept of

visualisation metaphors is discussed, with a number of di�erent metaphors con-

sidered. Finally, an array of visualisation applications are reviewed, focussing on

their relative strengths and weaknesses.

98

99

6.2 Visualisation Technology

Visualisations are all about the communication of information. This communi-

cation is bi-directional, with information passing from the machine to the user

and requests and control information being passed from the user to the machine.

Traditionally the machine to user mechanism has been the VDU screen, with in-

formation presented graphically. The user machine mechanism more often than

not involves a keyboard and or a mouse. To enhance the computer human reac-

tion hardware researchers have been looking beyond these simple communication

tools and exploring the diversity of human senses and abilities.

The �eld of software visualisation has gone hand in hand with the development

of hardware. From the Cinerama developed by Fred Waller in the 1930's, to

Douglas Englebart's (Engelbart, 1963) modest suggestion that computers could

be used to display information on screens and Ivan Sutherland (Sutherland, 1965)

pioneering the use of head mounted displays for visualising information, software

and hardware have driven forward the �eld of visualisation together. An excellent

account can be found in Howard Rheingold's book on Virtual Reality (Rheingold,

1991). In it, Rheingold de�nes Virtual Reality as

an augmentation tool and not an automation tool.

This is an important distinction. Virtual Reality is not an end in itself, and forms

only part of the whole system. It is very easy to channel all the e�ort of a project

into creating a wonderful 3D virtual world, and then spend what little time is left

trying to work out how to use it.

Currently, desktop PC's have advanced to a stage where texture mapped 3D

worlds can be manipulated using a variety of input technologies and Virtual Re-

ality is available to everybody through rapidly improving 3D graphics hardware.

Communication of information from machine to man does not end with hardware

and graphics technologies though, and they form only a part of the overall picture.

6.3 Visualisation Tools

This section aims to give a quick overview of some of the software visualisation

tools that are currently available. On their own, they provide frameworks which

100

authors can use to create visualisations by adding information and by applying

metaphors.

6.3.1 The Virtual Reality Modelling Language (VRML)

The Virtual Reality Modelling Language (VRML) was devised and implemented

by Mark Pesce and Toni Parisi (Pesce et al., 1994) in 1993, as a 3D interface for

the World Wide Web. Pesce describes VRML as

A language for describing multi-user interactive simulations - virtual

worlds networked via the global Internet and hyperlinked within the

World Wide Web.

The language is based on the Silicon Graphics Open Inventor format and at the

time of writing has reached version 2.0.

The VRML �le, or `world', contains a complete description of a three-dimensional

scene, listing all of the objects that appear within that world. It is the notion of

a world that gives rise to the .wrl �le extension used for VRML �les.

Like the Open Inventor format on which it is based, VRML has a tag to signify

the format being used and then a list of objects. Each object is self-contained,

with nesting being possible to allow inheritance of properties from parent to child.

Objects within VRML are called Nodes. Nodes can contain anything from 3D

geometry to JPEG images. Arranged hierarchically they form scene graphs. As

well as geometrical shapes such as spheres and cubes, VRML also supports light

sources and cameras. The properties of objects are called �elds.

Two other important nodes in VRML are the WWWAnchor and the WWWInline.

WWWanchor : As the name suggests, creates an anchor on an object similar to

anchors in HTML. By clicking on the anchor in the scene a WWW link can

be followed to a document. The document might be a web page or indeed

another VRML �le. Along with the anchor, can be sent the x, y and z

coordinates of where the user clicked within the anchor. This can be used

to provide di�erent results depending where on the object the user clicked.

This behaviour is not unlike that of image maps in HTML.

101

WWWinline : This node is equivalent to the IMG tag for inline images in HTML.

The inline component can range from a VRML object to an entire VRML

�le. An included �le has to be in the VRML format.

It is these nodes that serve to raise VRML above the plethora of 3D modelling

languages and into the domain of hypermedia systems.

6.3.2 Distributed Interactive Virtual Environment (DIVE)

DIVE (Carlsson & Hagsand, 1993), or Distributed Interactive Virtual Environ-

ment is a platform for developing virtual environments, user interfaces and applica-

tions. The system was designed with both distributed operation and collaborative

multi-user applications in mind.

Based on a peer-to-peer network, DIVE makes use of the distributed nodes of the

system to store the state of the objects in the system. By replicating the objects

at a number of nodes, the consistency of the environment can be maintained if a

node is lost from the network without warning.

Users are represented within the system with simple avatar shapes that can be

enhanced by the mapping of images or even digital video onto their surfaces.

Because DIVE is often used for collaborative tasks where communication between

users is essential, the mapping of actual images of the users greatly increases the

expressive capabilities of the system.

A number of research projects have utilised the DIVE platform and these include

Q-PIT and VR-VIBE, which will both be discussed in detail later in this chapter.

6.3.3 RenderWare

RenderWare is included here as a representative for the increasingly large numbers

of 3D graphics libraries that are on the market. Developed by Criterion software

(Criterion Software, 1998) it provides a powerful API for the construction of

virtual worlds. As with many of its counterparts, the library enables users to

create virtual cameras, control lighting and most importantly to create 3D objects.

The system provides, at a fairly low level, the tools for a programmer to construct

a visualisation, without any emphasis on particular metaphors. As was mentioned

earlier, this is just one of a whole host of similar libraries in a growing �eld, �red

102

in no small part the proliferation of 3D games and increasing developments in PC

graphics hardware.

6.4 Visualisation Metaphors

Metaphors serve to root the user within a familiar framework, which allows them

to take advantage of real world knowledge in order to more successfully browse

and navigate within an interface.

An example of a metaphor might be folders within a computer �ling system.

By using a concept which the users understand such as a �ling cabinet full of

folders containing documents, the users can apply their real world knowledge to

the computer environment. When users put documents in the �ling system they

place them within folders. To view documents they must �rst extract it from the

folder.

How far to take the metaphor is a question which interface designers are always

faced with. Using the example above, the interface designer might choose to

restrict users from having more than one folder open at a time, mimicking the

fact that it is impractical to have multiple drawers of a �ling cabinet open at

a time. This would however impose unnecessary restrictions on the user, where

there needn't be. Taking the example further, often no limit is placed on the

user as to how much information can be stored in the folders. In the real world,

when a folder or drawer begins to become overloaded the user might be forced

to break the information down into subcategories and create new folders to hold

these. In the computer world, users are less aware of the overloading of folders

so perhaps are not encouraged to distribute their documents more evenly. Maybe

the graphical folders should bulge more the fuller they get. In many cases these

choices form a trade o� between additional functionality and the comfort of a

familiar environment.

Metaphors, by de�nition, must provide imperfect mappings to their

target domains. If a text-editor truly appeared and functioned as a

typewriter in every detail, it would be a typewriter. The inevitable

mismatches of the metaphor and its target are a source of new com-

plexities for users.(Carroll et al., 1988)

103

Members of the Multimedia Communication Research department of Bell labora-

tories have been exploring the use of metaphors for communication (Ensor, 1998).

Their work includes a skywriting metaphor where a users message is written in

a graphical sky by a virtual bi-plane. Over time the message disperses. Another

example involves writing a message in the sand (Seligmann et al., 1997). The

message remains until a wave comes in and washes it away. Anyone walking along

that particular stretch of the virtual beach will be able to read the message until

it is washed away. A �nal example builds on the work of Hill (Hill & Hollan, 1992)

and the representation of read wear on electronic documents. Called live web sta-

tionary, the representation of a web page is modi�ed by users during the course

of browsing. As more users view the document, so the document representation

gathers smudges and co�ee stains, showing the wear and tear of being handled

by multiple users. Visual indications are given of which links have been followed

most.

The next sections look at a number of di�erent metaphors that are used in visu-

alisation systems.

6.4.1 Desktop Metaphors

Perhaps the most commonly experienced metaphor is that of the desktop. First

produced at Xerox's Palo Alto Research Centre on the Star desktop computer

(Smith, 1982) it has quickly been adopted as an interface standard, and has seen

much development principally by Apple and Microsoft.

The concept is simple. The screen area is representative of a desktop. Items can be

placed on the desktop including �les that represent pieces of paper. Perhaps most

importantly, as on a real desktop �les can overlap obscuring each other. Although

a 2D metaphor this form of depth cueing provides a pseudo 3D environment.

Using simple perspective techniques can increase this form of depth perception.

Kandogan and Schneiderman (Kandogan & Shneiderman, 1997) suggest that over-

lapping windows

no longer provide e�cient means to serve... for today's information-

intensive applications.

104

They propose the use of elastic windows based on a space-�lling Tiled layout.

Their approach is to organise items on the desktop according to the users current

tasks. The windows can be grouped hierarchically, providing the user with an

overview of all of their tasks allowing them to move around the hierarchy as they

switch task contexts. The standard window organisational tools are extended to

allow users to apply operations to groups of windows. This re-enforces the model

of the user working within a context space rather than simple and application

space.

Another way to improve the usability of the desktop is to reduce screen clutter and

streamline on screen menus. A novel approach suggested by Harrison and Vicente

(Harrison & Vicente, 1996) is to use transparent menus. Although concentrating

on providing legibility using transparent menus, the study looked at how the

user switches focus within the interface from the background task to the options

provided by the menu.

Other research on enhancing the desktop metaphor has focused on the design of

desktop icons to provide the optimum transfer of information (Byrne, 1993) and

the use of sound to enhance the interface (Brewster et al., 1993).

6.4.2 The Book Metaphor

The book metaphor has been used a number of times, to ground the user in a

familiar environment. The World Wide Web lends itself to a book metaphor,

being constructed of individual pages often linked by the use of forward and back

buttons representing the movement through the pages of the book. Contents

pages are also proli�c providing indexes into the pages. The use of bookmarks as

page markers could not be a more direct analogy.

Card, Robertson and York took the book metaphor of the web one stage further

when they developed the WebBook (Card et al., 1996). The system takes a col-

lection of web pages and produced a 3D representation of the pages as a book.

The user
ips through the pages of the book and sees an animation of the pages

turning, allowing them to quickly scan for a particular page. Links to destinations

within the book are highlighted in a di�erent colour to those links whose desti-

nations reside outside the book. On selecting a link within the book, the pages

ip until the destination page is reached. This increases the cognitive knowledge

105

of the user by visualising the transition between pages rather than the user just

experiencing a hypertext jump to the new page. This added knowledge helps the

user form an overview of the material, which would assist them in returning to

material at a later date. For example, the user might remember that the page was

near the front of the book. This of course relies on the page ordering within the

books remaining consistent, which may not be the case if the books are created

dynamically.

6.4.3 Library metaphors

The WebBook (Card et al., 1996) sought to extend the web from single pages to

aggregates of pages. Pages grouped together in a book can be manipulated as a

single entity. By taking the metaphor one stage further a visualisation of a number

of books can be created, adopting a library metaphor. Here, the WebBooks are

arranged on shelves. The locations of the books could be arranged to represent

the content of the books or perhaps they are just arranged on the shelves alpha-

betically. Users can browse the shelves to �nd the book they are interested in, or

if when reading a book they follow a link to a di�erent book, they can be taken

to where the book is shelved. This allows them to return to the book directly at

a later date if they wish.

This can be a very important form of cognitive map building. It is very easy to

move around web pages by clicking on links, however it is often very di�cult to

remember the URL of a web page in order to return to it directly. All too often

users �nd themselves having to retrace their route through pages via links in order

to arrive at the desired page. By giving the pages a more memorable location such

as a labelled shelf, users can use a more direct address navigation strategy rather

than relying on the path following strategy which the web currently lends itself

to.

6.4.4 Room based metaphors

The rooms metaphor (Card & Henderson Jr, 1987)(Henderson & Card, 1986) was

developed at Xerox PARC and is an extension to the desktop metaphor. The user

works on a number of workspaces, called rooms, and can move between rooms

viewing the `virtual' desktops contained there. It includes features such as the

106

ability to share objects between rooms, allowing the user to manipulate the object

from either of the shared rooms. It also allows for overviews of the workspaces

and gives the user the ability to load and save their workspaces.

The underlying principle is the organisation of work by context, with the switching

of rooms representing the changes of context. Users could have their report writing

tasks in one room and their coding tasks in another for example. This has been

widely adopted by UNIX window managers with many variations on a theme

currently available.

The 3D rooms metaphor took the analogy one stage further by presenting the

user with a virtual room. As well as the desk space, the user now had walls which

information could be placed, creating a 2D display. The metaphor was enhanced

with doors, which lead to the other rooms. Leaving by the back door would take

you to the last room you visited. The user was provided with a
oor plan of the

rooms containing some indicators of what tasks were being carried out within the

rooms. This built on the notion of using rooms for di�erent contexts. A �nal

addition was the use of `pockets' in which users could carry pieces of information

between rooms ensuring they were always available to them.

6.4.5 Spatial Metaphors

Spatial metaphors are those which seek to exploit the spatial positioning of objects

in order to help the user gain a cognitive overview of the information. Some

common spatial metaphors are discussed below and examples given of systems

which use the metaphors.

Landscape Metaphors

The idea of a landscape metaphor is to place the objects representing the informa-

tion onto a virtual landscape. Browsers of the information can then either walk

around the landscape, as in Alphaworld or Habitat (discussed in later sections), or

y over the landscape gaining overviews of the information as is the case in QPIT.

The key to the landscape metaphor is the generation of spatial information for

the represented objects based on some form of semantics about the objects. This

can result in clustering based on content, or simply laying out the information to

retain hierarchical properties of the data.

107

The landscape metaphor often draws on work in town and city planning, the

intent being to allow users to apply their ability to navigate around towns and

cities to the navigation within the landscape visualisation.

A subcategory of the landscape metaphor is the Populated Information Terrain,

or PIT. PIT's, as well as placing information on a 3D landscape, focus on the

notion of multiple user interaction within the visualisation. Two such systems are

AMAZE and Winona, both of which will be reviewed in later sections.

The Galaxy Metaphor

Using the galaxy metaphor, objects representing the information are placed in a

3D space, usually using position in the 3D space to represent semantic informa-

tion about the object. Where objects are similar semantically they will cluster,

appearing to the browser as a 'constellation' of objects hence the use of the term

galaxy.

Unlike the landscape metaphor, the visualisation is fully three-dimensional. For

this reason, the users more often than not
y around the visualisation. In order to

view all of the information it is often necessary to allow the user to have six degrees

of freedom on their movement, being able to rotate as well as move around the

visualisation to gain the best view of the data. For this reason galaxy metaphors

are often harder to interact with as users are asked to master more complicated

interaction techniques which may seem unnatural to them.

Systems which have used the galaxy metaphor include VR-VIBE and Vineta.

Cyberspace

William Gibson coined the term Cyberspace in his seminal science �ction novel

Neuromancer (Gibson, 1984). To use Gibson's own words

Cyberspace. A consensual hallucination experienced daily by billions

of legitimate operators, in every nation. By children being taught

mathematical concepts... A graphic representation of data abstracted

from the banks of every computer in the human system. Unthinkable

complexity. Lines of light ranged in the nonspace of the mind, clusters

and constellations of data. Like city lights, receding.

108

The Cyberspace metaphor encompasses a number of di�erent metaphors. It de-

scribes the spatial positioning of the galaxy metaphor with the cityscape of the

landscape metaphors. Because of the wide range of it's usage I have chosen to

mention it separately although there is clearly an overlap with other metaphors

that have been discussed in this section.

6.4.6 In
uences from Literature

It is perhaps worth mentioning the in
uence that literature, and in particular sci-

ence �ction, has had on the �eld of visualisation and interface design. Sometimes

an almost intuitive grasp of what is required, coupled with no necessity to adhere

to current technology has lead to the description of interfaces which are now both

inspirational and achievable. Take the idea of the World Wide Web as predicted

by Arthur C. Clark in his seminal sci-� novel 2001: A Space Odyssey (Clarke,

1968).

There was plenty to occupy his time, even if he did nothing but sit and

read. When he tired of o�cial reports and memoranda and minutes

he would plug his foolscap sized newspad into the ship's information

circuit and scan the latest reports from Earth. One by one he would

conjure up the world's major electronic papers; he knew the codes of

the more important ones by heart, and had no need to consult the

list on the back of his pad. Switching to the display unit's short-term

memory, he would hold the front page while he quickly searched the

headlines and noted the items that interested him. Each had it's own

two digit reference; when he punched that, the postage-stamp-sized

rectangle would expand until it neatly �lled the screen, and he could

read it in comfort. When he had �nished he would
ash back to the

complete page and select a new subject for detailed examination.

Perhaps one of the best examples of life imitating art is that of Cyberspace.

Through the system he describes in his novel Neuromancer (Gibson, 1984), William

Gibson has inspired a large number of interface designers. The term Cyberspace

has come to describe practically any 3D world presented to a user where infor-

mation in the system is represented visually. In fact, the internet itself is often

described as Cyberspace, alluding to the creation of a world where two people on

109

the opposite side of the planet can meet and interact irrespective of the physical

distance between them.

In his novel Snowcrash (Stephenson, 1993) Neal Stephenson describes a man-

machine interface known as the Metaverse. Immersed in a virtual world, charac-

ters are represented by self created avatars and can interact with each other and

objects within the Metaverse. The detailed descriptions of this place, emphasise

the use of metaphors and also the physical representation of information as is

illustrated by this short extract.

The room is �lled with a three-dimensional constellation of hypercards,

hanging weightlessly in the air. It looks like a high speed photograph

of a blizzard in progress. In some places, the hypercards are placed

in precise geometric patterns, like atoms in a crystal. In other places,

whole stacks of them are clumped together. Drifts of them have ac-

cumulated in the corners, as though Lagos tossed them away when

he was �nished. Hiro �nds that his avatar can walk right through

the hypercards without disturbing the arrangement. It is, in fact, the

three-dimensional counterpart of a messy desktop, all the trash still

remaining wherever Lagos left it. The cloud of hypercards extends to

every corner of the 50-by-50 foot space, and from
oor level all the

way up to about eight feet, which is about as high as Lagos's avatar

could reach.

6.4.7 Which Metaphor to Choose?

With all these di�erent metaphors at our �ngertips, which metaphor should we

choose for a system? Perhaps the answer is to leave the choice to the user. Dif-

ferent tasks and di�erent users will demand di�erent metaphors to work within.

This requires an open framework that allows us to visualise our hypermedia in-

formation in many di�erent ways if we so choose. In his keynote speech at the

Hypertext '87 conference Andreas Van Dam expressed this same opinion.(Van

Dam, 1988)

But we don't want to put things together in such a way that there is

one point of view, because if we have learned one thing from interactive

110

tools up to now it is that multiview is the way people work. You can

not have it just one way. We need an update to Larry Tessler's \Don't

mode me in." Jim Foley and I recently came up with \Don't metaphor

me in." Don't give me a little card image and say that \That's all

you've got, because that's what I thought you should want for your

virtual shoe box." There have got to be multiple modalities and the

designers have to be able to deal with that.

Don't metaphor me in, don't give me only one way of looking at things.

6.5 Visualisation Applications

The sections below describe a number of visualisation applications for informa-

tion. A brief synopsis of each application is given along with comments on the

advantages and disadvantages of the visualisation approaches adopted.

Rather than using screenshots of the applications, illustrations are used which are

designed to highlight the pertinent features of the visualisations, usually removing

irrelevant information such as background desktop icons and operating system

speci�cs. In each case, a reference is provided for the screenshot upon which the

illustration was based.

6.5.1 SemNet

SemNet (Fairchild et al., 1988) was developed to help visualise the complex re-

lationships within large, arbitrary knowledge bases. It attempted to explore the

use of 3D visualisation to improve user comprehension. The objects within the

database and relationships within them mapped nicely to 3D graphs. The visu-

alisation was essentially a technique for turning large knowledge bases into large

directed graphs, exploiting users spatial awareness in assisting them to create

cognitive maps of the information as shown in Figure 6.1.

Much of the experimentation with SemNet involved �nding methods of reducing

the complexity of the graphs generated by utilising techniques such as information

hiding and novel graph layout approaches such as �sh-eye views.

111

Figure 6.1: An illustration of a SemNet screen based on a screenshot in (Fairchild et al.,

1988).

6.5.2 GraphVisualizer3D

The GraphVisualizer3D was created by Ware et al. (Ware et al., 1993) as a

testbed for investigating approaches to presenting 3D graph information to users.

The two main areas of investigation were information perception and graph layout

strategies. The application area chosen was the visualisation of source code, where

the program procedures and call trees map nicely into graphs constructed from

nodes and arcs

Drawing heavily on the SemNet system, the GraphVisualizer3D allowed visual-

isations to be created of graphs constructed of nodes and arcs, where both the

nodes and arcs could contain multiple attributes. Where SemNet put the em-

phasis on automatic graph layout, GraphVisualiser3D advocated a more manual

layout process, arguing that automatic layouts can do no more than provide a

�rst approximation, with the best layouts taking into account semantic informa-

tion which can only be provided by authors.

