Combining B and Alloy

Leonid Mikhailov and Michael Butler
1lm,mjb@ecs.soton.ac.uk

Declarative Systems and Software Engineering Group
Technical Report DSSE-TR-2001-2
February 2001

www.dsse.ecs.soton.ac.uk/techreports/

Department of Electronics and Computer Science

University of Southampton
Highfield, Southampton SO17 1BJ, United Kingdom



Combining B and Alloy

Leonid Mikhailov and Michael Butler
Department of Electronics and Computer Science
Univeristy of Southampton
Highfield, Southampton, SO17 1BJ
United Kingdom
llm,mjb@ecs.soton.ac.uk

February 2001

Abstract

In this paper we propose to combine two software verification approaches, theorem proving
and model checking. We focus on the B-method and a theorem proving tool associated with
it, and the Alloy specification notation and its model checker “Alloy Constraint Analyser”.
We consider how software development in B can be assisted using Alloy and how Alloy can be
used for verifying refinement of abstract specifications. We demonstrate our approach with
an example.

Keywords : B-method, Alloy.

1 Introduction

The approaches to creating verifiably correct systems can be divided in two broad categories:
a top down approach when developers start with an abstract specification and gradually
refine it to an executable implementation, which is guaranteed to be correct with respect
to the specification, and a bottom up approach when developers attempt to implement a
specification straight away and later on undertake a verification effort to make sure that their
implementation complies to the specification.

The first approach is usually based on some sort of refinement calculus. Showing that a certain
refined specification or, in fact, a final implementation complies to the corresponding abstract
specification usually involves proving a lot of properties. Theorem proving is a very tedious
process involving keeping in mind a multitude of assumptions and transformation rules. To
help with this task a number of general purpose theorem provers exist, such as PVS, HOL,
etc. [9, 4]. Such theorem provers usually have some automated tactics such as GRIND in
PVS which attempt to prove the set goal automatically. As most of the refinement calculi
(and or formalisations of programming notations) are formulated in undecidable logics (first
and higher order logics) proving all goals is impossible. Thus the tool usually produces several
subgoals that it didn’t manage to resolve automatically and asks user guidance and assistance.
The user by applying the set of rules and theorems available in the system attempts to prove
the remaining goals.

With the second approach the specifiers usually formulate a number of liveness and safety
properties that the implementation is supposed to comply to. It is, of course, possible to
apply general purpose theorem provers for this purpose. However a different verification



technique, generally referred to as "model checking” is quite prominent with this approach.
The general idea of model checking can be briefly expressed as follows: a program in its
abstract representation, and the verification properties to be checked are formulated in some
formalism based on logic. Next these formulas are submitted to the tool which tries to find a
counter example violating the formulated verification conditions [7, 5, 8, 3].

Both theorem proving and model checking have advantages and disadvantages. The main
advantage of theorem proving is that it permits to reason about infinite domains, and those
are the most interesting in practice. A disadvantage is that a significant amount of highly
qualified labour is required to verify even a relatively simple program. With theorem proving
at times it can be difficult to say whether a property does not prove because it is simply not
true or just some extra effort and ingenuity is required.

Model checking is much more applicable for finite domains, although there is a lot of ongoing
research trying to apply this method to infinite domains. In general, for infinite domains,
while model checking can find a counter example demonstrating that the specification is
contradictory in one way or another, it cannot prove that the specification is correct. In this
respect model checking is similar to testing, which also cannot prove the program correct.
However what both of these approaches (model checking and testing) can do is to increase our
confidence in the system. Another shortcoming of model checking is that it is usually applied
for verifying consistency of a rather high level specifications, while ultimately everybody is
interesting in the correctness of the software implementing these specifications. Obviously,
while a specification can be perfectly correct, the implementation can be not. Verifying
correctness of the executable programs with respect to their specifications is a topic of ongoing
research.

In this paper we propose to combine these two approaches to verification, with the goal being
to benefit from the advantages of both theorem proving and model checking. In particular
we consider combining the B method and the corresponding tool with the Alloy specification
notation and its constraint analyser. The B method is a top down development approach
which is supported by industry-strength tools, which integrate a theorem prover for verifying
the correctness of the specification and its refinements [1]. The Alloy specification notation
is state-based and is supported by the Alloy constraint analyser, which is a finite state model
checker [6, 7]. We briefly present these specification and verification methods in the following
sections.

The main idea discussed in this paper is as follows. Complete formal proof of all proof obliga-
tions generated by the B tool is often practically infeasible. Often a proof obligations cannot
be proved for the simple reason that it is not true. That can happen, for example, because
a specification of an operation is not logically strong enough. Or, simply, the specification
of an operation can be erroneous. The realization of impossibility to prove a certain proof
obligations usually brings about a realization that certain amendments can be made to the
specification, which would generate additional conjuncts in the hypothesis, permitting proof
of the obligation. However, at times, proofs can be very tricky and although sufficient hypoth-
esis are present, developer can experience difficulties proving them. Distinguishing between
these two kinds of difficulties is important, as significant resources can be wasted on trying
to prove goals that are simply not true.

