
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


 
 
 
 
 
 
 
 

UNIVERSITY OF SOUTHAMPTON 
 
 
 
 

Data Integrity Problems in an Open Hypermedia Link Service 
 
 

by 
 

Hugh Charles Davis, M.Sc., MBCS 
 
 

A thesis submitted for the degree of  
Doctor of Philosophy 

 
 

in the 
 

Faculty of Engineering and Applied Science 
 

Department of Electronics and Computer Science 

 
 

November 1995 
 
 



 

 
UNIVERSITY OF SOUTHAMPTON 

 
ABSTRACT 

 
FACULTY OF ENGINEERING AND APPLIED SCIENCE 

 
DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE 

 
Doctor of Philosophy 

 
Data Integrity Problems in an Open Hypermedia Link Service 

 
by Hugh C. Davis 

 

A hypermedia link service is system which stores the information 

describing hypertext links in a database which is separate from the 

data content over which the links are intended to operate.  

One of the first open hypermedia link services was Microcosm, 

which takes this philosophy to the extreme, storing not only the 

links in a separate database, but also the information about the 

endpoints of the links. The most important advantage of such an 

organisation is that the system remains open so that hypertext 

functionality may be extended to third party applications. 

The first part of this thesis describes the background to open 

hypermedia link services and describes the Microcosm system, 

which was developed by the Multimedia Research Group at the 

University of Southampton. 

The major problem with storing all the information about links 

separately from the content is that such a scheme introduces many 

opportunities for the introduction of inconsistencies and the loss of 

integrity of the hypermedia data model. The second part of this 

thesis examines these problems, and proposes a number of 

solutions. It concludes that no one solution can resolve all the 

problems, and that in order to ensure integrity it is necessary to 

impose some conditions which limit the degree of openness. 



i 

 

Contents 

Contents ........................................................................................................................... i 

List of Figures ...................................................................................................................v 

List of Tables...................................................................................................................vii 

Acknowledgements ..................................................................................................... viii 

Chapter 1. Introduction................................................................................................... 1 

Chapter 2.  Background .................................................................................................. 4 

2.1. Early Systems ...................................................................................................... 4 

2.2. The Problems with Current Systems............................................................... 5 

2.3. The Dexter Model............................................................................................... 7 

2.4. Towards Industrial Strength Hypermedia ................................................... 11 

2.4.1. Open Hypermedia............................................................................. 11 

2.4.2. Hyperbases ......................................................................................... 13 

2.4.3. Link Services and Lightweight Link Services ............................... 16 

2.4.4. Wide Area Distributed Hypertext................................................... 19 

2.4.5. Digital Libraries ................................................................................. 22 

2.5. Standards for Hypermedia ............................................................................. 24 

2.5.1. HyTime................................................................................................ 25 

2.5.2. HyperODA ......................................................................................... 25 

2.5.3. MHEG.................................................................................................. 26 

Chapter 3.  Microcosm Technical Description........................................................... 27 

3.1. Introduction....................................................................................................... 27 

3.2. General Description ......................................................................................... 29 

3.3. Description of the Link Service ...................................................................... 31 

3.4. Viewers .............................................................................................................. 35 

3.4.1. Fully Aware Viewers......................................................................... 35 

3.4.2. Semi-Aware Viewers......................................................................... 35 

3.4.3. Unaware Viewers .............................................................................. 36 

3.5. Filters.................................................................................................................. 36 

3.5.1. The Linkbase Filters .......................................................................... 37 

3.5.2. The Linker........................................................................................... 39 

3.5.3. Show Links ......................................................................................... 39 

3.5.4. The Computed Linker....................................................................... 39 

3.5.5. Selection .............................................................................................. 40 

3.5.6. The Available Links Filter ................................................................ 40 



ii 

 

3.5.7. Navigational Filters ........................................................................... 40 

3.5.8. Abstraction ......................................................................................... 40 

3.5.9. Monitoring User Interactions........................................................... 41 

3.5.10. Filters that Filter............................................................................... 41 

3.6. Document Management .................................................................................. 42 

3.7. The Registry ...................................................................................................... 45 

3.8. Navigational Methods and Support .............................................................. 46 

3.9. Authoring .......................................................................................................... 48 

3.10. Summary.......................................................................................................... 51 

Chapter 4.  Information Retrieval and Computed Links ......................................... 54 

Chapter 5.  Application Integration ............................................................................ 59 

5.1. Links, Anchors and Persistent Selections ..................................................... 60 

5.2. Links and Messages in Microcosm ................................................................ 63 

5.3. Viewer Communication Protocols................................................................. 66 

5.4. Enabling Applications For Hypermedia Use ............................................... 68 

5.5. Applications Which Cannot Be Enabled: The Universal Viewer.............. 70 

5.6. Further Research............................................................................................... 74 

5.7. Summary............................................................................................................ 76 

Chapter 6.  Extending the Microcosm Model ............................................................ 79 

6.1. Distributed Microcosm.................................................................................... 79 

6.2. Working with the Web .................................................................................... 81 

6.2.1.  Accessing the Web from Microcosm ............................................. 82 

6.2.2.  Converting Microcosm for the Web............................................... 83 

6.2.3.  Putting Microcosm into the Web.................................................... 84 

6.3. Working with Multimedia .............................................................................. 86 

6.3.1.  Bitmapped pictures .......................................................................... 88 

6.3.2. Object oriented drawings ................................................................. 89 

6.3.3. Temporal links: sound and video.................................................... 90 

6.3.4. Spreadsheets....................................................................................... 93 

6.4. Current Research Areas................................................................................... 93 

Chapter 7.  Data Integrity Issues.................................................................................. 97 

7.1. Axiomatic Design Constraints for Microcosm. ............................................ 97 

7.2. Link Integrity Problems................................................................................. 100 

7.2.1. The Editing Problem ....................................................................... 101 

7.2.2. The Dangling Link Problem........................................................... 101 

7.2.3. Microcosm Link Structure .............................................................. 102 



iii 

 

7.2.4. Identifying the Problem.................................................................. 103 

7.2.5. The Extent of the Problem.............................................................. 106 

Chapter 8.  Solutions to the Editing Problem .......................................................... 108 

8.1. The Publishing Model.................................................................................... 108 

8.2. A Manual Link Editor.................................................................................... 109 

8.3. Link Service Aware Editing Tools ............................................................... 111 

8.4. Embed the link anchor in the document..................................................... 113 

8.5. Apply just-in-time link repairs. .................................................................... 115 

8.6. Maintain a Shadow File................................................................................. 119 

8.7. Avoid specific links anchors. ........................................................................ 122 

8.8. Express specific link context in an edit-proof manner.............................. 123 

8.9. Editing Bit Stream Data ................................................................................. 124 

8.10. Versioning ..................................................................................................... 125 

8.11. Use of Diff Files ............................................................................................ 125 

8.12. Summary........................................................................................................ 128 

Chapter 9.  Solutions to the Dangling Link Problem.............................................. 130 

9.1. User Onus ........................................................................................................ 130 

9.2. The Closed Document File Structure........................................................... 132 

9.3. The Virtual File System ................................................................................. 132 

9.4. Operating System Extensions ....................................................................... 134 

9.5. Link Integrity Checking Tools...................................................................... 135 

9.6. The Search Engine .......................................................................................... 135 

9.7. Summary.......................................................................................................... 136 

Chapter 10.  Versioning............................................................................................... 137 

10.1. Why Use Versioning in Hypermedia? ...................................................... 137 

10.2. Versioning in Software Development Environments ............................. 138 

10.3. Versioning Problems Particular to Hypermedia ..................................... 139 

10.4. Versioning in Current Hypermedia Systems ........................................... 141 

10.5. Versioning in Microcosm ............................................................................ 144 

10.5.1. Versioning Links............................................................................ 144 

10.5.2. Versioning Documents ................................................................. 145 

10.5.3. The Microcosm Versioning Scheme............................................ 145 

10.5.4. The Advantages of the Microcosm Versioning Scheme .......... 148 

Chapter 11.  Concurrency Problems ......................................................................... 151 

11.1. Read-Only Shared Resources...................................................................... 154 

11.2. Crude Locking and Update Notification. ................................................. 155 



iv 

 

11.3. Microcosm Version Contexts...................................................................... 157 

11.4. Client Server Architecture for Databases.................................................. 157 

Chapter 12.  Conclusions ............................................................................................ 159 

12.1. The State of Hypermedia............................................................................. 159 

12.2. Microcosm ..................................................................................................... 161 

12.3. Integrity Issues.............................................................................................. 161 

12.4. The Future ..................................................................................................... 163 

Bibliography ................................................................................................................. 165 

Glossary of Microcosm Terms.................................................................................... 173 

 



v 

 

List of Figures 

Figure 1: The Three Layer Dexter Hypertext Reference Model ................................ 9 

Figure 2: Three Layers of Hypermedia System Architecture .................................. 14 

Figure 3: A four layer model, including a link service ............................................. 17 

Figure 4: The Model of a Digital Library.................................................................... 23 

Figure 5: Making a selection and choosing an action within the Microcosm 

text viewer..................................................................................................... 32 

Figure 6: The Microcosm Link Service Model: showing typical message 

handling ........................................................................................................ 34 

Figure 7: Demonstrating how the link base resolves which links to follow ......... 38 

Figure 8: The Microcosm file manager/browser, showing logical types and 

descriptions................................................................................................... 44 

Figure 9: Hierarchy of Settings maintained by registry ........................................... 45 

Figure 10: Levels of access to information using Microcosm.................................. 47 

Figure 11: The stages in building a resource based hypermedia application. ...... 49 

Figure 12: Making a Link in Microcosm..................................................................... 51 

Figure 13: Anchor handling in classic Dexter Systems ............................................ 61 

Figure 14: Anchors in Hyperbases .............................................................................. 62 

Figure 15: Anchors in Microcosm................................................................................ 63 

Figure 16: Word Basic Macro to Follow Link ............................................................ 69 

Figure 17: AutoCAD (adapted as a semi-aware viewer) following a link ............ 70 

Figure 18: Microsoft's Calendar running under UV. The user is about to 

follow a link .................................................................................................. 71 

Figure 19: The project Notebook. The User is about to create a destination 

anchor in this document. In this case the anchor will a particular 

text string....................................................................................................... 73 

Figure 20: Creating a Microcosm Link in html using Netscape with the 

Universal Viewer ......................................................................................... 83 

Figure 21: The Microcosm "sound viewer", showing button links on the time 

axis.................................................................................................................. 91 

Figure 22: Indirect linking via the concept database ................................................ 95 

Figure 23: The algorithm to identify possible integrity problems ........................ 105 

Figure 24: Selecting links in the Microcosm Link Editor: the user has asked 

to view all button links with their source in a given document, 

and is about to edit one............................................................................. 110 



vi 

 

Figure 25: Editing a link using the Microcosm Link Editor................................... 111 

Figure 26: Link repairs using context and offsets from both ends of a file ......... 118 

Figure 27: Using a Shadow File to relate selections to anchor id's ....................... 119 

Figure 28: Problems with Versioning Links............................................................. 140 

Figure 29: The Tree Structured Context Hierarchy................................................. 146 

 



vii 

 

List of Tables  

Table 1: Comparing Microcosm with the functions of a traditional library ......... 53 

Table 2: Representation of part of table produced by indexer ................................ 55 

Table 3: Contrasting the facilities provided by the fully aware viewers with 

those provided by applications running with the Universal Viewer .... 78 

Table 4: Analysis of Microcosm linkbases................................................................ 107 

 



viii 

 

Acknowledgements 

The Microcosm project has been a team effort, and there are many people who 

need acknowledgement in a thesis which, in part, describes this system. First I 

would like to thank Professor Wendy Hall, whose untiring efforts to provide 

academic direction and the financial resources have produced an environment in 

which such research can be undertaken. I would also like to thank her personally 

for the help and advice she has given me throughout the rather protracted 

production of this thesis. 

Secondly, I need to thank the longer standing members of the Microcosm 

research team, particularly Dr Ian Heath, Dr Gary Hill and Dr Rob Wilkins, but I 

should also mention Dr Z. Li, Simon Knight, Dr Les Carr, Mark Weal, Dr Steve 

Rake, Dr Gerard Hutchings, Roger Rowe, Jon Russell and Nick Beitner, all of whom 

have helped me by both producing the system and by giving me time to discuss 

my own research interests. 

Within the Hypermedia research community there have been many people 

with whom I have spent time discussing the integrity issues, but I would like 

particularly to thank Dr Adrian Vanzyl from Monash University, Dr Kasper 

Østerbye from Aalborg University, Dr Randy Trigg from Xerox Parc, Dr Antoine 

Rizk from Euroclid and Peter Nürnberg from Texas A&M University, many of 

whose ideas are reported here, even if they wouldn't recognise them as such.  

I would like to thank my family for sacrificing family holidays for the last year 

to give me the time to write-up this thesis, and my mother and father for giving 

over their dining room table so I had the peace and quiet to do it. Dr John Leggett 

was also kind enough to provide me space at Texas A&M University to complete 

the final version. 

Finally, I would like to give special thanks to Professor David Barron, who has 

patiently guided me in my research for the past six years. 



1 

 

Chapter 1. Introduction 

In 1988 a small group of researchers in the Image and Multimedia Group at the 

University of Southampton gathered together to discuss the problems involved in 

extending the functionality of hypertext systems to include multimedia data 

objects. Experiments that had been conducted with commercially available systems 

such as Guide (Brown, 1987) and Hypercard (Goodman, 1987) had proved 

unsatisfactory as there was little or no support in the model for incorporation of 

new data types. The best one could hope to achieve was to launch external 

applications to display the required data and having achieved this there was no 

support for further hypermedia functionality; the user was at a dead-end.  

The motivations of the Southampton group to improve on this situation were 

various. Work was being conducted on CD-ROM's and Video Disks, which are 

read only media, so it was necessary to invent a system that would work without 

attempting to embed information in the data. My own work on integrating third 

party software engineering tools implied the same restriction. Work on reducing 

authoring effort in producing hypertexts pointed to the need for maintaining link 

information separately from the data, and finally the desire to design a 

"workbench" system that would be extensible for both new data types and for new 

functionality indicated a modular extensible design.  

Ever since we took the decision to hold all link information separately from the 

content information, I have been concerned about the implications that this model 

has upon the integrity of the hypermedia structure, and aside from the 

management of the development of the Microcosm system, this subject has been 

my main research interest. When all link information, including the information 

about the end points of the links (the anchors) is separated from the content, there 

are numerous opportunities for inconsistencies to occur. The content may be 

edited, in such a way that the links no longer correctly reference the content (the 

editing problem); content files may be moved so that the link is anchored in a non-

existent file (the dangling link problem), and attempts to edit hypertexts and to 

keep versions of hypermedia projects lead to problems that are more complex than 

versioning and concurrency control in standard database systems. 



2 

 

The way that Microcosm has evolved over the past few years makes it very 

difficult to specify exactly who did what work. 

Chapter 2, Background, is my own review of the development and current state 

of hypermedia research, with a particular slant towards open hypermedia systems, 

hyperbases and link services. 

Chapters 3, 4, 5 and 6 describe the current state of Microcosm and our research 

in this area. These chapters show how Microcosm solves many of the problems of 

earlier systems and indicates further areas of research that must be addressed 

before such systems achieve full industrial strength. Although I have been 

involved, as one of the original designers and latterly as research laboratory 

manager, in all stages of the development of this system, the work reported in these 

chapters is often the result of the efforts of other individual researchers, and I only 

take credit for this work in so far as I have been part of the design team and have 

managed much of the research.  

Chapter 3 describes the current state of the design of Microcosm, and is a much 

extended version of the description which was published in Davis et al (1992).  

Chapter 4 describes work carried out by Dr Z. Li under my supervision, to 

integrate information retrieval into Microcosm (Li et al, 1992)(Li, 1993). Chapter 5 

describes work being carried out by Simon Knight, under my supervision, on the 

integration of third party applications into Microcosm (Davis et al, 1994b). Chapter 

6 describes extensions to the Microcosm model which are the product of current 

research, including the steps to ensure that the system is truly multimedia (Hall & 

Davis, 1994)(Davis et al, 1994a). 

These chapters have value, both as an introduction to Microcosm for readers, so 

that they may understand the framework within which the problems and solutions 

discussed in the remaining chapters occur, but also as the first full description of 

Microcosm and the results of research on the system. Descriptions of Microcosm in 

published papers have been necessarily short, and other PhD theses have tended to 

concentrate on a particular aspect of the system, rather than giving the whole 

picture. 

Chapters 7 to 11 form the most significant part of this thesis and contain my 

analysis of the data integrity issues in open hypermedia link services, along with 

my solutions to these problems. These chapters explain how data integrity 



3 

 

problems arise in systems such as Microcosm, and investigate a number of 

solutions to each problem. A separate chapter on versioning examines the state of 

the art in applying versioning to hypertext systems, and investigates its use as a 

tool for ensuring data integrity. The work reported in these chapters is entirely my 

own, except where specifically credited elsewhere. 



4 

 

Chapter 2.  Background 

2.1. Early Systems 

The earliest hypertext systems aimed to provide speedy access to information by 

cross referencing and associative indexing. They were inspired by a theoretical 

design by Vannevar Bush (Bush, 1945), and typified by mainframe based systems 

offering information frame by frame, such as Augment (Engelbart, 1963) and ZOG 

(McCracken & Akscyn, 1984). The terms hypertext and hypermedia are attributed to 

Ted Nelson, whose book, Literary Machines (Nelson, 1981), describes a vision of a 

universal hypertext system, Xanadu; the ideas were probably too far ahead of the 

technology, and Nelson is still striving to produce this system. 

In the latter part of the 1980's, workstation and operating system technology 

had advanced to the stage that it was possible to start conducting research into the 

ideas originally perceived by Bush, Engelbart and Nelson. Research oriented 

systems such as Notecards (Halasz, 1988), KMS (Akscyn et al, 1988), Neptune 

(Desisle & Schwartz, 1986), gIBIS (Conklin & Begeman, 1988) and Intermedia 

(Yankelovich et al, 1988)(Haan et al, 1992) began to appear. For more information 

on these systems and basic definitions of hypertext and hypermedia concepts the 

reader is referred to the classic survey by Conklin (1987) and the more recent book 

by Nielsen (1995). 

The introduction of Guide for the Macintosh in 1986 was followed by the 

release of the first PC based commercial hypertext systems in 1987, including 

Hyperties (Shneiderman, 1987), PC Guide (Brown, 1987) and Hypercard 

(Goodman, 1987). Hypercard is not strictly a hypertext system in itself, but more a 

toolkit and prototyping environment in which it is possible to create hypertext 

systems (Hutchings et al, 1993a), but the effect of bundling this product with the 

Apple Macintosh was profound, and led to much research into the usability of 

hypertext interfaces, e.g. Hutchings et al (1993b) and Nielsen (1990). 



5 

 

2.2. The Problems with Current Systems 

Given the quantity of research, the introduction of commercial systems and the 

increasing interest in multimedia, it might have been expected that hypermedia 

would have made great strides forward to the extent that hypermedia systems 

would be present on most desktops: this has not happened, and a number of 

commentators have attempted to explain this failure and to indicate the issues that 

must be addressed in order to make progress beyond the state where hypertext is 

used largely for static software help systems and relatively small technical 

documentation applications. 

In 1988 Frank Halasz suggested that the research community addressed "Seven 

Issues for Next Generation of Hypertext" (Halasz, 1988), which included: 

1. Search and Query 

 Link navigation by itself is not sufficient for hypermedia information 

discovery. Hypermedia applications must also provide query based 

interfaces. 

