Using a Graphical Design Tool for Formal
Specification

Colin Snook and Michael Butler
Department of Electronics and Computer Science
University of Southampton
Highfield, Southampton, SO17 1BJ, United Kingdom.
{cfs98r,M.J.Butler} @ecs.soton.ac.uk

Keywords: POP-I1.B. formal specification, POP-111.D. visualisation,
POP-V.A. mental models

Abstract

Forma languages enable the behaviour of a system to be precisely
specified and verified. However, even experienced users admit that
creating useful modelsis difficult and thisis a barrier to more widespread
use. One reason for this is the lack of tools to assist in the modelling
process. The process of formal specification is, in many ways, similar to
that of programming where design notations and tools have evolved over
many years. In this paper we suggest the adaptation of a graphical design
notation (UML) for formal specification and support this with a prototype
tool to perform automatic translation into a B specification.

Introduction

Experienced forma methods users report that reading and
understanding formal specifications is not a significant problem (Snook
& Harrison 2001). With suitable training, programmers find formal
specifications no more difficult to understand than programs. On the
other hand the same users reported that creating formal specifications is
very difficult. They said that the main difficulty lies in finding useful
abstractions. This indicates that the problem lies not in specifying the
detailed semantics but in the preliminary stage of choosing the objects
and data structures that make up the model.

The process of formal specification (in a model-based specification
language) is, in many ways, similar to that of programming. Both involve
modelling entities in a system using a precise notation and express
desired behaviour upon data structures modelling state. However,
techniques for programming have evolved over several decades, driven
by a strong impetus to use computers to solve bigger and more
complicated problems. Formal specification has developed to some

extent but not with such a strong motivation. Now the problems being
tackled are more complicated the need for formal specification is greater,
but in terms of tools and techniques to aid the modelling process it lags
behind those of programming. We believe that graphical modelling tools
similar to those used for program design would aid the process of formal
specification. With this in mind we have developed a prototype program
to convert an adapted form of UML (Rumbaugh et.a. 1998) class
diagrams into specifications in the B language (Abria 1996). The aim is
to use some of the features of class diagrams to make the process of
writing formal specifications easier, or at least more approachable to
average programmers. The tranglation relies on precise expression of
additional behavioura constraints in the specification of class diagram
components. These constraints are described in an adapted form of the B
notation. The type of diagrams that can be converted is restricted in order
to comply with constraints of the B-method without making the B
unnatural. The UML diagram is a precise formal specification but in a
form which is more friendly to average programmers, especialy if they
use the same UML notation for their program design work. The
diagrammatic notation and tool support brings the benefits of its
assistance to the modelling process for forma specification. The
trandation to textual B specification does not add anything to the
specification; it merely provides an alternative textual form. In this
textual form, however, the benefits of the B method are obtained. The
trandation also demonstrates the validity of the graphical form and
defines its semantics. We envisage benefits to B users (especialy
novices) from being able to develop models in the UML diagrammatic
form and we see this as a possible way to overcome some of the
psychological barriers that progranmmers have against formal
specification.

Benefits of a Diagrammatic Form for Specification

The magjority of students on computer science courses express an
aversion to formal specification whereas they are quite comfortable using
graphical program design notations such as the UML. We believe that
thisis largely an unwarranted fear and that formal specification, given the
same level of tool and language support should be no more difficult than
programming. Advantages of graphical design aids are more to do with
the creation of models than with conveying information. Graphical
descriptions can be mideading to read, they often convey different
meanings to different readers and require experience to interpret
secondary features (Petre 1995) but to the writer they provide a quick
way to express their ideas and to assist in visualising prototype models
that must otherwise be built entirely within the mind. Textual