Once the B tool has generated proof obligations we try to run an automated theorem prover
supplied with the tool. It usually leaves some of the obligations unproved. Our idea is that
before actually trying to prove this obligations interactively, we translate them into the Alloy
language and run the Alloy constraint analyser on them. Counter examples that the Alloy
constraint analyser can generate are usually suggestive, so that when a developer realizes
how a certain instantiation of variables of the counter example invalidates the property under
consideration, it becomes clear which amendments can be made to the specification to exclude
the counter example. This suggest a certain debugging process, which most certainly has a



shorter cycle than when interactive prover is used for finding error. Once the Alloy constraint
analyser cannot find a counter example for a sufficiently large instantiations of the domains,
it is a good indication that the verified property is probably correct. The developer can then
return to B interactive prover with confidence that this property should be possible to prove.

Translation between B specification notation and Alloy is manual at the moment. However,
in case certain modification and additions would be made to the Alloy specification notation,
such translation could be done automatically in both directions. We discuss such modifications
and additions in this paper. To illustrate our approach we consider an example.

2 Summary of the Used Formalisms

Let us now briefly present the formalisms of B and Alloy and the development methods
associated with them.

2.1 The B Specification and Verification Method

The B method has an associated specification notation, the so-called Abstract Machine No-
tation (AMN). This specification notation is classified as a state-based notation and is quite
similar to such well-known formal notations as Z and VDM [10, 12]. The similarities between
Z and B arise from the fact that the creator of the B method Jean-Raymond Abrial is also
the author of Z. Compared to the specification notation of Z, AMN is more appealing to
programmers, as it includes such statements as “IF THEN ELSE” and “WHILE” along
with nondeteministic specification statements such as nondeterministic choice “ANY 7. The
B method has three development stages: the specification, the refinement, and the implemen-
tation. Not all of the constructs of AMN are available at all the stages of the development
cycle. We briefly introduce the necessary subset of AMN as we present the example.

The B method is supported by two commercially available tools, “B-Toolkit” developed and
distributed by B-Core company, UK [2], and “AtelierB” developed and distributed by Steria,
France [11]. In general, the tools are quite similar and each of them excels in slightly different
aspects of the method. Accordingly, in the following discussion we refer to both of them as
“the tool”.

Development in the B method is centred around the concept of machines: an abstract machine
— MACHINE, a refinement machine - REFINEMENT | and an implementation machine
- IMPLEMENTATION. Machines are similar to modules encapsulating their internal
representation and providing operations for manipulating this internal representation. The
state of a machine can be accessed and modified by applying the operations defined in this
machine.

The developer starts off with translating an informal specification into an abstract
MACHINE, which is allowed to use only an abstract subset of all available statements
in AMN. As a part of the abstract machine specification, the developer has to introduce an
invariant, which should be established by initialization and should hold before and after the
execution of all operations of this machine. When the developer submits the produced spec-
ification to the tool, it generates a number of theoretically justified verification conditions
which are sufficient to establish that the specification is not contradictory, or consistent.

Next, the developer defines a REFINEMENT machine which, in general, is similar to the
abstract specification machine, but is usually more deterministic, yet not directly translatable
into a programming language like C or Ada. The refinement machine must include an invariant
which usually consists of two parts, the part restricting the variables introduced in a refinement



step, and the so-called “gluing invariant” relating these variables and their counterparts in
the corresponding abstract machine. When the refinement is submitted to the tool, the latter
generates a number of proof obligations sufficient to establish that the refinement is consistent
and that it correctly implements the corresponding specification. In general, a refinement
machine does not have to refine an abstract machine, it can refine another refinement. In
fact, usually the development process includes several refinements until an implementation
machine is reached.

Finally, the developer must define an IMPLEMENTATION machine which maps directly
to a programming language such as C or Ada. An implementation usually has a set of
its own variables of certain pre-defined types supplied in the libraries with the tool. An
implementation also must have its own invariant relating its variables with the variables of
the last preceding refinement. Operations of the implementation must be expressed only using
these implementation variables and relying only on the deterministic subset of AMN. Similarly
to the case of refinement machines, the tool generates proof obligations for showing that the
implementation is consistent and that it correctly implements the previous refinement. In
this paper, we only focus on the features of abstract machines and refinements relevant to
our discussion.

As soon as some proof obligations are generated, the developer can try to discharge them
using an automated theorem prover incorporated in the tool, which attempts to discharge
the generated proof obligations. Typically, there is a number of proof obligations that the
automated prover cannot discharge, so the developer can switch the prover to the manual
mode and attempt to prove the remaining proof obligations interactively.

2.2 The Alloy Specification and Verification Method

The Alloy specification notation and the Alloy Constraint Analyser are the research prod-
ucts of Daniel Jackson and his colleagues at MIT [6, 7]. The Alloy specification language
(to which we further refer as Alloy) is also state-based like B. An Alloy specification usually
contains several sections. One of the obligatory sections is for variable declaration, where
variables can be declared as either atoms, subsets of declared domains, or relations of various
kinds connecting these sets and/or domains. Declaration of the variables can be arranged so
that the specification would have an implicit invariant restricting the set of possible states in
which these variables can be present. In addition, in another section of the specification, the
developer can write down an arbitrary number of named explicit invariants that further re-
strict the state. The developer can also write down a named assertion containing an arbitrary
logical formula expressed on the variables of this specification. In yet another section of the
specification, the developer can write down named operations modifying variables declared in
the specification. Operation specifications describe a relation between pre- and post-states of
the variables, similar to operation schemas of Z.