2. Composites 

 Composites are groups of nodes and links, possibly defined by some schema, 

which may be treated as a single entity within the system. 

3. Virtual Structures 

 These are dynamic structures, analogous to views in relational databases, 

which are constructed at the time that the structure is accessed. 

4. Computation over Hypermedia Networks 

 Internal or external engines should be available, which work over the network 

to produce new information or modify the existing information. 

5. Versioning 

 It should be possible to maintain and manipulate the version history of the 

network. 



6 

 

6. Collaborative Work 

   Collaborative working on hypermedia systems requires that the system 

allows multi-user access to information, along with suitable concurrency 

control and notification mechanisms. 

7. Tailorability and Extensibility 

  It should be easily possible to modify or extend the behaviour of the 

hypermedia system. 

On revisiting this subject in 1991 (Halasz, 1991) he concluded that the 

monolithic hypertext systems of the 1980's were no longer a viable species, and that 

they were being replaced by "open" systems consisting of independent but 

communicating components. The challenge was to "end the tyranny of the link" by 

producing systems which allowed users to navigate using other tools such as 

information retrieval, relevance feedback and expert systems to determine the 

association between items of information. 

In 1991 Malcolm et. al. (1991) stated that 

"Current hypermedia tools do not support the needs of collaborative work 

groups in distributed heterogeneous environments and cannot be 

integrated into the existing and planned computing environments of 

large enterprises like Boeing. It is in meeting these needs, however, that 

hypermedia could make its greatest impact."  

They suggest that the research community address the following issues. 

Interoperability: the ability to access and link information across arbitrary platforms, 

applications and data sources. 

Links and Object Attributes: the facility to attach attributes to links and objects, such 

as who made the link, where are the link destinations etc., so that it will be possible 

to filter out the required information. 

Link Anchors: all objects must be capable of becoming link anchors within the 

system, and anchors must support multiple links.  



7 

 

Private and Public Links: It must be possible to create both public and private links 

and annotations. Group workspaces must also be supported. 

Templates: In the same way that many word-processed documents may be 

described by a template, so may many hypertext nodes. The template would 

describe the objects that would be in the node and the links required from that 

node. 

Navigational Aids: There must be multiple methods of navigation, such as link 

following, network level browsing, tables of contents, dynamic query, bookmarks 

and trails. Filtering of available information must be possible. 

Configuration Control: Versions of nodes, links and webs must be possible. Users 

will require permission rights to elements of the system, and must be able to alter 

parts without affecting others. 

Concurrency Control: In a large multi-user system it must be possible for more than 

one worker to access the same object. 

Programmability: It must be possible to extend the system functionality. 

Operating Systems, Storage and Networks: These must improve to allow distribution 

of hypermedia systems across heterogeneous hardware. They must also deal with 

the caching of large multimedia objects as well as compression and decompression. 

What the authors required was an adaptable environment for the integration of 

data, tools and services. 

In 1993 Irene Greif (1993) set the challenge to the hypertext community to 

design hypertext systems to support other applications. She proposed a lightweight 

hypertext with multiple navigational routes between pieces of information held in 

different applications. 

2.3. The Dexter Model 

By the end of the 1980's the state of the art in hypertext systems was probably best 

represented by Intermedia (Yankelovich et al, 1988)(Haan et al, 1992). The research 

community had recognised the need for a hypertext reference model: a workshop 



8 

 

was held in December 1989 on hypertext standardisation, which was attended by 

the main US research teams and at which various models were proposed. The 

"standard" that emerged was the Dexter Reference Model (Halasz & Schwartz, 

1990)(Halasz & Mayer, 1994). This model attempted to capture the important 

abstractions found in a range of hypertext systems that existed at the time, such as 

Augment (Engelbart, 1963), Intermedia (Yankelovich et al, 1988)(Haan et al, 1992), 

Hypercard (Goodman, 1987), Hyperties (Shneiderman, 1987), KMS (Akscyn et al, 

1988), Neptune (Desisle & Schwartz, 1986), Notecards (Halasz, 1988) and the Sun 

Link Service (Pearl, 1989). The intention was also to capture those abstractions that 

would be found in future systems, but in this respect the model failed, as will be 

explained subsequently in this section. The goal of the model was to provide a 

basis for the comparison of systems and for the development of interchange and 

interoperability standards. 

The Dexter model divides hypertext systems into three layers, as illustrated in 

figure 1. The runtime layer contains the basic hypertext functionality: the 

mechanisms to support the user's interactions such as accessing, viewing and 

manipulating the hypertext. The storage layer contains the network of links and 

node specification that represents the structure of the particular hypertext. The 

within component layer is the content of the particular component, node, document 

or frame. Dexter sensibly makes no attempt to model the structure of the 

component, leaving this to other modelling tools such as ODA (HyperODA, 1992): 

as far as the other layers of the Dexter Model are concerned the within component 

layer might as well contain text or graphics or any other data format. Nor does the 

model attempt to specify the runtime layer in detail: this is the province of the 

individual hypertext system. 

The interface between the runtime layer and the storage layer is provided by 

presentation specifics: these are details held within the storage layer that inform the 

presentation layer how components should be handled, for example whether a 

component should be displayed for viewing or for editing and the size and 

position of windows. 

The interface between the storage layer and the within component layer is 

provided by anchors. The within component layer is responsible for maintaining 

the position of anchors within the content of the component itself, and will know 

these anchors by some unique identifier. The storage layer contains links which 



9 

 

refer to end points by a specifier which consists of a component specifier (which 

may be resolved to the UID of one or more nodes), the anchor ID, the direction of 

the anchor (source, destination or bi-directional) and any presentation specific 

information. 

 

Presentation of the hypertext; user 
interaction; dynamics.

Storge Layer

a "database" containing a network of
nodes and links

Within Component Layer

the content/structure inside the nodes

Runtime Layer

Presentation Specifics

Anchoring

 

Figure 1: The Three Layer Dexter Hypertext Reference Model. 

The Dexter Model has not gone without criticism. Grønbæk & Trigg (1992) 

found the requirement that it should not be possible to create dangling links, made 

for restrictive interfaces to link creation and editing. They also point out that there 

are multiple orthogonal concepts of directionality of links (such as the 

directionality of a "supports" typed link and the direction of traversal). In DHM 

they implemented typed anchors: Whole-Component anchors use a whole 

component as the source of the anchor: Marked anchors refer to a marked point 

within a component: Unmarked (or Keyword) anchors allow the resolver function 

dynamically to situate an anchor at any point where a particular keyword occurs. 

Grønbæk et al. (1993) found it necessary to extend the Dexter model to support 

long term transactions, locking and event notification so that a co-operative 

hypermedia system could be designed. 



10 

 

Maioli et al. (1993b) cite the existence of systems such as Microcosm and 

RHYTHM as evidence of the need to extend the Dexter model to include external 

anchors, and suggest that anchor id's should be replaced with anchor specifiers 

that may be resolved to internal or external anchors in much the same way that 

component specifiers are resolved to UID's. 

Leggett & Schnase (1994) point to the shortcomings of using Dexter as an 

interchange standard, particularly its incomplete specification of multi-headed 

links, the problems with dangling link creation when importing partial 

hypermedia and the failure of the model to distinguish between separate webs as 

implemented in Intermedia. They also point out that the model has no concept of 

the semantics of arrival and departure when following links and that the notion of 

composites and their consistency is incomplete, as has also been noted by other 

authors (Grønbæk & Trigg, 1992)(Maioli et al, 1993a). Furthermore they suggest 

that anchors belong within the link services domain rather than within the 

application (or component) domain. 

A further problem of the Dexter model is that it contains no specification of 

how to deal with temporal event specification; this aspect is well covered by the 

HyTime standard (HyTime, 1992)(Carr et al, 1994a)(DeRose & Durand, 1994), and 

partly for this reason it is probable that HyTime will be seen as a more complete 

hypertext interchange standard. The Microcosm team have carried out work on 

this subject (Carr et al, 1993).  

The limitations of the Dexter model have had the result that few systems 

describe themselves as Dexter systems, but many describe themselves as Dexter 

based. The Microcosm team had designed their system and begun their 

implementation before the publication of the Dexter model, and it is perhaps due to 

this that the system has not been constrained by the problems described above. 

Like Leggett & Schnase (1994), we believe that the NIST standardisation workshop 

occurred a little too early in the development of hypermedia systems. 

At the Workshop on Open Hypermedia Systems at ECHT ‘94 (Wiil & Østerbye, 

1994), Randy Trigg and Kaj Grønbæk, whose DHM system (Grønbæk & Trigg, 

1992) is probably the most Dexter compliant system of all, worked hard on 

updating the Dexter model to include such systems as Microcosm. The result  

(Grønbæk & Trigg, 1996) is an extension to the Dexter model to include LocSpecs  

and RefSpecs. A LocSpec (Location Specifier) is (normally) associated with an 



11 

 

anchor object, and contains attributes which identify how the EndPoint of that 

anchor is to be identified - typically by within-component Object ID, structure 

descriptor or by content search criteria. Thus, in Microcosm terms, a LocSpec 

contains exactly the information that identifies the source or destination of a link.  

A RefSpec (Reference Specifier) is an object belonging to a particular hypertext 

component, which contains the LocSpec and a presentation specifier. In Microcosm 

terms, RefSpecs are generally transient objects which are built at the time that the 

user makes a selection and action: in the case of Microcosm buttons, the RefSpecs 

are built at the time that the viewer is notified of the button’s existence. Thus by 

extending the Dexter model it has become possible to represent a greater range of 

modern systems, including Microcosm. 

2.4. Towards Industrial Strength Hypermedia 

In attempting to solve the problems of current hypertext systems and to produce 

systems that will deliver industrial strength hypermedia-in-the-large, the research 

community has proposed a number of partial solutions. This section describes 

current progress in these areas. 

2.4.1. Open Hypermedia 

Much use and abuse has been made of the term "open". There are those who use 

the term to mean that the application runs on an open system such as UNIX. This is 

not what is meant in the context of open hypermedia. Various definitions have 

been proposed. 

 In Davis et al., (1992) we published our criteria for referring to a system as 

open. These criteria included. 

1. The hypertext link service should be available across the entire range of applications 

available on the desktop. To us this implied that since applications would not 

normally be capable of manipulating anchor identifiers, as required by the 

Dexter model, it would be necessary to design a system that held links and 

their anchors externally from the node content. 



12 

 

2. The link service must work across a network on heterogeneous platforms. This 

implies that hypertext functionality must be provided by a number of 

communicating processes, and led to the concept of a link service - a 

framework for routing messages between the various components. 

3. The architecture should be such that the functionality of the system can be extended.  

This implies that the design should be modular so that new components may 

be written to a specified API then added to the system. The API should be 

kept as simple as possible so that applications may be adapted to conform to 

the API. 

4. There should be no artificial distinction between author and reader. Many systems 

have an authoring mode and a reader mode: such a system is not open from 

the reader's point of view. We believe that all users should have access to all 

parts of the system; this does not imply that one user will be able to access or 

change another user's data, but implies that this aspect should be controlled 

by the operating system access rights granted. Users should be able to create 

their own links and nodes within their private workspace, then change the 

access rights so that other users may view or edit them as required. 

Subsequent authors and workshops have attempted to define the term "open 

hypermedia", and following the Open Hypertext Systems Workshop at Konstanz in 

May 1994 (Aßfalg, 1994) and the ECHT '94 Workshop on Open Hypermedia 

Systems at Edinburgh in September 1994 (Wiil & Østerbye, 1994), I have produced 

the following summary of current thinking. 

The term open implies the possibility of importing new objects into a system. A 

truly open hypermedia system should be open with regard to: 

1. Size 

 It should be possible to import new nodes, links, anchors and other hypermedia 

objects without any limitation, to the size of the objects or to the maximum 

number of such objects that the system may contain, being imposed by the 

hypermedia system. 



13 

 

2. Data Formats 

 The system should allow the import and use of any data format, including 

temporal media. 

3. Applications 

 The system should allow any application to access the link service in order to 

participate in the hypermedia functionality. 

4. Data Models 

 The hypermedia system should not impose a single view of what constitutes a 

hypermedia data model, but should be configurable and extensible so that new 

hypermedia data models may be incorporated. It should thus be possible to 

interoperate with external hypermedia systems, and to exchange data with 

external systems. 

5. Platforms 

 It should be possible to implement the system on multiple distributed 

platforms. 

6. Users 

 The system must support multiple users, and allow each user to maintain their 

own private view of the objects in the system. 

No one system implements all the aspects of openness as described above, but 

systems that meet sufficient of the criteria to warrant the term open include 

Microcosm (Fountain et al, 1990) (Davis et al, 1992), the Sun Link Service (Pearl, 

1989), Multicard (Rizk & Sauter, 1992), KHS (Hammwöhner & Rittberger, 1993), 

PROXHY (Kacmar & Leggett, 1991), SP3 (Leggett & Schnase, 1994), HyperTED 

(Vanzyl, 1993), RHYTHM (Maioli et al, 1993b), ABC (Shakelford et al, 1993), DHT 

(Noll & Scacchi, 1991) and the World Wide Web (Berners-Lee et al, 1992). 

2.4.2. Hyperbases 

In October 1992 an NSF sponsored workshop was held in Washington, D.C. 

(Leggett et al, 1993) and this was followed up by a second workshop at Seattle, 



14 

 

Washington in November 1993. These workshops were motivated by the belief that 

the current generation of hypermedia systems would not scale to deal with the 

very large information repositories such as those that would be found in digital 

libraries and the purpose was to separate the area of research that concentrates on 

hypermedia system implementation issues from other issues such as user interfaces 

and evaluation and usability studies. The areas that these workshops concentrated 

on were models and architecture, node, link and structure management, version 

control, concurrency control, transaction management and notification control.  

The workshop participants considered hypermedia system architecture to 

consist of three layers as shown in figure 2. Typical applications are text and 

graphics editors, mail tools and multimedia presentation tools. The hyperbase layer 

provides the hypermedia data model to the applications and interacts with the 

storage layer which provides persistent storage for the data model abstractions 

(nodes, links, anchors, contexts etc.). 

This model is similar to the Hypertext Abstract Machine (HAM) (Campbell & 

Goodman, 1988) which was used by both the Neptune CAD system (Desisle & 

Schwartz, 1986) and Dynamic Design (Bigelow, 1988) for providing the lower 

layers. 

 

Application Application

Hyperbase System

Storage Manager

Application Layer

Hyperbase Layer

Storage Layer
 

Figure 2: Three Layers of Hypermedia System Architecture 



15 

 

Hyperbase and hypermedia system architectures were characterised by seven 

dimensions: 

1. Scale 

 The size of the hyperbase, measured in such quantities as bytes of 

information, number of nodes, links, anchors, versions, contexts and views, 

and also the number of simultaneous users. 

2. Openness 

 The extent to which participating applications are free from restrictions 

imposed by the data model. 

3. Distribution 

 The extent to which the hypermedia processes may be distributed over 

multiple machines. 

4. Heterogeneity 

 The extent to which different hypermedia data models are provided by the 

hyperbase systems(s). 

5. Extensibility 

 The extent to which the data model may be extended to deal with new data 

abstractions and operations. 

6. Computational 

 The extent to which the system supports computation of data model elements 

such as nodes, links, anchors and virtual structures. 

7. Method of Interaction 

 The extent to which the model supports multiple users and their co-operation. 

Many participants were using traditional database systems, typically object 

oriented, to provide the storage layer, and in theory this would allow different 

hyperbase systems to access any given stored hyperbase. In practice this is not 



16 

 

possible as there is no agreed data model: there was a majority agreement that the 

Dexter Model had had its day, and was insufficiently flexible for the purposes of 

the hyperbase community. 

Systems that are making progress in the area of hyperbase infrastructure 

implementation include GMD-IPSI's CHS and CoVer (Schütt & Streitz, 1990), SP3 

and HB2 (Leggett & Schnase, 1994) (Kacmar & Leggett, 1991) (Schnase et al, 1993), 

ABC and DGS (Shakelford et al, 1993) (Smith & Smith, 1991), Hyperform (Wiil & 

Leggett, 1992), DHM (Grønbæk & Trigg, 1992) and DHT (Noll & Scacchi, 1991). In 

effect, the overlap between the open hypertext system research community and the 

hyperbase research community is very large. 

An interesting problem that the Hyperbase community is attempting to resolve 

is how to enable such systems to provide Hypertext services to third party 

applications. There are two problems: hyperbase systems expect to store the node 

content, whereas third party applications expect to address the filestore to retrieve 

their data, and secondly hyperbase systems expect the editor to handle anchors (or 

persistent selections) in order to ensure integrity. Current systems that address this 

problem have had to accept that such cases are exceptions and that the data will be 

allowed to reside on the filestore. In order to avoid integrity problems, ABC 

(Shakelford et al, 1993), only allows node to node links in such cases and 

HyperDisco (Wiil & Østerbye, 1994) uses a search engine to locate a given string. 

2.4.3. Link Services and Lightweight Link Services 

A link service is a process which provides hypertext functionality to applications 

which elect to communicate with this process. The link service provides an 

interface to which applications may connect in order to store and retrieve links in 

any object. Link services may also be coupled with object stores which hold all 

hypertext objects, possibly including the nodes themselves. 

The term link service has recently become widely used to refer to any system 

which holds the links separately from the data. As such, any true Dexter model 

application and any hyperbase system may be regarded as a link service. 

When we first started using the term link service to describe Microcosm's 

underlying architecture we were referring to something subtly different. A 

criticism of the three layer hyperbase model shown in figure 2 is that the interface 



17 

 

between the application and the hyperbase layer must be handled entirely by the 

application, generally using a client server model for communication. This has the 

disadvantages that each application that is hypertext enabled is required to 

implement all the code to interface to the hyperbase layer API, and that the 

applications must be active hypertext applications capable of collecting queries 

from the user, asking about such aspects as links and display characteristics and 

dispatching other applications as required. 

 

Application Application

Link Service

User communicates with application,
which communicates with link
service.

Link service receives messages from
applications, collects structure from
storage layer and sends messages
to other participating applications.

Storage for nodes, links, anchors
versions etc.

 

Figure 3: A link service model. 

These problems, combined with concern to keep systems open and extensible, 

have led to the introduction of the concept of a lightweight link service layer. 

Essentially the link service behaves as if it were a single application sitting 

above storage layer, and this application takes full responsibility for handling 

communications with all applications which the user wishes to employ. The link 

service is the active component which contains as much as possible of the 

functionality for communicating with both the storage layer and with the 

applications. I define the link service as lightweight if the participating applications 

may elect to use only a subset of the full link service API to provide a usable subset 

of the full hypertext functionality.   



18 

 

Although the idea of the link service was first published by Sun in 1989 (Pearl, 

1989) and by the Microcosm team in 1990 (Fountain et al, 1990), it is only recently 

that the importance of the idea has been realised by the research community. 

Poltrock and Schuler's trip report on Hypertext '93 (1993) observes that link 

services are an idea whose time has come, while commenting on the importance of 

enabling third party applications for hypermedia use. In retrospect it is fair to 

comment that a number of systems have in effect used such a layer in their model, 

but have not specifically identified it as such. 

A major research issue, and possibly a hindrance to the universal adoption of 

this concept, has become the degree of cohesion that should be expected between 

the applications and the link service. The Sun Link Service (Pearl, 1989) required 

that applications were adapted to co-operate with the link service, so that they 

could provide unique ID's for every object in the application's data, could display 

icons or glyphs to indicate the presence of an anchored object and provide some 

mechanism for selecting and following links when they were indicated. 