The system took a Benediktine approach to visualisation, with nodes represented

112

Figure 6.2: An illustration of the GraphVisualizer3D interface based on a screenshot in

(Ware et al., 1993).

as objects and arcs being represented by the lines connecting them. Attributes of

the software objects being represented in the visualisation such as type, size and

structure were mapped onto attributes of the virtual objects such as shape size

and colour. Figure 6.2 illustrates a typical screen from the GraphVisualizer3D

interface.

Unlike a number of the other systems mentioned here, user trials were carried

out in order to assess what factors most a�ect the users ability to understand

a graph from a 3D visualisation. Di�erent methods of interaction were studied

using the system, including both hardware and software approaches to improving

the interface. The di�erent approaches were assessed based on the users ability to

determine whether two highlighted nodes in a complex graph were connected by no

more than two arcs. The trial considered the time taken to make a judgement and

the error rate of the judgement. The di�erent conditions under which the trial was

carried out included; 2D representation, 3D representation, stereo information,

rotation and full head coupled display techniques. All of the conditions took

place either on just a monitor, or by using �sh tank VR including stereoscopic

113

glasses and hand and head tracking techniques.

The results concluded that the 3D solutions provided less errors and slightly faster

assessments than conventional methods. Other techniques such as stereoscopic

displays and head coupling did provide some improvement over the simpler tech-

niques but will always be both more cumbersome and more expensive to provide.

6.5.3 The Information Visualizer

The Information Visualizer (Card et al., 1991) was developed at Xerox's Palo

Alto Research Center. It is based on a Rooms metaphor and includes a number

of novel interface tools designed to support a new interface paradigm.

An array of tools were developed to provide animated visualisations of hierarchical

information resources. Some of these are described below.

Cone-Trees

Cone trees (Robertson et al., 1991) provide a novel interface for representing

large data collections. Cone Trees are hierarchies presented uniformly in a three

dimensional space. An example can be seen in Figure 6.3.

The top of the hierarchy forms the apex of the cone, with child nodes appearing

below. As we move down the hierarchy, the number of nodes in the current level

is increased, therefore the nodes are more spread out leading to the appearance

of a cone. Each child node forms the apex of a cone comprising its children. The

base diameter of the cones is reduced as you go down the tree to ensure there is

su�cient space to display all the nodes at that level. By presenting the hierarchy

in 3D the available screen space is used more e�ectively.

Another variation on the theme is Cam trees. In most respects they are identical

to Cone trees except the tree expands horizontally rather than vertically. In the

experimentation carried out at Xerox Park on Cone and Cam trees, it was found

that smooth animation when moving around the visualisation was important in

helping the viewer to maintain their cognitive model of the information.

114

Figure 6.3: A typical cone tree visualisation based on a screenshot in (Robertson et al.,

1991).

The Perspective Wall

A major problem encountered when exploring large information spaces is the

di�culty of examining detailed information while still maintaining a contextual

overview. This is a particular problem with linear information, such as a spread-

sheet, which when rendered has a much wider aspect ratio than the desktop. This

would traditionally involve the user only being able to view a section of the in-

formation with the rest being e�ectively 'o� the screen'. The Perspective Wall

(Mackinlay et al., 1991) was designed to address this issue.

Wide 2D layouts of information are mapped onto a 3D wall that then is divided

into three panels. The central panel contains the detailed information that the

user is focussing on. The two panels on either side are rendered in perspective, as

if falling away at an angle from the screen. By rendering the section of the wall

in perspective, the reader gets an overview of the information without being able

to make out the detail. This is shown in Figure 6.4.

The reader can move left and right along the wall, bringing di�erent parts of the

information onto the central detailed part of the wall. The overall e�ect is similar

115

Figure 6.4: An illustration of a perspective wall based on a screenshot in (Robertson

et al., 1991).

to that of a �sheye view, with the reader's focus drawing information toward them,

and peripheral information receding into the background.

The Table Lens

The table lens (Rao & Card, 1994) draws on the work of the perspective wall,

allowing an overview of a table of information to be presented concurrently with

a detail view of part of the information. Where it di�ers is that it operates in two

dimensions rather than the single dimension of the perspective wall.

In order to overcome the restrictions of limited screen space, a variation on the

�sh-eye technique is used to increase the proportional amount of space occupied

by the cells of the table within the focus of the view. The size and shape of the

focus area can be changed, determining what part of the information the user sees

in detail. Information out side of the focus area is compressed in the remaining

space allowing an overview of the information to be viewed. The e�ect of this on

a spreadsheet is illustrated in Figure 6.5.

116

Figure 6.5: An example of the context+focus table view produced by the table lens,

based on a screenshot in (Rao & Card, 1994).

Because the visualisation is designed for use with tables of information, maintain-

ing the regularity of rows and columns was important and any distortions applied

to the tables are only ever stretches in the horizontal or vertical directions, ensur-

ing that the rows and columns always remain lined up. This has the added bene�t

that multiple focus areas can be allowed, providing the user with the ability to

compare detailed information from two di�erent parts of the table.

6.5.4 VR-VIBE

VR-VIBE is a 3D version of the original 2D VIBE system created at the University

of Pittsburgh (Olsen et al., 1993). VIBE provided the user with a two dimensional

visualisation of a collection of documents.

VR-VIBE uses statistical techniques to visualise a document bibliography and

allows the user to interact with and manipulate the space (Benford, 1995). VR-

VIBE has been implemented using the DIVE system (Carlsson & Hagsand, 1993)

described earlier in section 6.3.2. The VR-VIBE environment is constructed from

a bibliography �le and a corresponding set of queries.

117

Figure 6.6: An example of a VR-VIBE visualisation based on a screenshot in (Benford,

1995).

The queries are sets of keywords that can be searched for within the content of the

documents in order to generate scores that show the relative correlation between

the query and the document. The queries are placed within the environment

forming Points of Interest (POI's). The proximity of a document to the POI is

directly related to the relative score of the document with the query. The relative

attraction of the document to the queries is used to derive a position for the

document within the virtual space. The VR-VIBE interface is shown in Figure

6.6.

If a document has an equally strong match to two queries then it is placed equidis-

tant from them. One problem that arises however, is that if a document is equally

weakly associated to the two queries it would also be placed equidistant from them.

Because of this, 3D spatial location is not enough in itself to show the strength of

the association to the queries.

In order to display the overall relevance, two approaches were taken.

If the queries are all placed on a two-dimensional plane, the third dimension can be

118

used to indicate the overall relevance of the document. The higher the document

is positioned above the plane, the more relevant it is.

If the queries are arranged in a three dimensional space, the spatial location of

the document gives no clue as to its overall relevance. In this case, a combination

of size and shade was used. The larger and brighter the document icon, the

more relevant the document was overall. One drawback of this method is that

large document icons can easily obscure the smaller less relevant documents. This

makes the ability for a user to rotate the visualisation and view from di�erent

positions even more important.

Users can move around the visualisation with six degrees of freedom. When the

user selects a document, by clicking on it, its title and author are displayed.

Users can also mark documents for later reference, which causes the colour of the

document to change. This provides an `at a glance' history mechanism allowing

the user to easily see which documents they have examined already. Users can

also launch browsers to view the documents from within the system by double

clicking on the document icons.

Relevance �ltering is also employed to restrict the visualisation to those documents

that satisfy certain threshold criteria. The queries can be dragged around the

environment, and dynamically created and destroyed. Changing a POI causes the

document space to be redrawn with the documents occupying their new position

relative to the current POI's.

The system supports multiple users within the same document space, with users

able to see representations of each other within the system. Co-operation between

users is essential, since when a user modi�es the document space by adding,

removing or changing a query, the document space is re-arranged for all the users.

Because the document representations are not �xed, when the spatial positioning

changes it can be easy for users to lose track of documents they are interested in.

6.5.5 Lyberworld

Lyberworld (Hemmje, 1993) was developed to provide visualisations of queries

carried out on an information system called Fulltext. The information space was

119

Figure 6.7: An illustration of Lyberworld navigation cones based on a screenshot in

(Hemmje, 1993).

modelled as a network of documents and terms. The space was visualised using

NavigationCones and RelevanceSpheres.

Navigation Cones

The NavigationCones were constructed to illustrate the extent to which the infor-

mation space has been explored, presenting query paths through the information.

They were loosely based on the Cone trees approach of Robertson (Robertson

et al., 1991) with the cones running horizontally rather than vertically. This al-

lowed the nodes to be stretched which gave the opportunity to label the sides of

the nodes with text labels to identify the objects. An example of navigation cones

is shown in Figure 6.7.

One problem with cone trees is that the visualisation is most suited to data that

is inherently hierarchical. To overcome this, Lyberworld maps network structures

to hierarchical tree structures by introducing redundancy.

120

Relevance Spheres

The Relevance sphere was used to suggest documents that were similar to those

matched by the users query. It operates on a similar principle to VR-VIBE but

attempts to address the issue of documents with equally little relevance to the

POI's being located in the same position as those with an equally strong relevance

to the POI's. The terms of the query are placed on the outside of the sphere. The

relevance of the document to the overall query equates to its proximity to the

outside. A totally irrelevant document will be at the centre of the sphere. The

document's relevance to the query terms is represented by its relative proximity

to the terms. The user is free to rotate the sphere to look at it from any angle.

This is designed to remove the overhead from the user of guessing the perspective

of the 3D world from e�ectively a 2D rendition.

6.5.6 Q-PIT

Built using the DIVE system, the Q-PIT prototype provides visualisations of a

database (Benford, 1995). The user generates a database schema that contains

mappings from �elds in the database to properties of objects within the visual-

isation. For example, people's names might be mapped onto the x-dimension,

occupation on the y-dimension, location on the z-axis, age onto the spin speed of

the object and gender onto the shape of the displayed objects.

Users can move around the visualisation examining the objects and their relation

to each other. Q-PIT is a multi user system, and other users can be seen in the

visualisation, represented by the standard DIVE `T' shaped icon with eyes drawn

onto the crosspiece of the T . This simple icon gives an indication of the users focus

of attention, which can then be perceived by other users of the system. Figure 6.8

shows a QPIT screen in which a user can be seen amongst various data objects.

Once the users are familiar with the mapping system, they can begin to connect

semantic associations with patterns they perceive within the visualisation. A

particular cluster of documents might indicate a large group of people of the

same occupation in the same location. The predominance of a particular colour

might give a quick visual indicator of the gender make-up of the group of people

represented in the database.

121

Figure 6.8: The QPIT visualisation interface based on a screenshot in (Benford, 1995).

A drawback of the Q-PIT system is that it relies on the users to provide all the

mappings between object �elds in the database and virtual object properties.

Also, as in VR-VIBE, if one user modi�es the mapping this must be communi-

cated to all the other users in order to maintain the integrity of their cognitive

associations between virtual world properties and real world information.

6.5.7 BEAD

BEAD is another multiuser virtual environment constructed using the DIVE

toolkit (Chalmers & Chitson, 1992). It uses a technique known as simulated

annealing to arrange the documents into a three-dimensional information terrain.

By using a similarity metric based on word co-occurrence, documents are located

on the terrain near similar documents. Initial versions of the system attempted

to enforce the similarity metrics as closely as possible, resulting in a galaxy rep-

resentation with documents clustering in three dimensions. Further research used

a more 2D approach with the documents being located on a plane with only mi-

nor vertical shifting being used. The resultant visualisations resemble more of an

information landscape. Figure 6.9 shows a birds-eye view of a BEAD landscape.

122

Figure 6.9: An illustration of a BEAD landscape (birds-eye view) based on a screeshot
in (Chalmers & Chitson, 1992).

Multiple users can roam the landscape, represented using the standard DIVE

avatars. Users can interact with the information and perform searches which

leads to the objects matching the query being highlighted. This approach avoids

some of the problems encountered when querying alters the spatial layout of the

documents. The similarity metric also enables users to infer that documents close

to the highlighted document might well be similar in content.

Being a multiuser visualisation, users can observe the actions of other users and be

guided by their interactions with the information. Users are able to use overview

information such as the density of documents to begin to form a cognitive map of

the information. Similarly, documents located on the periphery of the visualisation

are likely to have no real relation to the core contents of the information space.

6.5.8 Vineta

Vineta (Krohn, 1996) is a visualisation system designed for visualising, browsing

and querying large databases of bibliographic information. Like VR-VIBE and

Lyberworld, documents and terms are presented as graphical objects within a

123

Figure 6.10: The Vineta galaxy visualisation based on a screenshot in (Krohn, 1996).

three-dimensional space. The position of objects within the space is representa-

tive of the semantic relevance between the documents, terms of the query and

the user's interests. By using multivariate analysis and numerical linear algebra,

Vineta su�ers less from restrictions in the number of terms that can be mapped

simultaneously compared to other systems. As in other systems, spatial proximity

provides a direct correlation to semantic similarity.

Vineta uses two metaphors in generating visualisations. The �rst is a galaxy

metaphor, where documents appear as clusters of stars, with terms presented

as `shooting starts'. The closer the stars are in the navigation space, the more

similar the documents they represent are. Projections from the surface of the

objects point at the various queries in the space. The length of the projections

gives an indication of the relevance of that particular query. Figure 6.10 represents

a galaxy visualisation presented by Vineta.

The second metaphor that can be used in the system is the landscape metaphor.

Here, a
at landscape is presented to the user with documents represented as

owers. Flowers nearer to the user's viewpoint are most relevant to the current

query. The direction and colour of the petals on the
owers is used to represent

124

Figure 6.11: The Vineta landscape visualisation based on a screenshot in (Krohn, 1996).

the search terms and their relevance to each document. A
ower covered Vineta

landscape is illustrated in Figure 6.11

6.5.9 Habitat

Lucas�lm's Habitat was a large scale, multi user, graphical, virtual environment

(Morningstar & Farmer, 1991). As an early form of shared cyberspace, the com-

mercial project could support a population of thousands within its virtual world.

It presented a real time animated view into an on-line simulated world in which

the users could communicate with each other, play games and interact with the

world in a wide variety of ways.

The principle lesson which its creators saw as coming out of the project is that

cyberspace is de�ned more by the interactions which take place within it than

by the technology with which it was implemented. In fact, its implementation

platform was the Commodore 64 home computer, so the rendering of the world

was cartoon like with the participants represented by simple avatars of the form of

animated �gures. Communication took the form of chat style conversations that

125

Figure 6.12: The cartoon look and feel of the Habitat world based on a screenshot in

(Morningstar & Farmer, 1991).

appeared in speech bubbles above the character's heads. Figure 6.12 is a sketch

of a Habitat screen.

This front-end, although primitive by today's standards, was quite capable of sup-

porting the rich and varied activities that were happening within the visualisation.

Despite the limited graphics, the experience was reported as being impressively

immersive, and the system shows that rich interaction and useful content is usually

more important than
ashy graphics.

6.5.10 The Information City

The Information City (Dieberger, 1996) was designed as an extension to the

Room's metaphor (Henderson & Card, 1986). Authors construct their hypertext

from a number of basic building blocks, in this case quite literally.

A hypertext is represented by a single building in a landscape of hypertexts.

Within the metaphor, a building with an open door is representative of a document

with a strong relation to the users current context, and a half-closed door would

126

represent a weaker relationship. The exterior appearance of a building is used to

provide information about the document such as its age and complexity. By the

user creating an interest pro�le, the city can be laid out to re
ect the interests of

the users, with documents on a particular topic being located within a district of

interest. To overcome the problem of movement over large distances within the

city, Deiberger opted to include a subway metaphor rather than a teleportation

metaphor as this was thought to prove less disorienting to the user.

One of the core ideas of the Information City is that the information gains a

location in the visualisation that doesn't change. If a user wishes to revisit the

location they are able to use navigational strategies such as path following or

direction cues in order to �nd the information again.

The explicit spatial model draws heavily on the work of Lynch(Lynch, 1960) in

the �eld of city planning. By sticking rigidly to the metaphor, users should �nd

the interface intuitive to use as it draws on their natural spatial awareness. Al-

though providing the comfort of familiarity however, the rigidity of the metaphor

imposes a number of harsh constraints on the system, and as in the real world

the `architects' are restricted in the buildings they can create. Also, the spatial

distance between the information can become annoying to the user. One of the

great advances of the information age was the ability to take information dis-

tributed geographically and allow it to be accessed easily from a single location.

The Information City, may unwittingly provide a virtual reconstruction of this

previous problem.

6.5.11 Alphaworld

Alphaworld (Worlds Inc., 1993) was designed and built as a virtual community

where users can become citizens and move around and interact in a 3D virtual

world. The world is loosely based on the Metaverse described by Neal Stephenson

in his novel Snowcrash (Stephenson, 1993). Citizens can acquire plots of land and

build their own buildings within the 3D environment. Figure 6.13 shows an art

gallery constructed within Alphaworld. Users can view paintings on the walls as

they walk around the gallery. By clicking on the pictures, large, more detailed

versions can be viewed in a web browser.

127

Figure 6.13: An art gallery constructed in Alphaworld based on a screenshot in (Worlds

Inc., 1993).

The users are represented within Alphaworld by avatars, which they can create

in the form of their own choosing. When users communicate through the chat

interface, the text appears in front of the avatar, which is speaking in a pseudo-

cartoon like fashion, not dissimilar to Habitat. Users are encouraged to create their

own avatars and in so doing become visually unique beings within Alphaworld.

The system operates with a simple client server infrastructure with the server

holding all of the models and textures required to construct the world. Initially

the client will download these models and textures as and when it needs them,

with local caching speeding up this process.

Navigation around Alphaworld follows simple town planning principles. The world

is divided into zones with roads and footpaths connecting them as shown in Figure

6.14. In order to overcome problems of distance, features such as teleporters have

been created which provide rapid movement between locations. This does provide

a discontinuous jump that breaks the real world metaphor, but was considered a

necessary evil.

Although it is possible to access web pages by interacting with objects within

128

Figure 6.14: The Alphaworld 3D landscape from a
ying perspective based on a screen-

shot in (Worlds Inc., 1993).

Alphaworld, it was the social aspects that provided the main thrust of the devel-

opment. There have even been extensive documents on etiquette written which

guide users in what is and isn't acceptable behaviour in the virtual world.

6.5.12 VIRGILIO

The main goal of the VIRGILIO project (Massari et al., 1997) was stated as to

De�ne novel, intuitively usable visual user interfaces, which signi�-

cantly reduce the cognitive load of the user when working with multi-

media database whose schema contains many semantic relationships.

Unique among the systems discussed here, VIRGILIO attempts to use dynamic

metaphor generation to create a visualisation of a database that is both intuitive

for the user to navigate and appropriate to the information contained in it. By

combining user pro�le information and examining the structure of the database,

the system generates VRML scenes which enable the user to interact with the

results of their queries in a fully 3D environment.

129

Figure 6.15: The music elevator in the VIRGILIO demo based on a screenshot in (Mas-

sari et al., 1997).

The demonstrator described in the literature discusses querying a music database.

The user �nds themselves in the lobby of a building with a lift in front of them

representing the database. Inside the lift, the buttons to select
oors correspond

to di�erent types of music, as illustrated in Figure 6.15. The user might select

`pop' for example. On exiting the lift a corridor is presented which has a door

for each artist in the database. As can be seen in Figure 6.16, the labels above

the doors name the artist whose information is stored inside the virtual room.

When the user enters a room, they are presented with objects that represent the

information on the artist such as posters, songbooks, and records. By interacting

with the objects they can listen to audio �les, view images of the artists or read

the song lyrics from the books.

The fact that people can naturally navigate around a building is the cornerstone

of the metaphor. However, it is unclear that this interface is any easier to use

than selecting artists from a list and then viewing a list of the material available

on that artist. The added geography of the interface will certainly slow down

the speed with which the user can access the information they are interested in.

130

Figure 6.16: The corridor of musicians forming part of a VIRGILIO visualisation based

on a screenshot in (Massari et al., 1997).

If they decide they want to then �nd some information on ZZ Top for instance

they will �nd they have to leave the room, change
oors using the lift, and then

walk down a very long corridor before arriving at the information they want.

Here, the metaphor interferes with the users ability to carry out a task rather

than simplifying it. This of course, may be a re
ection on the clear and simple

database they chose for the illustration, but is symptomatic of many visualisations

that we encounter.

6.5.13 Cybermap

Cybermap (Gloor, 1991) is an automatically generated overview map speci�cally

designed to assist with navigation through hyperdocuments. Using information

retrieval techniques, nodes within the hyperdocument were clustered into hyper-

drawers. The user can call up a map at any time that shows them their current

location and any accessible location from where they currently are. The map dis-

play uses a form of �sh-eye �ltering (Furnas, 1994) to help present the information

as clearly as possible.

131

The system makes no use of any structural linking within the hyperdocument,

relying solely on the pre-built index generated by the information retrieval process.

In addition, the system uses information about the user that has been collected,

both actively, from a user pro�le, and passively, by monitoring the users actions.

The pro�le is principally used to �lter out documents that the user is least likely

to be interested in, thereby reducing the number of nodes represented on the map.