Verification with Alloy typically proceeds in the following manner. After the developer has
recorded the variables and all implicit and explicit invariants restricting the set of states the
variables can be in, he or she can write down some conjectures about the relation between
the declared variables in the form of named Assertions. It is then possible to submit such an
assertion to the Alloy constraint analyser which tries to find a counter example invalidating
the assertion. The Alloy constraint analyser does this by converting the assertion, all related
variable declarations, and appropriate invariants to a boolean formula, negating it and sub-
mitting it to one of several available general purpose boolean solvers. The chosen solver, in
turn, tries to find an instantiation of the variables in the submitted formula making it true.
Naturally, to make this process finite, the user of the Alloy constraint analyser is asked to
indicate the dimensions of the participating domains.



MACHINE DbAbstr
SETS
STUDENTS ; GRADES
VARIABLES
abstDb
INVARIANT
abstDb € STUDENTS + GRADES
INITTIALISATION
abstDb := {}
OPERATIONS
append( st , gr )
PRE
st € STUDENTS A gr € GRADES A st ¢ dom ( abstDb )
THEN
abstDb := abstDb U { st — gr }

END
END

o~

Figure 1: The abstract machine DbAbstr

The developer can also verify the operations defined in the specification against any or all of
the invariants. For this, the developer has to mark an operation he or she wants to verify
against a particular invariant, and the analyser then tries to find an example instantiation
of the variables which satisfies the invariant before an execution of the operation but does
not satisfy it after. Internally, the analyser achieves this in a manner similar to verifying
assertions.

We briefly introduce the subset of the Alloy specification language necessary for our purposes
as we present the example.

It is important to mention that at the moment Alloy does not provide any support for verifying
implementations or refined specifications on compliance with the original specification. In this
paper we discuss how such features can be introduced to Alloy.

3 Example of Specifications in B and Alloy

In this section we follow the outline of our verification method briefly described in the intro-
duction. Rather than discussing the method on an abstract level, we chose to demonstrate it
with an example. Due to numerous restrictions and shortcomings of the Alloy specification
notation, we chose a rather simple example of specifying a database of student grades. Yet,
verifying this specification arises a multitude of interesting issues that we discuss below.

3.1 Specifying a Student Grades Database in B

Suppose that we would like to create a simple database containing information about students
and their grades. On an abstract level, such a database can be modelled as a partial function.
The B specification of such a model can be represented as an abstract machine DbAbstr, as
shown in Fig.1.



This machine introduces two new domains, which are declared in the section SETS: STUDENTS
and GRADES. These domains are the fixed sets sometimes referred to as deferred sets, as
the developer only needs to give them a concrete representation in the implementation.

The next section of the B specification contains declarations of the variables, which hold the
state of the machine. In our case, this is the variable abstDb.

The INVARIANT section holds the invariant of the machine. In general, an invariant is
a predicate which is established by the initialization of state variables and holds before and
after execution of all operations declared in the machine. In B, an invariant usually includes
predicates that give a type to the state variables declared in the VARIABLES section. In
our machine, abstDb is constrained to be a partial function from the deferred set STUDENTS
to the deferred set GRADES.

In the next section INITTALISATION, all variables of the machine must be initialized.
Thus, abstDb is assigned an empty set.

As follows from the name of the next section, it contains the definitions of all operations
defined for this machine. To illustrate our idea, it is sufficient to provide only one operation.
Therefore, the machine DbAbstr only has an operation append, for adding records about
students’ grades into the database. This operation has a precondition verifying the types of
the corresponding parameters and also checking that the submitted student is not already
in the database, i.e. in the domain of the partial function abstDb. In B, the outcome of an
operation is only defined in those states where its precondition evaluates to true.

As soon as the definition of the DbAbstr machine is complete, we can run the type checker, the
proof obligation generator, and the automated theorem prover on it. Because of the simplicity
of DbAbstr, the automated theorem prover of the tool can resolve one hundred percent of the
generated proof obligations.

Now let us consider a refinement of our student database. In this refinement, shown in Fig.2-3
we implement the student database as a connected list of nodes. The clause REFINEMENT
declares that the machine is intended to be a refinement of another machine. In the next
section of the refinement machine, the developer has to indicate which exactly machine it
refines, in our case it is DbAbstr. Similarly to abstract machines, refinements can also declare
deferred sets. In our case, we declare a new set LINKS that will serve as a domain of all links
available for building a linked list. Next, the developers can declare some constants original
to the refined specification, so we declare a constant nil that is used for marking the end
of the list. The clause PROPERTIES is used for constraining the declared constants, in
particular, the developers must indicate the type of the constants: mil is an element of the
domain LINKS.

Next, we declare variables stDb ,grDb , next , and head that are used for implementing
a linked list. As can be seen from the upper part of the invariant, stDb is declared as a
partial injective function associating LINKS with STUDENTS. Note that, as the function
is injective, there can be no two different links referring to the same student. On the other
hand, grDb is declared not as injective function, but simply as a partial function from LINKS
to GRADES — clearly, several students could have received the same grade on an exam. The
function nezt represents the linked list itself, and is injective, which helps us later to state
that the list is really linked, i.e. all of its nodes can be reached from its head.