The Microcosm Link Service (Davis et al, 1992)(Hall et al, 1993a) takes a less 

restrictive approach, allowing applications to participate in all of the link service 

protocols (fully aware viewers), some of the protocols (semi-aware viewers) or 

even none of the protocols (unaware viewers). 

A further question is how the storage layer is implemented. Both the Sun Link 

Service and the Microcosm Link Service use the host operating system file system 

to provide this layer. This leads to potential problems as users may move and edit 

files directly using tools that are not link service aware, leading to inconsistencies. 

Intermedia (Yankelovich et al, 1988)(Haan et al, 1992), which in effect did have a 

link service layer, circumvented this problem by requiring that all objects in the 

hypertext were accessed via Intermedia applications or via the Intermedia File 

Browser; thus the hypermedia service was able to maintain hypertext integrity in a 

similar manner to hyperbases. 

A link service may be viewed as an integrating technology and as such it is 

possible that in the future the need for this layer will become redundant as object 

request brokers such as CORBA (Corba, 1991) become integral within the operating 

system environment, and provide underlying system services for inter-application 

communication and integration. Industry standards such as OLE 2.0, AppleEvents 

(Apple Computer Inc., 1994) and Sun's ToolTalk (Julienne & Russell, 1993) are 



19 

 

already emerging, and need careful investigation. Preliminary studies by the DHM 

team on using OLE 2.0 as a link server have proved unsuccessful: they found that it 

was only possible to produce a very chunky style of hypertext, and that in any case 

its operation was too slow to be usable. However, operating system enhancements 

such as Apple’s OpenDoc which allow applications to make the structure of their 

data visible through the operating system show great promise for open 

hypermedia systems, which need to be able to point to regions within the data as 

persistent selections. 

Examples of applications that have implemented a link service layer, whether 

explicitly of implicitly include the Sun Link Service (Pearl, 1989), Microcosm (Davis 

et al, 1992)(Hall et al, 1993a), Intermedia (Yankelovich et al, 1988)(Haan et al, 1992), 

HyperTED (Vanzyl, 1993), Knowledge Weasel (Lawton & Smith, 1993), ABC 

(Shakelford et al, 1993), PROXHY (Kacmar & Leggett, 1991), Multicard (Rizk & 

Sauter, 1992) and SP3 (Leggett & Schnase, 1994); also Tompa et al. (1993) describe a 

prototype for such an architecture. 

2.4.4. Wide Area Distributed Hypertext. 

The original concept of Nelson's Xanadu (Nelson, 1981) was based on the premise 

that the world's literature (and pictures and videos etc.) would shortly all be 

available on-line. (This was in the early sixties!). Nelson was aware that this 

situation would not occur until the issues of copyright of electronic material was 

resolved, and to this end Xanadu was intended to allow writers to make special 

links (known as transclusions) to other writers' material in such a way that, 

whenever material was accessed, the original authors would be financially credited 

for their contributions. Nelson had a vision of a world wide network supplied by 

Xanadu servers. 

Nelson's vision has not yet been realised, but we do have the World Wide Web 

(WWW) (Berners-Lee et al, 1992). WWW, in hypertext terms, is a simple second 

generation tool that fails to address many of the issues discussed above: 

components are written in a hypertext mark-up language known as html (HTML, 

1994) which is an application of SGML, and links are embedded within this mark-

up as explicit references to destination documents. So why has the Web become 

such a popular system, now accounting for a significant proportion of all Internet 

traffic and with a server at almost every site? The success of the system appears to 



20 

 

spite all the efforts of the hypertext research community to provide sophisticated 

systems, and to contradict all those wise men and women who have attempted to 

chart the course for the future developments of hypertext. The answer, we suspect 

(Carr et al, 1994b), lies in the availability and simplicity of the system and its highly 

successful and almost transparent network access. 

WWW allows access to documents on a remote system via Universal Resource 

Locators (URL's) (Uniform Resource Locators, 1994). We have observed (Carr et al, 

1994b) that the major use of the system is not in the form of link following from 

buttons on text spans within documents, but in practice the system is largely used 

as a method for navigating filestores on remote machines: the system is far more 

interactive than using such protocols as ftp and allows the user to browse in a more 

satisfying manner than gopher. 

In spite of its success, there are a number of problems with the Web. 

• The fact that links are embedded within source documents means that it is 

currently quite literally impossible to maintain these links if the destination of 

the link is moved or deleted. Any user will be familiar with the dangling links 

that result: considering the amount of data that is now mounted on Web servers 

the effort of maintaining Web integrity manually is unthinkable.  

• The server maintains no attributes for the documents, so it is not possible to 

query servers to ask about the documents.  

• It is not possible for users to make links within documents unless they have 

write access. 

The majority of hypermedia systems that have been discussed so far have 

limited themselves to operating within defined network boundaries so that the 

system is able to exercise control of the hyperbase integrity. However, the success 

of WWW indicates that what users want hypertext for, more than any other factor, 

is wide area network access and browsing. Many of the hypermedia systems 

mentioned are addressing this area but it would appear that the first commercial 

hypertext successes will go to companies producing commercial Web servers such 

as Netscape and to those companies that are starting to charge for access to their 

Web servers. 



21 

 

Another system that provides wide-area network access is Hyper-G (Andrews 

et al, 1995) (Flohr, 1995) which is a client-server based hypermedia system 

produced at the Graz University of Technology. The Hyper-G server runs on Unix, 

and clients are available for X-Windows (Harmony) and MS-Windows (Amadeus).  

Each Hyper-G server maintains a document management system (DMS), which 

keeps the attributes of the documents on the server, a link database which 

maintains the links, and an information retrieval engine, which can retrieve on 

both the attributes of the document and also the full text content of the document. 

Hyper-G servers may be arranged into hierarchies, and all belong to the world 

wide root server. This provides a scope for searches within Hyper-G. Servers 

communicate with each other to retrieve documents and links when required and 

as allowed by the user’s permissions. The user connects directly to only one server. 

Hyper-G can also arrange to collect documents from other servers such as Web and 

Gopher servers. 

The Hyper-G clients provide an interface for DMS browsing, authoring 

(currently in a format known as htf, but shortly in html 3.0, and in the long term in 

full SGML), and link creation. Hyper-G also provides clients for various other 

formats such as GIF and MPEG, and links may be made within these formats. 

Links are stored as separate objects within Hyper-G. Each document knows the 

id’s of all the links within itself, so when a client loads a document, it is also able to 

load all the links. The client is then able to edit the document (or move it or delete 

it) without causing integrity problems, since at the client end all links are 

effectively embedded within the document. Hyper-G provides a number of tools 

for working with links, such as a 3-D information space browser, a tool for 

changing link access rights, a tool for exporting part of the server information for 

use with a stand-alone runtime or to another server, etc. 

A user may also connect to a hyper-G server using an html browser such as 

Netscape. In this case the server will not be able to send the links to the client. 

Instead it pre-compiles the htf and the links from the linkbase into an html 

document. Thus Web clients may browse a Hyper-G server, but will not have the 

benefits of DMS browsing, document authoring or link authoring. 



22 

 

2.4.5. Digital Libraries 

In June 1994 the first Digital Libraries Conference was held at Texas A&M 

University in College Station, Texas (Schnase et al, 1994) and in June 1995 the 

second conference was held at Austin Texas (Shipman et al., 1995). The US 

experience of this technology is approximately a year ahead of Britain’s, primarily 

due to the National Science Foundation's Digital Library Initiative. The attendees of 

these conferences were a mixture of computer scientists, librarians and social 

scientists. 

The definition of a digital library may be taken as: 

"A Digital Library is a machine readable representation of materials, such as 

might be found in a university library, together with the organising 

information intended to help users find specific information." (Gladney 

et al, 1994). 

From the above definition it would appear that a digital library is little more 

than a conventional library, accept that the information is stored in machine 

readable form. However, there are certain features of a digital library that 

distinguish it from the conventional library, most notably: 

• it is possible to shield the user form irrelevant inter-library boundaries; 

• different views of the same material may be presented to different classes of 

user; 

• cross references to other material may be facilitated by hyper links; 

• all material in the library may be searched and queried; 

• the speed at which material may be added, browsed, searched and 

distributed is much higher. 

The standard model of a digital library is similar to the hyperbase model. The 

digital library model in figure 4 draws a distinction between the presentation layer 

(the application that actually presents the results on the screen) and the application 

layer, which is actually a layer of services which access the server for the data, such 

as query systems, CAD systems, editors, hypertext engines etc. 



23 

 

 

Presentation

Manager

Applications

Document Storage

Subsystem

Data Base
Management and

File System

Client Workstation

Library ServerCache

CollectionCatalogue

 

Figure 4: The Model of a Digital Library. 

The relevance of this subject to a thesis on hypertext is that Digital Libraries 

perhaps represent the ultimate goal of hypermedia information systems: to 

produce wide area distributed information systems that allow seamless access to 

the world’s on-line knowledge. There are those that suggest that the World Wide 

Web is the technology for the Digital Library, but the issues raised in the 

conferences indicate that this is only the beginning (Fox et al., 1995) 

Many of the presentations made at these conferences suggested systems that 

were beyond the capability of current technology: they assumed enormous 

network bandwidth, super fast servers, display technologies as good as paper and 

application architectures that we can only currently sketch on paper. However, 

whenever this fact was pointed out, the speakers countered by pointing out that 

the challenge of digital libraries was to be seen in the same light as Kennedy's 

challenge to the country in the 60's, to put a man on the moon by the end of the 

decade. Large amounts of money will need to be invested, new technologies will 

have to be invented, new alliances of academics will need to work together, and the 

results will change the way we think and work, in ways as yet unforeseen. 



24 

 

Issues that arose out of the conferences tend to have both technical and social 

dimensions. Some of the active research areas are: 

• Naming of Documents on a Network. 

• Cataloguing. (who does it? can it be done automatically? what extra 

information does the digital library require?) 

• How can we specify and optimise queries so that they can work across 

distributed servers holding vast amounts of data? 

• How can we utilise "agents" or "actors" to help users to find the information 

they want? (do we look for information or does information look for us?) 

• What sort of networks are required to deliver such quantities of 

information? 

• Payment and security. 

• User interfaces. 

• How do we eliminate the boundaries between libraries using different 

systems and data formats. 

• Display technologies. 

• What social changes will occur as the result of such technologies, and how 

can we assist the smooth transition of such changes? 

The immediate challenge to the hypermedia community is to build systems that 

improve on the World Wide Web, in allowing users access to multimedia 

information by numerous navigational methods (Davis, 1994), (Davis & Hey, 1995). 

2.5. Standards for Hypermedia 

The importance of hypermedia has not been missed by the international standards 

community, and a number of standards have been produced. 



25 

 

2.5.1. HyTime 

Perhaps the most important of the hypermedia standards is the 

Hypermedia/Time-based Structuring Language, HyTime (1992) (Carr et al, 

1994a)(DeRose & Durand, 1994), which attempts to preserve information about 

scheduling and interconnection of the related components of a hypermedia 

document. HyTime extends SGML to express cross referencing and temporal 

relationships between objects, but makes no attempt to specify the run-time 

semantics of links, or the behaviour of the objects which are linked. HyTime is a 

large and complex standard, and the reader is referred to the references above for 

further information. However, an important feature of this standard is the 

flexibility with which it allows users to express anchors within objects. In HyTime 

an anchor may be expressed by 

• naming - e.g. an SGML entity name or id; 

• counting - e.g. the 534th byte in this file, or the 3rd item in this 
list; 

• querying - e.g. the first item with a type attribute whose value is 
12. 

The Microcosm system also uses the three methods above for expressing link 

anchors. The HyTime standard recognises the possibility of problems occurring 

when files are edited when they contain anchors expressed in the counting method. 

This topic is the main subject of this thesis. 

2.5.2. HyperODA 

HyperODA (1992), is a set of extensions to the Open Document Architecture 

(ODA) which is a container architecture which represents text and graphics, each 

according to some external standard, by providing parallel logical and physical 

views of the document. HyperODA extends ODA by providing extra content 

architectures for audio and images, as well as link objects and temporal layout. 

Since HyperODA objects are constrained to a small number of standards, it will 

always be possible to exchange hypertexts between HyperODA compliant 

applications, but it will not be possible to extend HyperODA applications to deal 

with new data types without a new version of the standard. 



26 

 

2.5.3. MHEG 

MHEG (Price, 1993) is another container architecture, which allows its objects to be 

represented in any external standard, along with instructions for their presentation 

and behaviour. It is intended as an interchange standard addressing the problem of 

real time data exchange. MHEG differs from HyTime in that it specifies the display 

and control semantics whereas HyTime devolves this to the controlling application. 

MHEG differs from HyperODA in that it does not specify that set of standards 

which may be used to represent the objects. 

Although the above standards have absorbed many hours of work in their 

production, there is, as yet, little evidence of their wide spread acceptance by the 

user community. There may be a number of reasons for this. The standards 

themselves, in their attempt to be as generic and flexible as possible, often become 

so abstract as to become incomprehensible to the user, but perhaps the most 

important fact is that hypermedia is still a technology in its infancy, and attempts 

to tie a community down to one particular standard are, as yet, premature. The 

wide spread acceptance of html may well be a testimony to its simplicity and the 

speed at which it evolves.  



27 

 

Chapter 3.  Microcosm Technical Description 

3.1. Introduction 

Microcosm is an open hypermedia link service that was designed and implemented 

by a team at the Multimedia Research Laboratory at the University of 

Southampton, UK. The project started in 1988, when members of the team wishing 

to experiment with ideas in hypertext and multimedia became disenchanted with 

the systems that were commercially available and decided to produce a hypertext 

workbench: the primary goal was to produce a tailorable and extensible system 

that could support a number of different research requirements.  

Initially a third year project student, supervised by Dr Andrew Fountain, 

produced a system for annotating text on a CD-ROM. This system was called 

Microcosm, because it was a subset of the much larger system we intended to 

produce. The name has stuck ever since as we never came up with a better one!  

Following this project, Ian Heath and I began building prototypes for a larger 

version of the system. Ian Heath worked in C, and I worked in an object oriented 

language called Actor, which is a Smalltalk-like development environment for 

producing Windows programs (Davis & Heath, 1989). 

After evaluating the three prototype systems the research group reformed and 

specified a design for what became known as Microcosm 1.0.  An interesting 

design decision had to be taken at this stage; whether to produce the system in C or 

Actor? An important feature of the new Microcosm 1.0 design was that all 

functionality would be provided by separate processes. At this time we were 

working with Windows 2, which imposed very severe memory constraints on the 

programming environment, and it was not possible to have more than one Actor 

program in memory at a time. For this reason, coupled with the fact that we now 

had three PhD students who could program in C, we decided to continue the 

development in C, and this lead to the first realisation of Microcosm 1.0 (Heath, 

1991)(Fountain et al, 1990). 



28 

 

Over the last six years the Multimedia Research Group has grown, under the 

direction of Professor Wendy Hall, from the original group of three academics and 

one PhD student, to a group of around 30 academics, research fellows, research 

assistants and PhD students. The Microcosm project accounts for about three 

quarters of this effort, and for the last four years I have been manager of the 

Microcosm Research Laboratory. 

In 1992 the Technology in Teaching and Learning Programme (TLTP) financed 

a number of projects to produce teaching materials for use in higher education. 

Although still in beta test form and available on only one of the three target 

platforms (Microsoft Windows), Microcosm attracted considerable interest among 

those who were searching for a method of delivering materials that was more 

flexible and scaleable than the authoring systems that were commercially available. 

Microcosm is the delivery platform for two major TLTP projects, and is part of the 

environment for a number of others. 

At the time of writing Microcosm is being used as originally intended, as a 

research workbench, in three SERC funded research programs, and is being used 

by around ten PhD students as a tool for their studies. It is also being used in many 

application areas, including technical documentation, project management, 

educational resource delivery, electronic publishing, geographic information 

systems and corporate information systems. 

The company, Multicosm Ltd. has recently been formed with the intention of 

marketing the intellectual property rights in Microcosm to industry and commerce. 

Over the last five years the design has been improved upon as researchers, 

industrialists and educationalists have all made their inputs. In 1992 I managed the 

production of Microcosm 2.0 from components produced within the research 

laboratory. This was the first version of Microcosm that was made publicly 

available. At this stage funding from JISC enabled us to employ a small team of 

professional programmers, headed my Dr Gerard Hutchings, who produced the 

first commercial version of Microcosm (version 3.0) in 1994. This team was taken 

over by Multicosm in 1995, and version 3.2 will shortly become available. 



29 

 

3.2. General Description  

Microcosm is a system that allows users to organise and navigate large bodies of 

information which may come in many different formats. 

Users may create their own resources using packages of their own choice, and 

simply incorporate these resources into the body of information of which 

Microcosm is aware; users may connect information together using links, or may 

annotate information; they may navigate through materials by a rich spectrum of 

navigational link following devices and searching and querying mechanisms; 

having located appropriate information they may manipulate the data using the 

tools that created the data in the first place and then they may publish resources 

and links, or maintain them in a private workspace. 

A central feature of Microcosm is that it maintains all information about links, 

including link anchors, separately from the node component data: the node 

component data is untouched by Microcosm and may thus continue to be viewed 

and manipulated by the application that created it. The advantages of this 

approach are: 

1. Third party applications may be integrated into the hypertext system with minimal 

effort.  

 Inserting anchor identifiers into the node component data, as required by 

most other systems, would corrupt the data from the point of view of the 

source application. Maintaining anchors outside the data makes it possible for 

the application to continue to act as the data viewer and editor. Systems that 

keep data in a private format must also provide tools to access and process 

that data. However, this approach is a closed solution. Arguments amongst 

users about choice of text editors and drawing packages become almost 

religious in intensity. Users do not wish to be confined to using a particular 

package, and in any case it is not possible to predict the facilities that all users 

will require, nor is it sensible to duplicate existing specialised software 

packages. Hypermedia systems must allow users to create data in whatever 

package they choose, and then to make links from data in one application to 

data in another. 



30 

 

2. The facility to make generic links.  

 If a link anchor is embedded within the node component data, then it will 

only be possible to follow that link from the place where its source anchor is 

embedded. If it is appropriate to make that link available from many different 

places, then a source anchor must be inserted at each of these places, requiring 

considerable authoring effort. However, if all link information is held 

separately from the data, it is then possible for a resolver function at the link 

service level to define which links may be followed from any user selected 

source object. A generic link is defined as one which may be followed from 

any occurrence of a particular object, such as a particular text span, wherever 

it occurs. This is a very powerful feature. 

3. It is possible to make links in read-only data.  

 In a co-operative environment a user may wish to allow other users to view 

data, but not to edit it. If link anchors must be inserted in the data then it will 

not be possible for the other users to create links in this user’s data. Keeping 

the link anchors separately makes it possible to link into data owned by other 

users. This is also important when the data exists on a CD-ROM, video disk or 

other read-only media.   

4. It is possible to keep alternative link sets (or webs).  

 If link anchor information is embedded in the data, then all link anchors 

created by all users must be stored within the data. An important piece of 

information on a multi-user system might end up storing a very large number 

of link anchors. How would the system decide which ones to display to which 

users? One possibility is that each anchor might have an owner attribute, but 

this scheme would put a large onus on the viewer to filter and display only 

those anchors appropriate to the current reader. However, by keeping the link 

information in separate installable link databases (linkbases) it is possible for 

the user to select which sets of links will be available at any time, making it 

feasible to have multiple views of any given hypertext. 