representations, athough often more accurate in conveying precise
meanings, are much more cumbersome for creating some aspects of these
models. Graphical representations are good for helping to visualize
structures, composition and the relationships between elements.
Modelling large systems usualy requires initially a structural design,
which is then populated with more precise semantic detail. It is this first
modelling stage that benefits from program design tools such as UML.
Class diagrams alow the types of objects in the problem domain and the
relationships between them to be modelled, visualized, prototyped and
atered quickly. Attempts to add the semantic detail to these models may
result in deficiencies in the model being discovered and lead to
refinements to the model. These changes can be made quickly because
the model is highly visible and easily alterable with the aid of the
graphical design tools. Readability and ambiguity is not an issue because
it is the creators that are using the tools for modelling. These features
have made graphica design techniques such as UML popular for
developing programs. We contend that the process of writing formal
specifications is very similar to programming and involves similar
difficulties in structural modelling and its visualization. Therefore tools
that programmers have evolved for writing programs or ones very similar
to them should bring similar benefits when writing specifications.

The B Language and Toolkit

The B language is a formal specification notation that has strong
structuring mechanisms and good tool support. There are 2 commercial
tools for B, Atelier B and the B Toolkit. We have used the B Toolkit for
our translation and animation work, and Atelier B for performing proofs.
B is designed to support formaly verified development from
specification through to implementation. To do this it provides tool
support for generating and proving proof obligations at each stage of
refinement. The B Toolkit also provides animation facilities so that the
validity of the specification can be investigated prior to development. To
make large scale development feasible, B provides structuring
mechanisms to decompose the specification and its subsequent
refinements. These are machines, refinements and implementations. We
are mainly concerned with specification and therefore machines.
Machines allow an abstract state to be partitioned so that parts of the state
can be encapsulated and segregated, thus making them easier to
comprehend reason about and manipulate. One machine may include
(INCLUDES) another machine. If machine A includes machine B, the
state of B isvisibleto A and alterable via B's operations. Another form of
machine inclusion is ‘EXTENDS . This is the same as INCLUDES but
makes the included machines operations accessible as if they were

operations of the including machine. A weaker form of interfacing
between machines is provided by 'USES. The using machine has only
read access to the used machines variables and cannot invoke its
operations. A machine may be used by any number of other machines but
may only be included (or extended) by one other machine.

Benefits of Trandating UML to B

The trand atable UML class diagram with formal annotationsisjust as
precise and complete as the equivalent B specification. This is
demonstrated by the fact that it can be trandated to B automatically.
However there are still benefits to trandating into a B specification:

The textual B specification may be more readable to experienced
formal methods users

The B specification is mathematically manipulable enabling
reasoning and proof to be performed

The B toolkit is available for type analysis, proof assistance and
animation

The trand ation demonstrates the semantics of the UML version.

A B specification can be animated with the B Toolkit to explore the
dynamic behaviour of the modelled system. In UML terms this means
that operations of an object can be invoked and the B animator will check
pre-conditions, and invariants and display the new state of the system in
terms of the object's attributes and relationships with other objects.
Animation is useful, especialy to novices, because it provides feedback
and debugging of the specification. It is also essentia for validation, i.e.
demonstrating to users that the specification describes a system which
will be useful.

A class dynamic behaviour can be proven to conform to the class
invariants. In UML terms this means that the proof tools will provide
assistance in proving that no sequence of invocations of an object's
operations can produce a resultant state (in terms of the class' attributes
and associations with other objects) that disobeys the invariant. A safety
or business critical property of the system could be specified and verified
inthisway.

Conversion of other UML forms of dynamic specification may be
possible. In particular, ways of translating state charts to B have already
been proposed (Meyer & Souquieres 1999). This would enable the
equivalence of the different views of dynamic behaviour within UML to
be investigated.

UML models prepared for translation to B contain verified invariant and
method descriptions (constraints) in a rigorous, abstract notation. The
UML diagram is given a precise semantics as expressed by its equivalent
formin the B notation.