Although the map is generated dynamically for the user, the index creation is

an o�-line process that must be repeated whenever new nodes are added to the

system. This allows authors to customise the indexing process to take advantage

of expert knowledge, and also reduces the time taken to calculate the maps on

the
y.

6.5.14 AMAZE

The AMAZE system (Benford, 1995) uses 3D graphics to provide a novel interface

to the construction of queries to a database and the representation of results. The

user interacts with a 3D representation of the schema and builds the query on it.

The results are presented to the user as an organised series of 3D objects.

To construct the query, the user moves around a three-dimensional representation

of the schema. When they �nd an entity class they wish to perform a query on,

they click on it and de�ne their query. They can carry this process out on a

number of di�erent entity classes if they wish. Each set of added constraints is

shown as a dangling cube from its parent entity class. This gives the user a visual

indication of the query.

The results are visualised by grouping resulting instances of the same entity class

into sets and colour coding them, with each resulting instance being presented as

a cube within the result space. A typical query schema is shown in Figure 6.17.

6.5.15 3D File System Navigator (FSN)

Developed by Silicon Graphics (Silicon Graphics, 1995), the File System Navigator

(FSN, pronounced fusion) provides a cyberspace rendering of a standard �ling

system. The directories in the �ling system appear as pedestals on a landscape,

rendered in 3D. The pedestals are arranged to re
ect the hierarchy of directories

132

Figure 6.17: A query visualisation in AMAZE basde on a screenshot in (Benford, 1995).

in the �ling system, with e�orts being made to avoid overlapping of the pedestals

that might cause problems of occlusion. The height of the pedestal re
ects the

number of �les in the directory, which are represented by boxes on top of the

pedestals. The system also makes use of colour to indicate the age of the �les.

Figure 6.18 is a sketch of a FSN screen.

User can move around the �le structure by
ying around the landscape to gain

di�erent views. To access the �les users simply click on the box they are interested

in.

Although used to provide a visualisation of a �ling system, the general informa-

tion landscape could be used to represent other graph and tree structures. The

visualisation remains fairly static, mainly due to the limited �le information it

displays (size, age). This could perhaps have been extended to include informa-

tion on which �les are currently opened, if visualising a multi-user �le space. The

limited visualisation does have the advantage of a consistent mapping however,

which the users can quickly become familiar with.

133

Figure 6.18: The File System Navigator interface based on a screenshot found at (Silicon

Graphics, 1995).

6.5.16 Narcissus and Hyperspace

The Narcissus system (Hendley et al., 1995) is designed to visualise large sets

of computer based information with a view to showing the user the semantic

structures within. Objects are placed in the visualisation as spheres, to represent

the information being examined. This might be a software engineering system or

a collection of web pages. All the objects in the system are given a behaviour that

determines their movement in the space. The rules determining the behaviour are

common to all the objects and can be summarised as

� All objects exert a repelling force on other objects.

� Active relationships between objects lead to attractive forces being exerted

between related objects.

The result of these behaviours is that the objects in the system are self organising.

They will naturally move toward similar objects and away from objects with

no relationship. After a number of iterations a reasonably steady state can be

achieved with clusters of documents appearing, illustrating semantic structure

134

Figure 6.19: An example of the Narcissus visualisation based on a screenshot in (Hendley

et al., 1995).

within the document set. Figure 6.19 shows a set of objects having reached their

�nal state and the emergent structure this has produced.

Because the forces in the system result in accelerations it is possible for documents

to pulse or even orbit each other. It is claimed that this motion can form a

valuable part of the visualisation. However, this continual motion can place a

computational overhead on the system, so alternative approaches were used such

as forces resulting in velocities rather than accelerations. This is far more likely

to result in a steady state.

Within the space, users are free to move around and manipulate the objects. Users

can also exert some control over aspects of behaviour of the objects. In order to

provide more information on the objects to the users, techniques were used such

as labelling the objects or mapping icons onto the surfaces of them. Among other

techniques used was agglomeration to reduce the structure of the visualisation by

merging similar objects into `super'-objects. If the user examines the super-object

closely the more detailed structure is revealed.

135

One of the problems cited about such self organising systems is that even small

changes to the system such as the addition of a new object can result in quite

dramatic changes. The similarity of objects makes tracking a particular object

during the re-organisation phase quite di�cult. The importance of animating the

re-organisation smoothly becomes even greater because of this.

Hyperspace

Hyperspace (Wood et al., 1995) was developed from the Narcissus system. It

is used to visualise web documents, with the objects in the visualisation being

web pages joined by links. The links provide the attractive force between objects,

acting as `springs' during the re-organisation phase. The system is highly dynamic,

with each new web page browsed, the document is parsed and all documents

reachable from the page are added to the system. This causes re-organisation of

the overall structure to accommodate the new information. In the visualisation,

the size of the sphere is representative of the number of links from the page.

An alternative approach would be to make the size of the sphere proportional to

the number of hits on the page, providing the viewer with an indication of the

importance of the document with respect to other web users. Key, well read,

documents would then appear as large objects in the visualisation.

6.5.17 SHriMP Views

SHriMP (Simple HieraRchIcal Multi-Perspective) Views (Storey & M�uller, 1995)

are designed to enable graph layout adjustment while preserving various properties

of the graph. The properties which it is suggested should be maintained in order

to help preserve user's mental maps are listed as :

Orthogonal ordering. Maintaining the horizontal and vertical ordering of points.

Clustering. Ensuring that close nodes in the original graph remain close in the

distorted graph.

Topology. Keeping the distorted graph homeomorphic to the original graph.

It is however, impossible to distort a graph and retain all of the properties listed

above, therefore compromises must be made and di�erent strategies re
ect which

of the properties are retained.

136

Figure 6.20: An illustration of the SHriMP graph layout approach based on a screenshot
in (Storey & M�uller, 1995).

The basic SHriMP view works by taking a graph and enlarging the focus node so

it occupies more screen space. The surrounding nodes are moved away from the

current node preserving their relationship to it. This would place the nodes o� of

the screen, so they are reduced in size in order to remain within the screen area.

The overall e�ect is that the focal node has grown in size, squeezing its siblings

into the remaining space available. In the distorted graph, no nodes are left

overlapping if they weren't overlapping originally. The algorithm draws heavily

on �sh eye approaches to screen layout (Furnas, 1994). A distorted graph with

multiple focus points is shown in Figure 6.20.

Depending on the nature of the graph it can be desirable to ensure that di�er-

ent properties are retained. For example, with simple grid layouts parallel and

orthogonal relationships are often most important. For layouts such as under-

ground maps, the proximity relationships may be more useful to preserve.

The algorithm can be extended for multiple focal points on the same graph in a

similar way to the multiple focus �sh-eye techniques. Unlike most of the other

visualisations mentioned here, the view is 2D, designed to be easily incorporated

137

on the desktop. The algorithm has been used in an application for visualising

software call graphs and dependencies.

6.5.18 StarWalker

The StarWalker virtual environment was developed at Brunel University by Chaomei

Chen (Chen et al., 1999). A multi-user virtual environment, created using VRML,

it emphasises spatial models, semantic structures and social navigation metaphors

as a means to interact with document collections.

The VRML environment is built on top of Blaxxun's Online Community client-

server architecture which provides the underlying multi-user communication. Users

enter the virtual environment through various types of viewport.

Within the world, users are represented by avatars and the documents represented

by spheres. Links connecting the documents are represented by cylinders. The

length of a cylinder is used to represent the semantic distance between the docu-

ments and the diameter represents the similarity of the two connected documents.

The colour of the spheres was randomly chosen to help distinguish them, however

it is not clear from the literature whether the colours are maintained for a given

document from session to session (Chen, 1999).

By allowing the user to move through the document set, the problems of focus

versus context are reduced as users can 'back o�' from the document set to gain

and overview of the data, or move in close to gain a more detailed view of a

particular portion of the dataset. As the user moves closer, more information can

be revealed to them. For instance, as the user approaches a cluster object in the

virtual world, the full structure within the cluster will be revealed.

6.6 Problems with Current Visualisation Systems

Visualisation systems tend to be inherently closed systems. This manifests itself

in a number of ways.

� The visualisation operates on one form of data only, more often than not the

target domain directly a�ects the construction of the visualisation software.

138

� The visualisation is based around a single metaphor with a single interface

accessible to the user. The rigidity of the metaphor is often accounted for

by prior knowledge of the dataset being visualised.

� In a multi-user system, all users are forced to view identical visualisations

of the information.

� Users can only customise the visualisation in a restricted fashion, if at all.

Furthermore, one user's customisation of the visualisation may well a�ect

another users view.

� Many visualisations make use of spatial layout or object appearance, but

infrequently exploit both to their full potential.

One of the main problems with the visualisation systems described above is that

the user often experiences the information space vicariously in that the space

has been de�ned and created by someone else. Usually, the mapping of real to

virtual objects is hard-wired and governed by a system that the reader must learn

and cannot alter. Where this imposition of metaphors is used wisely it can of

course be very e�ective and often the structure of the information lends itself to

a particular representation. However, where the data is more abstract and takes

on new signi�cance's as the readers context changes, such hard-wired approaches

begin to break down and the readers desire to impose their own metaphors and

spatial layouts on the information becomes greater.

These restrictions can often be `papered over' within a single visualisation and

quite often the speci�c targeting is used to reduce cognitive overhead for the user.

The problems can arise however if the user wishes to combine two types of data

within a single visualisation. In many cases this is simply not possible. Where it

is possible, it would often be desirable to modify the metaphor to incorporate the

new data more fully.

6.7 Conclusions

Visualisation systems have migrated over the years from specialist hardware sys-

tems to software that can run on standard workstations. 3D modelling languages

such as VRML have become integrated with hypermedia systems and have been

seen as a way of helping users understand the underlying information available

to them. Many di�erent approaches have been tried and systems developed to

139

tackle the issues of presenting visualisations of hypermedia information. Most of

these systems however are tied into particular hardware, metaphors, or speci�c

hypermedia systems. This often prevents their re-use in other ways, and makes

modi�cation to the visualisations problematic.

In order to try to overcome these problems it is necessary to `open out' the vi-

sualisations enabling di�erent forms of data to be incorporated using di�erent

metaphors which can be customised on a personal level by the user. This situa-

tion is not unlike the problems addressed in the hypermedia communities when

embedded linking restricted hypermedia systems, closing o� possible alternatives.

The next chapter will investigate the application of an `open' approach to the

generation of visualisations and present a novel architecture that seeks to solve

some of the problems of closed visualisation systems.

Chapter 7

Minerva : A Framework for

Visualisations

7.1 Introduction

Ultimately, the role of many interfaces is to provide the user with a representation

of the underlying data. This may seem obvious, since at the simplest level the

underlying data is stored as binary information which is converted into some form

of symbolic representation, be it text or numbers. A further level of representation

exists above this however which I will refer to as the representation of data objects.

I use data objects as a broad term that can encompass text strings, individual

numbers, or indeed whole images stored electronically. For simplicities sake I'll

choose basic examples although the principles are intended to be scalable.

In some cases providing a representation of a data object may just involve dis-

playing the raw object itself. For example, where the data object is text it can

be rendered onto the screen. Even here however, the representation is dependent

on additional information such as font and size. Frequently, however, the repre-

sentation of a data object will involve the translation of the data into some more

user friendly, or user preferred representation. Figure 7.1 illustrates the variety of

potential representations of a date object that has been stored electronically.

Dates appear in many di�erent formats. Internally stored as perhaps a 32bit

integer, it can be converted into many di�erent forms for display. Whether you

140

141

RepresentationsActual Data

Date in
machine

readable form

24/8/1999

24th August 1999

24th August

8/24/1999

Figure 7.1: The representation of actual data.

are English or American may dictate which way round you want the month and

day when expressed in a concise forward slash separated format. Various more

literary formats can also be created which use words for the month etc. Each

of these representations needs to be created from the original machine-readable

stored format of the date.

To provide open interfaces, an abstraction has to be created between the infor-

mation to be presented to the user and the presentation mechanism itself. As can

be seen from Figure 7.1, in order to allow the greatest
exibility in presentation,

the maximum amount of information has to be passed to the interface. If the

interface were passed the piece of text '3rd March' it becomes much harder, if not

impossible, to represent the date in alternative ways, both because of the initial

information being textual and also due to the lack of additional information such

as the year.

The rest of this chapter will look at the design issues in creating an open interface

and discuss the implementation of a prototype system called Minerva, which ap-

plies the design to the Microcosm hypermedia system. In the design discussions,

the Microcosm system will be drawn on heavily, but serves only as a readily avail-

able testbed and the principles illustrated could be generalised to other systems.

7.2 Design

In the design of the original Microcosm architecture, hypermedia tools were con-

structed as black box modules that received and sent messages. Each module

would store its hypermedia information internally, often in its own format. This

information would be inaccessible to other modules except if passed out in a �xed

142

message format. Some modules, for example the history �lter, kept their infor-

mation private and displayed the information directly to the user in their own

interface. As originally implemented no other module was able to access the his-

tory information in the system. In order to separate the underlying data from the

interface it is necessary to move away from the black box approach of modular

systems and allow access to the internal information in constructive ways.

In his work on the advisor agent (Wilkins, 1994), Wilkins modi�ed the Micro-

cosm navigational tools to provide their information on request. The process used

a message passing system where a request for certain information was made and

the information passed back to the advisor agent. As part of this message passing

process, the navigation information was normalised to a restricted format con-

sisting of a tuple combining a document ID with a percentage representing how

important the navigational tool rates the document. By normalising the navi-

gational information it became easier to combine the information from di�erent

sources into a cohesive set of suggestions. The results from di�erent modules could

be weighted to in
uence the results, for example the history �lter would be given

a negative weighting so that documents which had already been viewed would be

less likely to be suggested to the user.

One of the main problems of this approach however is that the normalisation

process sacri�ces information in order to provide easier mechanisms for weighting

and combining the data. By discarding information, less
exibility exists in the

use of that information and the normalisation, by its very nature, dictates the

representation provided by the advisor agent's user interface.

7.2.1 Design Criteria

When designing the framework, a number of di�erent criteria were established

which the framework should adhere to. These are listed, in no particular order,

below :-

� The framework has to be extensible to enable additional components to be

added without recompilation of the core system. This can, to a large extent,

be achieved by having well de�ned APIs to the key modules. This allows for

the replacement of modules by simply switching libraries, enabling modules

143

to be chosen for speci�c tasks and a mix and match approach to the creation

of interfaces.

� The system has to be able to handle a number of di�erent types of real

world data simultaneously. This includes the requirement that the system

be able to function without speci�c knowledge of the objects it contains. By

using a rigid API alongside an open format for holding objects this should

be achievable.

� The system must cater for a wide variety of interfaces. The initial intention

was to concentrate on 3D interfaces, utilising their expressiveness, however

in order to maintain an open stance, the system should remain applicable

to the construction of 2D interfaces or even experimental interfaces such as

a purely audio based interface if this were desired.

� To maximise the openness of the system, it should be able to adapt to a

variety of input and output devices. The ability to plug in modules to the

system which allow it to utilise specialist hardware such as touch screens,

trackballs and other such devices is seen as important.

With these criteria in mind, an architecture was set out.

7.3 The Minerva Architecture Design

The prototype system is named after Minerva, the Roman goddess of Wisdom.

Figure 7.2 is a diagram of the Minerva framework. The data abstraction is repre-

sented by the clear separation of the real world objects, i.e. the information held

within the system and the virtual representations of the information.

Three classes of module can be identi�ed within the architecture. These can be

categorised as :-

� Modules dealing with real world objects and actions.

� Modules dealing with virtual objects and actions.

� Modules translating between the real objects and virtual representations.

The following sections describe each of the components of the framework and their

function within the system in more detail.

144

Virtual
Environment

Interface

Real World
Object

Managers

Object
Handlers

Movement
Interaction

Handler

Virtual Environment

Mapping
Systems

Real World Objects

Object
Store

Control
Systems

Figure 7.2: The Minerva architecture.

7.3.1 Real World Object Managers

The real world object managers keep track of the real world objects themselves.

It might be a document management system, or a navigational tool that stores

navigational information, such as a history device. The objects or object infor-

mation are transferred from the real world object managers to the object store.

In practice, a real world object manager and any object handler related to it may

well be implemented within one module. This would keep all functionality relating

to documents for example, in one place. A number of these modules will interact

with the object store during the session. A number of di�erent processes can

supply the object store with information about the same object. The information

is aggregated in the object store.

7.3.2 The Object Store

The object store is a holding place for all the real world objects. It acts as an

indirection layer between the mapping systems and the object handlers. The

components describing the real world objects will only need to interact with the

object store. The central function for the object store is to allocate a unique

object ID that can be referred to both by the real world modules and the virtual

environment. When an object is altered or interacted with in the virtual world the

object store is informed and can pass information back to the real world object.

145

In a similar manner, when the real world object is changed, the object store is

informed and can remap the object and pass on the new knowledge to the virtual

environment.

It should be noted that a central object database is duplicating information stored

elsewhere in the system. There is no reason why the object store could not simply

act as an index between a unique identi�er for an object and the di�erent modules

holding information about the object. A central database has been chosen to

simplify the communications of the system for this prototype and also to provide

a primitive form of caching to speed up the access to the information.

7.3.3 Mapping Systems

The mapping systems are responsible for converting information about the real

world objects into attributes for a virtual object to be rendered by the interface

module. The modules are arranged in a chain, with messages being passed along

the modules in a similar manner to the Microcosm �lter chain.

The output of the mapping system is a virtual object, which can be rendered

by the virtual environment interface. The format of this virtual object might be

speci�c to the rendering engine, or possibly be in a standardised format such as

VRML for direct use with a VRML rendering interface.

Although some mapping system may be written with a speci�c interface engine in

mind, there is no reason why generic mapping modules cannot be created which

are applicable to a number of di�erent interfaces.

There are a number of di�erent approaches to mapping the real data to virtual

representations.

Direct information: In this case, the virtual attributes of the object are in-

cluded as part of the real world object information. No mapping is required,

the information being extracted directly. An example of this might be a �le

manager that lists the �lename for the user. There is no mapping involved

between the �lename and the text presented to the user. The drawback of

this technique is that it is hardwired to a particular virtual representation

146

and can require knowledge of the representation by the real world object

manager.

Attribute mapping: With attribute mapping, a virtual world attribute is as-

sociated to one or more real world attributes of the object. Mapping tech-

niques, both functional and direct can be provided in the form of scripts,

which the mapping system uses to convert between real and virtual proper-

ties. The dotted line on �gure 7.2 between the real world objects and the

mapping system is used to indicate that the real world object can provide

scripting information to aid the mapping system. An additional module that

generates mapping information could of course provide this information. To

give an example, information about the number of pages of a document

could be mapped to the size of the virtual object in the visualisation.

Automatic type mapping: If the system is heavily typed and the mapping

system is given information on how to map between types, then it would

be possible to script a mapping such as Object Type to Colour. When the

mapping system �nds this, it can produce its own map of type to colour,

based on its knowledge of the types. It would be important that the mapping

be consistent if the user is to make use of the information from session to

session. Once generated the mapping can be stored and a key produced to

provide information to the user.

7.3.4 Virtual Environment Interface (VEI)

The Virtual Environment Interface (VEI) co-ordinates all interactions with the

user in the virtual space and is responsible for rendering the virtual representations

on the screen for the user. As input it receives a number of virtual objects which

it renders using the virtual attributes of the objects. Where attributes don't exist

it will use default values.

In the case of a 3D interface, the three dimensional space is created by the interface

and the user positioned within this space. The user e�ectively views the space

through a virtual camera in the 3D world. The user is able to control the camera

and by doing so control what they are looking at within the 3D world. The

camera metaphor is used by a large number of 3D systems as a simple mechanism

to describe what is happening within the interface.

147

The user is also able to interact with the space and the objects they can see

within it. Movement within the space, i.e. controlling the camera position, will

involve the passing of the users mouse and keyboard actions to the movement

interaction handler, which then returns changes to the camera position within the

environment where appropriate.

When the user interacts with objects within the virtual environment, the actions

are passed to the object store. This removes the need for the Virtual Environment

Interface to have any object speci�c knowledge, such as how to view documents.

The store will then forward the action to the relevant real world modules which

can then manipulate the real world object according to the requested action. If

the action modi�es the real world object, the modi�cation is sent to the object

store. The object can then be remapped and ultimately the representation of the

object in the virtual interface may change as a result of the users original action.

7.3.5 Movement Interaction Handler

The movement handler translates input to the system such as keyboard and mouse

clicks into actions within the virtual environment. These actions could be camera

movements within the virtual space, or actions on an object such as selecting it.

This abstraction allows for a number of di�erent movement models to be imple-

mented. In the case of a 3D interface, di�erent metaphors can be implemented

such as walking,
ying, point and go etc. A further bene�t is that if at a later date

new input devices are used such as datagloves or trackballs, they can be easily

incorporated without rewriting the Virtual Environment Interface.