The invariant in a refinement can, in general, be divided into three parts. The first one
describes the types of the variables declared in the refinement. The second one describes the
relations between the variables declared in the refinement that are true after the initialization
of these variables and remain true before and after execution of all operations of this machine.
In our case, this part of the invariant can be subdivided into three conjuncts. The first one
states that the domains of stDb, grDb , and next are equal. This condition guarantees that



REFINEMENT DbConcr
REFINES DbAbstr
SETS

LINKS
CONSTANTS

nil
PROPERTIES

nil € LINKS
VARIABLES

stDb , grDb | next , head
INVARIANT

stDb € LINKS ~ STUDENTS A

grDb € LINKS ++ GRADES A

next € LINKS - LINKS A

head € LINKS A

dom ( stDb ) = dom ( grDb ) A

dom ( grDb ) = dom ( next ) A

( next = {} A head = nil Vv

( nil € ran ( next ) A nil & dom ( next ) A head € dom ( next ) ) ) A

( next # {} =

V 2z . ( 2z € LINKS A 2z € ran ( neat ) = head — 2z € next™ ) ) A

¥ link1 . ( linkl € dom ( stDb ) = abstDb ( stDb ( link1 ) ) = grDb ( link1 ) ) A

dom ( abstDb ) = ran ( stDb )
INITTALISATION
stDb , grDb , next , head := {} , {}, {} , nil

Figure 2: The refinement machine DbConcr

students and their grades will be attached to the links connected in the list. The second
one states that either the list is empty and head is equal to nil or head is in the domain of
next and head is not equal to nil and nil is not in the domain but is in the range of next.
This conjunct describes the structure of the list, i.e. the list is either empty and the head
is pointing to nil, or the list starts from head and is terminated by nil. The third conjunct
states that the list must always be properly connected, i.e. starting from the head, it should
always be possible to reach the terminating nil. This is expressed by stipulating that any
tuple such that its first element is head and its second element is any one belonging to the
range of next must belong to the reflexive transitive closure of the function next.

Finally, the third part of the invariant represents a so-called “gluing invariant” which explains
how the state of the abstract machine is represented in terms of the variables of its refinement.
In our case it suffices to state that for all links in the domain of stDb, the grade recorded
in abstDb (in the machine DbAbstr) for the student associated with a link in stDb (in the
machine DbConcr) is equal to the grade associated with this link in ¢grDb (in the machine
DbConcr). Tt is also necessary to add that for all records in the abstract database there is a
link in the concrete one. We achieve this by stating that the domain of abstDb is equal to the
range of stDb.

As follows from the name of the following section, the variables are initialized in it. All
functions are assigned empty sets and the head is assigned nil .



OPERATIONS
append( st , gr )

o~

PRE
st € STUDENTS A gr € GRADES A st & ran ( stDb )
THEN
ANY [l WHERE [l € LINKS — dom ( next ) — { nil }
THEN
IF next = {} THEN

head =1l ||
next ;= { Il — nil } ||
stDb := {1l — st } ||
grDb == {1l — gr}
ELSE
stDb(1l) = st ||
grDb(ll) := gr |
ANY 2z, next] WHERE
xzz € dom ( next ) A zx — nil € next A
next! € LINKS - LINKS A
Vyy. (yy € LINKS A yy € dom ( next ) — { 2z } = next! (yy ) = next (yy ) ) A
next! (zx ) =1l A
next! (1) = nil
THEN
next := nextl
END
END
END

END
END

Figure 3: The refinement machine DbConer (continued)

On the concrete level, definitions of operations become more elaborate. Preconditions of the
operations can only be logically weakened, and they can be expressed on the variables of this
refinement machine. Consider the refined append operation. First, we create a temporary
logical variable Il which represents a new link to be inserted into the list next. This variable
is assigned a value that is arbitrarily chosen from LINKS, is not equal to nil, and is a fresh
value, i.e. it is not in the domain of nezxt.

When appending a new student/grade record to the linked list, there can be two distinct
cases, when initially the list is empty and when it is not. In the first case, we assign to next a
tuple Il — nil, thus making next represent a list with one element /I, terminated by nil. We
also make head to point to Il and associate a supplied student and grade with the link [l. If
the linked list is not empty, we associate the supplied student and grade with the new link /1.
After this, we create two temporary variables xx and nextl, where zz is assigned to refer to
the last element in the list before nil and next! is a copy of next in all the links except for
the one zz is pointed at. In nextl, zz is pointing not to nil, but to the new link [, which,



in turn, points to nil. In fact, next! describes a new state of the function next. Thus the
definition of the operation append concludes with the assignment of this new value next! to
next.

For a reader well familiar with the style of B specifications, the specification presented above
may appear to be somewhat convoluted, as it is quite easy to significantly shorten the def-
inition of the refined append . The style of the specification presented above is motivated
by the restrictions of the Alloy specification notation. We discuss these restrictions in the
concluding section, as well as the modifications that it would be necessary to make to Alloy
in order to permit for more natural specifications in B.

The refinement machine DbConcr presented in Fig.2 and Fig.3 appears to be correct, i.e. the
definition of the operation append is consistent with respect to the invariant of the refinement,
and also append appears to be a proper refinement of its counterpart in DbAbcst. But is it
really correct? To be able to verify this conjecture in Alloy, we first need to consider how we
can formalize the machine DbConcr in Alloy.

3.2 Translating the Student Grades Database to Alloy

Consider the Alloy specification presented in Fig.4. In the section domain, we declare three
domain sets with familiar names: STUDENTS, GRADES, and LINKS. The keyword fixed is used
to indicate that the marked set is unchangeable, remaining invariable before and after all
operations. The next section contains the declaration of state variables. Unlike in AMN,
the Alloy variable declaration not only lists the variables, but also describes their type, and
partially introduces an invariant. For instance, stDb is declared as a partial injective function
from LINKS to STUDENTS. The arrow -> is used for constructing general relation types.