U2B Transator

The U2B trandator converts Rational Rose! UML Class diagramsinto
the B notation. U2B is a script file that runs within Rational Rose and
converts the currently open model to B. It is written in the Rational Rose
Scripting language, which is an extended version of the Summit
BasicScript language. U2B is configured as a menu option ("Export to
B") under the File menu of Rose. U2B uses the object-oriented libraries
of the Rose Extensibility Interface to extract information about the
classes in the logical diagram of the currently open model. The object
model representation of the UML diagram means that information is
easily retrieved and the program structure can be based around the logical
information in the class rather than a particular textual format. U2B uses
Microsoft Word972 to generate the B Machine files via the OLE
interface. The Rose Script uses the object oriented document model of
Word97 in order to facilitate the creation of the B Machines. Word
template files are used to form the basic layout of the Machines.

Translation of Structure and Static Properties

The tranglation of Classes, attributes and operations is derived from
proposals for converting OMT to B (Meyer & Souquieres 1999). A
separate machine is created for each class and this contains a set of all
possible instances of the class and a variable that represents the subset of
current instances of the class. Attributes and (unidirectional) associations
are trandated into variables with their type defined in the invariant clause
of the machine as a relation from the current instances to the UML
attribute type or association class. Types can be any of the predefined
types of B (including boolean and string which are B library types) or
another class. If the typeis neither of these it will be added as a parameter
of the machine. When the type is another class the machine for that class
will either be extended (EXTENDS) by this machine if there is a path of
unidirectional associations to that class or otherwise used (USES). Types
can also be a set or sequence of any of these by putting POW/(typename)
or seq(typename) respectively as the type in the UML class specification.
U2B could easily be extended to cover other B data structuresin asimilar
manner. A create operation is automatically provided for each class
machine. This picks any instance that isn't already in use, adds it to the

1 Rational Rose is atrademark of the Rational Software Corporation
2 Microsoft Word97 is atrademark of the Microsoft Corporation

current instances set, and adds a maplet to each of the attribute relations
mapping the new instance to the appropriate initial value. Note that,
according to our definition (viatranslation) of class diagrams, association
means that the source class is able to invoke the methods of the target
class. Non-navigable (and bi-directional) associations are ignored but
may be used to illustrate the use of another class as a type (i.e. read
access only). The B method imposes some restrictions on the way
machines can be composed. These restrictions ensure compositionality of
proof. Their impact is that no write sharing is allowed at machine level
(i.e. amachine may only be included or extended by one other machine).
We reflect these restrictions in the UML form of the specification, which
must therefore be tree like in terms of its unidirectional associations.
Although we would like to adhere to the UML class diagram rules as
much as possible, since our am is to make B specification more
approachable rather than to formalise the UML we are relatively happy to
impose restrictions on the diagrams that can be drawn. That is we only
define trandations for a subset of UML class diagrams. Other authors
(Facon et.al. 1996, Meyer & Souquieres 1999, Meyer & Santen 2000,
Nagui-Raiss 1994, Shore 1996) have suggested ways of dealing with the
trandation of more general forms of class diagrams. However, the
structures of B machines that result from these trandations are not
natural. If the specification were written directly in B, it would be highly
unlikely that the resulting B would have this form. Since we also desire a
usable B specification we prefer to restrict the types of diagrams that can
be drawn.

Dynamic Behaviour

The dynamic behaviour modelled on a class diagram that is converted
to B by U2B is embodied in the behaviour specification of classes
operations and in invariants specified for the classes. These details are
specified in a textual format as annotation to the class diagram. In
Rational Rose, 'Specifications are provided for operations (as well as
many other elements) and these provide text boxes dedicated to writing
pre-conditions and semantics for the operation. Unfortunately there is no
text box for a class invariant. One suggestion is to put invariant
constraints in a note attached to the class (Warmer & Kleppe 1999), but
notes are treated as an annotation on a particular view in Rational Rose
and not part of the model. This makes them difficult to access from the
tranglation program and unreliable should we extend the conversion to
look at other views. Therefore we decided to include the invariants in the
documentation text box of the class specification. The invariants are
generaly of 2 kinds. Instance invariants are properties that hold between
the attributes and relationships of a particular instance of the class. In
keeping with the implicit self-reference style of UML, we chose to alow
the reference to a particular instance to be omitted. U2B will need to add