7.3.6 Control Systems

In order to create some visualisations, or indeed to integrate some navigational

devices it may be necessary to control the number of objects sent from the object

store to the virtual environment interface. There may be a number of reasons for

this. If the number of objects in the store is very large some form of �ltering might

be required. Alternatively, some navigational tools may be best implemented

by restricting the objects in the store that are displayed. Examples of this are

discussed in later sections.

148

7.3.7 Object Handlers

The object handlers receive messages from the object store which indicate that

an action needs to be carried out on the object. It is the job of the object handler

to translate the virtual action, such as the object was clicked on, into a real world

action for example launch the document. This abstraction gives greater
exibility

to implement new interactions with objects within the virtual environment. Often,

the object handler will be a part of the real world object manager although there

is no requirement for this.

7.4 From SHEP to Minerva

When comparing the architectures of the SHEP system as shown in Figure 5.4 and

that of the Minerva system shown in Figure 7.2 it is easy to see the similarities in

their structures. Both have a central communication system that routes messages

between the various components of the system. The SHEP architecture has a

chain of shepherds that modify the information in turn, with the results being

passed back to the central hub. In the Minerva architecture a chain of mapping

libraries can be identi�ed which modify messages to create virtual objects from

the original real world objects supplied by the object managers.

Where the SHEP framework connects together only two types of processes, namely

sheep and shepherds, the Minerva framework provides facilities for a wider range of

tasks. Fundamentally though, both systems work towards presenting information

and it is here that real di�erence is observed. SHEP sought to control purely

the interface of the system, with the content of these interfaces still in the hands

of the individual modules. The Minerva framework abstracts the information

at a deeper level. The raw hypermedia information is what
ows through the

framework before it has been processed into scrollable lists or map diagrams.

At one stage of the design, the extension of the SHEP framework to include the

underlying information was considered however the need for a bigger variety of

controlling processes, and the greater separation between the interface represen-

tation and the underlying data representations made this too problematic. So

instead, despite deep rooted similarities, the SHEP and Minerva frameworks cur-

rently exist alongside each other within the Microcosm system.

149

7.5 Navigation Tools

One of the main aims in designing an open interface framework is to allow the in-

tegration of navigation information with other aspects of the interface. A number

of di�erent navigation tools have been discussed in previous chapters and this sec-

tion will examine how the navigation information can be utilised by the interface.

A history tool provides a simple example to start with.

The history tool traditionally presents the user with the list of documents that

they have seen so far. Internally, the information it stores may be as simple as

a list of documents that have been viewed by the user. The history navigation

information could be represented in a number of di�erent ways. Two possible

implementations of this within the Minerva framework might be as follows.

A trail of bread crumbs: As the user moves around the document set in the

virtual space they might leave behind them a trail of virtual objects. Each

object would be a virtual representation of a real world piece of history

information. These objects would represent the path taken by the user.

They might form discrete objects or perhaps be a continuous line through

the virtual space. As was suggested by Bernstein (Bernstein, 1988), a limited

length breadcrumb trail might be implemented to avoid over cluttering the

information space.

Use of document properties: Rather than add the history information as a

separate object in the store, it can be added to the document object which

will have already been added by the document management system. A

property of the object, for instance colour, could then be allocated to the

history information. This would allow a simple visible indication to be

provided as to whether the user has viewed the document before. A side

e�ect of this scheme is that it would not be obvious in which order the

documents had been viewed, but simply that it had been looked at. Shades

might be used to indicate time, the darker the shade, the more recently the

document had been viewed.

As an aside, if the virtual space has been constructed so that virtual documents

have unique and readily identi�able appearances then the user is more likely to

150

remember having visited a document and thus the path aspect of a history tool

might prove more important.

One problem associated with the path approach however is that if the document

locations in the virtual space are dynamic, then the path cannot be �xed as it

will no longer correctly re
ect the movement of the user through the document

set once the virtual objects have changed position. One way of counteracting

this would be to make the extrinsic properties of the path related to the extrinsic

properties of the virtual objects. This would metaphorically tie the history path

to the documents, thus maintaining a correlation between the documents viewed

and the path of the user. It would not maintain any relationship between the

path and documents that were passed by the user while travelling along the path

but not viewed by the user.

7.6 Use of the Microcosm Hypermedia System

The Minerva prototype has been initially implemented on top of the Microcosm

hypermedia system. The main motivation was a desire not to re-invent the wheel.

Many aspects of the Microcosm system provided working solutions to basic prob-

lems of the framework. Where these problems did not constitute the main objec-

tives of the framework it seemed sensible to solve them using software that was at

hand rather than expending e�ort in minor parts of the system so detracting from

the e�ort available to spend on more important aspects. A number of aspects of

Microcosm lent themselves to this, some of which are brie
y covered below.

� The Microcosm system is open in that it is easy to add new modules without

re-compilation. This provides a
exible architecture with which to integrate

the Minerva framework.

� Microcosm has a powerful and extensible message format which can be used

to represent both the real world objects in the object store and the virtual

objects.

� Microcosm has a hierarchical registry that can be used to hold the mapping

information as well as any virtual environment information that needs to

be saved from session to session. The hierarchy allows di�erent views and

mappings to be stored for each user, allowing them to create their own

151

personal interfaces. It also allows separate settings for each application

allowing di�erent visualisations to be created for di�erent application areas.

� There is a document management system within Microcosm that can be

used as an underlying information system. Mechanisms are already in place

to extract information about the documents and display them in the correct

viewers, providing ready made object handlers.

� There are a number of hypermedia navigation tools implemented within

Microcosm that can be easily adapted to provide information to the object

store. These include linkbases, a history tool and a search engine as well as

various viewers used to display the results of these actions.

� The open architecture of Microcosm makes it easy to plug in any new navi-

gation tools that are designed speci�cally to take advantage of the Minerva

framework.

7.7 Implementation

The sections below describe the implementation of the Minerva prototype. Figure

7.3 shows the architecture, including a number of Microcosm hypermedia compo-

nents adapted to provide the real world data.

7.7.1 A Supporting Metaphor

The framework design lists all of the relevant components needed, but it was felt

that an encompassing metaphor might help in the description of the framework

and its API. The idea of a �lm production was taken as this maps nicely onto

the various components and helps describe not only the individual processes but

also the way they interact with each other. Figure 7.4 shows the framework as

represented by the �lm metaphor.

In providing a visualisation to the user, the object of the framework is seen as

presenting a scene. The users viewpoint of the visualisation is represented by

the camera. One of the reasons for creating the metaphor was to simplify the

descriptions of the framework. Terms such as real world, virtual, objects, pro-

cesses, handlers, quickly become overloaded and cumbersome. By using a clearly

de�ned existing language with no computer terminology, some of the ambiguity

and overloading can be removed.

152

Virtual
Environment

Interface

History Tool

Document
Management

System

Movement
Interaction

Handler

Maptypes

Object
Store

Copytags PosTags

Linkbase
Control
Process

Figure 7.3: The implementation of the Minerva prototype

The Objects Populating the Scene

Three di�erent types of objects can be added to object store, and hence the scene.

The list below describes the di�erences between them.

Actors/Characters Each real world object that is added to the Minerva store

is referred to as an actor. When the actor is added to the store, it will be

mapped to a virtual representation. This virtual representation is called a

character in the metaphor. These characters can be interacted with in the

interface that may lead to actions being taken on the real world object or

actors.

Props Some objects in the system are intended simply to be represented in the

interface but not to be interacted with. These objects have been termed

props and do not require an object handler. Like actors however, they

are mapped to virtual representations, which keeps the level of abstraction

between the actual data and the representation required for the interface.

An example might be a signpost that indicates the topic of the documents

153

Scene

Assistant

Manager

Camerman

Casting

Object
Store

Casting

Director

Actors /
Props

Characters /
Props /
Camera

Figure 7.4: The metaphor as it relates to the Minerva prototype.

that surround it. The virtual representation provides information to the

user but there is no necessity for the user to interact with it.

Camera The interface process can add a camera to the store as an object. This

provides the system with information about the users current view. This

information might be used by the mapping processes to arrange objects

(characters) relative to the users viewpoint. For example, if the mapping

works on a relevancy measure, more relevant documents can be placed closer

to the user by positioning the representations of the documents closer to the

camera.

The Crew

Each of the components of the framework corresponds to a member of the crew.

The sections below describe each crew member in turn and how they relate to the

framework and the objects that exist within it.

Managers The object handlers of the framework are represented in the metaphor

154

as managers. A manager deals in actors(real world objects) and is respon-

sible for them. Managers can add their actors to the current scene by reg-

istering them with Minerva store. The manager must also update the store

when an actor changes, and is also responsible for removing it from the store

if the real world object is deleted. When an action is taken on an actor in

the interface, such as double clicking on it, the manager is contacted by the

system to handle the action. A manager will invariably be responsible for

handling a number of di�erent actors.

Assistants If a process wishes to supply information about actors but is not

the object handler, it can register as an assistant. An example might be

a history tool that registers as an assistant and supplies information about

whether a document has been viewed or not. The document itself would

be supplied as an actor object by the document management system that

would act as the manager. The history tool would simply supply additional

information during the session about the actor.

Casting The mapping processes register with the framework as casting processes.

It is their responsibility to cast the actors into characters that can be used

in the scene. The casting processes are maintained in a chain by the system.

Each time an actor is added to the store it is passed along the chain of casting

processes with each one adding to the character information. When the actor

reaches the end of the chain it is passed back to the object store where the

character is stored along with the original actor. The casting processes are

also called whenever the actors (real world objects) are modi�ed, so recasting

the actors into characters. Because of the chain, it is possible for character

information from casting processes early in the chain to be modi�ed or even

removed by casting processes later in the chain.

Scenes The Interface environment registers with the system as a Scene. Upon

registering it will request from the store all of the characters and props which

it has to render in the scene. It is noti�ed if any of the characters or props

are updated. More than one scene can register and they are all noti�ed

of the updates. When the user interacts with the scene by clicking on a

character (virtual representation of an object) the store is noti�ed so that

the agent that handles the corresponding actor (real world object) can take

whatever action is necessary.

155

Director A control process can register with the system as a Director, which

gives it control over which characters and props from the store are viewed

in the scene. By default, if no Director is registered, all of the characters

and props in the store will be rendered in the scene.

7.7.2 The Object Store

The object store serves both as an object cache for real objects and their repre-

sentations and also as a central communication system connecting the di�erent

parts of the system.

The di�erent modules of Minerva register with the object store, allowing them to

send and receive messages to and from the Minerva system. When it registers, the

process informs the object store as to what type of process it is, agent, casting,

scene etc. This information is used to route the messages around the system.

Ideally, the object database would not be needed, rather the process would serve

simply as a communication system and whenever information about an object is

needed it would be obtained directly from the object agent, cast by the mapping

modules and delivered to the calling process. In the case of the prototype however

it was decided that caching the information would speed up and simplify the

system.

7.7.3 Object Handlers / Object Managers

The Microcosm Document Management System (DMS) handles all the underlying

documents referenced by the Microcosm system. The DMS registers with the

Minerva system as a manager.

The DMS registers each of the documents in the system as an actor with the

object store. The identi�er given for each object is the Microcosm UniqueID.

This enables any part of the Microcosm system to refer to the object in the object

store. The object given to the store is the whole record held by the management

system.

It provides a callback function so that it can receive messages from the object

store. These messages might include a request to provide the latest information

about a particular document, or perhaps pass on an action to be carried out on the

156

object. One such action is the object request action. This is passed to the object

store from the interface when an object has been selected in the interface. The

object store passes the request on to the crew member that registered the object.

In the case of the DMS, when the request is received it launches the document

through Microcosm.

When Microcosm is shutdown, the Document Management System unregisters

from Minerva. All the objects registered with the system by the Document Man-

agement System are also unregistered as there will be no object handler available

if the user interacts with the virtual representations of the documents.

The Microcosm linkbase also registers with the framework as a manager, submit-

ting all of its links to the object store as actors. When links are activated, the

linkbase responds by following the link within the Microcosm system. More detail

of this is given in a later section on navigational tools.

7.7.4 Assistants

As currently implemented, the history tool registers with the system as an as-

sistant. It adds no objects to the object store, but instead supplies information

about documents that have been registered by the Document Management Sys-

tem. It modi�es the stored object to indicate that the user has viewed it. This

information can then be mapped onto the representation of the virtual object.

More detail on the integration of the history tool and other navigational devices

is given in a later section.

7.7.5 Mapping Modules

The mapping modules are responsible for mapping, or casting, the objects placed

into the store onto virtual representations that can be displayed by the Virtual

Environment Interface. A number of di�erent mapping modules can be plugged

into the Minerva architecture, with each responsible for mapping to speci�c as-

pects of the virtual representation. Some mapping modules may well be speci�c

to the type of information being processed, where as others may be generic enough

to be usable on a wide variety of information.

157

A number of generic mapping modules were implemented which can be used in

the Minerva framework. Three of these modules are described below.

Copytags Mapping Module

Although fairly trivial in its implementation, the copytags module provides a

vital level of indirection between naming conventions in the objects provided by

the object managers and the naming conventions of the interface manager.

Using the 3D interface as an example, it can display a text label when the mouse

is moved over an object in the interface. It achieves this by looking in the virtual

object for a description tag and displaying the value of the tag in a pop up window.

Not all of the objects placed in the object store will have a description tag and

the interface designer might choose to display a more appropriate tag. An entry

can be made in the registry that tells the copytags module to place the value

of an alternative tag in the description tag. Perhaps the object has a title �eld.

This can be copied into description and will be displayed by the interface. The

description is just one instance where the ability to copy tag values to a new tag

might be useful when constructing the interface.

An alternative approach to this problem might be to directly manipulate the

interface to tell it what tag to display. Although this would achieve the same

result in the simple case, where multiple sources of objects exist, the interface

would need to display the correct tag for each object entered. By moving the

problem to the mapping stage, the interface only needs to specify the tag it will

display and the mapping system can be in charge of mapping the tags to the

correct values.

Postags Mapping Module

In the case of a 3D interface, objects need to be assigned 3D coordinates based

upon their attributes. In some cases the objects will have spatial coordinates but

where the objects are more abstract in nature the spatial positioning will have

to be derived in other ways. The approach of the postags module is to produce

a simple spatial layout of objects based on a textual name and where applicable

date information.

158

The overall a�ect of the mapping is to produce a form of time tunnel. Originally

the mapping was created for positioning bibliographic references within a visuali-

sation. The references are all placed in a circle based on the reference name, and

the year of publication is used to determine the Z order of the objects, with more

recent publications being closer to the front and older publications being in the

distance. This is illustrated in Figure 7.5. More details of this visualisation are

given in Chapter 8.

Figure 7.5: The time tunnel of bibliographic references.

The postags mapping, positions objects on the edge of a circle based on a speci�ed

tag for the object, i.e. the description. Figure 7.6 Illustrates how the objects are

placed on the circumference based on the �rst letter of their description. The

formula to calculate the x and y coordinates is given below.

� = 2� � ((FirstCharacter� 0a0)� 26)

X = cos � � radius

Y = sin � � radius

159

Y

XA

B

C

D

E

F
GH

I

J

K

L

M

N

O

P

Q

R

S
T U

V

W

X

Y

Z

Figure 7.6: Positioning of objects based on their description.

and to calculate the z coordinate.

Z = (CurrentYear � Year)� radius� 4

The main problem with this basic mapping is that if two objects are from the

same year and their descriptions start with the same letter then they will have

exactly the same coordinates. In this case, the larger object will obscure the

smaller object from view. To overcome this, the second and third letters are also

used to calculate the angle although to a lesser degree.

� = (2� � ((FirstCharacter� 0a0)� 26)) +

(2� � ((SecondCharacter � 0a0)� 26)� 30) +

(2� � ((ThirdCharacter� 0a0) � 26)� 60)

The slight shifting in position that this causes is often enough to make an object

visible that would previously have been obscured. An alternative approach would

have been to add a random element to help avoid overlapping objects however

the scheme adopted here has the advantage that the same object will always be

mapped onto the same location, ensuring that the spatial positioning is consistent

from session to session.

160

Maptypes Mapping Module

In many cases, an attribute of the real world object will be one of an enumerated

set of possible values. Where this is the case, the interface designer might wish

to map a value for an attribute to a speci�c value for an attribute of the virtual

representation.

For example, the interface designer may wish to map the type of the real world

object to the shape of the virtual representation of the object. The maptypes

module allows the designer to specify the information within the registry that

allows it to make a mapping from type to shape. An example mapping is given

in Table 7.1.

Type Shape

Text Cube

Bitmap Cylinder

Video Cone

Table 7.1: Mapping from type attribute to shape representation.

The mapping is stored in the registry and loaded by the maptypes module on start-

up. The hierarchical structure of the registry allows di�erent mappings to be used

for di�erent applications, or even for di�erent users. When the module is asked

to create a virtual representation from a real data object, it searches for the Type

tag in the object and if it is present, creates a Shape tag with the corresponding

value. If there is no Type tag, or the Type value is not present in the table, the

Shape tag is not created. If no mapping module creates a Shape tag, the interface

will use its default value if it requires the attribute. To create the mapping table,

the designer needs knowledge of both the real data, and the necessary virtual

representation required by the interface. This enables the module to bridge the

gap between the two domains.

Alternatively a mapping could be created dynamically by the module if it has

some knowledge about the tag values. For example, the designer might decide

that they want the mapping module to automatically create a mapping from type

to colour. The module must assume that the type is a �nite, enumerated set of

values. If it has some built in knowledge about colour representation it can create

the mapping table itself on the
y as it is presented with objects to map to virtual

representations.

161

The module creates a blank mapping table from type to colour. As new values

of type appear in data objects, they are assigned unique values of colour by the

system. As the objects are mapped to virtual representations, the mapping table

slowly builds up. There are three important criteria that should be met however,

if the mapping table is created automatically by the mapping module.

1. The mapping module must have some knowledge of the destination domain.

This could be in the form of a list of values to use, or might simply involve

a numbering scheme that assigns each tag a di�erent number. This might

equate to a position on a bar chart for example.

2. The mapping has to be made available to the user in the form of a key,

which explains the association between virtual representation and actual

object attributes. i.e. they must be able to �nd out that blue represents

video documents for instance.

3. The mapping should be stored at the end of the session for re-use next time.

If the mapping were to be di�erent every time the user uses the system it

becomes di�cult for them to build up a mental model of the visualisation.

Automatic mapping, although useful, will not always be applicable. In general,

it will work best when mapping a small number of unique values for a tag to a

limited set of possible values for the mapped attribute.

7.7.6 The Virtual Environment Interface (VEI)

The Virtual Environment Interface (VEI) has been constructed using Render-

Ware (Criterion Software, 1998). The software, developed by Criterion Software,

provides a toolkit for constructing three-dimensional interfaces, both in terms of

displaying objects and lights within a 3D scene and using a camera within the

scene to create a �rst person perspective view. As with other components of the

implementation, the Virtual Environment Interface is just one possible interface

that can be used with Minerva.

On starting, the VEI registers with Minerva as a scene. It then requests from

Minerva all of the characters which are present in the Object Store. When it

receives the characters they have already been mapped from actors and hopefully

will contain the attributes that the VEI uses to create the virtual representation

162

of the object. These attributes include VRPosX, VRPosY, VRPosZ, VRColour,

VRShape and Description. If any attribute is not present in the object then the

interface will use its own default value for the attribute. Each virtual object is

created and rendered in the interface.

As new objects are added to the store they are mapped and passed on to the Vir-

tual Environment Interface. It will create a new object based on the information

in the virtual object it has been passed, and add it to the scene. Similarly, if the

object handler or an assisting module modi�es an object in the store, the object

is remapped and the interface is passed the newly modi�ed object. The existing

virtual object is removed and the new representation of the object added to the

scene. This is carried out between refreshes so from the users viewpoint it will

look as if the existing object has changed. The need to remove the old object and

add a new object is only a technicality of the current implementation.

Users interact with the VEI using the mouse. Holding down the mouse buttons

and moving the mouse causes various events to occur in the interface. These events

are passed to any registered Movement Interaction Handlers that can modify the

behaviour of the interface. The returned message is interpreted by the interface

and the requisite actions carried out. If no movement interaction handlers are

registered, the default action is taken by the interface. The interaction handling

is simply a mapping between a user action, i.e. Left Mouse button + dragging

left, and a resultant operation in the interface, for example pan the virtual camera

left.

Using the interface, the user can interact with the objects represented in the

scene. When the user has selected an object in the interface, the interface sends

a message via Minerva to the object handler for the object. The object handler

can then carry out the action speci�ed for that event. The action might be to

launch the represented document in an appropriate viewer or perhaps to display

the properties of the object to the user.

7.7.7 Movement Interaction Handler

The idea behind the movement interaction handler is to provide an abstraction

between the control mechanism within the interface and the results of those control

actions by the user. In the original design, the movement interaction handler is

163

shown as a plug in module with a control path running from the interface to the

interaction handler and back to the module. The intention was for the interface

to receive a control message such as `left mouse button clicked over object' and

pass this to the movement interaction handler. The handler would map this to an

action, perhaps `select object', which would be passed back to the interface. The

interface then carries out the action, in this case informing the relevant object

handler that the object has been selected.