5. Link processing tools.  

 In a system where links are completely embedded in the source document 

(such as World Wide Web) the task of asking the question "which documents 



31 

 

contain links that point to this document?" involves iterating over the entire 

hyperbase searching each document for anchors that meet this condition - and 

that is supposing that the user asking this question has file access permission 

and network access to the entire hyperbase. Keeping all links in centralised 

linkbases makes link processing operations of this sort, and thus hyperbase 

consistency, more tractable, and consequently makes such systems more 

scaleable. 

In keeping with the principle of allowing third party applications to continue to 

access their data, Microcosm does not import node component data: the Microcosm 

storage layer is the file system. Microcosm does, however, keep various document 

attributes over and above those that are maintained by the file system, such as an 

extended description of the file, a logical type for the file, the name of the author, 

the viewer that Microcosm prefers to use for this format of data and any number of 

keywords and user defined attributes. These attributes are maintained by the 

Document Management System (DMS). Users may then access any file from the 

standard file system browser or file manager, or they may access files using the file 

manager supplied with Microcosm which displays the files using their extended 

descriptions and organises them hierarchically by their logical types. (See figure 8 

in section 3.6). 

3.3. Description of the Link Service 

Microcosm consists of a number of autonomous processes which communicate 

with each other by a message passing system (see figure 6). The user interacts with 

applications known as viewers, which are any applications which can display the 

required format of data. Within the viewer the user may make a selection, then pull 

down the Microcosm action menu, and choose an action to take on the selected 

object. Figure 5 shows an example where the user has selected the text span 

"bacteria" within the Microcosm text viewer, and is about to select Follow Link from 

the action menu. The same approach may be taken from any application: the 

selection may be whatever the application allows the user to select, so, for example, 

it might be an area of a picture or an object in a drawing or a cell in a spreadsheet. 

In figure 5 it is possible to observe that two words have been highlighted 

("Spirillum" and "diagram"). Some viewers may have the ability to display buttons, 



32 

 

and the Microcosm text viewer is such an example: the user may double click on 

these buttons, rather than needing to select the span and choose "Follow Link" from 

the action menu. In Microcosm a button is simply a binding of a selection and 

action that shortcuts the usual process. 

 

 

Figure 5. Making a selection and choosing an action within the Microcosm text viewer. 

When an action has been chosen the viewer arranges to send a message to the 

Microcosm Document Control System (DCS), containing the content of the selection, 

the action chosen by the user, the identifier of the source file and, if possible, some 

information about the position or context in which the selection was made. This 

information represents a potential source anchor. Microcosm then dispatches this 

information in a message to the Filter Manager which arranges to pass the message 

through all the filter programs that are currently installed and that have registered 

an ability to handle messages containing this particular action. 

Filters are programs that have been written specially for Microcosm, and which 

can handle all the message communication protocols with the filter manager. Each 

filter in the chain that receives the message now has the opportunity to respond in 

one of four ways. 

• It can block the message, so downstream filters will never see the message; 

• It can ignore the message and pass it on to the next filter; 



33 

 

• It can alter the message in some way; 

• It can create a new message (for example a message to dispatch a named 

document). 

For example, an important filter is the linkbase filter which, on receiving a 

Follow Link message, looks up the source anchor in the database of links, and if 

successful it creates a new message asking to dispatch the destination file and 

display the destination anchor. It also passes the original message on to subsequent 

filters, unchanged.  

The last filter in the chain is usually the Available Links Filter. This filter will trap 

any message asking to dispatch documents and display the link description to the 

user. If there is more than one choice the user selects which link to follow, and this 

message is returned to the Microcosm DCS, which consults the Document 

Management System (DMS) for details of the position of the document in the file 

store and the preferred viewer for this data, and dispatches this application for the 

user to view. 

The above description is deliberately simplified in order to explain the system 

with as little distraction as possible. More detail is introduced in chapter 5. 



34 

 

Viewer #1
e.g. 
Microcosm
Bitmap Viewer

Viewer #2
e.g.
AutoCAD

Viewer #3
e.g. 
Microsoft
Write

Microcosm 

Document
Control 
System (DCS)

Filter 

Manager 

Document Management System (DMS)

Filter #3
e.g. 
Computed
Linker

Linkbases
Mimic
Trail

Info.

History
Info.

Text Indexes
for Computing
Links.

The Documents

Filter #4
Available
Links

1. Viewer 
sends details 
of user
selection
to Microcosm

2. Microcosm
sends message
to filter
manager

3. Filter Manager

passes message
through all filters 
in filter chain

4. Filters respond with 
            list of available

             links

5. User selects 
link to follow

6. Filter
manager returns

message to 
dispatch
a document

7. Microcosm
consults
DMS to
access
document

Application

Layer

Link Service

Layer

Hyperbase/

Storage

Layer

Filter #1
e.g.
Linker

Filter #2
e.g.

Linkbase

8. Microcosm
dispatches
document in

appropriate viewer

Figure 6: The Microcosm Link Service Model: showing typical message handling. 



35 

 

3.4. Viewers 

Microcosm supports viewers with different levels of awareness of the full set of 

Microcosm protocols. 

3.4.1. Fully Aware Viewers 

These are programs that were written specifically for use with Microcosm, or 

applications adapted at the source code level: they are able to participate in the full 

range of protocols described in chapter 5. This means they will be able, for example 

to display buttons, they will have an action menu as shown in figure 5, and when 

dispatched they will be able to display or highlight a destination anchor in some 

way. Such viewers have been developed for: 

• ASCII Text 

• Rich Text Format (RTF) 

• Bitmaps (BMP and JPEG) 

• Sound (WAV) 

• Digital Video (AVI) 

• Animations (Sets of Bitmaps) 

• Object Oriented Drawings (DXF) 

3.4.2. Semi-Aware Viewers 

These are third party application programs that have been adapted in some way to 

participate in some subset of the full communication protocol. Typically this is 

achieved using the application's own macro language: most serious Windows 

applications programs are now tailorable by some Basic-like macro language, and 

it is usually possible to add menu options and/or buttons to the tool bar. Using 

these facilities it is usually only a matter of a few lines of macro code to 

communicate selections via the Dynamic Data Exchange (DDE) to Microcosm. DDE 

is a facility for inter-application communication provided by the MS-Windows 



36 

 

operating system. The functionality that can be achieved is discussed later in 

chapter 5 and will depend on the amount of coding effort one wishes to invest. 

Some of the applications that have been adapted in this way include: 

• Microsoft Word for Windows 

• WordPerfect for Windows 

• Ami Pro. 

• Lotus 123 for Windows 

• Autodesk AutoCAD 

• CA Project 

• Microsoft Access 

• Asymetrix Toolbook 

• Authorware Pro. 

• Freelance 

3.4.3. Unaware Viewers 

Some application programs that one might wish to use offer no access to source 

code and have no macro programming language. In spite of this it is possible to 

obtain a surprisingly high degree of hypertext functionality using such 

applications: this is made possible by the use of a parasitic program known as the 

Universal Viewer which sits on top of the unaware program, and handles the 

communications with Microcosm. This is discussed in detail in section 5.5. 

3.5. Filters 

A filter is a program which attempts to respond in some way to Microcosm 

messages. Important filters are: 



37 

 

3.5.1. The Linkbase Filters 

These filters provide the primary hypertext functionality. A link database (or 

linkbase) consists of a set of link descriptions indexed by all the fields in the 

description. A follow link message creates a query to the linkbase which will 

produce the set of all links in the linkbase with the selected source anchor, and 

which may be followed from the current context. Microcosm currently supports 

three primitive pre-authored link types. 

1. Specific Links 

 These are links which have some information to identify where in the 

document the anchor is situated, such as a named region, byte offset or 

structure identifier. Such links may be followed only when the source 

selection is situated on this anchor, and these links may be presented as 

buttons if the link author requires.  

2. Local Links 

 These are links that may be followed from a specific document, wherever the 

source selection occurs in this document. 

3. Generic Links 

 These are links that may be followed from wherever the source selection 

occurs. 

If any links are found to be appropriate then the destination documents will be 

dispatched. 

 Figure 7 displays a simplified account of how the linkbase handles a message 

from the text viewer, where the user has selected the text span "kings" located at 

position 57-61 characters through the file. The linkbase contains a generic link on 

this source selection, so this will be offered to the user; it contains two local links on 

this selection, but only one is in the correct context, and it contains a specific link 

which is in the correct context: these are also offered to the user. All remaining 

linkbase records are for different source selections. 
 



38 

 

This is some text
which is mostly 

about cabbages and
kings

The House of Windsor:    WINDSOR
A List of the Kings and
     Queens of England:    ROYALTY
Picture of Alice on a 
     chess board:               ALICEPIC

The user selects  kings and asks to follow a link.

There are four linkbase entries concerning kings

kings

kings
kings

kings
hatter
  etc..

Anywhere
ALICE

ALICE

ROYALTY
ALICE
  etc..

Anywhere

Anywhere
57-61

Anywhere
Anywhere

WINDSOR

ROYALTY
ALICEPIC

WINDSOR
TEAPARTY

253

Start
Start

253
Start

A generic link

A local link (from this file only)

A specific link (from this position only)
A local link from another file (so not offered)

A local link with wrong source (so ignored)

The three links which apply are sent to the
dispatcher which displays their descriptions 

and awaits the user's choice(s).

                    Source
 Selection      File            Position

       Destination
   File              Position Comments

Text Viewer: ALICE Available Links Dispatcher

 

Figure 7: Demonstrating how the link base resolves which links to follow. 

The account is simplified as link base entries contain many more details than 

those shown, and in practice the linkbase does not hold the file name but a unique 

document identifier which is resolved by the DMS to a real filename. Also, in this 

example the "position" field is shown as an offset through the file: this is by no 

means the only way of describing the position of an object in a file.  

An important observation is that there is no limitation on the number of 

linkbases that may be installed at any one time: indeed it is standard practice to 

have around three, one providing links supplied by an original author, one 

providing generic links to background materials, glossaries and dictionaries, and 

one containing private links. 

Microcosm also supports whole documents as link anchors, which makes it 

possible to have node-to-node links rather than the more usual selection-to-

selection links. Microcosm will allow the creation of whole-node source anchors 

when the user asks to start link with no current selection, and will allow following 

of such anchors when the user asks to follow link with no selection. In practice this 

interface is not instinctive, and few users ever discover it. On more recent viewers 

we have made this explicit, either by providing options to make and follow whole 

node links, or by showing whole node links as buttons on the toolbar. 



39 

 

3.5.2. The Linker 

The linker accepts Start Link and End Link messages which identify anchors within 

data, and when two such anchors are paired it allows the user to enter link details, 

such as the type of the link and the description of the link: this information is then 

stored in the currently selected linkbase.  

3.5.3. Show Links 

One of the problems that users perceive with Microcosm is that there are inevitably 

more links available to the user than those that can be seen displayed as buttons. 

Indeed some viewers are unable to display buttons at all. The user may make 

selections and ask to follow links, but unless the selection is a perfect match with 

the linkbase entry, no match will be found. To overcome this problem a show-link 

action allows the user to make a selection, and attempts to identify all link sources 

within the selected area, so for example the user may select a line of text. Any links 

with source anchors within that line will appear in the available links dialogue box.  

A restricted refinement of this idea is to have a "show generic buttons" option on a 

fully aware viewer, which will highlight all source anchors, including generic and 

local links, within the viewer. This was an idea that I implemented in my prototype 

of Microcosm, and has recently been re-implemented in the Microcosm RTF 

viewer. 

3.5.4. The Computed Linker 

The computed linker is invoked when the user makes a text span selection and 

requests the action compute links. It applies information retrieval techniques to 

attempt to identify text based documents, or sections of documents, that have the 

most similar vocabulary to the text in the source selection. To achieve this it uses an 

index of all the text based documents within the current application area, and this 

index must be created and maintained by a utility program that is provided. The 

computed linker sends a ranked list of potential destination documents to the 

available links filter, from which the user may select. Information retrieval within 

Microcosm is covered in more detail in chapter 4. 



40 

 

3.5.5. Selection 

Not all navigation is achieved by selection and action, as not all text queries that 

one might wish to make actually appear in the data. The selection filter when 

popped-up allows the user to type a text entry then select an action, such as Show 

Links or Compute Links. 

3.5.6. The Available Links Filter 

The available links filter, if installed, will pop-up and display the description of any 

links which the user may follow (which by default will be the description of the 

destination document). Whichever link is selected by the user will cause the 

destination document to dispatch. 

3.5.7. Navigational Filters 

A range of aids to navigation are available. A History filter keeps a list of all the 

documents that a user has seen in a given session. The user may view the history 

list (in terms of either the document descriptions or the method by which they 

arrived at that document) and click on a document to return to it. Histories may be 

saved and reloaded between sessions: the saved history may be edited by any text 

editor. 

Mimics are guided tours or trails through a given set of documents. These allow 

one user to show another a route through a set of resources, but the user is still able 

to diverge from the trail and return to it at will. The easiest way to create a trail is to 

load a saved history. 

A local maps filter may be popped-up which will display a small map with the 

current document at the centre, and links into and out of this document are shown 

as connections. 

3.5.8. Abstraction 

We have designed a replacement for the available links filter, which, as well as 

showing the description of the available link, will also show a graphic 

representation of the destination document. In the case of a text based document 



41 

 

this will simply be an icon representing a text document; in the case of a picture 

this may be copy of the picture itself scaled down to icon size. But this technique is 

best appreciated when dealing with very large digital video files, especially when 

they are at the end of a busy network: in this case the abstract is a moving icon, or 

micon, which consists of a small number of important frames from the video shrunk 

to the size of an icon. This abstract of the video may be all that the user needs to see 

in order to decide that they do not wish to follow the link. The abstract may be held 

locally, and in any case will be considerably less expensive to download over the 

network than the full copy of the video. 

3.5.9. Monitoring User Interactions 

Since everything that a user does in the way of querying and navigating between 

different documents appears as a message from the filter manager, it is a simple 

matter to insert a filter that keeps a log of all messages that are sent. These logs may 

later be analysed to discover the pattern of a users interactions. This is useful both 

from the point of view of evaluating the hypertext system, and also for discovering 

what resources they have accessed and what relationships they have discovered. 

3.5.10. Filters that Filter 

The original derivation of the term "filter" to describe the message handling 

components of Microcosm lies in the idea that we believed that as text became 

increasingly linked it would be necessary to apply intelligent filters to remove 

some of the links in order to avoid overloading the user with information. In 

practice this situation has not often arisen because of the practice of organising 

links into separate linkbases, and allowing the users to load only those sets of links 

that are currently useful or required. 

However, the model allows the implementation of new filters that apply 

intelligence to removing any links from those offered to the user. When a link is 

created it is possible to add any user defined attributes that are required, in 

addition to those that are stored by the linker as default. Based upon the attributes 

of the link a filter may decide whether or not to block the message asking to 

dispatch the link. For example, we have produced such filters, implemented in 

Prolog, which apply rule-based techniques to filter available links and to offer only 

those which are appropriate to the current user’s requirements. 



42 

 

3.6. Document Management 

Microcosm maintains a database of all files of which it is aware, known as the 

Document Management System (DMS). There are two reasons for keeping this 

database. 

First, Microcosm knows all documents by a unique identifier. It uses the DMS 

to resolve unique identifiers into filenames when it needs to locate the file. The 

reason for using unique identifiers rather than filenames within Microcosm is so 

that when a file is moved it is not necessary to search through all the linkbase files 

changing all references to the file. Even if all the linkbase files were on-line and 

accessible this would be time consuming. Indirecting through the DMS ensures 

that the only thing that needs changing when a file is moved or changed is the 

linkbase entry. 

Secondly, the database keeps a number of attributes about the document which 

are not known by the operating system. These are: 

1. The unique reference number 

 This is assigned automatically by Microcosm when it first encounters the file. 

This is the name by which the file will be known to Microcosm. 

2. The full filename 

 - so that Microcosm can find the file. 

3. An English description of the file. 

 - because C:\mcm\cbio\cbio34.txt tells the average user little about the 

contents of the file. If the user fails to supply information for this field, then 

Microcosm will use the filename as the description. 



43 

 

4. The physical file type 

 Microcosm will use this information to decide which viewer to use to display 

the document. For example ASCII text files may be divided into two physical 

types: the first type might use the Microcosm RTF/text viewer and the second 

might use the Notepad. Default physical types are associated with filename 

extensions. 

5. The logical type(s) 

 This will describe where in the Microcosm file manager hierarchy the 

document will appear. A document may have more than one logical type. The 

Microcosm file manager allows the user to assign the logical type by dragging 

and dropping into the appropriate folder in the same way as the Windows file 

manager. 

6. The application(s) 

 A Microcosm user will normally logon to use one application (or project) at a 

time. An application defines the set of files, linkbases and other filters that 

will be available. A file may be part of more than one application. By default 

the application will be the current application at the time the file was first 

used by Microcosm. 

All the above attributes are required, and if not provided by the user then the 

system must provide defaults. The remaining attributes are not essential, but may 

be useful. 

7. The author(s) 

 This differs from the owner (which is known by the file system). The reader 

may wish to investigate all documents created by a given author. 

8. The keyword(s) 

 Users may assign keywords to a document. It will then be possible to retrieve 

all documents with the given keyword. These keywords may then be used as 

a useful source for the automatic creation of generic links. 



44 

 

9. The abstract 

 As mentioned in subsection 3.5.8, it is possible to attach abstracts (such as 

micons) to a document so that when the document appears as the destination 

of a link, the abstract will appear. This field will contain the filename of the 

micon or icon to be used as the abstract instead of using the default which will 

be created automatically, on the fly. 

10. User defined attributes 

 Users may add their own attribute fields then add their own contents to these 

fields. 

Access to the files that the system knows about is via either the Microcosm file 

manager, or by using a database query tool that allows the user to make Boolean 

queries based on file attributes. New files may be introduced to Microcosm by 

dragging them, one or more at a time, from the Windows file manager onto the 

Microcosm file manager, or by simply accessing the file from the Microcosm file 

manager's file browser option. 

 

 

Figure 8: The Microcosm file manager/browser, showing logical types and descriptions. 



45 

 

3.7. The Registry 

Since Microcosm is highly configurable it is necessary to maintain a large amount 

of information about the configurations that are required. This is achieved by 

maintaining all the information required in a database known as the registry. Any 

component with appropriate permissions may write to the registry, and all 

applications may read from the registry. The information that is maintained in the 

registry is typically the class of information that is kept in INI files, but this 

approach was abandoned due to the hierarchical complexity of the information 

that needs to be kept. 

 

System Defaults

Application

#1 defaults

Application

#2 defaults

Application

#3 defaults

User #1

Settings

User #3

Settings

User #2

Settings

User #1

Settings

User #1

Settings
 

 

Figure 9: Hierarchy of Settings maintained by registry. 

Typical information that is kept in the registry includes the list of filters that are 

available, the default viewers to use for various data types, the filters and their 

default settings when the system starts, the list of registered users and their 

permissions, the font sizes, colours and window sizes for various files, and any 

other information that might normally be kept in an INI file. 

Figure 9 shows how the registry decides which settings to use. There are 

various system defaults, set by the system manager: these may be overridden or 

added to by each application that is in use, and then each user may override or add 

to those settings to arrive at a personalised environment. 



46 

 

Any program may query the registry, for example a viewer may query the 

registry to enquire which filters are currently installed, and thus build a dynamic 

menu of actions available: users with appropriate permissions may change entries 

so that they may maintain their own personalised environment for a given 

application. 