To constraint a variable to be a relation of a particular kind, such as an injective function,
the domain and the range of the relation can be restricted using the so-called multiplicity
characters. In the case of stDb, the multiplicity character used is ? which, when attached to
the name of the set in the variable declaration, makes it to have zero or one element. As 7
is attached to both the domain and the range of stDb signifying that for each element in the
domain of stDb there is at most one element in its range and the other way around, i.e. stDb
is injective.

In this specification, we also use the multiplicity character !, which makes a set to have
exactly one element. More information on multiplicity characters and the Alloy specification
notation in general can be found in [6].

In Alloy, domain-valued variables are modelled as subsets of domains rather than elements of
domains, and relational image rather than function application is used to apply relations to
values. Unique values are represented by singleton sets.

A declaration of the kind domStDb : LINKS declares domStDb to be a subset of the domain
LINKS. The operator : is used in Alloy to indicate a subset relation while declaring a variable,
and the operator in is used for this purpose in other parts of the specification. The variable
domStDb : LINKS serves an auxiliary purpose only, as the machine DbConcr does not have
a counterpart for it. This variable is necessary because Alloy does not have a function dom
which would return a domain of a given relation. To circumvent this problem of Alloy, we
have to declare the variable domStDb and constrain it using the definition

def domStDb { domStDb = {1 : LINKS | some 1.stDb}}

which makes domStDb to be equal to the set of such links whose image of stDb is non-empty.
Note the usage of the operator dot (.), which is used for taking an image of a set through a
relation.



model DbConcr {
domain { fixed STUDENTS, fixed GRADES, fixed LINKS}
state {
stDb : LINKS? -> STUDENTS?
domStDb : LINKS
ranStDb : STUDENTS
grDb : LINKS -> GRADES?
domGrDb : LINKS

next : LINKS? -> LINKS?
head : LINKS!

domNext : LINKS

ranNext : LINKS

nil : fixed LINKS!

nextl : LINKS? -> LINKS?
domNext1l : LINKS
ranNextl : LINKS

def domStDb { domStDb = {1 : LINKS | some 1.stDb}}
def ranStDb {ranStDb = {st : STUDENTS | some st. stDb}}
def domGrDb {domGrDb = {1 : LINKS | some 1.grDbl}}
def domNext {domNext = {1 : LINKS | some 1l.next}}
def ranNext {ranNext = {1 : LINKS | some 1. next}}

def domNextl {domNextl = {1 : LINKS | some 1l.nextl}
def ranNextl {ranNextl = {1 : LINKS | some 1. nextll}}

cond emptyList {all 1 : LINKS | no l.next}

inv StateInv {
domStDb = domGrDb && domGrDb = domNext

( emptyList && head = nil ||
((nil in ranNext) && !'(nil in domNext) && (head in domNext)) )

( 'emptyList ->
(all zz : LINKS | zz in ranNext -> zz in head.*next) )

}

op append(st : STUDENTS!, gr : GRADES!) {
(st in ranStDb)
some 11 : LINKS - domNext - nil |
(emptyList -> head’ = 11 && 1ll.next’ = nil && 11.stDb’ = st && 11.grDb’ = gr &&
(all 1 : LINKS - 11 | no l.next’ && no 1l.stDb’ && no l.grDb’ )) &&
( 'emptyList ->
11.stDb’ = st &&
11.grDb’ = gr &&
some xx : domNext | xx.next = nil &&
(all yy : LINKS | yy : (domNext - xx) -> yy.nextl = yy.next) &&
xx.nextl = 11 && 1l.nextl = nil &&
(all 1 : LINKS | l.next’ = l.nextl) &&
(2l1 1 : LINKS - 11 | 1.stDb’ = 1.stDb && 1l.grDb’ =1.grDb) && head’ = head )

Figure 4: The Alloy representation of DbConcr

10



An Alloy term 1.stDb is equivalent to a B term stDb(l).! The auxiliary variable ranStDb
represents the range of the function stDb and is defined similarly to domStDb. In the definition
of ranStDb note the usage of the ~ operator, which takes the inverse of the function. As stDb
is defined as an injective function, its reverse is a function as well. The other variables whose
name starts with dom or ran represent, respectively, domains or ranges of the corresponding
functions and are all defined in a similar manner.

The variable grDb is represented as a partial function, while next is a partial injective function.
There is also a declaration of the variable head, which is a one element set, and a variable
nil which is marked with the keyword fixed turning it into a constant.

The state of the variables can be further constrained using any number of named invariants. In
our case, we have only one invariant StateInv, which is, in fact, a translation of the invariant
of the machine DbConcr, apart from the typing conjuncts. As Alloy prohibits comparisons
of structured sets and has no predefined constant for an empty set, we had to introduce a
condition emptyList, which in B terms is next = {}. In Alloy, *next represents the reflexive
transitive closure of the function next. At this point a careful reader could have noticed that
the “gluing” part of the DbConcrinvariant does not have a counterpart in StateInv. As Alloy
does not support the notion of refinement directly, the invariant of an Alloy model can only
refer to the variables defined in this model, while the gluing invariant refers to the variables
of DbConcr as well. The gluing invariant is of no significance for verifying consistency of the
concrete append which is the topic of the next section. However, it is crucial for verifying
the correctness of a refinement step. We discuss how to specify a gluing invariant in Alloy in
Section 4.2.