In practice, the object handler is providing a mapping between an action and

a re-action. During the use of the interface this mapping is unlikely to change.

For this reason, the movement interaction handler has been modi�ed to speed up

the interface. Where an interaction could be the mouse moving, the control path

is unnecessarily slow particularly since the mapping is static during the session.

Rather than have every control message routed through the handler, the interface

calls the movement interaction handler once at start up to request the mapping.

The mapping is then stored internally to the interface and used during the session.

The end result is the same with the interaction being abstracted, the di�erence

being that the interaction remains constant during the session and cannot be

modi�ed by the handler once the interface is in action. This optimisation was

implemented to help the speed of the prototype, but given a su�ciently e�cient

control path there is no reason why the original design could not be implemented

successfully.

It is necessary for the handler to be aware of the actions that it will be sent

and the re-actions that the interface can carry out. The mapping is scripted in

the registry so it is not necessary to hard-wire these into the handler. Like the

mapping modules, the interaction handler forms a bridge between the real world

and the virtual world.

7.7.8 The Control Process

Where the number of objects in a visualisation is large, the interface designer

might like some method for limiting the number of objects displayed at any given

time. A control process can be registered with the framework which tells the

object store which objects to let the VEI display and which not to.

164

This process could be automated to restrict the display to objects within a certain

distance of the camera position, or might form part of a navigational tool. For

example if a search engine is present, the results of a search could be used to

restrict the objects displayed to the user. A later section discusses this in more

detail.

Where a control process is not registered with the framework, by default all of the

objects contained in the object store will be passed onto the VEI for displaying

to the user.

7.8 Existing Navigation Tools

Rather than talking about adding navigation tools to the virtual space it might

be more appropriate to talk about presenting navigational information. There are

two ways in which the navigational information might manifest itself.

A hypermedia object: The information may form a hypermedia object in its

own right. This would be represented as a virtual object in the space and

the object would have properties derived from the information in much the

same way as the virtual document objects.

Properties of virtual document objects: Here, the navigational information

is used to generate one or more of the properties of the document objects.

For example the colour of a virtual document might denote some naviga-

tional information about it. This is illustrated in more detail below.

Which of the above techniques is used to represent the information will depend on

the type and complexity of the information. In Chapter 2, a number of di�erent

types of navigation tool were examined in detail. The sections below discuss the

implementation of these commonly occurring navigation tools within the Minerva

framework.

7.8.1 The History Tool

The Microcosm history information is held by the results �lter, which keeps a

record of all of the documents that have been launched by the system. The

results �lter registers with the Minerva system as an assistant. As documents are

165

opened, it sends messages to the system updating the document objects to re
ect

that they have been viewed. This simply involves adding a tag called history with

a value of 1. The document objects are then re-mapped to virtual representations

which might result in the representation of the document changing in the interface

if a facet of the object representation is based upon the value of the history tag.

An alternative approach might have been for the history device to add props to

the system such as
ags for instance, which sit next to the documents that the user

has already viewed. The positioning of these objects would have to be calculated

in terms of the documents that they are to be placed next to. A casting module for

this might extract the document position from the store and place the
ag slightly

above the documents position. Further props might be placed in the scene which

join the
ags together providing a visual representation of the path the user has

taken through the documents.

7.8.2 Links

A link in its most basic form can be described as connecting two objects. Where

the two objectss are represented in a virtual space the link can be shown as a

virtual object in the scene. Its properties include start and end positions and it

is implemented as a line within the virtual space.

Here, each link is registered as an object in the scene in its own right. The

positioning of the object has to be calculated based on the positions of the two

objects that the link connects. This information is accessible to the casting agent

from the object store. The linkbase also responds when the user clicks on the

virtual representation of the link. This either causes the link to be followed, or

information about the start and destination of the link to be displayed. Additional

information about the link can also be encoded in the virtual representation, for

example the colour of the link object can be used to indicate whether the link has

been followed already.

7.8.3 Maps

Maps are often provided within hypermedia systems to provide a sense of spatial

positioning to what are in fact just arbitrarily stored documents. By producing a

3D visualisation, a map of sorts is being presented as the main interface. What

166

would be navigation tools in the underlying systems become the mapping pro-

cesses in the framework. The positioning of the documents might be authored by

explicitly positioning documents within the 3D space, or might be created auto-

matically using mapping tools like the postags module discussed in the previous

section on mapping modules.

Although not explicitly implemented within the Minerva framework, the two

classes of map navigational tools outlined in chapter 2 can be identi�ed within

the implementation of the framework.

Global Maps

When the user is presented with a visualisation which displays all of the objects in

the object store as virtual representations, they can be considered to be viewing

a global map.

Local Maps

Local maps present to the user a subset of the documents and links in the hyper-

media system arranged spatially. As the user moves around the visualisation they

are in fact creating their own local maps in that at any given time only a subset

of the documents represented in the space are visible to them. By zooming in on

clusters of documents in the visualisation they are in e�ect moving from a global

context where all the information is visible to a local context where a portion of

the information is visible but at a greater detail.

It is possible to implement more explicit versions of a local map within the Minerva

framework. The Microcosm local map tool displays at its centre a document and

arranged in a circle around it are all the documents that can be reached from

the central document by following one link. This could be generated from the

information in the object store by a tool that is aware of which document is the

centre of the map. Acting as a control process it could control the store so that

only the relevant documents are displayed and any links that are appropriate. The

positioning of the documents could be modi�ed to provide a circular arrangement

around the central document.

167

Alternatively, to provide a context for the local map, another approach might be

tried. Rather than eliminating all the irrelevant documents from the visualisation,

their appearance could be modi�ed, for example making them darker, or partially

opaque, to distinguish those documents that are relevant to the local map. The

positions of the documents would remain the same, so some documents might be

quite a distance spatially from the central document, but still only a link away in

hypermedia terms. This would present to the user all of the same information as

a simple local map, but in the context of a global map.

7.8.4 Guides

The basic purpose of a guide is to suggest to the user which documents they

should view next. As with history devices, there are a number of ways in which

guides could be implemented within the Minerva framework.

� Perhaps the simplest method would be to make the appearance of a docu-

ment dependent on whether the guide thinks it should be viewed next. If

the guide adds information to the object in the store indicating how impor-

tant it is, say for example a percentage �gure, this could be mapped by a

casting process onto the colour of the object. The higher the percentage,

the brighter the object, the more important to the user.

� A second method would be to have the guide as a virtual object in the

environment. It could exist as a prop that moves around the document

space positioning itself above objects of interest to the user. As the user

moves around the document space they follow the guide through the space

in much the same way as tourists might follow a guide through a museum.

� A third method would be for the guide to register as a director of the scene.

It can then narrow down the options for the user by removing objects from

the scene that it considers to be no longer relevant to the user. The user

then knows that any objects that are visible are likely to include informa-

tion that is useful to them. If the 3D interface contains a concept of opacity,

the guide might combine this technique with the ability to manipulate the

objects appearance in order to make the representations of documents be-

come increasingly transparent as their relevance decreases. Ultimately they

168

would disappear entirely when they are considered completely irrelevant to

the users current goal.

7.8.5 Search Tools

Hypermedia systems can use a wide variety of search tools. When it comes to

integrating search tools with the Minerva framework there are a number of possible

approaches.

� A simple approach would be to just visualise the results of the search. The

user enters the search into the search engine using its own dialogue interface.

The search is carried out and the results are added as document informa-

tion to the object store. The new information would lead to new mappings

of the documents in the store leading to visible changes in the virtual rep-

resentations. A simple mapping might involve highlighting the documents

returned as results of the search by mapping the result tag to the colour or

the brightness of the virtual object.

� Alternatively, a director process could use the search results to restrict the

documents being displayed in the visualisation to those being returned from

the search. This makes the visualisation more akin to simply listing the

results of the search. By removing documents that didn't match the search

information from the visualisation the user will then only be presented with

documents that match the search. This approach does discard potentially

useful information however, as it is possible that the context of a matched

document amongst unmatched documents might be information the user

can utilise.

� A third approach would be to form the query in the actual visualisation

using an approach similar to that used in the VR-VIBE project (Benford,

1995). The search queries exist as objects in the system and are mapped to

virtual representations that are positioned in the virtual space. The position

of the document representations is based on their relevance to the queries in

the space. The closer the document is to a query object the more relevant

it is.

These are just three possible approaches to integrating search tools into the Min-

erva framework and it is clear that there are many other possibilities that could

169

be tried.

7.9 New Navigation Tools

The open framework of Minerva provides plenty of scope for developing new tools

that can exploit the visualisation of hypermedia information. These tools would

draw on the added bene�ts of a 3D environment to provide even more navigational

clues to the user. The two sections below describe proposed navigation tools

that could be implemented within the Minerva framework described previously.

Although as yet unimplemented, it is hoped that the variety and expressiveness of

the tools described help illustrate the openness of the framework and the potential

it gives for novel and interesting visualisation approaches.

7.9.1 The Gra�ti Tool

In the real world users often customise objects, improving their ability to recognise

them. An example of this might be the customisation of the appearance of ring

binders. If a person uses a number of ring binders they may �nd they need to

distinguish between them. Although they can be purchased in di�erent colours,

this is not always enough to tell them apart. In some cases the customisation may

be simply writing a title on the front of the binder or perhaps adding a number

coding system to the spine. In other cases it might involve adding colourful stickers

to the front of the ring binders which need bear no relation to the content, but

simply help to distinguish it from the others. An important element here is that

the visual clues are often a personal thing and may mean nothing to anyone else.

The virtual representations of the documents within Minerva can have textures

mapped on to them. These textures might be used to display properties of the

object, for example a wood texture might be used for text documents, an image

used for image documents etc. An alternative however would be to allow the user

to customise the texture for each document. The texture need only be a small

bitmap, which the user can draw on using a standard paintbrush package. This

tool would allow them to impose their own look and feel on an object, and provide

a visual clue that helps them to distinguish the document from those around it.

170

An important part of the interface should be easily adding the gra�ti. This

could be achieved by allowing the user to click on an object and select gra�ti.

A small bitmap editor appears which lets them draw using a simple brush and a

few colours. When they close the window, the texture on the side of the object

immediately changes to the bitmap just created. The next time gra�ti is added to

the object, the current texture is used as a starting point. If the user were forced to

create all the gra�ti o� line and then paste them into place, associating documents

to bitmaps, the process becomes an authoring task rather than a spontaneous

statement about the document. A user should be able to read a document, decide

it is not particularly relevant to their work, select the gra�ti tool and draw a big

red cross on it. This should be as simple and easy to use as possible.

7.9.2 The Egocentric Visualiser

Many visualisation systems treat the user as a voyeur of the visualisation, perhaps

able to a�ect the world around them by interacting with the objects in it, but in

other respects disassociated from the content of the visualisation. The egocentric

visualiser takes a di�erent approach and treats the user (camera) as the focus of

the visualisation and the virtual space around them is a�ected by everything they

do, be it movement within the space, or modi�cation of their preferences.

It is a common aspect of work that it is often necessary to switch tasks. This may

be to a completely unrelated task, or possibly just a switch of contexts within

the current piece of work. For example, while writing this document I often

found myself switching between chapters as new ideas struck me or I reached a

temporary impasse on a particular section. It is quite possible that the same

general resources might be used in a number of tasks, but depending on the task

in hand the resources gain new contexts.

The VR-VIBE visualisation tool developed in Nottingham (Benford, 1995) al-

lowed the user to generate a number of queries. These queries, when placed in

a 3D environment, gave rise to a visualisation of the document set with their

position relative to the queries illustrating their relevance. One of the problems

encountered was that if a document was equally strongly related to two queries

it would appear half way between them. However if a document were equally

weakly related to the two queries it would also appear half way between them.

171

The solution they adopted was two use the brightness of the document to indicate

how strongly related to the queries it was.

The queries might be considered to be contexts within which the user is working.

To take the resources used in producing this document as an example, one context

might be Visualisation and another context hypermedia navigation. Within the

VR-VIBE environment the user performs a voyeuristic role, and their current

location has no e�ect on the position of the documents. A slightly di�erent model

exhibits interesting properties.

If the queries in the visualisation are likened to contexts, then as the user switches

contexts, this might be denoted by the user moving between contexts, i.e. queries

in the world. In the VR-VIBE system the queries all have a �xed weighting

which exerts a `pull' on the documents. Once the queries have been placed in

the visualisation the document locations are �xed. What happens though if the

position of the document is not based solely on the relationship of the documents

to the queries, but takes into account the relative position of the user to the

queries or contexts?

For example, as the user moves around the visualisation they wish to work within

the context of VRML. They approach the VRML context, which might be rep-

resented as a signpost within the virtual environment. As they come within the

sphere of in
uence of the signpost the documents re-arrange themselves around

the user, with the documents which are most closely related to VRML being clos-

est to the user. Those with no relationship to VRML are in the distance. The

user can then remain in that position while they work on the VRML section, with

the references they are likely to need being metaphorically within easy reach.

If the user then needs to work on hypermedia navigation, they traverse the virtual

space to the hypermedia navigation signpost. As they reach it the documents have

again re-arranged themselves so that those most relevant are closest to the user.

It should be noted that a document that refers to hypermedia navigation within

VRML is likely to be as close to the user as it was while they worked in the context

of VRML. This can be contrasted with the situation in VR-VIBE where highly

related documents and loosely related documents can end up being positioned

in the same location. In the case where the user wishes to work in the context

172

of VRML and hypermedia navigation, the user can drag the VRML signpost

over to the hypermedia navigation signpost. With both exerting an in
uence the

documents would re-arrange themselves so that documents closely related to both

contexts would be close to the user, those in the middle distance are likely to be

related to one or the other, or possible vaguely related to both. Those in the far

distance would not be related to either context.

In addition, further helper tools might be envisaged within the visualisation. If,

for example, the user is interested in web documents but less interested in images

they might carry with them a `virtual magnet' which attracts text documents, and

one which repels image documents. Because the positioning of the documents are

relative to the user these magnet devices would be easy to implement, with web

documents being closer than they would otherwise be and image documents being

moved further away.

For this egocentric tool to work it will be necessary to ensure that documents

have a unique, location independent, representation in the visualisation since the

position of the documents will be highly transient. The visualisation could still

incorporate information from navigation tools such as history tools or link repre-

sentations. In practice any tools which rely on path information will be di�cult

to use, since the location of the documents is not constant.

It should be noted that the Egocentric Visualiser is, by its very nature, a tool for

use by a single user. Where the document locations are query oriented rather than

user oriented it is possible to integrate multiple users as was one of the advantages

of the VR-VIBE system.

7.10 Conclusions

When designing the Minerva architecture, a clear separation between the virtual

objects displayed in the visualisation and the underlying hypermedia objects was

critical. By keeping this separation the architecture could be constructed in a

modular fashion, with new tools and processes plugged into the system without

the need to modify other modules.

Using lessons learnt from the SHEP framework, an implementation was created in

the same modular vein, with clear interfaces to the central communication process

173

providing the openness of the system. Existing hypermedia modules could then

be adapted to feed information into the newly created framework. In this way, a

number of the Microcosm navigational tools were adapted to use the framework

and supply information to the central object store. By creating a number of

exible mapping libraries this information could be mapped to objects suitable

for displaying in the simple Virtual Environment Interface created using a 3D

modelling system. The addition of a module to control the interaction with the

VEI provided further
exibility in the generation of visualisations.

With a clear framework established the possibilities for the creation of novel vi-

sualisation tools was covered in the context of both how they might be of use to

the user and how they could be implemented within the open framework.

With an open framework having been created for constructing visualisations of

open hypermedia information systems, the next logical step is to explore the

openness of the system by creating some actual visualisations of real information.

Chapter 8

Visualisation Using Minerva

In order to examine the
exibility of the Minerva system, three visualisations

were created using it, each with their own speci�c problems and approaches. The

visualisations are discussed in the three sections below. The �rst visualisation

is of a publications database, containing electronic versions of publications along

with meta-data about them. The second visualisation is of a small, tightly linked

hypermedia application. The application contains a wide variety of documents and

links. It also makes use of a number of hypermedia tools present in the Microcosm

application. The �nal visualisation is of organisational information held by the

Post O�ce Research Group. As well as documents holding information about

people and projects, concept and group information is present along with links

connecting concepts, groups, and documents in the system.

8.1 The MMRG Publication Database Visualisation

The Multimedia Research Group maintains its own archive of publications. There

is a database entry for each publication that contains information about the au-

thors, title, conference etc. Each publication also has its own web page which

contains the abstract of the paper, all the information required to reference it,

and links to copies of the paper in di�erent electronic formats.

174

175

(a) The top page of the MMRG publica-
tions.

(b) MMRG publication categories by
type.

(c) The publications listing of a single au-

thor.

(d) A publication reference in the MMRG

database.

Figure 8.1: The current Web interface to the MMRG publications database.

8.1.1 The Current Interface

The papers are currently accessed using a standard web interface. All of the

web pages are pre-generated from a database containing Bibtex references for the

papers and links to the electronic versions of the actual documents. Papers can

be accessed by topic, by author, by title, by year or by type. With the exception

of 'by title', which provides a complete alphabetically sorted list of papers, each

of the categories leads to a sub page listing the possible sub categories.

176

Figure 8.1 shows four screen shots of the current interface to the MMRG publica-

tions database. Figure 8.1(a) shows the top level of the hierarchy of web pages.

Figure 8.1(b) is the page presented to the user when they request a listing by pub-

lication type. It should be noted that there is no
exibility here for the reader to

view all publications that are conference papers or journal papers. The categories

are exclusive. Figure 8.1(c) shows the publications listing of a single selected au-

thor. It is only once the reader traverses to this level of the web site that they

are presented with details of the actual publications. Finally, Figure 8.1(d) shows

the abstract and details of a publication selected from the presented list.

Users can browse the various levels of the hierarchy to �nd papers they are inter-

ested in. If suitable formats exist, the papers can be viewed by the reader on-line

in a web browser. If not however, the reader may still be able to download the

paper in an alternative format for stand alone viewing.

8.1.2 Construction of the Visualisation

The sections below describe the steps that were taken to create a visualisation of

the publications database using the Minerva framework.

The Object Handler

The Publications data is stored in a database that contains a record for each

publication. Each record is a Bibtex entry with �elds containing the information

about the publication and a URL �eld that points to the HTML version of the

document on the web server. The database program was modi�ed to register with

Minerva as an object handler. Each Bibtex entry is converted to a tagged message

and added to the object store as an object. An example tagged message is given

below.

ntitle Flexible Interfaces in the Industrial Environment nmonth jul

nemail mjw@ecs.soton.ac.uk nReference hall1997 nbooktitle Interna-

tional Conference Managing Enterprises{Stakeholders, Engineering,

Logistics and Achievement (ME{SELA'97) Loughborough, UK. npages

453{460 nyear 1997 nurl projects/�rm/SHEP.html nauthor wh, mjw,

177

ih, gbw@soton, rmc1@soton nproject FIRM nkeywords User Inter-

faces; Hypermedia; Information Management; Open Systems; Man-

ufacturing nEntryType inproceedings

When the database receives a message from Minerva specifying that a particular

object has been selected it launches the relevant URL in a web browser. If the

database program receives a message from Minerva where the user has asked for

information on a publication, it displays the relevant database record in a dialogue

box. This is all the functionality required in the back end database.

The Mapping Libraries

Three di�erent mapping libraries were used to generate the visualisation. The

part played by each is described in the sections below.

Copytags: The interface module requires a description tag to display when the

user moves over an object in the interface. Since the publications in the

database have no description tag, the copytags mapping module is used to

copy the reference tag of the object into a description tag in the virtual

object. The title tag could just as easily have been used, indeed individual

users can choose which they prefer.

Maptypes: To help di�erentiate between di�erent types of publication, the map-

types module is used to colour the di�erent virtual objects according to the

type of publication being mapped. Table 8.1 details the mapping from the

publication type of the object in the database to the colour of the virtual

object used to represent it in the interface.

Publication Object Colour

Conference Paper Red

Journal Article Green

Book Blue

Ph.D. Thesis Yellow

In Collection Cyan

Misc. Purple

Table 8.1: Mapping from publication type to virtual object colour.

Postags: The postags mapping library was used to position the objects within

the interface. The reference tag for the publication was used to generate the

x and y position for the object in the circular pattern described in section

178

7.6.5 . The year of the paper is used to generate the z position of the virtual

object. The more recent the publication, the closer it is to the viewer in the

visualisation.

The Interaction Handler

The interaction handler is scripted to allow the viewer to move through the `time

tunnel' in a straight line, and to rotate the tunnel of documents around its central

access. Users can also double click on an object to view the web page associated

with it. The double click action sends a SELECT.ACTOR message to the object

handler of the object, informing it that the object has been selected. It can then

launch the document in a suitable viewer. Right clicking on the object sends

a QUERY.ACTOR message, asking for information on the object. Other forms

of interaction are switched o� for this fairly simple visualisation. By restricting

the users motion in the visualisation, the user has less to learn in order to move

around the visualisation.