3.8. Navigational Methods and Support 

In the early literature of hypertext there was much concern about the issue of 

"getting lost in hyperspace" (Nielsen, 1990)(Wright & Lickorish, 1990). However, 

subsequent researchers have now come to the conclusion that this effect was 

largely due to the fact that link following was virtually the only navigational 

method in the early systems (Bernstein, 1993). There is little more frustrating than 

knowing that a particular node exists, and even knowing its subject or title, but 

being unable to find it because you cannot remember the route by which you got 

there: this is clearly nonsensical. The solution to the problem is to provide multiple 

navigational methods, so that the user is able to browse information, easily locate 

new information, recall information that has previously been visited, and follow 

trails through information left by others. Microcosm provides three levels of access 

to new information in addition to those methods that involve using historical data, 

as shown in figure 10. 

In general, different methods of navigation will find differing qualities of 

information: following a button or specific link will take you to a specific piece of 

information which someone manually authored exactly because they decided that 

the relationship between the two items of information was important. Such links 

have a very high quality, but there may not be many such links since they require 

such a high authoring effort: they may be low in quantity. On the other hand a 

generic link may be followed from any place that a particular source anchor occurs. 

Taking the example in figure 7 in subsection 3.5.1, there is a generic link on the 

word "kings" which offers the user a file about the House of Windsor, which would 

generally seem to be a useful connection. However, if the user had been reading a 

file about the game of chess, then this relationship would have been inappropriate. 

The generic link once created will be available from many places, but the quality of 

the relationship discovered may be lower because of the generality of the link. In 

the extreme, if the user had used compute links on the word "kings" the result may 



47 

 

have discovered relationships with files about aspects of royalty, chess, pop stars 

(Elvis?) and articulated vehicles (kings of the road?). Computed links will be 

available from any piece of text, so the quantity of such links is effectively infinite, 

but the quality may be low, requiring the user to decide whether the relationship 

discovered is actually useful. 

 

Hierarchy Information

Link Information

Index Information

Linkases

Information Retrieval

Document Management
System - DMS - 
file browser

Link Following

Compute Links

File 

Store

 

Figure 10: Levels of access to information using Microcosm. 

Hierarchically organised file structures and folders have traditionally been the 

most significant method of ordering and retrieving information. A modern desktop 

computer might typically contain 750 MB of filestore containing a few thousand 

files, and quite possibly be connected to a file server offering another gigabyte or 

so, with tens of thousands of files. So long as the user has a good mental model of 

the organisation of such filestores they have usually not had difficulty in browsing 

to discover information as required. No hypertext system should lose sight of this. 

Hypertext should be seen as adding value to information management, rather than 

as a replacement to methods that have already been shown to work.  

Briefly, in summary, navigation in Microcosm may be through the following 

methods: 



48 

 

• The Microcosm file browser (figure 8, section 3.6) 

• Buttons (figure 5, section 3.3) 

• Specific links (figure 7, section 3.5) 

• Local links (figure 7, section 3.5) 

• Generic links (figure 7, section 3.5)  

• Computed links (chapter 4) 

• Document to document links (subsection 3.5.1) 

• Boolean query on document attributes (section 3.6) 

• Mimics (subsection 3.5.7) 

• History (subsection 3.5.7) 

• Local maps (subsection 3.5.7) 

Limited user studies delivering the same set of resources in both Hypercard 

and Microcosm (Hutchings, 1993) have indicated that Microcosm is successful in 

avoiding the "lost in hyperspace" syndrome. Users tend to follow a small number 

of hypertext links at a time, returning regularly to the file browser to reorient 

themselves and to begin a different line of enquiry. 

3.9. Authoring 

Hypermedia materials may be constructed either by manual creation of the nodes 

and links, or automatically. Automatic methods depend upon utilising mark-up 

that exists within the document(s). An example of an automatic system was Lace 

(Rahtz et al, 1990) which used Latex mark-up within a document to create a 

hypertext where nodes were subsections of the original document, and the 

contents, footnotes, cross references and index were automatically turned into 

buttons which related the user to the appropriate node within the document. 

Dynatext performs a similar function with documents marked up with SGML. 

Another example is the Windows Help system which compiles RTF exported from 



49 

 

Word for Windows to generate hypertext help files. Such systems have an 

important role to play in allowing text which was perhaps originally marked up for 

printing as a book to be converted into hypertext versions of the book. But that is 

all they will be: hypertext versions of the book. Large hypertexts will be created by 

creating and importing information from many different sources and data formats, 

and such hypertexts will inevitably require a degree of manual creation. 

 

The Documents

Files of 

glossaries
definitions etc.

Stage 1:Describe Document 
Attributes to Microcosm DMS.

Stage 4: Add specific and local links
to describe special relationships
between documents.

Stage 2: Index Documents
for Information Retrieval

Stage 3: Make Generic Links to each 
document and to resource materials 
such as glossaries and dictionaries.

 

Figure 11: The stages in building a resource based hypermedia application. 

Hypertexts are created for many different purposes. Some will be small in size 

and contain a very rich set of links: these require considerable authoring effort. 

Others will be very large, possibly containing very large nodes, and because of the 

cost of authoring, will possibly have a much sparser set of links. The goal of system 



50 

 

developers is to offer the user the greatest degree of information discovery and 

navigational facility at the least cost to authors. This is the issue Microcosm has 

addressed. 

The Microcosm philosophy is that of taking a resource based approach to 

hypertext application building (Davis et al, 1993). The resources are collected on 

the machine in whatever format they were created, then on top of this we add 

facilities, such as generic links, document attributes, and information retrieval 

indexes (see figure 11) which enable the document to be located: they give the 

document pull. Finally authors and users will start to navigate the information 

space, and as they deduce relationships that they wish to keep or point out to 

others, they will start to add a layer of local and specific links on top, which they 

may keep in their private linkbases, or publish for others to view. Furthermore they 

will create or add new documents to the system, and again these might be private 

or published. These final stages of adding links and new documents are the most 

labour intensive, and a typical link making action is shown in figure 12. An 

important advantage of adopting this approach, is that simply by importing the 

documents to the system as described above will provide the user with a 

sufficiently powerful hypertext system with which to begin exploring the 

information space. 

The advantages of the Microcosm approach to hypermedia authoring may be 

summarised as: 

1. Reduced authoring effort. Much of the work is achieved by generic links and 

information retrieval. 

2. Third party applications may be included. This is because Microcosm does not 

attempt to store its information within the application data. 

3. Documents and linkbases may be re-used within multiple applications. 

4. Multiple webs of links are possible. Each web is stored in a separate linkbase, and 

multiple linkbases may be installed at run time.  

5. Private links and data may be maintained without making changes to the original data. 

Users may keep linkbases and data in their private workspaces, so no-one else 

will even be aware that they exist. 



51 

 

 

Figure 12: Making a Link in Microcosm. The source of the links was the text span 

"membrane" within a Word for Windows Document. The destination is part of a bitmap 

picture. The Author has described the link, has set the link type to Specific, and will press 

"OK" to complete the link.  

3.10. Summary  

This chapter has endeavoured to describe the components of which Microcosm 

is made. We may now reflect on the question "what is Microcosm?". The answer is 

that Microcosm is an open hypermedia link service system which lends itself to a 

resource based approach to the collection and navigation of materials, and as such 

might be described as an information management tool. 

As a link service, Microcosm provides a message passing framework which 

allows users to interact with an application, and from this application make queries 

and request actions which are passed through a set of link service aware tools 

(filters) which have the opportunity to service this request. The result of such an 

action will generally be the presentation of some new information to the user. 



52 

 

When this link service is populated with a set of appropriate viewers (whether 

Microcosm aware or not) and filters (such as linkbases, information retrieval tools 

and navigation tools) we have an open hypermedia system. 

Perhaps a helpful way of summarising the way that Microcosm may be used as 

a resource based open hypermedia system or an information management system 

is to compare it with the way we use a standard library as shown in table 1. 

But like any analogy, the comparison with the library is imperfect as there are 

some things that you may do in Microcosm that are not possible in a library. In 

Microcosm you may make use of information retrieval techniques to perform a 

powerful set of searching tasks; you may browse through data at a very much 

faster rate than is possible when you must physically collect resources; you can add 

your own resources to the collection (should people wish to include your links and 

resources within their "view" of the system); you can use dynamic and 

computational resources; you can provide pre-set routes to travel through a set of 

resources: you can keep a history list of everything you found, and how you found 

it, automatically; you can provide users with connections between resources; you 

can put the same resource (or at least a link to that resource) in as many places as 

you like. 



53 

 

 

Function In Library Equivalent in Microcosm 

Enter new resource into catalogue Describe new resource to Microcosm's 
Document Management System (DMS) 

Decide which classmark to file resource 
under. 

Assign resource to one or more projects, 
and within projects assign logical type or 
types 

Put resource on shelf Put resource on computer file system 

Use card index or on line system to find 
out about resources 

Make structured Boolean query of DMS 

Use abstracting journals or citation 
indexes to locate new resources 

Use Information retrieval techniques to 
locate articles about appropriate subjects or 
mentioning relevant authors  

Search shelf for book Use Microcosm file manager to search 
logical hierarchy to find resource  

Discover that the resource that you want 
is not there as someone else has got it 

This doesn't happen! Users may share 
resources 

Look up term, phrase or name in 
encyclopaedia, glossary, bibliography or 
dictionary 

Follow generic link to on-line resources 
such as encyclopaedias, glossaries, 
bibliographies or dictionaries 

Follow reference from one article to 
another 

Follow specific link 

Photocopy an article Print an article 

Make notes on private photocopy of an 
article 

Make private link to annotation on article. 

Search for resource in other libraries Widen scope of search for information onto 
Internet servers e.g. WAIS  

Make Interlibrary loan request Read remote resources using viewers of 
Internet Servers e.g. WWW 

Table 1: Comparing Microcosm with the functions of a traditional library. 



54 

 

Chapter 4.  Information Retrieval and Computed 
Links 

The idea of integrating information retrieval techniques into hypertext is not new 

(Bernstein, 1990), and there is no doubt that statistical information retrieval 

techniques are still more effective than techniques that rely upon semantic analysis 

(Hutchings, 1993). The problem with many traditional information retrieval 

packages, such as Status, is that they rely upon the fact that the documents in the 

information base have been marked-up to highlight structure and keywords, and 

they rely upon the query being delivered in some kind of structured query 

language. In order to integrate information retrieval seamlessly into Microcosm we 

needed a system that would work without requiring the documents to be marked 

up, and without requiring the query to be structured, so that any selection of text 

could be treated as the query. This chapter describes the technique used, which is 

based upon techniques attributed to Salton (Salton et al, 1975). The work described 

in this chapter was carried out by Dr Z. Li, under my supervision, as part of his 

PhD (Li et al, 1992) (Li, 1993). 

Prior to using the computed linker it is necessary to produce an index of the 

stems of all the significant words in the text documents known to the system. 

Microcosm maintains a list of all the text documents, and supplies an editable list 

of stopwords, which contains around 250 of the most popular words in the English 

vocabulary: these words are removed before indexing takes place. The remaining 

words are reduced to a common stem using a well established algorithm (Lovins, 

1968). The indexer now builds a table which represents the occurrences of each 

word as shown in table 2. The actual numbers are normalised so they represent the 

occurrence of each word as a percentage of the total number of indexed words in 

the file. Note that, for example, the words "compute", "computer" and 

"computation" will all reduce to the same stem. 

Once the text documents have been indexed, the user may install the computed 

linker with the correct index, then make arbitrary length selections (queries) from 

any text based viewer, or type into the Selection dialogue box, and ask to Compute 

Links. The computed linker will take the query, and apply the same initial stages as 

the indexer, namely it will remove stopwords from the query and reduce the 



55 

 

remaining words to their stems, and normalise the frequency with which they 

occur with the length of the query. 

 

 

Table 2: Representation of part of table produced by indexer. 

The next stage is to attempt to identify the extent to which the documents in the 

index share the same vocabulary as the query. This similarity function is achieved 

by treating the query as an n dimensional vector and extracting from the index 

another n dimensional vector (for each document) each of which contains weights 

representing the frequency of each term. The angle between two vectors is 

measured by the following formula, and the smaller the angle, the closer the two 

vectors are. 

cosα =
=

==

∑

∑∑

a b

a b

i ii

n

i ii

n

i

n

1

2 2

11

 

 
n is the number of terms in the query. 
ai is the normalised frequency of occurrence of term i in the query 
bi is the normalised frequency of occurrence of the term i in the document. 

The computed linker now sorts the documents in the index into order of 

proximity to the query.  

Finally the computed linker must decide how many of the documents 

identified by the index should be offered to the user. Since the similarity function 

does not produce normalised similarity values, there is no fixed threshold that can 

be used to decide whether a document should be included, so the following rules 

are designed to produce a dynamic threshold. 

Stem of Word File 
#1 

File 
#2 

File 
#3 

File 
#4 

File #5 

compil 0.04 0 0 0 0.02 

comput 0.03 0 0.01 0 0.04 

disk 0.03 0.01 0.02 0 0.03 

print 0 0.01 0 0 0.03 

program 0.04 0.01 0.04 0.02 0.02 



56 

 

1. Calculate the average value of the similarities of all documents. Use the 

average value as a sub-threshold; only the documents whose similarity values 

are above the average value should be passed to next step. 

2. To avoid passing on too many documents, another sub-threshold whose value 

is defined as M is used to control the maximum number of destinations. But a 

document collection containing a large number of documents may have more 

documents relevant to a query than a small document collection, so another 

sub-threshold whose value is defined as percentage P is used to control the 

maximum number of destinations of a computed link.  

3. The documents are ranked according to their similarity values in decreasing 

order. Then the max(M,P) documents that have larger than average similarity 

values are chosen as the destination documents. 

Default values of M=10 and P=10% are used, so for a collection that has 35 

documents, a maximum of 10 destinations would be permitted. For a collection that 

has 200 documents, a maximum of 20 documents could become destinations. 

The algorithm as described above allows the user to make a selection and 

quickly identify the documents that have the most similar vocabulary, but there is 

no guarantee that every word in the query will also be in any given destination 

document: nor is there any mechanism for making structured queries of the sort 

"Find me all documents that contain the word ‘language’ and either the 

word `compiler' or the word ‘interpreter’ but do not contain the word 

‘foreign’." 

To make queries of this sort requires a quite different algorithm for matching 

queries, and more importantly would require a special interface, rather than 

integrating with the selection and action metaphor that Microcosm supports. 

There are various improvements that have been made to the system. 

1. Phrase Indexing. 

 If the phrase "laser printer" occurs in both a query and in document A, then 

one might say that Document A has a higher similarity than document B 

which contains the words "printer" and "laser" but at different places. Phrase 



57 

 

indexing involves attempting to identify short phrases in the documents and 

in the query, and treating the phrases as if they were words, adding them to 

the indexes and vectors. The phrase will now be "double accounted" in the 

similarity calculation, since the component words will be counted as well. 

Experiments have shown that this approach has improved retrieval accuracy 

(Li, 1993). 

2. Linking to document sections. 

 The algorithm as described above identifies only whole documents as link 

destinations. If the document is large it may help if the computed linker 

points the reader to the best section. If this option is selected the computed 

linker will dynamically take each document identified and break it up into 

sections, and then by dynamically indexing each section will offer the user the 

sections in order of proximity to the user. When the link is followed the 

viewer will load the document with the section identified at the top of the 

window. What constitutes a section is under user control, but typically a 

paragraph or a number of characters will be used. 

3. Document to document links. 

 The above algorithm describes a method of finding the similarity between a 

relatively short query, typically between one word and one paragraph, and 

other text documents in the docuverse. If one wishes to calculate which 

documents have the closest similarity to the current document, then the 

vectors become rather large and the time taken to do the calculation increases 

significantly. An alternative approach is to use only a few words which occur 

in a given document but do not occur much in other documents as a signature 

for the document. Comparing these signatures is much faster than comparing 

the entire vocabulary used. 

4. Data Formats. 

 Clearly the algorithm described requires access to the ASCII representation of 

the text in a document. We are currently experimenting with using installable 

libraries that extract ASCII text for indexing from various text based 

application data files such as Microsoft's Word for Windows DOC files and 

Rich Text Format (RTF). Once the text has been extracted it is simple to index 



58 

 

it. It is harder, however, to identify document sections dynamically for 

indexing and to dispatch the applications at the correct section. Currently this 

only works with RTF. 

The Microcosm computed linker is a tool that users, particularly application 

authors and readers of large bodies of text have found extremely useful for 

discovering relationships between documents in the hypertext. The algorithm was 

optimised for speed at query time, and in general the time taken to locate 

relationships by this method is actually faster than queries to the linkbase. The 

selection and action mechanism makes for a very easy to use interface, which is 

much quicker than typing queries (which is of course also possible through the 

Selection filter). The success of this approach is all the more rewarding, since the 

original software was not developed for use with Microcosm, and was adapted for 

this purpose at the source code level in the space of half a day. 

However, the computed linker has not gone without criticism. Many users 

confuse information retrieval with search functions such as grep, and are then 

surprised when the system returns documents that do not have exact matches with 

the whole string in the query. Users often ask why we do not highlight the terms 

from the query within the documents when they are displayed. This would be 

difficult to achieve since the system does not know what the terms were - only the 

stems of the terms. It would be a time consuming task to identify whether each 

word in the destination document was one that would stem to one of the stems of 

the words in the original query. 

Perhaps a more serious criticism of the computed linker is that it makes no use 

of the information that the system has about the structure of the hypertext. For 

example it is not possible to ask to view all documents that have links into them 

from documents that contain a given phrase. This would be a different tool, which 

would need to have greater access to the stored Microcosm information, and would 

need a much more complex interface. At present we have had no pressure from our 

users to produce such a tool. 



59 

 

Chapter 5.  Application Integration 

As explained in section 3.4, it is possible to integrate third party applications so that 

they may be used as Microcosm viewers. This chapter explains how this may be 

achieved and examines the quality of hypertext system that results. The Universal 

Viewer work described in this chapter was carried out by Simon Knight, under my 

supervision, as part of his PhD studies, and has been reported in Davis et al. 

(1994b) 

There are a number of levels at which system builders have attempted to 

integrate applications as data viewers for hypertext systems. In increasing order of 

generality they are: 

1. Tailor Made Viewers. These applications are written specifically for integration 

with the hypertext system. Microcosm's RTF and Text viewer was built this 

way.  

2. Source Code Adaptation. Where the source code for an application is available it 

is possible to add the code for communicating with the hypertext link service. 

For example, we are currently adapting the source code of Mosaic (NCSA 

Mosaic, 1994) for Windows to become a fully aware Microcosm viewer. 

3. Object Oriented Re-Use. A basic hypertext viewer class is created and viewers for 

specific data types inherit from this class. HyperForm (Wiil & Leggett, 1992) 

and the KHS (Aßfalg, 1994) mail viewer are examples of such systems. 

4. Application Interface Level Adaptation. Many packages provide flexible interfaces 

and macro programming languages, via which it is possible to add Hypertext 

functionality. 

5. Shim or Proxy Programs. These are programs that sit between the hypertext link 

service and the viewer, translating actions in one system to actions that the 

other can understand. The Microcosm Universal Viewer described later in this 

chapter is such an example. 

6. Launch Only Viewers. This is the worst case, when all the hypertext system can 

do is to launch a given program with a given data set, but from the program 



60 

 

there will be no hypertext functionality. In Microcosm we frequently launch the 

Microsoft Media Player in this mode.  

One of the factors that has made it so difficult to integrate existing hypertext 

systems with desk-top applications has been the adoption of the model requiring 

that the content viewer/editor is responsible for handling link anchor identifiers. 