The definition of the operation append in Alloy is, practically, a straightforward trans-
lation of its B counterpart. Alloy does not have programming language statements like
“IF THEN ELSE”, neither does it have an assignment statement. Instead, an operation
in Alloy must be described as a relation between initial (unprimed) and resulting (primed)
states of the variables. A B specification is built on an assumption that only the variables
explicitly modified in the specification change, and all the other variables remain unchanged.
In Alloy, however, it is necessary to explicitly mention that all the variables that were not
modified in the definition of an operation remain in the initial state.

As was already mentioned, it is impossible (at the moment) to compare structured sets in
Alloy. Thus, we cannot say next := {ll — nil}, but we should say that the image of 11
through next is equal to nil, or 11.next’ = nil. The definition of the operation append
in the refinement machine DbConcr is formulated using a temporary variable nextl. As in
Alloy it is impossible to quantify over relations, we had to introduce this temporary variable
in the state declaration. As the only invariant binding next1 is the one making it an injective
partial function from LINKS to LINKS, this is the same as stating that there exists some next1
in the definition of the operation.

At the moment the translation from B to Alloy is done by hand. However, undoubtedly, the
translation between AMN and the Alloy specification notation could be made automatic if
Alloy were extended with several features. We will discuss these features in the concluding
section of the paper.

4 Verifying Properties in Alloy

Let us now return to the question of whether the specification of the method append is
correct. First, we take a look at operation consistency, and then consider the correctness of
a refinement step.

IShould stDb be a general relation, the Alloy term 1.stDb would translate into stDb[{l}] in B.

11



Analyzing append vs. StateIlnv ...
Scopes: GRADES(3), LINKS(3), STUDENTS(3)
Conversion time: 10 seconds

Solver time: 13 seconds

Counterexample found:

Domains:
LINKS = {nil,LO,L1}
Sets:
domNext = {LO}
domNext1l = {nil,LO,L1}

domNext’ = {nil,LO,L1}
Relations:
next = {LO -> nil}
nextl = {nil -> LO, LO -> L1, L1 -> nil}
next’ = {nil -> LO, LO -> L1, L1 -> nil}
Skolem constants:
11 = L1

Figure 5: The counter example for the operation append

4.1 Verifying Operation Local Consistency

If we submit append along with StateInv to the Alloy constraint analyser and indicate that
the domains should be instantiated with only three elements, the analyser generates the
counter example presented in Fig.42.

The counter example clearly violates the invariant, since after execution of the operation,
domNext’ contains nil, which contradicts one of the conjuncts in the invariant. Returning
to the specification of append, it is fairly easy to spot the error. The part of the specification
which deals with the case when the list is not empty describes what should be the value of
the list next1 at all the links in the domain of next and also at the new link 11 we have
added. This condition does not exclude, however, that next1 can have other links. Thus, the
Alloy constraint analyser is free to introduce nil into the domain of next1, which violates
StateInv. To fix the problem, we additionally need to state that the list next1 should only
be larger than next by one element 11:

domNextl = domNext + 11

Indeed, this amendment is sufficient to resolve the problem.

This problem can be traced back to our B specification. Therefore, all attempts to prove
some of the proof obligations dealing with the consistency of the refined definition of Append
would be futile. Now the developer, equipped with the confidence reinforced by the fact that
the Alloy constraint analyser cannot find any counter examples, can return to proving the
subgoals dealing with the consistency of the operation.

It is also possible to check the consistency of an operation in a different manner. Instead of
translating the definition of a B operation into Alloy, it is sufficient to translate the proof
obligations generated by the B tool as Alloy assertions and run the Alloy constraint analyser
on them similarly to verifying operation refinement as described in the next section.

2We have only left the values of the relevant variables for clarity

12



4.2 Verifying Operation Refinement

The definition of an operation in a refinement machine can be consistent with respect to the
local invariant, i.e. the part of the invariant referring only to the variables of the refined
machine. However, at the same time the relation between it and its abstract counterpart
can be other than refinement. Some of the proof obligations generated by the tool during
verification are directed at establishing that abstract and concrete definitions of operations are,
in fact, in the refinement relation. We propose to translate such proof obligations into Alloy
named assertions in order to check that these proof obligations are indeed provable. Alloy
assertions are the logical predicates expressed using the variables of an Alloy specification
that are supposed to evaluate to true in any state the variables can be in. Accordingly, the
tool attempts to find a state invalidating the predicate in the assertion.

The debugging process that we propose is then as follows. The counter example generated
by the analyser can hint at modifications that must be made either to the invariant of the
refinement or to the definition of an operation in B. The developer then should make these
modifications to the B specification, regenerate the proof obligations, run an automated the-
orem prover on them, and in case any are left, translate the remaining to Alloy as assertions
and repeat the debugging cycle again until the Alloy constraint analyser is unable to generate
a counter example in a reasonably large scope. To become one hundred per cent certain that
the refinement machine is, in fact, in the refinement relation with its abstract counterpart,
the developer can then go on and prove the remaining proof obligations using an interactive
theorem prover.

There is, however, a complication. As we have already mentioned, the Alloy specification
notation does not provide any support for defining abstract specifications and their refine-
ments separately. In order to express the “gluing” part of the DbConcr’s invariant, we have to
combine all the definitions of abstract state and the definitions of its concrete implementation
in the same model. Therefore, we should extend our model with the definitions for the partial
function abstDb and its domain domAbstDb. The last one is defined similarly to all the other
definitions of domains of functions.

abstDb : STUDENTS -> GRADES?
domAbstDb : STUDENTS

We should also extend the invariant StateInv to include the “gluing” conjuncts:

all linkl : domStDb | link1.stDb.abstDb = link1l.grDb
all st : STUDENTS | some st. stDb <-> some st.abstDb

To demonstrate our approach to verifying refinement, let us now return to our example. To
demonstrate our approach to verification, we first need to introduce an error in the definition
of DbConcr’s append that would not invalidate the consistency of the operation with respect
to the invariant of the refinement machine, yet would break the refinement relation.