The Control Process

Because the number of bibliographic references in the database is relatively small

there is no need to restrict the number displayed in the visualisation. For this

reason, this visualisation has no control process attached to it and by default, all

of the objects in the store are placed in the visualisation.

8.1.3 The Minerva Visualisation

Figure 8.2 Shows a screenshot of the interface presented to the user by Minerva.

The virtual documents can be seen as coloured cubes arranged in the tunnel

pattern, with the older publications appearing further 'down the tunnel'. When

the user moves the cursor over an object, the publication reference is displayed in

a small window displayed at the cursor position. The colour of the object provides

an indication of the type of the publication.

When the user double clicks on an object in the visualisation the relevant web

page is presented to them in a standard web browser as shown in Figure 8.1(d).

Right clicking on the object causes the database to display the information about

the publication contained in the database.

179

Figure 8.2: The time tunnel visualisation of the MMRG publications database.

8.1.4 Advantages and Disadvantages

A number of advantages and disadvantages can be identi�ed with the Minerva

visualisation of the publications archive.

Some advantages:-

� If the user of the visualisation has multiple publications archives they wish to

view together, they can be combined in the visualisation by simply opening

both databases. The publications for both databases would appear as virtual

objects mapped using the same mapping modules.

� By mapping di�erent �elds to virtual object attributes, the user can see at

a glance information that would not be as readily apparent when viewed

using the web interface.

� It is possible to identify patterns in the visualisation that would not be as

apparent or easily seen using the conventional web interface. For example, If

an author has been quite proli�c in their publishing over a number of years,

a clear line of virtual objects will be observed within the visualisation.

180

and some disadvantages:-

� Although all the publications in the archive are visible to the user, only

the object that the cursor is currently over will have its reference displayed.

This can make it harder for the user to quickly �nd a particular document

that might be more easily picked o� of an alphabetically sorted list.

� The viewing of the publications takes place in a separate window to the

visualisation of the database. In the web interface, a single window is used

for browsing the database and reading the publications, which some users

will prefer.

8.2 The Caerdroia Hypermedia Application Visualisation

Caerdroia is the name of the hypermedia application that comes as an example

application with the Microcosm hypermedia system. It was designed as a tutorial

which demonstrates the various features of the hypermedia system, and as such it

provides a broad hypermedia application upon which to construct a visualisation.

The Caerdroia application concerns the history of mazes and the information

contained within it ranges from descriptions and pictures of mazes to details of

how they can be constructed.

The application contains 165 documents of various media types. These types

include text �les in various formats, i.e. RTF, HTML, DOC, as well as images,

video and sound �les. Each document is represented in the Microcosm Docuverse

by a record containing information about the document. The information includes

the name of the author, a description, information on the �lename and type, and

a number of keywords used to describe the contents of the document.

The application also includes a hypermedia linkbase containing close to 400 links.

These links cover the full range of possible Microcosm links, including speci�c links

from point to point, connecting selections within one document to selections in a

di�erent document. At the other end of the spectrum are included generic links,

which link a particular selection, wherever it is found, to a destination document.

The generic links are typically used in this application to link to glossary type

information.

181

8.2.1 The Current Interface

The current interface to the Caerdroia application is the standard Microcosm

interface described in detail in Chapter 3.

The user can browse the documents contained in the application using the Select

a Document dialogue box as shown in Figure 8.3. This presents the documents in

a hierarchical structure created by the author of the application. The right panel

of the dialogue presents an alphabetically ordered list of all of the documents con-

tained within the branch selected in the left hand panel. A document may appear

in more than one branch of the tree. By double clicking on a listed document, the

user can view the document in an appropriate viewer.

Figure 8.3: The document browser used to view the Caerdroia documents.

Button links are presented in the viewer in the form of a highlighted area, either

a coloured box on an image, or a coloured word or phrase in a text document.

This can be seen in Figure 8.4. In addition to the button links, users can also

select pieces of text and ask the system whether any links exist from the chosen

selection. The system will present the user with any generic links it �nds on the

selection.

By default, if a single link is returned to the user it will be followed automatically

and the destination of the link presented to the user in a document viewer. Where

a link following action results in more than one possible link, the user is presented

with a dialogue giving them the choice of which link to follow. This dialogue is

illustrated in Figure 8.5.

182

Figure 8.4: The text document containing a button link.

Figure 8.5: The results viewer presenting a choice of links to the user.

The user can also �nd out what documents they have already viewed by calling

up the history tool. It presents the user with a chronologically ordered list of what

documents they have already viewed as shown in Figure 8.6. They can click on

documents in the list to view them again.

183

Figure 8.6: The history viewer presenting the user with a list of previously viewed

documents.

8.2.2 Construction of the Visualisation

The Object Handlers

The Microcosm Document Management System (DMS) is registered as a manager,

and adds all of the documents in the Docuverse into the object store as actors.

Each document is already in the requisite tagged message format. An example is

given below.

nFileName $ Caerdroia Path1$ nnDatannimagesnnc92-15b.bmp n@LogType

nnMultiItem0 /Caerdroia/Figures/Photographs nnMultiNumItems 1

nType BITMAP nImportDate 03/21/94 nUniqueID 100.03.21.94.14.52.51

nDescription Wanaka Maze, New Zealand n@Author nnMultiItem0

Stuart Landsborough nnMultiNumItems 1 n@Keyword nnMultiItem0

hedge maze nnMultiItem1 puzzle nnMultiItem2modern nnMultiNumItems

3

The Microcosm linkbase also registers as an agent, and each link in its database is

submitted to the object store as an actor. An example link message is given below,

184

illustrating the type of information that can be expected to be in the object.

nSourceFile 100.03.22.94.17.07.31.4839112 nSourceSelection Scandinavia

nSourceO�set 689 nSourceDocType TEXT nSourceLogType nnMultiItem0

/Caerdroia/ Introduction nnMultiNumItems 1 nAction CREATE.LINK

nDestFile 100.03.22.94.17.19.15.5543415 nDestSelection nDestO�set 0

nDestDocType TEXT nDestLogType nnMultiItem0 /Caerdroia/Articles

nnMultiNumItems 1 nDescription A New Volundarhus in Jutland nLink

Generic nRealSourceSelection Scandinavia

Documents and links form the two main types of object rendered in the visuali-

sation.

The Information Assistant

The Microcosm history tool registers with the system as an assistant. As the

user views documents, the history tool adds history information to the actor

representing the document in the store. This history information, a simple history

tag of value 1 if the document has been viewed, can then be mapped onto an aspect

of the virtual documents representation.

The Mapping Libraries

Three mapping libraries are used to create the visualisation. The libraries, and

the part they play in the mapping process, are described below.

Postags: The postags mapping library is used to position the virtual documents

in the virtual space. The x and y position of the documents are based upon

the description of the document. The documents are arranged in a rough

circle based on the �rst few characters of their description, as described in

Chapter 7. The z positioning is based upon the unique identi�er of the

document in the Microcosm system. Although this makes the positioning of

the documents along the z-axis fairly arbitrary, it is consistent from session

to session, so over time the user of the visualisation will be able to build a

mental map of the documents in the virtual space.

Maptypes: The maptypes mapping module is used to provide a number of map-

pings to attributes of the virtual objects. Table 8.2 details the mapping of

185

document type to virtual object colour. This allows the user to identify the

type of the object visually from its representation.

Document Type Object Colour

Text Red

Image Green
Video Blue

Animation Blue

Audio Cyan

WWW Purple

Table 8.2: Mapping from document type to virtual object colour.

The history value of the object is mapped to its opacity. The idea behind

this being that if a document has not been viewed by the user it appears

completely opaque. If it has already been viewed however it will appear

partially transparent, reducing its impact within the visualisation and sug-

gesting that it is probably less worth viewing as the information has been

seen by the user already.

The maptypes is also used to map the Type of a link to its colour. Table 8.3

shows the mapping. This helps users to see at a glance the types of links.

Link Type Object Colour

Speci�c Link Cyan

Generic Link Yellow

Table 8.3: Mapping from link type to virtual object colour.

Maplinks: The maplinks mapping module is applied to objects generated by the

Microcosm linkbases. It has some understanding of the contents of a link

record and uses this to generate a virtual representation of the link. On

being asked to cast a link, it extracts the information about the source and

destination document of the link. It then queries the object store to obtain

the positions of the virtual representation of the documents. These positions

are used in the virtual link representation, leading to a virtual object being

created which joins the source and destination in the virtual space.

8.2.3 The Minerva Visualisation

Figure 8.7 shows the visualisation of the Caerdroia Microcosm application. The

documents can be seen as coloured objects. Text documents appear as red cubes,

image documents as green cylinders. By moving the cursor over the objects the

186

user calls up the description of the document in a pop up window, as shown

in Figure 8.8. The Links are represented by yellow lines connecting the various

document objects. Where a document has a large number of links emanating from

it, it is possibly an index or contents page.

Figure 8.7: A view of the Caerdroia application with all the documents and links visible.

Figure 8.8 shows a more zoomed in view of the visualisation. The user can use

the mouse to move around the visualisation and here, has moved into the area

containing the links and documents. Only a subset of the documents are now

visible, and links often disappear out of frame. By clicking on the links, the user

can call up the destination even though the destination document object is not

currently visible. By selecting a document object in the visualisation the user can

call up information about the document by right clicking on the object, or view

the document itself by double clicking on the object. The document will appear in

an appropriate viewer. Once a document has been viewed, the object representing

it will become partially transparent to indicate that it has already been seen.

187

Figure 8.8: Amidst the web of links, a document object is selected.

8.2.4 Advantages and Disadvantages

Although created purely as an example of the
exibility and openness of the

framework, it is worth considering some of the advantages and disadvantages of

the Minerva visualisation compared to the original interface to the hypermedia

system.

First of all some advantages:-

� The user is in a position to view information about all the documents at the

same time. Using the select a document dialogue, users can only view the

documents in the currently selected branch. In the visualisation, the view

is dependent upon the users position within the space.

� In the original interface, to �nd out what documents they have already seen

the user has to open up a specialist dialogue box which presents them with

the history list. In the Minerva visualisation, this information is presented

188

in the same interface as the document information. The dynamic represen-

tations of the documents help the user to build up a cognitive map of the

space that re
ects what they have previously viewed in the virtual document

representations.

� Under the Microcosm system, the mechanisms for accessing information

about a hypermedia object are di�erent depending on the object. To �nd out

about a document the user can call up a dialogue from the Select a Document

interface, which gives the details of the object. To �nd out about a link the

user must run the link editor and select the link they want information

about. In the Minerva visualisation, both are achieved by right clicking on

the virtual representations of the links and documents.

� By colour coding the links, the user can see at a glance which documents

have which types of links going into and out of them. If a virtual document

object is connected to a large number of generic links then it is quite likely

that it is a glossary document. If, on the other hand, the document is the

source of a large number of speci�c links then it is possible the document

might be a contents or index page.

� By placing the history information into the visualisation as modi�cations

to the virtual objects, the information is always presented in the same con-

text. Under the Microcosm interface, the information appears in disparate

dialogue boxes and the representation of the documents in these dialogue

boxes is often di�erent even though a Microcosm 'look and feel' has been

attempted.

But there are some disadvantages:-

� Users can only view the description of the document when they move the

cursor over the representation of the document. It would be possible to

display the descriptions of all of the documents in pop-up windows, however

this would quickly become confusing. The user must therefore rely on the

representation of the object to remind them of the document.

� Some of the clustering created with the folders in the select a document

is lost. In the case of Caerdroia this is not a big problem, as the folders

were used to divide the documents up by type, i.e. maps in one folder,

189

photographs in another. Since the colour of a document represents its type

in the visualisation, this information is preserved albeit in another form.

� The sheer number of links does give the visualisation a fairly cluttered look.

If the generic links are not shown on the visualisation an improvement is

achieved. Since the generic links have an abstract source it seems reasonable

to restrict the visualisation to true point to point links.

8.3 The Post O�ce Research Group Visualisation

The Post O�ce Research Group (PORG) maintains a database containing infor-

mation about the group and the activities that go on within it. The information

is arranged in clusters that represent a variety of things from activities to indi-

viduals within the group. The clusters are connected by relationships. A number

of di�erent types of relationship exist within the database, for example:-

� Has research area of

� is connected to

� is interested in

Each cluster can also have associated with it a number of inputs and outputs.

Inputs are generally pieces of text which form synonyms for the cluster name.

Outputs are usually �les that describe the cluster. In the case of clusters repre-

senting people, one of the outputs will be a simple CV of the person listing all the

relevant contact information. Cluster representing research groups may have the

reports pertaining to that group as outputs.

8.3.1 The Current Interface

An application containing the information in the database has been created using

the Microcosm system. The documents were placed in the Document Management

System and are viewed using the standard Microcosm viewers. The cluster and

relationship information is held in a back end database connected to Microcosm

using a specialised �lter process acting as an interface between the Microcosm

system and the external database application.

A number of bitmap images were created which display bubble diagrams showing

the clusters and the relationships between them. A portion of one of these images

190

is shown in Figure 8.9 below. The diagrams were created manually rather than

automatically, so that the position of the bubbles has been arranged to provide

neat layouts of the clusters represented in the diagram. As the overall organisation

chart has a large number of clusters, each bubble diagram represents only a subset

of the organisation, with any given cluster possibly appearing on more than one

bubble diagram.

Each of the bubbles in the diagram has a link over it. When the user of the

system clicks on the link the back end database is �red up and all of the relevant

documents and related clusters to the cluster clicked on are presented to the user

in a cluster browser. This is shown in Figure 8.10.

Figure 8.9: An example bubble diagram showing cluster connections.

The cluster diagrams are created by hand. The size, shape and colour of the

bubbles in the diagram may have originally been intended to provide additional

information, but to all intents and purposes they simply serve to di�erentiate

between the di�erent bubbles. Eight separate diagrams show the relationships

between the various clusters. Some clusters will appear on more than one diagram

and how the diagrams interconnect is not always clear.

191

Figure 8.10: The interface to viewing information about the clusters.

One of the problems of using hand created diagrams is that if new clusters are

added to the database the diagrams will have to be altered manually. Also, each

diagram represents a particular view of the database. The diagrams represent

clusters relating to certain topics such as maintenance, communication, logistics

etc. If a user of the database has their own personal requirements, these might

not be covered by the pre prepared selection of diagrams available.

8.3.2 Construction of the Visualisation

The Object Handlers

Two separate databases of information are present in the Post O�ce Research

Group application. The Microcosm Document Management System holds all of

the documents in the application, and registers with Minerva as an object handler

for the documents. They are all added into the object store when the application

starts up. A typical Microcosm document record in the application might look

like :-

n@LogType nnMultiItem0 /PORG/People nnMultiNumItems 1 nFileName

PORGPath0nnData nnPeople nnJBallant.rtf nType TEXT nImportDate

14 Oct 1998 13:17:15 GMT nUniqueID 793.15.17.13.14.10.98 nDescription

Ballantyne, Jim

192

Cluster information and inter-cluster linking information is stored in a separate

database. The database also registers as an object handler and submits each

cluster as an object in the object store. The cluster information is also added to

the object store. An example cluster object is given below.

nName BallantyneJim nType Cluster nDescription Jim Ballantyne n@connect

nnMultiItem0 vissim,relpeopleint nnMultiNumItems 1 n@input nnMultiItem0

ballantyne nnMultiNumItems 1 n@output nnMultiItem0 793.15.17.13.14.10.9

nnMultiNumItems 1

Also stored in the database are the relationship objects that link the clusters

together. Below is an example relationship object.

nSourceFile BallantyneJim nType Relation nName BallantyneJim-connect1

nDescription BallantyneJim-connect1 nAction CREATE.LINK nDestFile

vissim nRelType relpeopleint

Each cluster also has a number of inputs and outputs associated with it. The

inputs refer to a selection that relates to the cluster, the equivalent of a generic

link. Outputs refer to �les within the Microcosm Document Management System.

Examples of each are given below.

nDestFile BallantyneJim nType Input nName BallantyneJim-input1

nDescription BallantyneJim-input1 nInput ballantyne

nSourceFile BallantyneJim nType Output nName BallantyneJim-output1

nDescription BallantyneJim-output1 nAction CREATE.LINK nDestFile

793.15.17.13.14.10.98.100

If the user selects a document object in the visualisation, Microcosm will launch

the document in the appropriate viewer, or display information about the docu-

ment, depending on the nature of the selection. If the user selects a cluster in the

visualisation then the cluster database will send a message to Microcosm asking

it to �nd links with the cluster name passed as the selection. The resultant links

will be displayed in the results dialogue. An example link is shown below.

193

nSourceFile 768.50.52.11.28.10.98.100 nSourceDocType BITMAP nAction

CREATE.LINK nButtonAction FOLLOW.LINK nTEXT Logistics and

Supply Chain Improvement nDescription Logistics and Supply Chain

Improvement nUniqueDocID 2 nRealSourceSelection 274,10,401,137

nSourceSelection 274,10,401,137

The Information Assistants

The Microcosm history tool acts as an assistant for the documents in the system.

When the user views a document, its information is updated in the object store

by the history tool to re
ect this fact.

The Mapping Libraries

A number of di�erent mapping libraries are used in the visualisation, as described

in the sections below.

Maptypes: The maptypes library is used to generate a colour for the virtual

objects in the scene based on the objects type. This helps di�erentiate the

links from relationships and the clusters from the underlying documents.

Table 8.4 lists the mappings used in the visualisation.

Object Type Object Colour

Text Document Red

Image Document Green
Cluster Blue

Relation Yellow

Output Link Cyan

Table 8.4: Mapping from object type to virtual object colour.

The maptypes library was also used to map the history information to the

opacity of the virtual objects in the case of documents. If a document has

been viewed by the user and so has a history value of 1, then the virtual

object is displayed as partially opaque indicating to the user that they have

already viewed the information.

Postags2: Rather than place the documents in a circular pattern as was the case

with the previous postags object mapping library, a planar approach was

adopted. The documents are placed in the x, z plane in a grid pattern based

upon their title and UniqueID �elds. The title places them along the x-axis,

194

the UniqueID is used to generate a z coordinate. Although the UniqueID

has no inherent meaning, it is used to provide a reasonably spread out grid

of documents.

Placetags: The placetags library was used to position the clusters within the

visualisation. The cluster information contained an indication of the level

of the cluster in the organisational hierarchy. This information was used to

generate the y coordinate for the virtual object. The x and z coordinates

were generated from the description and name tags of the cluster, with

the clusters being arranged alphabetically along the x-axis based on their

description and the name being used to generate a separation in the z-axis.

The distance spanned from A-Z by the clusters was less for the higher levels,

inducing a pyramidal e�ect so that the higher the level, the less clusters, and

the closer together they appeared. The size of the cluster was used to re
ect

the number of inputs, outputs and relations that a cluster had. Therefore the

more connection to a cluster the larger it became. The placetags mapping

library uses speci�c knowledge of the cluster object to generate a size for

the object.

Maplinks: The map link library is used to generate the virtual objects for both

the Microcosm links, and also the cluster relations and outputs. In generat-

ing the relation and output objects for the object store, the �elds SourceFile

and DestFile were used to make it compatible with the maplinks library. If

this had not been possible, the copytags library could have been used to con-

vert the equivalent tags to the �elds required by maplinks. The maplinks

library operates by generating a virtual link object between the positions of

the two objects it is given. The fact that it is generic to any named objects

allows it to be used for the di�erent types of links.

8.3.3 The Minerva Visualisation

Figure 8.11 shows a screenshot of the Post O�ce Research Group visualisation.

The view is zoomed back showing all the clusters and documents in the visuali-

sation.

In Figure 8.12 the user has moved in closer, and some of the clusters are no longer

visible. The user is in the process of selecting an individual document with the

cursor.

195

Figure 8.11: The Post O�ce Research Group visualisation.

The user can use the mouse to move around the visualisation to view the clusters

and documents from di�erent positions. Double clicking on a cluster causes the

cluster information to be displayed as shown previously in �gure 8.10. Double

clicking on a document will result in the document being launched in the appro-

priate viewer. Right clicking on a document will display the document information

as was the case in the Caerdroia visualisation. Right clicking on a cluster will lead

to the cluster information being displayed to the user. The user can also click on

the relation links and the output links. In both cases this will produce the same

result as if the destination of the link had been selected.

8.3.4 Advantages and Disadvantages

Some advantages of the Minerva visualisation:-

� Using the original interface, the user was only ever able to see a subset of

the overall organisational structure. Each bubble diagram only showed some

of the clusters and their connections. Even though a cluster may appear

196

Figure 8.12: The user zooms in and selects a document.

on more than one diagram, the connections between the diagrams is not

always apparent. With the Minerva visualisation, the whole organisation is

available.