Adapting existing applications to do this involves considerable enhancements 

which will normally only be achieved by adding code at the source code level as 

described by Pearl (1989) and Shakelford et al. (1993), although it may be possible 

to add this functionality using a macro language where this is sufficiently 

powerful. For example, EMACS has a lisp like programming language with which 

one can actually tailor the environment and such work has been described by Rizk 

& Sauter (1992) and Shakelford et al (1993). However, users are unlikely to wish to 

invest the effort to tailor their applications, and software houses are not likely to 

wish to add link anchor handling facilities until some standard emerges for doing 

so.  

5.1. Links, Anchors and Persistent Selections 

For those hypertext systems which handle anchors that reference objects within the 

node, there are three approaches to handling the anchors (Davis, 1995).  

The first approach is to embed all the information about the link within the node 

content at the hotspot: this is the approach taken by a number of the earlier hypertext 

systems. The World Wide Web also embeds its links as html mark-up. The advantage of 

this approach is that the document and its links form a self contained object which may 

be moved and edited without damaging any of the links that are contained within the 

document.  

On the other hand moving (or deleting) a document involves checking all references 

to this document within all other documents. In the case of the World Wide Web this 

involves checking all other html documents in the world. Failing to make this check 

results in dangling links. Furthermore, it is not possible to insert mark-up if the data is 

owned by another user or is on a read-only media such as CD-ROM.  

The second approach is that adopted by classic Dexter systems, which generally 

require the node viewer application to handle the anchors, as shown in figure 13. 



61 

 

Link

id_1 id_2 id_1 id_2

Node 1 Node 2

Link 
Service

Application

Figure 13: Anchor handling in classic Dexter Systems. 

Dexter defines anchors as objects which have a unique identifier and a list of 

one or more references to something within the within-component layer. These 

references might be, for example, byte offsets or pointers into an array, or scripts to 

be interpreted by the application. However, whatever they are, at the end of the 

day they must resolve to a pointer into the node data, in such a way that the end 

point of the anchor may be displayed by the application displaying the node. Such 

a pointer is known as a persistent selection. Most Dexter systems require that the 

application is responsible for effectively maintaining a set of anchors, and their 

corresponding persistent selections. This may be achieved by embedding mark-up 

within the application, or by coding the application to handle an external anchor 

table. Since all the information about the link structure is held centrally it is 

possible to build tools which analyse the links, for example, network browsers and 

tools to identify dangling links. 

A variation on this approach, which is taken by many of the hyperbase class of 

systems such as SB3 (Leggett & Schnase, 1994), says that anchors should be entities 

which belong to the link service as a whole, and are globally allocated, rather than 

belonging to the specific file. In such systems, the anchor will point to a file (or list 

of files), and the viewer application will maintain a table which maintains the 

association from the anchor to the persistent selection, as shown in figure 14. 



62 

 

Link

id_2id_1 id_4

Node 1 Node 2

id_3

Link
Service

Application

 

Figure 14: Anchors in Hyperbases. 

The advantage of this approach is that, since each anchor is a globally available 

entity, it is much easier to manipulate the hypertext independent of the content 

data. It still requires that the application handle the association of the anchors and 

persistent selections, which requires some coding at the application level, but the 

onus on the application code is lower, particularly as the code may rely to a large 

extent on calling methods in the hyperbase application's API. 

The final approach is that taken by Microcosm, which is to hold all the 

information to describe the anchor and its corresponding persistent selection 

within the link as shown in figure 15. This scheme is the only solution that avoids 

putting foreign mark-up into application data, and has all the advantages 

described in section 3.2. However, it also introduces a new problem which occurs 

when the node content is edited, since there is no explicit binding between the 

application data and the link structure: this topic is one of the major subjects of this 

thesis. 



63 

 

Link

Node 1 Node 2

Link 
Service

Application

 

Figure 15: Anchors in Microcosm 

 

Strictly speaking the Microcosm system does not have anchors, since there is no 

identifiable separate object in the link service which may be identified as an 

anchor: it has links which contain persistent selections. However, in Microcosm 

terminology we have used the term anchor to refer to that persistent selection at 

either end of a link. 

5.2. Links and Messages in Microcosm 

At this point it is worthwhile investigating in greater detail how Microcosm links 

work, and how they are stored and activated. 

Any viewer may offer the user a Microcosm menu. When a user selects an 

action from this menu, the viewer will package up a message containing at least an 

action field and a selection field, representing the users choice of action from the 

menu and the current selection, if any. The viewer may also elect to put other 

information into the message, usually including the name of the current document 

and possibly the position of the current selection within the document. 

This message will be sent to Microcosm which will send the message through 

the filter chain, so that each filter that is able to service the chosen action has the 

opportunity to respond to the message. For example, a user may wish to be 



64 

 

provided with dynamically created links from the computed linker described in the 

previous chapter, in which case the user will select some text, e.g. “construction of 

stone labyrinths” and choose Compute Links from the menu. In this case the viewer 

will form a message containing: 

\Action COMPUTE.LINKS \Selection construction of stone labyrinths. 

Since the Computed Linker is the only filter which understands the action 

COMPUTE.LINKS, this will be the only filter which will handle this message, and 

it will use the selection as its query. 

The linker is a filter that will operate on messages containing the actions, 

MAKE.LINK and END.LINK, which will typically be sent by viewers when the 

user identifies source and destination anchors. The linker provides an interface 

through which the user may identify which source and destination anchors are to 

be joined, and when this happens, it creates a new message with the action 

CREATE.LINK, and which contains all the other fields that were in the source and 

destination anchors. 

The linkbase is a filter that understands, amongst others, two messages; 

CREATE.LINK, which instructs it to store all the fields held in the message into the 

link database, and FOLLOW.LINK, which instructs it to treat the fields in the 

message as a query, and to attempt to locate appropriate links, if any, in the 

associated link database. 

When a link is stored in a linkbase, it is represented by a set of tagged fields. 

e.g. The set of tags below describes a link form the text "SPC" in a text file (which 

the system knows by a unique document identifier) and occurs at 214 characters 

through the file. 
\SourceFile 100.02.24.93.11.39.54  

\SourceSelection SPC  

\SourceOffset 214 

\SourceDocType TEXT 

\DestFile 100.02.24.93.12.40.49 

\DestSelection manual  

\DestOffset 312 

\DestDocType TEXT 

\Description SPC Definition 

\ButtonAction FOLLOW.LINK 



65 

 

A user might later select the string “SPC” from within this file, at the position 

312 character through the file, and ask to follow links. In this case a message would 

be sent as follows: 
\Action FOLLOW.LINK 

\Selection SPC 

\DoctName 100.02.24.93.11.39.54  

\Offset 312 

The Linkbase, on receiving this message will apply the following algorithm: 

1. Locate all links in the linkbase where: 
\Selection = “SPC” and \SourceFile = “100.02.24.93.11.39.54” and 
\SourceOffset = “312” 
or 
\Selection = “SPC” and \SourceFile = “100.02.24.93.11.39.54” and the link 
contains a \LinkLocal tag, 
or  
\Selection = “SPC” and the link contains a \LinkGeneric tag. 

2. For each of the links located above, create a message to carry out the 

action indicated by the \ButtonAction field. Where the 

ButtonAction is FOLLOW.LINK the action in the message will be 

DISPATCH, and will contain the description and details of the 

destination document. 

The available links filter will trap these DISPATCH messages, and offer the 

documents to the user. 

Note that offsets here are described in terms of bytes through the file, but this is 

not pre-requisite. The semantics of the offset are decided by the viewer and can be 

resolved by the linkbase so long as the method for expressing the offset is used 

consistently by the viewer for this data type. So for example, a viewer that contains 

named objects may choose to put the name of the object into the offset field, and a 

viewer that uses a search engine to locate anchors may chose to put some 

surrounding text into this field. 

Note also, that a link need not resolve to a fixed anchor within a document. The 

(inappropriately named) \ButtonAction field within a link may contain some 

action other than FOLLOW.LINK, in which case the linkbase will simply package 

the link up as a message for some other filter to interpret. For example, it is quite 

common to make a link where the \ButtonAction contains COMPUTE.LINKS, in 



66 

 

which case the action of following this link will be to send a query to the computed 

linker to dynamically create links using the selection as the query. 

Microcosm’s very simple method of storing and retrieving links makes it 

possible to devise a method for storing link anchors to point to almost any sort of 

data, and makes it possible to extend the system to make any action occur when a 

link is followed. A record in a linkbase in Microcosm should be seen as a 

description of the conditions that must be met for a link to be available from any 

particular selection, and the action that should be taken if this link is available. 

5.3. Viewer Communication Protocols 

A fully aware viewer is one that can participate in all the Microcosm 

communication protocols. However it is possible to participate in only a subset of 

the complete set of protocols. This section informally describes the Microcosm 

protocols and examines the consequences of ignoring them. 

1. Launch document 

 It must be possible to execute a viewer program with a given data set loaded 

from external code. This protocol is prerequisite in order to provide 

destinations to hypertext links as programs that do not allow their data file to 

be named on the command line do not make suitable viewers. 

2. Display Buttons 

 A fully aware viewer will, as soon as it starts, send a message back to 

Microcosm asking for details of any buttons (specific links that are to be 

highlighted in some way): Microcosm will respond by sending back the 

button information which the viewer will use to repaint the screen. However, 

if the viewer does not request buttons, the information will not be sent, so 

buttons will not be painted. This does not mean that the links are unavailable, 

but simply that the user is made responsible for selecting the source anchor 

and choosing Follow Link from the action menu. This means we might have 

hypertext nodes without buttons, a viewpoint that might please some (Hall, 

1994), but others might feel that it is at times necessary to indicate to the user 

what options they might have in order to continue browsing. 



67 

 

3. Start-Up Options 

 When a viewer has started-up it may be desirable to indicate the destination 

anchor in some way. In the case of a text document this might mean scrolling 

the document so that the anchor text is on the top line; in a video this will 

mean moving to the correct frame; in a drawing this might mean highlighting 

the relevant object. Alternatively, it is possible to do away with destination 

anchors altogether and to simply load the given document which will mean 

that the resulting hypertext is very "chunky", leading to a note card style 

hypertext, where the destination of any link should preferably be limited to 

some sensible size.  

 Also, when a viewer has started-up, it is possible for the viewer to 

communicate with Microcosm asking for any display details, such as font 

sizes, window sizes, window positions, background colours, button colours 

etc. Although these features are all useful, none of them are essential, and 

have mostly been implemented to overcome authors' concerns about the use 

of the vanilla Windows interface for delivering materials to naïve users. 

4. Check Link Integrity 

 When a viewer displays a document it is desirable to check that any offsets 

within the document, used to describe link anchor positions, still correspond 

to the required objects. This may be achieved by requesting that the linkbases 

provide a list of all links containing specific source and destination anchors 

within the current document. If these links are dated after the date that the 

document was last edited then they are safe, but if the document has been 

edited since any link was created, then the viewer must relocate the anchor (if 

it can) and update the linkbase. 

 If the viewer is incapable of entering into this dialogue with the linkbases, 

then it is possible that anchors might be incorrectly located. Possible solutions 

to this problem are: 

• Make the document read only, so that it may not be edited. If it must be 

edited, produce another version. 



68 

 

• Do not use specific link anchors. All links should be generic or local, and 

have their destinations at the top of, rather than within, the destination 

file. 

• Use a search engine to find link anchors rather than offset / position 

information. This is the approach taken by HyperTed (Vanzyl, 1993): 

then as long as the anchor is unique within the file, and the anchor itself 

is not changed, it will be possible to edit the file. 

 These solutions to the editing problem, and others, are discussed in 

detail in chapter 8. 

5. Service User Actions 

 Once users begin to interact with the system they will make selections and 

choose actions from the menu (or click on buttons where they are available). 

The viewer is responsible for 

• providing an action menu 

• identifying the selection made 

• identifying (in any way appropriate to the application) the position 

of the selection 

• identifying the current data file 

• packaging all of the above into a Microcosm message and sending it 

to Microcosm. 

 If the application is unable to identify the position of the selection, then 

Microcosm will only be able to provide local and generic links: specific links 

would be impossible. If the application does not support selections, then only 

document to document links will be supported. 

5.4. Enabling Applications For Hypermedia Use 

Many serious applications these days have a built in macro programming 

language, and some degree of tailorability so that new menu options may be 



69 

 

added. For example Microsoft Office applications have Visual Basic for 

Applications, the Lotus Office Suite applications have macro languages and 

AutoCAD has AutoLisp. Using these facilities it is very simple to add the standard 

Microcosm menu to such an application, then to add appropriate macros for each 

action chosen. Figure 16 shows a Word Basic macro for the Follow Link action, 

which uses Microsoft Windows' DDE to communicate with Microcosm.  
 

Sub MAIN 

    On Error Resume Next 

    If Selection$() = "" Then 

   MsgBox("No Selection Defined!") 

    Else 

   chan = DDEInitiate"MICRCOSM","LinkServer") 

   If chan = 0 Then 

          MsgBox("Could not connect to Microcosm") 

   Else 

     DDEExecute(chan, 

    "[FOLLOW.LINK] 

    [" + Selection$() + "] 

    [" + FileName$(0) + "] 

    [0][DOC] 

    ") 

       DDETerminate(chan) 

    End If 

End Sub 

Figure 16: Word Basic Macro to Follow Link. 

In this case no attempt has been made to send any source anchor position (zero 

was sent) which means that Microcosm will only attempt to follow generic and 

local links. Word may be persuaded to yield position information (in terms of lines 

and words through the file) but in this case the macros become more complex. 

Other packages may be similarly adapted, for example spreadsheets such as 

Excel may use a range name to describe anchor positions and AutoCAD allows the 

author to associate a unique name with each object: this name may be used as the 

anchor identifier for linking purposes. An example of such a hypertext enabled 

application is shown in figure 17. 

Packages with macro languages may also be programmed to launch macros at 

start-up which alter the current view so that the destination anchor is made explicit 

(e.g. by highlighting or scrolling to the appropriate line of text.) 



70 

 

Some of the applications we have enabled using this method are Word for 

Windows, Word Perfect for Windows, AMI Pro, Lotus 123, Excel, Toolbook, 

Authorware Pro, AutoCAD, Microsoft Access and Microsoft Project.  

 

 

Figure 17: AutoCAD (adapted as a semi-aware viewer) following a link 

The Chimera System (Anderson et al, 1994) takes a similar approach to 

Hypertext enabling third party applications. In the case of FrameMaker, which 

publishes a set of RPC calls, a proxy or "wrapper" program handles communication 

between Chimera and FrameMaker, and FrameMaker macros have been used to 

observe user actions and to communicate them to the wrapper. Multicard (Rizk & 

Sauter, 1992) has also used macros within editors such as EMACS for hypertext 

enabling. 

5.5. Applications Which Cannot Be Enabled: The Universal 

Viewer 

Perhaps the most interesting result of this research has been the realisation of the 

power of the hypermedia functionality that it is possible to achieve with 

applications that have no communication facilities whatsoever other than those 

that are standard within the host operating environment. 



71 

 

Earlier versions of Microcosm allowed the user to set an option within the 

Document Control System that told Microcosm what action to perform on any new 

data entering the clipboard. Thus the user could run any program that supported 

the clipboard, and every time some data was copied from the application, the 

appropriate action, such as Follow Link or Compute Link would be performed. This 

approach seemed very powerful, but the interface to this functionality was so 

obscure that it was rarely used (selecting Copy from the Edit menu is not an 

instinctive interface to link following!). However, others have emulated this 

approach, and Cawley et al. (1995) argue that such functionality represents an extra 

level of viewer awareness that belongs between shim programs and launch only 

viewers on my list at the start of this chapter. 

In order to improve the interface and to further investigate this branch of the 

research we designed a "parasitic" program that we called the "Universal Viewer" 

or UV, which was implemented by Simon Knight. A list of applications with which 

we wish UV to co-operate are maintained, and UV monitors Microcosm events in 

order to identify when a program on this list is launched: when it identifies such an 

event it attaches a small Microcosm icon to the application's title bar (e.g. see figure 

18). Clicking on this icon produces a menu, identical to the action menu on any 

other viewer. The UV is a "shim" or “proxy” which is responsible for all 

communication with Microcosm, and handling any communications that are 

possible with the application. 

 

Figure 18: Microsoft's Calendar running under UV. The user is about to follow a link. 



72 

 

A similar approach has been taken by the designers of the ABC system 

(Shakelford et al, 1993)(Smith & Smith, 1991) who are working with the X-

Windows system. They re-parent the Window of the required applications so that 

the new parent is the Generic Function Manager (GFM). To the user this appears as 

if the application is running with an extra menu bar inserted between the original 

application title bar and the application work space. The GFM allows the user to 

make node to node hyperlinks, but they have not attempted to handle anchors of 

any kind, unless the application is adapted at the source code level. 

In order to co-operate with an application, UV needs to be pre-configured to 

know a few details. 

• When Follow Link (or some other action) is selected from the UV menu, how 

will UV communicate to the application that the application should pick up the 

current selection?  

 There are a number of options. The most common is to use a UVMACRO which 

is a list of menu selections, (conceptually similar to a set of keystrokes). Other 

options are to use DDE (where it is supported by the application), to use a 

Windows Recorder File (keystrokes again) or NONE, when this is not possible 

or meaningful as the application has no concept of selections. 

• When the selection has been made, how will the application communicate that 

selection to UV?  

 Options are via the clipboard, via DDE, via a named swap file or, again, NONE 

where this is not possible or meaningful. 

• What options will be available for locating a destination anchor when a link is 

followed to a document in this application? 

 The problem here is to change the unaware application into a state where it 

displays the destination anchor, e.g. by scrolling a text document until the 

anchor is within view, and then highlighting the text span. To achieve this links 

may be created which launch a named keystroke macro when the destination 

file is loaded. These named macros must be pre-defined for each application. A 

typical such macro is FINDSELECTION, which will take the text of the 

destination anchor (from the link information) and run the application's own 

search engine to find the first occurrence of that text. The list of available 



73 

 

macros are offered to the user at the time that a link is created, as shown in 

figure 19.  

 In the case where it is not practical or possible to drive the application into 

some appropriate state to display the destination anchor, then the only option 

will be to launch the application in its normal start up state. An option which 

slightly improves upon this worst case is to launch the application and at the 

same time display a USERNOTE which will be a message to users instructing 

them how to proceed so that the meaning of the destination of the link is clear. 

 

Figure 19: The project Notebook. The User is about to create a destination anchor in this 

document. In this case the anchor will a particular text string. 

The resulting system gives us local and generic links out of many applications, 

and gives us methods of following links into specific points within application 

data: however buttons are still missing. In order to generate buttons we introduced 

the idea of adding small user definable graphic icons onto the title bar. These 

represent buttons that may be clicked at any time. When the cursor is moved over 

such a button, text appears describing the link, and putting the link into context, 

since its position on the title bar gives no clue as to the circumstances under which 

one might wish to follow this link. Although this facility is limited when compared 

to highlighting buttons in context, it is still surprisingly effective. 



74 

 

 

5.6. Further Research 

At the time of writing, the Microcosm team are extending the Universal Viewer in 

three ways. 

1. Wrappers and Views. 

At present the Universal Viewer cannot be used very effectively with pictures, 

as it would be necessary for the user to make exactly the correct selection in order 

for the link to be matched in the linkbase. In order to allow link following from 

objects within pictures it is necessary to have some form of button or persistent 

selection. A method of achieving this is to introduce a concept of views and the idea 

of a wrapper.  