the universal quantification over al instances of self. The last invariant is
a class wide invariant that specifies properties that hold between the
different instances of the class. Here, the quantification is an integral part
of the property and must be given explicitly. Hence, U2B will not need to
add quantification over instance references. The invariants are separated
from any natural language description by theword INVARIANT: . UML
does not impose any particular notation for these operation and invariant
constraint definitions; they could be described in natural language or
using UML's Object Constraint Language (OCL). However some
problems have been raised with OCL (Vaziri & Jackson 1999) and since
we wish to end up with a B specification it makes sense to use bits of B
notation to specify these constraints. The B is close to B notation but has
to observe afew conventions in order for it to become valid B within the
context of the machine produced by U2B. For example, al operation
outputs are called 'Return’. When writing these bits of B the specifier
shouldn't need to consider how the trandation would represent the
features (associations, attributes and operations) of the classes. Also we
felt we should follow the more object oriented conventions of implicit
self-referencing and use of the dot notation. Therefore when writing the B
a dot notation is used to reference the ownership of features, e.g. if class
A has an association to class B we might write AassocB.Battr, where
AassocB is an association from class A to class B and Battr is an
attribute of class B. Thiswould be trandlated to Battr(AassocB(Aself)).

Example

The example in Fig. 1 shows a class GAME that has typed and
initialised attributes, parameterised operations (some with return values),
three association relationships with a class TICKET and an aggregate
relationship with another class, PRIZE. The class also uses another class,
PLAYER, as a type. The associations have role names Prizes, Tickets,
Winners and Claimed, which are used to refer to the instances of the
associated class involved in the association. Alongside the class diagram
is shown the Rational Rose specification for the class GAME. Following
the natural language description in the ‘Documentation’ box some class
invariants are given. The Atelier B proof tools were used to prove that
these invariants were preserved by the operations of the example.

Each operation of the class also has a Rose Specification window with
appropriate tabs for the definition of the operation. The operation pre-
conditions and body are taken from the precondition and semantics tabs
of the specification for the 'buy' operation in class GAME. The ANY
congtruct is a statement of the B language that selects a value for a
variable (here tt) satisfying some condition. In this case the condition is
'tt: TICKET - UNION(gg).(g9:GAME]|gg. Tickets), i.e. select an unused ticket.

The second part of this expression is a generalised union of the
association Tickets over al instances of the parent class, GAME . Thisis

GAME
3hDrawn : Boolean = FALSE Conporarts | Madted | Fhr | [oe | MseC
3Sales : Integer = 0 Guad | Deal | Opualin: | Abboes | Raldion
“setprizes(pp : POW(PRIZE)) Man _ Faent Lopedl View
*buy(buyer : PLAYER) : TICKET I
*draw() : Boolean B Deas d
*check(tt : TICKET) : Boolean Stes C—
- oty | donsin obinc! =
wclaim(tt : TICKET, pl : PLAYER) : PRIZE
(P \) Evpat Conkd
[& Pybtbc " Pglacied ™ Privals ™ frplanantaion
| \ \ . - =
| \ \ ks gere can be ndiskosd by ceiling iz Pross strbuss:
+Prizes | / fhereaker, I the geame has not been drasn bickiets can be
on | \ / bo_chl F rsces bckoats havs baan 2ol than he runber of
nitial = \ rices. than Hhe game can ba casn This sl b a subsad
{Initial =/ {1} | +Winners fol e bongini bick et sk Fave ihes sonves o din sy = the et
\ h / kol Prizmes. Al 1 germe: haz beorchevan a pesticula) tick st
\..n [. fzar b cbackad koosee Fil iz n fhe ek of sereeg Tok el
PRIZE +Tickets {Initial = 3} +Claimed it ot cdamad (11 B 2 cain can bie nada o bt
0..n \ 0..n bickat ard 4 Fries il b rotmed. That prizs iz than no
itial = Initial = cirde v slsble bor cleing.
{Initial = {J \ {] [MBELANT &
\ cad Ticksiz) = Sabsr
v friens«: Tickaln b
o e e
R qmr
PLAYER nOwner : PLAYER Qi=hh = g Tickiets A, i Ticksds =) i
e #mSold : Boolean = FALSE
Name : String
“sell(buyer : PLAYER) | k. I Cancel ‘iz | Bowmn=| | Hep |