� In the original Microcosm application, users interacted with clusters and re-

lation information in a special cluster interface dialogue, and the documents

using the Microcosm system. The Minerva visualisation allows the user to

access the clusters and documents through a common interface.

� If the cluster database were to be modi�ed to add a new cluster, or change

the relationships within it, the original bubble diagrams would need to be

edited by hand to re
ect the changes and possibly modify the layout to

clarify the new structure. Because the Minerva visualisation is generated

automatically, the layout would alter itself to re
ect the changes, without

the need for intervention from the application designer.

Some disadvantages of the visualisation:-

� The bubble diagrams provide the user with nicely laid out subsets of the

197

information which have been arranged manually to give more clarity than

can be achieved with the simple automatic layout strategy adopted with

the example visualisation. Unfortunately this layout information is not en-

capsulated in the data but resides solely in the diagrams themselves. An

alternative layout strategy for the visualisation could have involved manu-

ally positioning the clusters by specifying their position in the 3D space in

advance rather than automatically.

� The small amount of information that exists in the database about each

cluster and relationship results in the virtual representations all looking

fairly similar. The size of the clusters can be varied but essentially they

are all represented as blue cubes. The variety of bubble appearances in the

bubble diagrams was generated by hand and although holding no intrinsic

meaning, does serve to di�erentiate the clusters in the diagram. Perhaps a

random element to the look of the clusters would improve the visualisation

by providing cues to help users identify individual clusters more easily.

8.4 A Variety of Layout Techniques

The layout techniques used to position objects in the three visualisations above

are all reasonably simplistic, relying on simple alphabetical ordering, or sometimes

just attaining a separation through use of arbitrary data. One of the key prob-

lems encountered when generating the position of objects was the lack of useful

information to base it on.

At best, the layout can be said to be �xed from session to session so that once

a user learns where an object is, they will be able to locate it on subsequent

occasions. By using the year information to generate the z coordinate in the

publications visualisation, depth cueing is used, suggesting to the user that more

recent publications are closer and therefore more relevant.

In the case of the Post O�ce Research Group visualisation, the bubble diagrams

of the original interface were produced by hand, and the relative positioning infor-

mation was decided arbitrarily and not encapsulated in the data in the database.

It is possible to use the level information to create a hierarchy of clusters. Aside

from this, only the description and name of the clusters provide much useful in-

formation.

198

Clearly more complicated layout strategies could be devised if the visualisation

went beyond simple mappings of value to position. One approach would be to

create a dynamic layout by using the relationships between clusters as a form of

spring mechanism, causing clusters that are related to be drawn together as in the

Hyperspace system (Wood et al., 1995) described in section 6.5.17. By examining

all of the possible attractions between clusters, a layout could be formed which

minimised the `tension' in the springs. This does have the disadvantage of the

objects moving as clusters and relationships are added and removed from the

system. It would also negate any hierarchical structure that might be divined

from the information.

8.5 Automatic Visualisation from Scripts

There is clearly scope for automating the creation of some of the mapping tables

used by the maptypes library. Mapping from an enumerated type, such as the

document type, to an attribute such as colour should be fairly straightforward.

This would remove the need for the mapping tables to be created by hand.

8.6 Representation of Links within a Visualisation

One of the pleasant surprises in producing the visualisations was the versatility of

the maplinks library. Because it treats links as simple lines between a start and

destination, the library proved to be general enough to map both Microcosm links

and also relationships stored in the PORG database. The library only needs to

know what tags to look in to �nd the name of the source and destination objects.

It can then look up those objects in the object store, �nd their positions, and

generate the link object based on those positions. The nature of the source and

destination objects are irrelevant in this, providing a helpful abstraction in the

process.

Perhaps the biggest problem that arose however was one of synchronisation. The

position of the links is dependent on the position of the source and destination

objects and therefore cannot be calculated until the source and destination have

been mapped to their positions. This was just one of a number of synchronisation

issues which will be covered in Chapter 9.

199

8.7 Conclusions

The three visualisations described in the sections above illustrate how the Minerva

framework can be used to create visualisations of quite diverse sets of information.

The Bibtex information in the publications database lent itself well to the 'time

tunnel' visualisation approach, where the user is likely to be more concerned with

recent publications which will appear closer to them in the interface. By mapping

colour to the type of publication, the user can see at a glance which are conference

papers and which represent books for example.

The visualisation of the Caerdroia application combined two di�erent sources of

information, documents and links, into a single visualisation. Other navigational

information such as that produced by the history tool could also be incorporated

rather than displayed in a separate interface. Because the mappings of position

are �xed from session to session, the user will gradually build up a cognitive map

of the visualisation enabling them to �nd documents within the visualisation on

subsequent visits.

The PORG visualisation illustrates how information from two separate applica-

tions, Microcosm links and documents and cluster information stored in its own

database, can be combined within a single visualisation. The hierarchy of clusters

was partially preserved and the user can readily see which clusters are related to

each other.

The three visualisations described in this chapter serve as examplars for the power

if the Minerva architecture. In themselves, they are nothing more than simple

visualisations. Good arguments can be made that they provide no signi�cant im-

provement over the original interfaces to the systems. In the case of the Caerdroia

visualisation, the large number of links presented in the visualisation merely ob-

scure the documents which the user of the system is trying to access. The reason

behind the visualisations was not to create novel, powerful, visualisations, but to

show how a number of di�erent soures of information can be brought together

in a single unifying visualisation whilst maintaining an abstraction between the

underlying hypermedia information and the front end interface.

To produce the visualisations, minimal modi�cations needed to be made to the

200

navigational tools. In the case of the Document Management System, publication

database and cluster database, the modi�cation involved simply outputting their

information in a simple tagged format. Other tools, such as the history �lter,

added their information based on the documents unique identi�er. If hypermedia

systems are to call themselves open, then this level of access to the underlying

information should be normal practice anyway.

The Virtual Environment Interface simply requested objects from the store and

rendered them. In the examples above, the interface was a 3D world generated

using RenderWare. It could just have easily been constructed using the DIVE

system or VRML, since it required no speci�c knowledge of the database supplying

the information. All it needed was the ability to ask for objects in the object

store and to render them as objects in the interface. By publishing the format in

which it wishes to receive its objects, the mapping libraries are able to supply the

necessary information.

The mapping libraries provide the abstraction between the underlying information

and the objects in the interface. They can range from simple scripted mappings

from text string to text string or might be complex libraries providing very de-

tailed mappings from the hypermedia information to the rendered objects. In

the three examples given in this chapter, the mappings were all relatively sim-

ple. Benedikine mappings were used, with colour representing some aspect of

the document, in the case of the publications database, the publication type. The

documents were arranged around the inside of a virtual cylinder, in a similar man-

ner to the WINONA circular wall visualisation. By contrast, the PORG clusters

and documents were placed on planes according to their relative position in the

hierachy, documents appearing on the lowest plane.

In order to keep the visualisations simple, document mapping was only dependant

on the attributes of the documents themselves. Virtual attributes of documents

were not based on their relevance to other documents, as in Lyberworld or Star-

walker, nor were they based on the relevance to queries in the system, as was the

case in VR-VIBE or Vinetta. There is no reason why this form of mapping could

not be implemented within the Minerva framework however. The positioning of

links within the visualisation is based upon the poition of the documents or clus-

ters within the visualisations in that the link must join the source and destination

201

anchors.

By keeping the architecture open, even the control mechanism for the user can be

modi�ed in a modular fashion. Where the visualisation requires it, the user can

be restricted to only moving in certain directions. In the case of the publications

visualisation they are restricted to moving up and down the centre of the cylinder

of publications. Here, the user does not necessarily require six degrees of freedom

in their movement and the simpli�ed interface is designed to reduce the overhead

of moving around the system. A similar approach was used in the perspective

wall visualisation and the VIRGILIO system. Where the visualisation requires it,

the control system can allow the user to move with more freedom, as was the case

in the PORG visualisation.

The Minerva architecture is designed to allow
exible visualisations to be con-

structed which combine di�erent forms of hypermedia information within a single

unifying interface. By keeping all aspects of the architecture open, everything

from the mapping systems to the control systems can be con�gured allowing a

wide variety of visualisations to be constructed without the need to hard-wire the

interface to the underlying hypermedia system.

The next chapter examines some of the problems with these simple visualisations

and discusses where the Minerva framework might go in the future and how it can

be improved to provide for the creation of more useful visualisations.

Chapter 9

Future Work

Both the SHEP architecture and the Minerva framework were designed and im-

plemented with the aim of illustrating how an open approach to information vi-

sualisation and interfaces in general can have large bene�ts to interface designers.

Once these systems have been created and proven to be e�ective, there is obvi-

ously much more work that could be carried out, extending the systems and going

beyond proof of concept towards creating tools which will genuinely improve the

way in which users can interact with hypermedia systems. Some ideas as to where

to go from here are suggested below.

9.1 The SHEP Architecture

Since its initial implementation and testing, the SHEP architecture has been suc-

cessfully incorporated into the Microcosm Pro system. It was subsequently used to

help create an interface for use on wearable computers. A shepherd was created

which integrated a voice activation process with the architecture. User speech

input was translated into SHEP commands that were sent to the appropriate in-

terface components. This allowed users to minimise and maximise windows, move

them around the screen and alter aspects of their appearance using voice activa-

tion only. This ease of integration helps illustrate the power of an open approach

to interface construction.

The modules constructed to prove the concept of the SHEP architecture were quite

simplistic and designed as much to test the various aspects of the framework as

202

203

to provide practical interface assistance to the user. With the framework now

in place and in a position to be tested there is clearly scope for the design and

implementation of more advanced shepherds to assist users in more complicated

screen management tasks.

9.2 Minerva Data Objects

As it is currently implemented, the Minerva framework uses the Microcosm mes-

sage format as a means of storing and passing information. The Microcosm tagged

message format provides easy mechanisms for creating data objects and passing

them around between the various modules of the framework. Although at the

time this had the advantages of available tools and an easy to use format, a good

argument could now be made for switching to using a more common language

such as XML. Now �rmly established, XML is portable and has the advantage

that parsers are now available in a number of programming languages. Also, many

database and hypermedia systems have their information already in XML format

or easily exported to XML. By using XML, the work required to convert existing

systems to use the Minerva framework would hopefully be reduced by using a

commonly used representation of information.

9.3 Minerva as a Protocol

As well as establishing XML as the information carrying mechanism, the ac-

tual information passed around the system could be formalised more. Cur-

rently a number of messages have been de�ned within the architecture such as

NEW.CHARACTER and UPDATE.CHARACTER. It is true that the messages

currently implemented do not cover every eventuality within the framework. Once

a �nite set of messages has been decided upon, a formal protocol could be cre-

ated which provides a concrete speci�cation of the message passing within the

framework. When integrating new modules with the framework a protocol would

provide a base for developers to work from.

Although the set of messages passed through the system is �nite, the content of

these messages is not prescribed in any way. This is an important part of the

openness of the framework in that it allows modules to add a wide variety of data

204

objects to the system without forcing them to be normalised to a preset format

leading to the discarding of potentially useful information.

The current mapping systems however, must be aware of the information that the

Virtual Environment Interface requires and carry out their mappings accordingly.

Tags such as VRColour and VRXPosition are used to describe the virtual object

and interpreted by the VEI. Some of the tags used to describe the virtual objects

could be formalised in the protocol that can then be adhered to by VEI's and

mapping systems alike. This is not to say that interfaces can't have their own

speci�c tags, but where two interfaces are referring to the same information it

would seem appropriate for them to call the information by the same name. This

would promote the creation of generic mapping modules.

For example, if it was decided that a VRColour tag would always be used to rep-

resent the colour of a virtual object and would always be in a given format, then

mapping systems would become more generic still and be less dependent on the

implementation of the interface. Other tags that might be standardised could in-

clude coordinate information describing positions for example. This would assume

a �xed coordinate system that is adhered to by all of the interfaces. Where an

interface has its own peculiar coordinate system, it would of course be able to use

its own speci�c tags to hold the information. Perhaps this might necessitate the

creation of a speci�c mapping module that maps between the standard coordinate

system and the interface speci�c one.

For the above reasons and more, I believe that a re-implementation of the Minerva

framework would bene�t from the formalisation of a protocol to accompany it.

9.4 The Web Browser as an Integrating Visualisation

For historical reasons previously discussed in this thesis the present implemen-

tation of Minerva is tied into the implementation of the Microcosm system and

uses the third party rendering software RenderWare. With hindsight, although

providing a suitable platform for the prototype, Minerva would no doubt bene�t

from re-implementation using more generic tools.

There is no reason why the architecture should not be usable across multiple

platforms and the Java language would have the added advantage in that it is

205

easily integrated with systems such as the World Wide Web. The production of

Virtual Environment Interface within a web browser as a plug in would also add

to the distribution of the architecture. A slightly modi�ed approach would see

the Interface as a client connecting to a Minerva server, which in turn is attached

to a variety of information sources.

If a 3D interface were created within a web browser, the VRML modelling language

discussed in Chapter 6 would provide a useful tool for its construction. The

conversion of virtual objects represented in XML to VRML objects would be a

trivial matter, and many VRML plug-ins exist for current web browsers.

9.5 Evaluation of Visualisations

The evaluation of the Minerva framework has so far been limited to demonstrating

the
exibility and openness of the framework by creating three visualisations of

hypermedia information. The actual value of these visualisations over the previ-

ously used interface has not been determined.

Now that the architecture exists there is clearly scope for the rigorous design of

visualisations intended to bene�t the user rather than designed simply to evaluate

the functionality and scope of the framework. These new visualisations could

then be evaluated for their usefulness as tools for users. The openness of the

architecture lends itself to the creation of novel visualisations beyond those that

have been discussed in this thesis. Another added bene�t of the open framework

is that tools could be created that plug into the framework and assist in the

evaluation by collecting information about the users activities while using the

system. These tools could output information for statistical analysis as part of

the evaluation process.

Various measures can be be used in order to assess the usefulness of a hypermedia

system. In their study of the use of navigational tools in hyperspace (McDonald &

Stevenson, 1998) asked test subjects to read a hypertext until they felt they had

read all the material present. The number of di�erent nodes opened, the number

of repeated nodes visited and the number of navigational tools used was recorded.

The subjects were then asked to answer ten questions whose answers could be

obtained from the documents in the test data set. Information was recorded on

206

the number of nodes opened above the minimum required to locate each answer,

the time taken to �nd each answer, the accuracy of each answer and the number of

times navigational tools were used while answering the questions. A similar test

could be envisioned to test the visualisations described in the previous chapter.

The results for test subjects using the visualisations could be compared to those

of subjects just using the basic systems.

9.6 Synchronisation Issues

During the construction of the three visualisations presented in the previous Chap-

ter, a number of synchronisation issues were encountered. The position of virtual

link objects was dependent on the position of the objects they were connecting.

This placed a requirement that the position of the source and destination objects

be established before the position of the link was mapped. This can be achieved

in the simple case by adding the link objects to the store last, or by carrying out

the mapping of all the objects in the store twice at the cost of some redundancy.

The problem will only increase however once more complicated visualisations are

created where objects move around the visualisation due to actions on the part

of the user. Each time an object changes position, all objects dependant on that

object will have to be remapped. This may well require dependency information

to be included in the object store so that objects can be remapped whenever an

object they are dependent upon is modi�ed. With such a system, problems of

cyclic dependencies will obviously have to be given careful consideration.

9.7 Implementation of Novel Visualisations

One of the driving forces behind the creation of the Minerva framework was that

3D visualisations of information could provide valuable assistance to users and that

there is plenty of scope for implementing novel and powerful visualisation tools.

Having created an open framework for the construction of such tools, the next

step would clearly seem to be to design and build these tools and �nd out whether

they do in fact enhance the users navigation of hypermedia information spaces.

Two such tools, the gra�ti tool and the egocentric visualiser were described in

Chapter 7. The Minerva framework contains all of the tools needed to construct

207

these visualisations and evaluation could be carried out to identify whether these

novel approaches would in fact help users carry out their tasks.

Chapter 10

Conclusions

Historically, hypermedia systems have been written as self-contained applications

that import information and manipulate it within the con�nes of the application

itself. The information is stored processed and presented within a single process.

Out of this environment came the approach of open hypermedia which sought

to provide greater separation between the hypermedia linking and navigation in-

formation and the content upon which it was based. This allowed more
exible,

dynamic linking strategies and allowed additional navigational tools to be con-

nected to the systems in a more modular fashion.

By storing the hypermedia links separately from the content, it was no longer nec-

essary to modify the documents when manipulating links. This allowed a wider

range of media to be used within hypermedia applications, including read only me-

dia. Links could also be processed independently of the documents and di�erent

linkbases could be used to represent di�erent threads through the document set.

This provided a greater expressiveness in the construction of hypermedia applica-

tions as di�erent authors could create their own linkbases, and hence structures.

The reader of the application was then free to choose which hypermedia structure

they wished to overlay on the underlying document set.

The openness of hypermedia systems need not be restricted to just the separation

of links from content. The SHEP framework shows how openness can be applied

to the interface as well as links, separating out the manipulation of the di�erent

components of the interface. This greater freedom provides the interface designer

208

209

with new tools for producing scalable interfaces. This allows the interface to

be easily adapted to changes in environment, hardware and user ability. The

openness is not just of bene�t to the designer of the interface however. With

increased separation comes increased opportunity to express personal preference,

with the user being able to tailor the interface to their own personal needs and

whims. Instead of the user having to adapt to many di�erent types of interface

when dealing with di�erent information systems, they can tailor the interfaces to

look the same from system to system.

Exposing the interface provides a �rst stage at opening up hypermedia systems

even further. The openness need not stop there however. The underlying hy-

permedia navigational information is often hidden from the user, to be presented

in preset interfaces, often with a separate interface for each piece of navigational

information. The user might be presented with a beautifully rendered map of the

documents in the dataset showing their connections. The user might also wish to

know which documents they have viewed at which point. This might lead to a

list of documents being presented to them. Although both interfaces are related

to the same dataset, the information is displayed separately and it is up to the

user to make the connection between the two.

The Minerva framework overcomes this problem by exposing the raw navigational

information in the system and providing a framework that allows
exible visuali-

sations to be constructed from this information. The front-end interface displays

information generated dynamically from the underlying information. This allows

the information to be combined more cohesively, leading to more detailed visual-

isations.

The framework is constructed in an open fashion, with modules being plugged into

the framework to deal with di�erent aspects of the visualisation. The underlying

navigational tools supply the framework with the raw information to be presented

to the user. A variety of mapping processes convert and combine the information

into objects to be displayed by the front-end interface. In addition to this, further

intervention can be made by processes to control the interaction between the user

and the objects and to restrict the amount of information displayed to the user.

210

The
exibility and openness of the framework were illustrated by creating visuali-

sations of three very di�erent forms of hypermedia information. Each visualisation

required a di�erent approach and made use of both tools designed speci�cally for

the application as well as generic tools suitable for a wide range of visualisations.

Within each visualisation there was also scope for user customisation.

With the underlying information exposed and an open framework available, new

tools for visualisation can be created which aren't hard-wired to speci�c applica-

tions and can utilise any information that is fed into the framework.

Clear similarities can be seen between the SHEP and the Minerva architectures

both in terms of aims and objectives and topology. In the SHEP architecture,

information is passed from the interface component A, through a chain of pro-

cessors B, and back to A again. In the Minerva architecture, the information is

passed from an object manager A, through a chain of processors, B, and on to a

visualisation interface C. There is a route back from C to A in the Minerva archi-

tecture which serves as a control path rather than a return path for the modi�ed

information.

Despite this minor di�erence, the question still remains, are both frameworks

needed, or could they be combined? Although concerned with di�erent types

of information, both frameworks perform deferred decision making to provide

separation between underlying data and interface.

In practice, the Minerva framework has more specialist modules connected to it

than the SHEP framework. It could be argued that the specialist roles of control

and movement interaction modules are in fact types of mapping libraries that act

upon speci�c types of information. Here, the boundaries begin to blur however,

and some of the bene�ts of clear separation between module function is lost.

Following along similar lines, SHEP could implemented within the Minerva frame-

work itself. In this case, the scene is the desktop, with interface components reg-

istering as managers of their own state information. The shepherds form mapping

modules, still arranged in a chain, but mapping the original state into its �nal

state. In order for interface components to receive their mapped state they would

register as handlers for the state objects and a virtual environment interface would

simply take each message it received from the Minerva system and pass it straight

211

back to the interface component. Arranged like this, the SHEP framework can be

implemented as a special case interface within the Minerva framework.

Openness should not be restricted to linking practices, but provides
exibility in

dealing with interfaces and visualisations. The modular construction of a frame-

work promotes re-use and provides a stable platform for systems to feed their

information into. The separation leaves the hypermedia systems free to concen-

trate on generating their information without worrying about the presentation of

it to the user and the interface designers free to create novel and exciting interfaces

without having to tie their interfaces to speci�c systems and representations.