These ideas can be best explained by the following analogy. An art gallery 

might consist of dozens of pictures of different sizes. In order to point out objects of 

interest to a visitor, the curator might choose to cut sheets of cellophane to the 

correct size for each picture, and by holding the cellophane over the picture itself, 

could draw round the interesting objects on the cellophane, and annotate them. 

The visitor to the gallery would then be supplied with the sheets of cellophane, and 

by choosing the right sheet to fit on the correct picture could then see the selected 

objects and read the curator's comments. 

In this analogy, each picture is a separate view of the total data (the gallery), and 

the correct sheet of cellophane is a wrapper for that view. The equivalent problem 

for the Universal Viewer is to allow the user to declare that a particular state of an 

application (window size, data on view, display options and position) is a view to 

be remembered. Then when persistent selections are made in this view, they are 

stored in the linkbase. A user wishing to follow links from the application must 

first ask the Universal Viewer to return the application into one of the stored view 

states, at which stage any selections will appear over the top of the application. 

The difficulty with this approach is knowing exactly the state of the application 

at the time that the author declares a view. In the simplest case, such as a simple 

bitmap viewer, it would probably suffice to store the current window size and 



75 

 

scroll bar positions. However an application such as a spreadsheet may allow a 

given data set to be viewed in a number of different ways (datasheet, bar graph, pie 

chart etc.) so it would be necessary to know something of the history of the user's 

interaction with the application prior to declaring the view. 

2. Viewing the World Wide Web 

The importance of having a Microcosm viewer for html and the solution that 

involves adapting the source code of NCSA Mosaic as a fully aware viewer are 

discussed in section 6.2. However, a simple and immediate solution has been 

achieved by using the Universal Viewer, running on top of the Netscape html 

viewer. (It was necessary to use Netscape rather than NCSA Mosaic, as Netscape 

enables the user to make selections within the client area.)  

Using this package with no changes makes it possible to author and follow 

links out of html documents, and to follow links into html documents by launching 

Netscape with the appropriate URL. 

However, a simple addition has been made to the Universal Viewer, which is 

an "Import Document" option. When UV is running over Netscape, and this option 

is chosen, it will create a DMS entry for the current URL, even getting the 

description of the document from the html. This makes it possible to use 

Microcosm as a "personalised viewport on a global information system", by 

browsing around the Web finding and keeping references to documents as and 

when they are discovered. In effect Microcosm is maintaining the hotlist (or 

bookmarks), and adding value by making it possible to link out of documents on 

remote servers. This subject is discussed in more detail in section 6.2. 

3. Working from Outside Microcosm. 

One of the problems we have identified with the Microcosm model is that it is 

always necessary to launch documents from within Microcosm. This is necessary 

because Microcosm expects to maintain a list of which documents are currently 

being viewed and in which viewer, so that it is able to send messages to these 

documents, such as the list of buttons to be displayed. The problem with this 

approach is that it is not possible for a user to be working in their normal 

information environment, and then to decide that they want to enable link services, 



76 

 

without first starting Microcosm, importing the document details, then launching 

the document from within Microcosm. 

Simon Knight has produced two extensions to the Universal Viewer. The first is 

an additional menu on the Windows file manager, which allows the user to select a 

document and ask for a Microcosm Launch. If Microcosm is running, it will import 

the document details to Microcosm (if they are not already there) and instruct 

Microcosm to launch the document in it's choice of viewer. If Microcosm is not 

running, it will launch Microcosm first.   

The second extension is a "grabber", which allows the user to view any 

document in their chosen application, then to point at the document and to ask to 

view it under Microcosm. If the default viewer for Microcosm is the Universal 

Viewer, this will immediately be launched over the application window, with any 

buttons etc. If the default viewer is one of Microcosm's viewers rather than the 

current application, then a copy of the document will be launched in the 

appropriate Microcosm viewer. 

5.7. Summary 

In this chapter I have discussed the design issues that must be considered in order 

to provide hypertext functionality to third party applications, either with a 

minimum of adaptation using application macro facilities, or with no adaptation. 

The key to success in this endeavour is to separate both the link and the anchor 

information from the node content, so that the application is not required to 

provide the functionality to handle anchor identifiers within the data content. 

Instead, all that the application must be able to provide is the selected object (such 

as the selected text string), the name of the current data file and the action chosen 

by the user. In modern GUI operating systems, the operating system itself is 

usually able to provide of all these details except the action chosen by the user, and 

to this end we have provided a shim program known as the Universal Viewer, 

which can provide this information. Separating the anchors from the data has side 

effects with regard to the integrity of links when editing the data. This subject is 

discussed in detail in chapter 8. 



77 

 

The resulting hypertext system is compared with a fully aware system in table 

3, and differs from its predecessors in two significant aspects. Firstly, navigation is 

primarily node-to-node or, local or generic anchor-to-node. Secondly, link anchors 

are generally not displayed as buttons or highlighted objects in the way that users 

have come to expect This issue is discussed in the paper "Ending the Tyranny of the 

Button" (Hall, 1994), which urges that users should be encouraged to expect to 

query the system for links in much the same way as they might query an 

encyclopaedia for information: in any system where links may be generated 

dynamically every object in the document potentially becomes the source of a link. 

Having the whole document highlighted would be intrinsically no more useful 

than having no buttons at all. In Microcosm the interface to hypertext functionality 

is achieved by taking a selection and identifying if the selection, or any part of the 

selection, represents a resolvable anchor. This makes it possible for users to ask 

what links are available within, for example, a whole paragraph of text. 

It is clear to the author that in the future much of the functionality that we have 

described in this paper should be, and perhaps will be, implemented within the 

operating system. If the operating system allowed users to attach extra menus to 

any application (in much the same way as Microsoft use Visual Basic for 

Applications) and would also provide functions to return information about the 

current selection, such as the name of the selected object or the position of the 

selection, then link services could provide a higher degree of specificity for link 

anchors. The Apple Events suite for inter-application communication makes a start 

at providing these sort of facilities. The editing problem would be simplified if 

applications, such as the link service, could register in an "interest set" that would 

be notified when certain actions occurred, such as files moving or objects changing. 

In this case deamon processes could monitor such changes and immediately 

attempt to resolve any resulting integrity problems.  

Finally, we hope that in the future operating systems will provide much 

improved facilities for attaching attributes to files, such as meaningful names, 

keywords and other information, in much the same way as applications such as 

MS-Word allow these attributes to be stored, and subsequently queried. The new 

generation of object oriented systems such as CAIRO, OLE 2.0, NextStep, OpenDoc 

(Apple Computer Inc., 1993) and CORBA (1991) show promise, and future research 

will be directed to discovering to what extent these systems can provide the 

facilities we require. 



78 

 

 

 
 

Fully Aware Viewers Applications running with Universal Viewer 

When loaded as result of a link 
following operation, the viewer loads 
the data so that the destination anchor 
is highlighted in some way.  

When loaded as result of a link following 
operation, either the data is shown at the 
start, or a stored keyboard macro executes to 
display the destination anchor.  

Viewer asks for buttons relevant to 
this data, which are then highlighted 
in context. 

Universal Viewer asks for buttons relevant to 
this data, which are then located on the title 
bar of the application. 

Author may pre-set viewer display 
parameters such as window size and 
position, fonts, colours etc. 

Window size and position may be pre-set but 
other parameters are determined by 
operating system and application defaults. 

Typical actions on the action menu 
will be, Follow Link, Compute Link, 
Show Links, Start Link and End Link. 
These menus are configured 
dynamically by querying which filters 
are currently available. 

Actions on the action menu will be the same 
as the fully aware viewer. However it will 
not be possible to author specific source links, 
and destination anchors are resolved by 
content search rather than position. 

If the document is edited the viewer 
will need to be able to communicate 
with the linkbases to resolve any links 
that have been moved. 

Since there are no specific source or 
destination anchors, the document may be 
freely edited. The only problem that might 
occur is if a feature used, e.g. by a search 
engine, to locate the end of a link was altered, 
removed or duplicated. 

Viewers have been written to produce 
links into and out of temporal media 
(digital sound and video). 

No facilities for dealing with temporal data, 
other than launching the data at the start 
point, and following links from the whole 
document. 

A show links action on the menu will 
find all links within a given selection 
and either highlight them within the 
current viewer or list them in the 
available links box. 

A show links action on the menu will find all 
links within the current selection, and either 
display them as graphic icons on the title bar, 
or list them in the available links box. 

 

Table 3: Contrasting the facilities provided by the fully aware viewers with those provided 

by applications running with the Universal Viewer. 



79 

 

Chapter 6.  Extending the Microcosm Model 

This chapter describes some of the extensions to the basic Microcosm model that 

we have made within the research laboratory. 

6.1. Distributed Microcosm 

As has been described in the previous parts of this chapter, a complete Microcosm 

environment consists of the following components: 

• The documents 

• The descriptions of the documents (held by the Document Management System 

or DMS) 

• The Document Management System (the software which processes the 

descriptions) 

• The Document Control System 

• Viewers (software which allows users to view documents) 

• The Filter Manager 

• Link descriptions 

• Linkbases and linkers (the software which creates and retrieves link 

descriptions) 

• Other filters (e.g. the history filter and the computed linker) 

• Data accessed by other filters (such as stored histories or information retrieval 

indexes) 

• The Registry (which stores and retrieves the registry data) 

• Registry data 



80 

 

When considering the distribution of Microcosm, it is necessary to decide 

which parts of the above are to be distributed, and how. 

At one extreme is the distributed data model, where only data items will be 

distributed: documents, their descriptions, link descriptions, other filter data and 

registry data may be held on any machine: the processes (viewers, DMS, DCS, FM, 

filters, and the registry) all run locally but gather their data from systems on the 

network. All that is required to achieve such a system is a network infrastructure 

which allows one machine to access data from another fileserver machine, for 

example Windows for Workgroups, LAN Manager or PCNFS all allow one 

Windows PC to load data from other connected machines. 

Where Microcosm is used in teaching laboratories such a set-up is commonly 

used. The application data is all mounted on a fileserver. The Microcosm software 

may be mounted on the fileserver or on the client, but in either case it is run on the 

client. 

At the other extreme is the distributed process model, where any Microcosm 

component may be distributed: all process except the kernel processes (DCS and 

FM) and the viewers may run on any machine. A suitable inter-process 

communication model, such as Windows Sockets, is used to communicate between 

the client and the remote processes. Such configurations may conform to a strict 

client-server model, where some machines are set up as Microcosm servers for other 

client machines to connect to, or they may be peer-to-peer, in which case various 

machines may be running Microcosm locally, while publishing their process 

resources and data for other clients to share. 

Clearly the distributed process model requires that the Microcosm message 

passing protocol is extended to include information about machine addresses, and 

the functionality of the filter manager must be enhanced to allow client machines to 

discover what server machines are available and what processes they offer. 

Although such functionality is not yet part of the standard Microcosm release, a 

research implementation is discussed in Hill & Hall (1994) and in more detail in 

Gary Hill's PhD thesis (1994). 

Whether the distributed data or distributed process model is adopted depends 

greatly upon the purpose for which Microcosm is to be used. The distributed data 

model lends itself to a world in which Microcosm is used to personalise a view 



81 

 

upon a universe of documents, where users will browse this universe using 

whatever resource discovery tools are available, possibly third party, and then, 

having discovered interesting data or trails through the data, will use Microcosm to 

link to this data or to store the trails. On the other hand, the distributed process 

model assumes that Microcosm itself provides the mechanism for resource 

discovery. The universe of data will be known to assorted Microcosm servers, and 

the client will explore this universe by connecting to these servers in a similar way 

that World Wide Web servers and WAIS servers are currently used. 

The development of a client-server model for “industrial strength Microcosm” 

is currently an active research interest within the Multimedia group. 

6.2. Working with the Web 

The World Wide Web (WWW) (Berners-Lee et al, 1992) was originally produced at 

CERN for the distribution of information about high energy physics, but it soon 

became apparent that it had a far broader application, and has now become the 

most commonly used distributed hypermedia system. The principle of the Web is 

that there are various servers located around the world which may be accessed by 

appropriate clients (such as Netscape and Mosaic) using a protocol known as 

Hypertext Transfer Protocol (http). Documents on the Web are held in a format 

called Hypertext Mark-up Language (html), which is an application of SGML. 

Links are marked up within html in the form of Universal Resource Locators 

(URL's) (Uniform Resource Locators, 1994). URL's contain the information about 

the access method (http, WAIS, ftp) and html allows various other formats such as 

GIF bitmapped files to be included in the text at run time. 

In spite of its manifest popularity, the Web is not the final solution to all 

problems in the field of hypertext. It has the advantage of providing an excellent 

interface to file retrieval over a wide area network, it is easy to use, it is 

conceptually relatively easy to understand and fairly simple to author individual 

documents. Furthermore, it is possible to pass around URL’s by other technologies 

such as email. However, it introduces a number of problems: the embedded nature 

of the links means that link editing is virtually impossible from outside the source 

document, dangling links are rife, and document organisations, once fixed cannot 

be easily changed. The reliance on html as the format means that all documents 



82 

 

must be published in this format, and it is not possible to provide hypertext 

functionality to other data formats. 

6.2.1.  Accessing the Web from Microcosm 

In view of the popularity of the Web, the Microcosm team has taken the view that 

it is important that Microcosm is capable of inter-operating with the Web, which is 

fortunately made very simple by Microcosm's open architecture. We have 

experimented with two approaches to this problem. The first involved producing a 

fully aware Microcosm html viewer and the second involved running Netscape as 

an Unaware viewer.  

An html viewer for Microcosm is in production that adds source code to Mosaic 

so that it provides a Microcosm action menu, with the normal start link, end link, 

follow link, and compute link options. Mosaic will display both html buttons and 

Microcosm buttons: when an html button is pressed, Mosaic will behave as normal, 

and replace the current document with the new html document specified by the 

associated URL. However when a Microcosm button is pressed, or when any 

selection is made and follow link selected from the action menu, then the usual 

message is sent to Microcosm which will attempt to resolve the link in the normal 

manner. 

The problem with the above approach is that the base code we are using for the 

html viewer is somewhat suspect, so for real use of Microcosm we have preferred 

to use the Universal Viewer to run Netscape as an unaware viewer as shown in 

figure 20. In this case the action menu looks the same, but Netscape is unable to 

show Microcosm buttons: instead the user has the choice of clicking WWW 

buttons, or making a selection and asking Microcosm for links. 

Microcosm link destinations (from any viewer) will initially resolve to a unique 

document identifier which will in turn be resolved by the document management 

system to either a path and filename, as understood by the host operating system, 

or to a URL. In the case where the DCS is asked to dispatch a URL it invokes 

Mosaic or Netscape as the viewer with the given URL as the data file. 

One final problem exists. When users are browsing, using html buttons within 

Mosaic or Netscape, they might discover documents that they wish to make 

Microcosm aware of. Also, we might like the Microcosm history to be aware of 



83 

 

documents that were viewed, even if they were reached via html buttons rather 

than through the usual Microcosm dispatch process. For this reason we have added 

an “import document” option to the menu which allows the user to request that the 

URL for the current document is imported into the DMS, using the html title as the 

document description.  

 

Figure 20: Creating a Microcosm Link in html using Netscape with the Universal Viewer 

The advantage of using this approach to browsing the Web is that Microcosm 

acts as a kind of “super hotlist”, allowing users to maintain a local viewport on the 

global universe of documents. Microcosm allows the user to keep all the document 

descriptions in the hierarchical DMS, while at the same time allowing the user to 

author and follow private, locally maintained links. 

6.2.2.  Converting Microcosm for the Web 

Many authors find it easier and faster to author in Microcosm than in the Web. 

Also, if an application is built in Microcosm it is far simpler to maintain the 

structure and the links as the contents change and evolve. However, the popularity 

and accessibility of the Web often make it the preferred delivery platform. For this 

reason some of our users have adopted the strategy of using Microcosm to produce 

and maintain applications, then to convert the information for delivery on the Web. 



84 

 

The mapping from Microcosm to the Web is not complete: the Web cannot 

provide all the functionality that Microcosm provides, so it is important that users 

are aware of what will convert as they build their applications. RTF may be 

converted automatically to html and Windows bitmaps may be converted to GIF. 

Microcosm specific links and buttons may be converted into html buttons. Local 

links and generic links may also be converted to html buttons, by searching the text 

for every occurrence of the text string at the source of the link. The hierarchy of the 

DMS may be converted to a “front page” html document containing the top level 

logical descriptions, with links to separate pages for each branch of the hierarchy, 

containing further logical types or document descriptions themselves. 

An interesting complication arises, when converting Microcosm applications 

for the Web, in that it is common to have more than one link from each source 

anchor (1 to many links), whereas the Web currently only supports 1 to 1 links. We 

have experimented with two methods of dealing with this problem. The first 

involves putting extra markers in line beside the button, thus: 

 “ The main cause of hyperventilation (also)(also) is ........” 

In the above example there are three links from the word “hyperventilation”. 

The problem with this approach is that in a richly linked hypertext, the text tends 

to become saturated with extra link markers, rendering it unreadable. 

A second solution is to generate a number of secondary documents, containing 

the descriptions of the links to be followed. Thus there would be just one link from 

“hyperventilation” to a secondary document containing the three link descriptions. 

Although this approach is more complicated it leaves the text more readable, and 

the interface looks similar to the available links box in Microcosm. 

6.2.3.  Putting Microcosm into the Web 

The benefits of keeping links separate from the content are so substantial that we 

have started a project which aims to put Microcosm technology into the Web. This 

project, known as the Distributed Link Service or DLS, assumes that users will be 

working with a standard Web client such as Mosaic or Netscape and puts the 

Microcosm technology at the server end. A similar approach to separating structure 

from content is taken by the Hyper-G system (Flohr, 1995)(Andrews et al, 1995). 

However, this system prefers users to connect to the server using a special Hyper-G 



85 

 

client such as Harmony. Users connecting with standard Web clients are treated as 

a special case, and the service is inferior. 

In the DLS, Web servers have access not only to documents, but also to 

linkbases, and are extended by CGI scripts to allow access to these linkbases. 

Documents are kept in html, but only those links which are always required to be 

present are maintained within the html as buttons. All other links are kept in the 

linkbases in standard Microcosm form. Now the client may identify which 

linkbases to connect to, so that whenever a document is dispatched by the server, 

all the appropriate links from the connected linkbases may be “compiled” into the 

html as URL’s. This separation of links at the server has the advantages that: 

• we may maintain separate views of the information for separate users and 

subject areas; 

• tools may be produced to manage and maintain the links and the associated 

network; 

• link authors may specify local and generic links, thus saving much authoring 

effort; 

• programs may be written to generate links automatically, for example by 

making generic links to all the entries in a dictionary. 

We have also produced an additional client end program called “Gumshoe”, 

which uses the same technology as our Universal Viewer. This program “sticks” to 

the Netscape window and provides a drop down menu with Microcosm style 

options Follow Link, Show Link, Start Link and End Link, and any further options we 

wish to provide. The user may now make selections and choose actions within 

Netscape. These actions are then packaged as a query at the client end which is sent 

to the server which refers to the linkbases to handle the query. This approach has 

the further advantages that: 

• users may now create and maintain their own links over the documents on the 

server 

• there is no need to compile all the generic links into the html as buttons, since 

the user may query the text in the normal Microcosm mode 



86 

 

• third party applications may be used as viewers, and send queries to the server 

in the same way as Netscape does 

However, this facility can only be provided if the user takes the trouble to 

download and install Gumshoe, or one of the alternatives we have produced for X-

Windows and the Macintosh. 