In the B method, the refinement machine can only be proved to be in a refinement relation
with its abstract counterpart if all operations of the refinement machine preserve the gluing
invariant. In our example, it states that for all links in the domain of stDb, the grade recorded
in abstDb (in the machine DbAbstr) for the student associated with a link in stDb (in the
machine DbConcr) is equal to the grade associated with this link in ¢grDb (in the machine
DbConer). Tt is also states that the domain of abstDb is equal to the range of stDb. Obviously,
this invariant would be violated, should we erroneously associate the submitted student not
with the submitted grade but with some other wrong grade in append of DbConcr (see Fig.6).

Naturally, we would need to introduce the constant wrong in the clause CONSTANTS of
the machine and give its type in the clause PROPERTIES. If we now subject the refinement

13



o~

append( st , gr)

PRE
st € STUDENTS A gr € GRADES A st & ran ( stDb )
THEN
ANY [l WHERE [l € LINKS — dom ( next ) — { nil }
THEN
IF next = {} THEN

head =1l ||

next := { Il — nil } |

stDb ;= { Il — st } |

grDb := { ll — wrong }
ELSE

. continuation as in Fig.2

Figure 6: A fragment of the erroneous definition of the operation append invalidating the refine-
ment relation

machine to the standard steps of type checking, proof obligation generation, and automated
theorem proving, we will be left with several proof obligations, of which “append.22” is of
particular interest (see Fig.7).

The proof obligation “append.22” effectively states that the gluing invariant must hold after
the execution of append. It must hold under the assumptions that are extracted from the
PROPERTIES and INVARIANT clauses of the DbAbtr and DbConcr machines and also
from the precondition of the append operation of this machines and the local information
available from the definition of append in DbConcr.

To verify such a proof obligation in Alloy, we can represent it as a named assertion. When
submitted to the constraint analyser, the latter tries to verify whether the predicate in the
assertion is true in all states restricted by all invariants of the model. Therefore, while
translating a B proof obligation to Alloy, we can omit all those conjuncts on the left hand
side of the implication that are repeating the INVARIANTSs and PROPERTIES of the
abstract and concrete machines already represented in the state declaration and the invariants
of the Alloy model. The obligation “append.22” can be translated as an Alloy assertion, as
presented in Fig.8.

Unfortunately, at the moment the Alloy specification notation is not sufficiently rich to always
permit a one-to-one translation of B. Alloy does not permit to use set operations such as
intersection, union, etc. on structured sets (i.e. relations). Neither it is possible to compare
structured sets. In a way, in Alloy it is impossible to state that “a certain relation is such
and such”, it is only possible to state “a certain relation satisfies these properties”, and
these “properties” should always be expressed elementwise. Therefore, to express our proof
obligation in Alloy, we have to perform a case analysis on the domains of the functions
participating in the right hand side of the goal.

The constraint analyser easily finds a counter example demonstrating that the assertion P022
is not always true, i.e. that the submitted grade gr is not always equal to the constant
wrong. If the developer now reverses the definition of append operation to its state before
we introduced the “wrong” error and goes through the entire proposed debugging cycle, then
the Alloy constraint analyser will be unable to find a counter example for the corresponding

14



go(append.22)
7‘Component properties”” N

7‘Previous components properties’ N

7‘Previous components invariants’™ A
’;‘Component Invariant’™ A

”‘append preconditions in previous components’” N

”‘append preconditions in this component’™ A

st & ran ( stDb ) A

”‘Local hypotheses™ A

Il € LINKS A ll & dom ( next ) A ll # nil A

next # {} A zz € dom ( next ) A zz — nil € next A

next! € LINKS + LINKS A next1 ' € LINKS + LINKS A

dom ( next! ) = dom (mext ) U {1l } A

Vyy. (yy € LINKS A yy € dom ( next ) — { 2z } = next! (yy ) = next (yy ) ) A
next! (zx ) =1 A next! (1) = nil A

linkl € dom ((stDb < { Il st }) A

7‘Check that the invariant (llinkl.(link1: dom(stDb) = abstDb(stDb(link1)) = grDb(link1)))
is preserved by the operation - ref 4.4, 5.577

=

(abstDb U {st +— gr}) ((stDb < {1l st }) (linkl ))=(grDb < {1l — wrong }) ( linkl)

Figure 7: The proof obligation “append.22”

assertion in a sizable scope.