Bibliography

Akscyn, R. M., McCracken, D. L., & Yoder, E. A. 1988. KMS: A Distributed

Hypermedia System for Managing Knowledge in Organisations. Communi-

cations of the ACM, 31(7), 820{835.

Alan Taylor. 1999. The Evolution of Style Sheets.

http://www.webreference.com/dev/style/evolution.html.

Anderson, Kenneth M., Taylor, Richard N., & Whitehead, Jr, E. James. 1994

(Sept.). Chimera: Hypertext for Heterogeneous Software Environments.

Pages 94{107 of: ECHT '94 Proceedings, Edinburgh, Scotland.

Andrew B. King. 1999. Cascading Style Sheets.

http://www.webreference.com/dev/style/.

Andrews, Keith, Kappe, Frank, & Maurer, Hermann A. 1995. The Hyper-G

network information system. The journal of universal computer science, 1(4),

206{220.

Bederson, B. B., Stead, L., & Hollan, J. D. 1994. Pad++: Advances in Multiscale

Interfaces. In: ACM SIGCHI '94 (short paper).

Benford, Steve. 1995. Information Visualisation, Browsing and Sharing in Pop-

ulated Information Terrains. In: Proceedings of the Seminar Series on New

Directions in Software Development : The World Wide Web. University of

Wolverhampton.

Berners-Lee, Tim. 1992 (Jan.). Uniform Resource Locators.

http://info.cern.ch/hypertext/WWW/Addressing/Addressing.html.

Berners-Lee, Tim. 1993a (Jan.). Hypertext Markup Language (HTML).

http://info.cern.ch/hypertext/WWW/MarkUp/MarkUp.html.

Berners-Lee, Tim. 1993b. Protocol for the Retrieval and

Manipulation of Textual and Hypermedia Information.

http://www.w3.org/hypertext/WWW/Protocols/HTTP/HTTP2.html.

212

213

Bernstein, Mark. 1988. The Bookmark and the Compass. ACM Bulletin 9(4) of

the O�ce Information System Group, Oct., 34{45.

Bieber, Michael, Vitali, F., Ashman, Helen, Balasubramanian, V., & Oinas-

Kukkonen, H. 1997. Forth generation hypermedia: Some missing links for the

world wide web. International Journal of Human-Computer Studies, 47(1),

31{65.

Brewster, Stepher A., Wright, Peter C., & Edwards, Alistair D. N. 1993 (Apr.). An

Evaluation of Earcons for use in Auditory Human-Computer Interfaces. Pages

222{227 of: Proceedings of INTERCHI '93 Human Factors in Computing

Systems, Amsterdam, The Netherlands.

Brown, Peter. 1987 (Nov.). Turning Ideas into Products: The Guide System.

Pages 33{40 of: Hypertext '87 Proceedings, Chapel Hill NC.

Bush, Vannevar. 1945. As We May Think. Atlantic Monthly 176, July, 101{108.

Byrne, M. D. 1993 (Apr.). Using Icons to Find Documents: Simplicity Is Crit-

ical. Pages 446{453 of: Proceedings of INTERCHI '93 Human Factors in

Computing Systems, Amsterdam, The Netherlands.

Card, S. K., & Henderson Jr, A. H. 1987. A multiple virtual workspace interface

to support user task switching. Pages 53{59 of: Proceedings of the CHI+GI

1987, Toronto. ACM Press.

Card, Stuart K., Robertson, George G., & Mackinlay, Jock D. 1991. The infor-

mation visualizer and information workspace. Pages 181{188 of: Robertson,

Scott P., Olson, Gary M., & Olson, Judith S. (eds), Proceedings of CHI 1991

Human Factors in Computing Systems, New Orleans, Louisiana.

Card, Stuart K., Robertson, George G., & York, William. 1996 (Apr.). The

WebBook and the Web Forager: An Information Workspace for the World-

Wide Web. Pages 111{117 of: Tauber, Michael J. (ed), Proceedings of CHI

1996 Human Factors in Computing Systems, Vancouver, British Columbia,

Canada.

Carlsson, C., & Hagsand, O. 1993. DIVE { A multi{user virtual reality system.

Pages 394{400 of: VRAIS'93, IEEE Virtual Reality Annual International

Symposium.

Carroll, J. M., Mack, R. L., & Kellogg, W. A. 1988. Interface Metaphors and User

Interface Design. Pages 67{85 of: Helander, M. (ed), Handbook of Human-

Computer Interaction. Elsevier.

214

Chalmers, M., & Chitson, P. 1992. Bead: Explorations in Information Visualisa-

tion. Pages 330{337 of: Proceedings of SIGIR '92. ACM Press.

Chen, Chaomei. 1999. Visualising Semantic Spaces and Author Co-Citation Net-

works in Digital Libraries. Information Processing & Management, 35(3),

401{420.

Chen, Chaomei, Thomas, Linda, Cole, Janet, & Chennawasin, Chiladda. 1999.

Representing the semantics of virtual spaces. IEEE Multimedia, 6(2), 54{63.

Clarke, Arthur C. 1968. 2001: A Space Odyssey. Hutchinson.

Conklin, Je�. 1987. Hypertext: An Introduction and Survey. Computer, 1(9),

17{40.

Criterion Software. 1998. Renderware API Reference Manual V1.3. Criterion

Software Guilford, UK.

Crowder, Richard M., Wendy Hall, Rory Bernard, & Heath, Ian. 1993 (Nov.).

Open Hypemedia Systems for Training and Maintenance. In: European Con-

ference on Automation and Robotics Training, London.

Crowder, Richard M., Wills, Gary B., Heath, Ian, & Hall, Wendy. 1997 (Dec.).

An Open Hypermedia Solution to Information Overload in Industrial Appli-

cations. In: IEE colloquium on IT Strategies for Information Overload.

Davis, Hugh. 1995 (Nov.). Data Integrity Problems in an Open Hypermedia Link

Service. Ph.D. thesis, Department of Electronics and Computer Science,

University of Southampton.

DeRoure, Dave C., Hall, Wendy, Reich, Sigi, Pikrakis, A., Hill, Gary J., & Stair-

mand, M. 1998. An open architecture for supporting collaboration on the

web. WET ICE 98 - IEEE Seventh International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises, Stanford Univer-

sity, California, June, 90{95.

Dieberger, Andreas. 1996. Browsing the WWW by interacting with a textu-

ral virtual environment { a framework for experimenting with navigational

metaphors. Pages 170{179 of: Hypertext '96 Proceedings, Washington DC,

USA. ACM Press.

Engelbart, D. G., Watson, R. W., & Norton, J. C. 1973 (June). The Augmented

Knowledge Workshop. Pages 9{21 of: AFIPS, National Computer Confer-

ence and Exposition, New York.

Engelbart, Douglas. 1963. A Conceptual Framework for Augmenting Man's In-

tellect. Vistas on Information Handling, 1, 1{29.

215

Ensor, J. Robert. 1998. Multimedia Communications Projects. IEEE Multimedia,

Jan., 97{101.

Erickson, Thomas D. 1990. Working with Interface Metaphors. Pages 65{74 of:

Laurel, Brenda (ed), The Art of Human Computer Interface Design. Addison

Wesley.

Fairchild, K. M., Poltrock, S. E., & Furnas, G. W. 1988. Semnet: Three-

dimensional Graphic Representations of Large Knowledge Bases. Cognitive

Science and its Applications for Human-Computer Interaction.

Fountain, Andrew, Hall, Wendy, Heath, Ian, & Davis, Hugh. 1990. Microcosm: an

Open Model With Dynamic Linking. Pages 298{311 of: Rizk, A., Streitz, N.,

& J.Andr�e (eds), Hypertext: Concepts, Systems and Applications, Proceedings

of the European Conference on Hypertext, INRIA. Cambridge University

Press.

Furnas, G. W. 1994. Generalised Fisheye Views. Pages 206{216 of: Proceedings

of CHI 1986 Human Factors in Computing Systems, Boston, Mass. ACM

Press, New York.

Furnas, George W., & Bederson, Benjamin B. 1995 (May). Space-Scale Diagrams:

Understanding Multiscale Interfaces. In: Proceedings of CHI 1995 Human

Factors in Computing Systems, Denver, Colorado, USA .

Gibson, William. 1984. Neuromancer. Harper Collins, London.

Gloor, P. A. 1991. CYBERMAP - Yet Another Way of Navigating in Hyperspace.

Pages 107{122 of: Hypertext '91 Proceedings, San Antonio, Texas. ACM

Press.

H. Gleitman. 1986. Psychology (2nd Ed.). W.W.Norton & Co. Inc. USA.

Halasz, F., & Mayer, S. 1994. The Dexter Hypertext Reference Model. Commu-

nications of the ACM, 37(2), 30{39.

Halasz, F., & Schwartz, M. 1990. The Dexter Hypertext Reference Model. Pages

95{133 of: Proceedings of the Hypertext Standardization Workshop, Gaithers-

burg. US Government Printing O�ce.

Halasz, F. G., Moran, T. P., & Trigg, R. H. 1987 (Apr.). Notecards in a Nut-

shell. Pages 42{52 of: Proceedings of CHI '87 Human Factors in Computing

Systems, Toronto, Ontario, Canada.

Harrison, Beverly L., & Vicente, Kim J. 1996 (Apr.). An Experimental Evaluation

of Transparent Menu Usage. Pages 391{398 of: Tauber, Michael J. (ed),

216

Proceedings of CHI 1996 Human Factors in Computing Systems, Vancouver,

British Columbia, Canada.

Heath, Ian. 1992 (Aug.). An Open Model for Hypermedia: Abstracting Links from

Documents. Ph.D. thesis, Department of Electronics and Computer Science,

University of Southampton.

Hemmje, Matthias. 1993. A 3D based user interface for information retrieval

systems. Pages 194{209 of: Database Issues for Data Visualization IEEE

Visualization '93 Proceedings, San Jose, California, USA. Springer Verlag.

Henderson, D. A., & Card, S. K. 1986. Rooms: The use of multiple virtual

workspaces to reduce spatial contention in a window-based graphical user

interface. ACM Transaction on Graphics, 5(3).

Hendley, R. J., Drew, N. S., Wood, A. M., & Beale, R. 1995 (Oct.). Narcissus:

Visualising Information. Pages 90{96 of: Proceedings of IEEE Symposium

on Information Visualisation (InfoVis'95), Atlanta, Georgia, USA.

Hightower, R. R., Ring, L. T., Helfman, J. I., Bederson, B.B., & Hollan, J. D. 1998.

Graphical Multiscale Web Histories: A Study of PadPrints. In: Hypertext

'98 Proceedings, Pitsburgh, USA. ACM Press.

Hill, Gary J. 1994 (June). Extending an Open Hypermedia System to a Distributed

Environment. Ph.D. thesis, Department of Electronics and Computer Science,

University of Southampton.

Hill, W. C., & Hollan, J. D. 1992. Edit Wear and Read Wear. Pages 3{9 of:

Proceedings of CHI 1992 Human Factors in Computing Systems.

Hoschka, Philipp. 1998. An Introduction to the Synchronized Multimedia Inte-

gration Language. IEEE Multimedia, 5(4), 84{88.

Jukka Korpela. 1999. Why style sheets are harmful.

http://www.hut.�/%7Ejkorpela/styles/harmful.html.

K. Gr�nb�k and R. H. Trigg. 1992 (Nov.). Design Issues for a Dexter-Based

Hypermedia System. Pages 191{200 of: ECHT '92 Proceedings, Milano,

Italy.

Kandogan, Eser, & Shneiderman, Ben. 1997 (Mar.). Elastic Windows: Evaluation

of Multi-Window Operations. In: Proceedings of CHI 1997 Human Factors

in Computing Systems, Atlanta, Georgia, USA.

Kay, Alan, & Goldberg, A. 1977. Personal dynamic media. Pages 31{42 of: IEEE

Computer, vol. 10.

217

Ken Perlin and David Fox. 1993. Pad : An Alternative Approach to the Computer

Interface. Pages 57{64 of: SIGGRAPH '93 Computer Graphics conference

proceedings, Anaheim, California. ACM SIGGRAPH, New York.

Krohn, U. 1996. VINETA: Navigation Through Virtual Information Spaces. In:

Cartaci, T. (ed), Proceedings of AVI: Advanced Visual Interfaces, Gubbio,

Italy. ACM Press.

Li, Zhuoxun, Davis, Hugh, & Hall, Wendy. 1992. Hypermedia Links and Infor-

mation Retrieval. In: The Proceedings of the 14th British Computer Society

Research Colloquium on Information Retrieval. Lancaster University.

Licklider, J. C. R. 1960. Man-computer symbiosis. Pages 4{11 of: IRE Transac-

tions on Human Factors in Electronics HFE-1, vol. 1.

Lieberman, Henry. 1997 (Mar.). Autonomous Interface Agents. In: Proceedings

of CHI 1997 Human Factors in Computing Systems, Atlanta, Georgia, USA.

Lynch, K. 1960. The image and the city. MIT Press & Harvard University Press.

Mackinlay, Jock D., Robertson, George G., & Card, Stuart K. 1991. The per-

spective wall : detail and context smoothly integrated. Pages 173{179 of:

Robertson, Scott P., Olson, Gary M., & Olson, Judith S. (eds), Proceedings of

CHI 1991 Human Factors in Computing Systems, New Orleans, Louisiana.

Malcolm, Kathryn C., E., Poltrock S., & D., Schuler. 1991. Industrial Strength

Hypermedia: Requirements for a Large Engineering Enterprise. Pages 13{24

of: Hypertext '91 Proceedings, San Antonio, Texas. ACM Press.

Marshall, Catherine C., & Shipman III, Frank M. 1993 (Nov.). Searching for the

Missing Link: Discovering Implicit Structure in Spatial Hypertext. Pages

51{62 of: Hypertext '93 Proceedings, Seattle, Washington USA.

Massari, A., Saladini, L., Hemmje, M., & Sisinni, F. 1997. Virgilio: A Non-

Immersive VR System To Browse Multimedia Databases. Pages 573{580 of:

Proceedings of the IEEE International Conference on Multimedia Computing

Systems 1997, Ottowa, Canada. IEEE Computer Society Press.

McDonald, Sharon, & Stevenson, Rosemary J. 1998. Navigation in hyperspace:

An evaluation of the e�ects of navigational tools and subject matter expertise

on browsing and information retrieval in hypertext. Interacting with Com-

puters, 129{142.

Mereu, Stephen W., & Kazman, Rick. 1996 (Apr.). Audio Enhanced 3D Inter-

faces for Visually Impaired Users. Pages 72{78 of: Tauber, Michael J. (ed),

218

Proceedings of CHI 1996 Human Factors in Computing Systems, Vancouver,

British Columbia, Canada.

Morningstar, Chip, & Farmer, F. Randall. 1991. The Lessons of Lucas�lm's

Habitat. Pages 273{302 of: Benedikt, Michael (ed), Cyberspace : First Steps.

MIT Press Cambridge, Massachusetts.

Nelson, Theodore Holm. 1980 (Oct.). Replacing the Printed Word: A Complete

Literary System. Pages 1013{1023 of: IFIP.

Nielsen, Jacob. 1995. Multimedia and Hypertext. The Internet and Beyond. Aca-

demic Press Professional, Boston.

Olsen, K. A., Korfhage, R. R., Sochats, K. M., Spring, M. B., & Williams, J. G.

1993. Visualisation of a Document Collection: The VIBE System. Pages

69{81 of: Information Processing and Management, vol. 29. Pergamon Press

Ltd.

Pearl, A. 1989 (Nov.). Sun's Link Service: A Protocol for Open Linking. Pages

137{146 of: Hypertext '89 Proceedings, Pittsburgh, Pennsylvania USA.

Pesce, Mark D., Kennard, Peter, & Parisi, Anthony S. 1994. Cyberspace.

http://vrml.wired.com/concepts/pesce-www.html.

Pintado, X., & Tsichritzis, D. 1990. Satellite: Hypertext navigation by a�nity.

Pages 274{287 of: Rizk, A., Streitz, N., & J.Andr�e (eds), Hypertext: Con-

cepts, Systems and Applications, Proceedings of the European Conference on

Hypertext, INRIA. Cambridge University Press.

Rao, Ramana, & Card, Stuart K. 1994 (Apr.). The Table Lens: Merging Graphical

and Symbolic Representations in an Interactive Focus+Context Visualization

for Tabular Information. In: Proceedings of CHI 1994 Conference on Human

Factors in Computing Systems, Boston, Massachusetts.

Rheingold, Howard. 1991. Virtual Reality. Secker and Warburg.

Rizk, Antoine. 1992 (Nov.). Multicard: An open hypermedia system. Pages 4{10

of: ECHT '92 Proceedings, Milano, Italy.

Robertson, George G., Mackinlay, Jock D., & Card, Stuart K. 1991. Cone trees

: animated 3D visualizations of hierarchical information. Pages 189{ of:

Robertson, Scott P., Olson, Gary M., & Olson, Judith S. (eds), Proceedings

of CHI 1991 Human Factors in Computing Systems, New Orleans, Louisiana.

Schneiderman, B. 1987 (Nov.). Hypermedia topologies and user navigation. Pages

189{194 of: Hypertext '87 Proceedings, Chapel Hill NC.

219

Seligmann, Doree Duncan, Laporte, Cati, & Bugaj, Stephan Vladimir. 1997. The

Message is the Medium. Pages 631{641 of: Proceedings of the Sixth Interna-

tional World Wide Web Conference, Santa Clara, California, USA. .

Shipman, F. M., Furuta, R., Brenner, D., Chung, C. C., & Hsieh, H. W. 1998.

Using paths in the classroom: Experiences and adaptations. Pages 267{276

of: Hypertext '98 Proceedings, Pitsburgh, USA. ACM Press.

Shipman III, Frank M., & Marshall, Catherine C. 1995 (May). Finding and Using

Implicit Structure in Human-Organized Spatial Layouts of Information. In:

Proceedings of CHI 1995 Human Factors in Computing Systems, Denver,

Colorado, USA .

Silicon Graphics. 1995. 3D File System Navigator.

http://www.sgi.com/fun/freeware/3d navigator.html.

Smith, D. 1982. Designing the Star User Interface. BYTE, Apr., 242{282.

Stephenson, Neal. 1993. Snowcrash. Roc.

Storey, M-A. D., & M�uller, H.A. 1995 (Oct.). Manipulating and Documenting

Software Structures Using SHriMP Views. Pages 275{284 of: Proceedings of

the ICSM '95 conference on Software Maintenance, Opip (Nice), France.

Sutherland, Ivan. 1965. The Ultimate Display. Proceedings of the IFIP Congress,

506{508.

Sutherland, Ivan. 1968. A Head{Mounted Three{Dimensional Display. Proceed-

ings of the Fall Joint Computer Conference, 757{764.

Sutherland, Ivan E. 1963. Sketchpad: a man-machine graphical communication

system. Pages 329{346 of: AFIPS Conference Proceedings 23.

Took, Roger. 1990. Surface Interaction: A Paradigm and Model for Separating Ap-

plication and Interface. Pages 35{42 of: Chew, Jane Carrasco, & Whiteside,

John (eds), Proceedings of CHI 1990 Human Factors in Computing Systems,

Seattle, Washington.

Trigg, R., Suchman, L., & Halasz, F. 1986 (Dec.). Supporting collaboration in

Notecards. Pages 153{162 of: CSCW '86 Conference, Austin, Texas.

Van Dam, A. 1988. Hypertext '87 Keynote Address. Proceedings of the ACM,

31(7), 887{895.

Wardrip-Fruin, N., Meyer, J., Perlin, J., Bederson, B. B., & Hollan, J. D. 1997.

A Multiscale Narrative: Gray Matters. Page 141 of: ACM SIGGRAPH 97

Visual Proceedings.

220

Ware, Colin, Hui, David, & Franck, Glenn. 1993 (Oct.). Visualizing Object Ori-

ented Software in Three Dimensions. Pages 612{620 of: Proceedings of CAS-

CON '93 (IBM Centre for Advanced Studies), Toronto, Ontario, Canada.

Wiil, U�e Kock, & Leggett, John J. 1996. The HyperDisco Approach to Open Hy-

permedia Systems. Pages 140{148 of: Hypertext '96 Proceedings, Washington

DC, USA. ACM Press.

Wilkins, Robert James. 1994 (Sept.). The Advisor Agent: a Model for the Dynamic

Integration of Navigation Information within an Open Hypermedia System.

Ph.D. thesis, Department of Electronics and Computer Science, University

of Southampton.

Wood, A. M., Drew, N. S., Beale, R., & Hendley, R. J. 1995 (Apr.). Hyper-

space: Web Browsing with Visualisation. Pages 21{25 of: Third International

World-Wide Web Conference Poster Proceedings, Darmstadt, Germany.

Worlds Inc. 1993. Alphaworld home page. http://www.worlds.net/alphaworld/.

Yankelovich, N., Haan, B. J., Meyrowitz, N. K., & Drucher, S. M. 1988. Intermedia

: The concept and the construction of a seamless information environment.

Computer, 1(1), 81{96.