Fig. 1. Example Class Diagram and Class Specification

precondition

Prizes/={} &

Winners={} &

TICKET-UNION(gg).(g9: GAME|gg.Tickets) /= {}

semantics

ANY tt WHERE tt: TICKET -
UNION(gg).(99:GAME|gg.Tickets)

THEN

Tickets := Tickets V {tt} ||
tt.sell (buyer) ||
Sales:= Sales+1 ||
Return :=tt

END

Fig. 2. Precondition and semantics for operation buyof class GAME

expressed as the union of gg.Tickets for al gg:GAME. Also, note the call
to a method (sell) of the Tickets class. The method is called for the
instance tt of TICKET.

Conclusions

A graphical modelling tool is invaluable for developing structural
models of systems. This has led to the popularity of tool supported
modelling languages such as UML. By adding precise semantic detailsin
the form of specification texts and defining a particular meaning to the
diagrammatic features we can interpret some UML diagrams as formal
specifications. We have implemented a prototype add-in tool that
tranglates these diagrammatic specifications to B. We believe that the
diagrammatic form of formal specification will assist in the difficult task
of creating appropriate models and will make formal specification more
approachable (especially to novices). In future work we intend to use the
trandator to evaluate this hypothesis.

References

1. Abria, JR. (1996) The B Book - Assigning Programs to Meanings.
Cambridge University Press, ISBN 0-521-49619-5

2. Facon, P., Laleau, R., & Nguyen, H. (1996) Mapping Object Diagrams into
B Specifications. In Methods Integration Workshop, Electronic Workshops
in Computing (eWiC), Springer Verlag.

3. Meyer, E. & Souquieres, J. (1999) A Systematic approach to Transform
OMT Diagramsto aB specification. FM'99 LNCS1708 1, 875-895

4. Meyer, E. & Santen, T. (2000) Behavioural Conformance Verification in an
Integrated Approach Using UML and B. In IFM'2000 : 2nd International
Workshop on Integrated Formal Methods.

5. Nagui-Raiss, N. (1994) A Formal Software Specification Tool Using the
Entity-Relationship Model. In 13" International Conference on the Entity-
Relationship Approach, LNCS 881.

6. Petre, M. (1995) Why Looking Isn't Always Seeing. Comm. Of the ACM.
38(6)

7. Rumbaugh, J., Jacobson, |. & Booch, G. (1998) The Unified Modelling
Language Reference Manual. Addison-Wesley, . ISBN 0-201-30998-X

8. Shore, R. (1996) An Object-Oriented Approach to B. In Putting into
Practice Methods and Tools for Information System Design - 1%
Conference on the B method.

9. Snook, C. and Harrison, R. (2001) Practitioners Views on the Use of Formal
Methods: An Industrial Survey by Structured Interview. To be published in
Information and Software Technology

10. Vaziri, M. & Jackson, D. (1999) Some Shortcomings of OCL, the Object

Constraint Language of UML. Response to Object Management Group's
Request for Information on UML 2.0

11. Warmer, J. & Kleppe, A. (1999) The Object Constraint Language - Precise
Modeling with UML. Addison-Wesley, |SBN 0-201-37940-6

10