5 Conclusions

As was already mentioned, the translation from B to the Alloy specification notation is done
by hand, at the moment. To allow for the automatic translation, the Alloy specification
language has to be extended with several features. Of these features, the ability to work
with relations as with sets of tuples appears to be the most important. This should include
all possible operations available for manipulating ordinary sets, such as set comparison, set
union, set difference, etc. In the absence of this feature, not only the specifications are much
longer, but also it is impossible to directly express properties of updated relations. The last
shortcoming of Alloy is quite apparent in our translation of the proof obligation append.22.
An introduction of the usual functions dom and ran for taking domain and range of a relation,
as well as a constant {} would significantly simplify the resulting Alloy specifications, as it
would be possible then, for instance, to describe the domain of a constructed function. Finally,
the absence of integers (or, in fact, of any finite subset of natural numbers) and arithmetic is

15



assert P022 {
all st : STUDENTS, gr : GRADES, 11 : LINKS, xx : LINKS, linkl : LINKS |
! (st in ranStDb) &&
! (st in domAbstDb) &&
' (11 in domNext) &&
11 !'= nil &&
! emptyList &&
xx in domNext &&
xx.next = nil &&
domNextl = domNext + 11 &&
(all yy : LINKS | yy : domNext && yy !=xx -> yy.nextl = yy.next) &&
xx.nextl = 11 &&
1l.nextl = nil &&
linkl in domStDb + 11 ->
(l1inkl in (domStDb - 11) -> (linkl.stDb in domAbstDb ->
(1inkl in (domGrDb - 11) -> linkl.stDb.abstDb = linkl.grDb))) &&
(1inkl in (domStDb - 11) -> (linkl.stDb in domAbstDb ->
(linkl in 11 -> link1.stDb.abstDb = wrong))) &&
(1inkl in (domStDb - 11) -> (linkl.stDb in st ->
(1inkl in (domGrDb - 11) -> gr = linkl.grDb))) &&
(1ink1 in (domStDb - 11) -> (link1.stDb in st ->
(linkl in 11 -> gr = wrong))) &&
(link1l in 11 -> (st in domAbstDb ->
(linkl in (domGrDb - 11) -> st.abstDb = linkl.grDb))) &&
(1inkl in 11 -> (st in domAbstDb -> (linkl in 11 -> st.abstDb = wrong))) &&
(1ink1l in 11 -> (st in st -> (linkl in (domGrDb - 11) -> gr = linkl.grDb))) &&
(1ink1l in 11 -> (st in st -> (linkl in 11 -> gr = wrong)))

Figure 8: The proof obligation “append.22” translated to Alloy

a very severe restriction of the current Alloy implementation, making it inapplicable to the
majority of practical cases.

In principle, we perceive two major ways in which the described approach to verification can
be implemented as a tool. The first way is to add Alloy-like features into the tools supporting
the B method. At the moment, tools supporting the B method are supplied as integrated
sets of utilities for type checking, proof obligation generating, specification animation, and
theorem proving. Naturally, a utility permitting for model checking the generated proof
obligations would integrate nicely with such tools. In practice, it is often infeasible to adhere
to a completely formal development, as theorem proving is a very tedious and lengthy process
employing highly qualified personnel. Therefore, the B method is often applied in a so-called
“soft” manner, that is some of the steps of the method are omitted or validated only informally.
For instance, developers might decide to informally review the remaining proof obligations
which the automated theorem prover did not manage to resolve. Of course, this approach
can compromise the correctness of the resulting system as it is rather easy to overlook an
error. In this respect, should a B tool support a model checker similar to Alloy, it would
help significantly to avoid errors and, in a way, make such an application of the B method
“harder”. Obviously, however, verifying proof obligations with a model checker should not
discourage the developers from trying to prove the remaining proof obligations interactively.
In fact, from the theoretical standpoint, even if a model checker would permit to verify a
property on finite subsets of infinite domains, to make certain that the property holds on the
entire domain theorem proving must be used.

The second way of implementing the suggested approach to verification as a tool is to add B-

16



[10]
[11]

[12]

like features to the Alloy constraint analyser. In particular, Alloy can be extended to permit
for verifying refinement. Doing this, would include extending the Alloy specification language
with special notation for specifying abstract and refined models. The Alloy constraint analyser
could be made to incorporate a verification condition generator. Such an extension would open
an entirely new scope of potential applications for Alloy.

References

J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,
1996.

B-Core (UK) Limited, Oxon, UK. B-Toolkit, On-line manual., 1999. Available at
http://www.b-core.com/ONLINEDOC/Contents.html.

Formal Systems (Europe) Ltd. Failures-Divergence Refinement- FDR2 user manual, Octobre
1997. Available at www.formal.demon.co.uk/fdr2manual/index.html.

M. Gordon. Introduction to the HOL system. In M. Archer, J. J. Joyce, K. N. Levitt, and P. J.
Windley, editors, Proceedigns of the International Workshop on the HOL Theorem Proving
System and its Applications, pages 2-3, Los Alamitos, CA, USA, Aug. 1992. IEEE Computer
Society Press.

G. J. Holzmann. The model checker spin. IEEE Trans. on Software Engineering, 23(5):279—
295, May 1997.

D. Jackson. Alloy: A lightweight object modelling notation. MIT Lab for Computer Science,
July 2000.

D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa : the alloy constraint analyser. In Proc.
International Conference on Software Engineering, Limerick, Ireland, June 2000.

K. MacMillan. The SMV Language. Cadence Berkeley Labs, 1999.

N. Shankar and J. M. Rushby. PVS Tutorial. Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA, Feb. 1993. Also appears in Tutorial Notes, Formal Methods FEurope
’98: Industrial-Strength Formal Methods, pages 357-406, Odense, Denmark, April 1993.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1987.

Steria, Aix-en-Provence, France. Atelier B, User and Reference Manuals, 1996. Available at
http://www.atelierb.societe.com/index_uk.html.

M. Woodman and B. Heal. Introduction to VDM. McGraw-Hill, 1993. ISBN 0-07-707434-3.

17