At the time of writing the DLS is in its early stages of development. However 

we can already demonstrate the extra power and flexibility this approach brings to 

the Web.  

6.3. Working with Multimedia 

The question of how to manage databases of multimedia data items is still an active 

research topic. There are those who argue that traditional databases should be 

extended to deal with multimedia data types (Grosky & Mehrota, 1989)(Rhiner & 

Stucki, 1991). The problem with this approach is how to manage queries on 

multimedia data fields, and most systems have dealt with this by associating a text 

description with such fields, and using the text for query resolution. We argue 

(Hall & Davis, 1994)(Davis et al, 1994a) that hypermedia link services working over 

the entire range of multimedia viewer applications can provide an acceptable 

alternative approach to locating multimedia data and integrating multimedia 

applications. 

Some hypermedia link services take a "chunky" approach, allowing only node-

to-node links. This approach has limitations, in that it does not allow the user to 

create or follow relationships between individual objects within the nodes. Most 

hypertext systems accept that any text span within a text document could be a 

potential anchor for a link source or destination, allowing for finer grained 

relationships than those only between nodes. The problem to be faced when 

extending this metaphor to dealing with non-textual data is how to define what 

constitutes an anchorable object, but before proceeding let us review the facilities 

that are available by default for any data type running in any (possibly unaware) 

viewer within Microcosm. 



87 

 

1. The Microcosm file manager.  

 It is possible to locate any document by description using the Microcosm file 

manager. A file may appear in more than one place within the hierarchy, and 

will display its physical data type. This adds only a little more value than a 

standard file browser, but critics should not under-estimate this method of 

resource discovery. 

2. Document attributes. 

 Since all documents known to Microcosm have associated attributes held 

within the DMS (see section 3.6) and the DMS provides Boolean query facilities 

for such attributes, it is possible to argue that Microcosm anyway provides all 

the functionality of a traditional database management system extended to deal 

with external multimedia fields. 

3. Links to the documents node. 

 A link may be made from any source anchor to the whole of the node of any 

document type. Such links may be generic, local or specific. 

4. Iconic buttons from documents. 

 Even if Microcosm knows nothing about the content of a node, it is still possible 

to make iconic buttons (see section 5.5) from that node to any destination 

anchor. 

The above points emphasise the fact that even with multimedia data types of 

which Microcosm knows nothing, Microcosm can provide all the functionality of a 

sophisticated browser and a multimedia database; it can add the value of node-to-

node linking, or where one end of the link is a text node or Microcosm aware 

viewer, it can do object-to-node or node-to-object linking. This is a satisfactory 

position to start from, even before considering how to identify and use anchors on 

objects within multimedia data. 

The remainder of this section discusses the progress we have made with 

various non-textual data types. Further research is described in section 6.4. Before 

progressing it is worth reminding ourselves that Microcosm makes no assumption 

about how an anchor will be expressed. The viewer determines the semantics of the 



88 

 

anchor description: the linkbase will store whatever it is told to store (so long as it 

is represented as ASCII text), and when requested to resolve a link from an anchor 

will compare whatever data is sent by the viewer with whatever is stored, so it is 

up to the programmer of the viewer to determine how to represent an anchor. 

6.3.1.  Bitmapped pictures 

The easiest way to represent an anchor within a bitmapped picture is to use the co-

ordinates of the rectangle or polygon which surrounds the object of interest. This 

allows the user to create specific link anchors and buttons. The Microcosm bitmap 

viewer allows the user to create such selections at either end of a link, and provides 

a number of ways of highlighting such anchors as buttons. 

The more difficult (and interesting) problem is how to map the concept of 

generic links onto pictures. What one would like to be able to do is to "poke" at any 

object in a picture, and for the system to identify what the object represents, and to 

then follow any generic links on this type of object; for example if the object that 

was clicked upon was a horse, then we would like to follow generic links on the 

word (or concept of) "horse". Of course the horse in the picture might be piebald, 

and so we would also expect to follow links on "piebald", and it might be jumping 

in a show so we would want to follow links on "show jumping" and so on. The 

problems involved in understanding the semantics of a picture are far from solved, 

and although we are carrying out research in this area (see section 6.4) we needed 

to come up with a more immediate solution. 

Our solution to this problem is to allow users to create selections tagged with 

keywords or phrases. These anchors are treated just like buttons and stored in the 

linkbase like any other button link. When the viewer starts running it will query 

the linkbase for any buttons belonging to this data, and these tagged anchors will 

be returned and highlighted in the same way as any "normal" buttons. The 

difference is that whenever a user moves the cursor over such a button it will pop-

up a message displaying the text of the tag, and whenever this button is pressed, 

instead of attempting to follow a specific link based on the position of the selection, 

the viewer will send a message requesting to follow links on the text of the tag. 

We can thus create a generic link on the word "horse", which takes us to any 

suitable resources we have on horses, and then wherever a horse appears in a 



89 

 

picture we can put a button over it, tagged with the text "horse". Clicking on any of 

these buttons will then take us to the same set of resources. 

This solution is less general than the equivalent generic links in text, as there is 

a degree of effort identifying objects in pictures and manually tagging them with 

their associated concepts. However it is a more general solution than limiting 

oneself to specific links.  

We found this approach particularly useful when creating a large number of 

bitmaps showing different views of the same block of a city. The bitmaps were 

created by rendering a 3-D model held in AutoCAD, which already had names 

associated with each object in the model, and generic links associated with each of 

these names. By knowing the viewpoint from which each bitmap had been 

produced it was possible automatically to create enclosing polygons for each object 

in each bitmap and to store them with their associated names. The result was that 

whichever bitmapped picture the user was looking at, they could click on an object 

and find out what information was known about it. 

6.3.2. Object oriented drawings 

Object oriented drawing packages are one of a small class of applications that can 

actually identify to themselves the individual objects within their control at any 

more appropriate resolution than the individual character or pixel. We have 

worked with AutoCAD which not only allows the user to create aggregate objects, 

but also allows the user to name them. Using AutoLisp it is possible to add an 

action menu to the application, and to arrange to send follow link (and other) 

messages to Microcosm with the name of the selected object as the source anchor. It 

is also possible automatically to extract all the names of the objects in a file and 

create local links based on these names. 

Local links are appropriate in this context, since it is possible to move the 

viewpoint but, as long as you are still viewing the same file, AutoCAD will return 

the name of the object from whatever angle it is viewed. 

Following links into a specific place in an AutoCAD model is also possible, 

since AutoCAD may be persuaded to highlight any named object.  



90 

 

6.3.3. Temporal links: sound and video. 

The Windows Media Player acts as the application which can play digitised sound 

files (WAV), MIDI files, CD sound, and digitised video (AVI). Similar software 

exists for playing video disks. Using the techniques of linking to the entire file, and 

putting iconic buttons on the application title bar, as described at the beginning of 

this section, allows primitive links into and out of such media. However, we 

discovered that there was a need for finer grained linking into and out of such files, 

and for this reason decided to produce a Microcosm aware "sound viewer", 

described in detail in Goose & Hall, (1993) and a Microcosm aware video viewer.  

Producing such viewers presents six issues: 

1. How will a source anchor be represented in such media? 

 Given that the link service takes no view on the form of an anchor, it is up to 

the viewer to decide how to express anchors. In the case of all these media the 

common unit of currency was the millisecond. Source anchors were expressed 

as start and end points in terms of milliseconds through the document. The 

viewer is responsible for understanding and interpreting offsets given in this 

format . 

2. How will a destination anchor be represented in such media? 

 Destination anchors were also expressed as single point offsets in 

milliseconds. 

3. How will the system present the presence of an anchor to the user? 

 We have explored two approaches. The first, which works in both sound and 

video, is to present a time line at the bottom of the viewer. A source anchor is 

presented as a bar which moves as time progresses, as shown in figure 21.  

 When the bar crosses the "now point" it becomes active. If it is an automatic 

link, as soon as the start of the anchor reaches the "now point", the link will be 

dispatched. If it is an ordinary button, the user will have to double click on the 

bar to dispatch the link. The bars contain the text describing the link, and the 

viewers have normal CD player style controls so that the user may interact 

with the media, rather than only receiving a passive demonstration. 



91 

 

Automatic buttons were a new link type, introduced specifically to deal with 

this problem, but may be used with any other media type, so that whenever 

the button should be displayed it will automatically fire its associated link. 

  

Figure 21: The Microcosm "sound viewer", showing button links on the time axis. 

4. Given a large resource (such as a video disk or a CD) how will the system know what 

part of the whole should be represented to the user? 

 Some authors have taken the view that the part that should be played is the 

destination anchor. We have not done this, but rather have chosen to describe 

any large resource in terms of a number of smaller resources expressed in 

terms of the frames through the whole. Thus a CD consisting of say 12 

recorded tracks might be divided into 12 "files" that will be individually 

registered with the DMS, and anchors within this file will be expressed in 

milliseconds through the individual file. Once such a file has started playing it 

will play to the end, unless specifically stopped by the user. 

 For video we have explored a second approach to displaying source anchors. 

Authors make source anchors by creating a polygonal selection over the object 

intended as the source anchor while the video is halted. They then play the 

video, dragging the selection so that it remains over the object as it moves. 



92 

 

The information containing the co-ordinates of the rectangle with time are 

stored in the linkbase in the same way that buttons are stored. When the video 

is played back the rectangle will re-appear, and clicking within the rectangle 

will dispatch the link with which it is associated. 

 The approaches described above are not mutually exclusive, although we 

have not, as yet, combined the two. 

5. How may discrete multimedia be synchronised? 

 In the crudest sense, dispatching links at the moment that a button in one 

media crosses the "now point" is a form of synchronisation of events, and 

would allow an author to play, for example, a piece of video and then at a 

given point in the video to automatically play a sound track. However, the 

overhead of dispatching a link is an unknown and variable quantity, 

dependant on system configuration and load, so the synchronisation can only 

be approximate. 

 To effect accurate synchronisation of the types discussed would require that a 

single application controlled the replay of all the different temporal media, 

rather than the independent communicating process mode that Microcosm 

uses. Work on synchronisation of hypermedia components is being conducted 

at CWI (Hardman et al, 1994) and MIT (Buchanan & Zellweger, 1992).  

 The HyTime standard for multimedia (HyTime, 1992) (Carr et al, 

1994a)(DeRose & Durand, 1994) was particularly designed with the intention 

of making it possible to specify the synchronisation of multimedia events, but 

at the time of writing very few systems conform with this standard: 

Microcosm will only partially map on to HyTime (Carr et al, 1993). 

6. What is the meaning of generic links in such media? 

 The implementation described above only covers specific links implemented 

as buttons. The same problem applies to extending the metaphor to generic 

links as was described for bitmaps in subsection 6.3.1 above. It is possible to 

associate tags with the buttons, so that generic links may be followed on the 

subject on the text of the tag. 



93 

 

6.3.4. Spreadsheets 

In the simplest case, the text of any cell of a spreadsheet may be used as the source 

of a link. These links may be generic, but since spreadsheets divide their workspace 

into cells, it is possible to use the cell address as an offset, so implementation of 

specific link sources, and of link destination anchors is possible. 

However, spreadsheets are another example, like object oriented drawing 

packages, of applications that allow the user to associate a name with an object (a 

range of cells) in the package. An alternative approach to using the text of the cell 

as the link anchor is to use the name itself (i.e. a range of cells) as the anchor. This 

might be more meaningful to the user, as a name may be associated with the area 

of a spreadsheet that performs a particular calculation, for example the cost of 

building some machine from its components, and the user may wish to make links 

to and from this calculation, as a whole, to related drawings, manufacturers price 

lists etc. 

6.4. Current Research Areas 

There are still many research and implementation issues to be addressed in the area 

of link services and open hypermedia, and many new application areas to be 

explored. This chapter examines some of our current research issues in addition to 

those that have been discussed in chapter 3 and elsewhere. 

Two important facilities that we are being urged to implement by our users are 

multiple installable interfaces and a composite viewer. Many users find the raw 

operating system interface difficult or intimidating to handle, and resource 

providers are keen to supply interfaces that are as simple to use as possible, 

Furthermore in the case of publishers, they are keen to provide an interface that is 

in keeping with their corporate image.   

Such interfaces take over the screen, providing a single window within which 

the current document of interest is displayed. Access to all the filter configuration 

menus, the registry and the DMS is via a control panel. These interfaces are in 

principle quite simple to create, using, for example, programming systems like 

Visual Basic, and rely upon the idea that there is some API through which one can 



94 

 

access and control every aspect of Microcosm functionality. In practice this is not 

currently the case, so, for example, many filter settings may only be controlled by 

user interaction with the filter’s interface. In order to proceed with the production 

of installable user interfaces we are now returning to the code to ensure that there 

is a function within the API to cover every action. An interesting decision to be 

made is whether all these functions should only be made available through a 

standard programmer's API, in which case the only way they may be accessed is by 

writing a program, or whether there is a class of functions that should be accessible 

by the Microcosm message protocol, so that the system could send messages to a 

particular component to change its settings in some way. 

Composite viewers are viewers that can display sub-windows within the main 

window, possibly containing multiple data types. The author can control the size 

and position of the sub-windows and create links to the composite object. The 

advantages of such a system are that in any publishing application the publishers 

may wish to improve on the presentational features of raw Windows, and also it 

might be possible to create certain effects that are not easy to achieve when 

applications are all separate processes, such as parallel scrolling of text windows 

and synchronisation of multimedia events.  

Another area of interest on the subject of interfaces is the use of virtual reality 

interfaces for information management. Virtual reality in this context does not 

involve helmets, gloves and suits, but refers to desktop VR, where the user is able to 

navigate about a 3D model presented on the normal computer screen, using 

standard computer input devices. We have used such systems as an interface to an 

urban model and as an interface to a machine's maintenance manual, but there are 

many applications to which such an interface might be applied including such 

ideas as extending the basic windows metaphor to a three dimensional "rooms" 

metaphor. 

At present the majority of the hypermedia functionality of Microcosm is 

provided by the linkbases and associated filters, and the computed linker and its 

indexes. There is a much scope for the production of filters that apply intelligence 

to both the production of new links, using information retrieval techniques, expert 

systems and semantic techniques, and to the filtering of links according to context, 

using such techniques as relevance feedback (Durham, 1989). 



95 

 

Section 6.3 discussed the problems in extending the concept of link anchors to 

encompass all data formats. There are two strands to this research. One strand 

involves the idea of forming a concept database, which is effectively a hierarchical 

classification of all the topics within the subject domain. When a new resource is 

introduced to the system it is described in terms of subjects within the concept 

database, and these descriptions form links from that concept to that resource. Now 

if it were possible to form generic links from any object in a node to the associated 

concepts in the database, the link could indirect to the destinations linked to that 

concept as shown in figure 22.  

The challenge then is to produce tools so that it is possible to point from any 

object in any media to the concept in the database. If this were possible then the 

action of importing a resource into the system would be all that would be necessary 

to have it fully integrated into the hypermedia system. At present it is still 

necessary to mark-up most media and tag the mark up with the required 

concept(s). This work is described in Beitner & Hall (1995). 

 

Some text
that mentions
a horse
and some
other things.

Black

Beauty

The Movie.

News Report

about the
Horse of
the Year

Show

horse

cow

Concept

Database

Authored

links to 
information

about 
horsesGeneric link

from the
word horse

Link from
the tagged

object

Concept 1

Concept 3

Concept 2

horse

etc..

 

Figure 22: Indirect linking via the concept database. 

 



96 

 

The SERC funded MAVIS project (Hall et al, 1993b) within the Image and 

Multimedia laboratory at Southampton is investigating techniques for extending 

the concepts of generic links and computed links to work with images and video 

by using image analysis. The aim is to enable the user to make an arbitrary 

selection within an image and then to ask to follow links or compute links in the same 

way as is possible from text based documents. Object recognition is still a 

technology in a primitive stage, so the kind of techniques being used involve the 

production of signatures for features such as shape, colour and texture, then 

searching for similar signatures stored in the linkbases or indexes. This project has 

involved the production of a new linkbase architecture, since in this case the 

linkbase will rarely, if ever, find an exact match with the selection. Instead it must 

find “best matches”, which may be formed by weighting the results of modules 

working on different features of the image. The work is described in Lewis et al, 

(1995), and Wilkins et al, (1996).  

Finally, a fundamental change has been suggested to the basic link service. 

Originally the filter chain was designed so that every message passed through 

every filter. In order to optimise the system the model was changed so that 

messages were only directed to those filters which registered the ability to handle 

messages of any particular action (Hill et al, 1993). The revised model (Wilkins, 

1994) suggests that filters and Microcosm aware viewers should be enabled to 

communicate directly with each other, either by broadcasting to all or by posting 

directly to another component that is known to be currently available.  

This model has the advantages that the messaging is considerably faster, that it 

is possible to route messages around the filters in any order desired, that the 

possibilities for parallel processing are increased and that it is possible to notify 

components of the system of changes that affect them, even if they are not 

currently running. It has the disadvantages that if a message is simultaneously 

broadcast to a number of filters one loses the sequential aspect of the message 

passing, so it is no longer possible to insert filters that block messages. Furthermore 

the coding overhead to make viewers Microcosm aware is increased. Our 

understanding of the long term effects of this model is not complete, particularly in 

terms of backward compatibility with the current system. Further experimentation 

will be needed before we adopt this model but early prototypes are encouraging. 



97 

 

Chapter 7.  Data Integrity Issues  

The previous chapters introduced the concept of open hypermedia link services, 

and described the Microcosm system, which at the time of writing is one of the few 

systems that meets a large number of the criteria for openness. The problem with 

attempting to produce a system that is so open as Microcosm is that many 

opportunities for inconsistency of data arise.  

My original prototype for Microcosm, which was known as LOOM, had a 

number of features that were not carried forward into the full implementations of 

Microcosm, not because we failed to specify these features, but simply because they 

were not seen as sufficiently important to ever reach the top of the to-do list. Most 

importantly, the LOOM text viewer had an edit mode which would allow link 

aware editing of a text file. This was important to me, as I envisaged using the text 

viewer for developing program code, and it was vital that the text could be edited 

without breaking all the links. However, the applications to which the early 

versions of Microcosm were put did not have such problems, being largely static 

published material such as historical archives. When such static material is being 

used, it is generally not necessary to edit files, so the opportunities for breaking 

links are many fewer. 

In any case, providing a link editor does not preclude the possibility that files 

might be edited by some other programmer’s editor, and we have subsequently 

discovered that maintaining consistency in a link service style hypertext is a 

complex problem. This chapter introduces these problems and the remaining 

chapters examine the problems in detail and explore the possible solutions. 

7.1. Axiomatic Design Constraints for Microcosm. 

Before investigating the limitations and problems with the current Microcosm 

model described in chapter 3 it is useful to remind ourselves of those policy 

priorities, along with the aspects of openness from subsection 2.4.1, which led to 

the design, and which result in a system with different features to many of the 

other current generation of systems. 



98 

 

Important axiomatic design constraints were that: 

1. The hypermedia layer would not prescribe the content of the storage layer; 

 -so that any application running on the host operating system could be 

hypertext enabled and new data formats could be seamlessly integrated. 

 - open with respect to data format 

2. That applications could be enabled as viewers with little or no effort; 

 - open with respect to applications 

3. That users would be able to have their own view and extensions over a published set 

of resources with no effect upon those resources; 

 - open with respect to users 

4. That the functionality of the hypermedia layer could be extended by adding new 

processes dynamically; 

 - so that there would be no need to access the source code of any other 

components or to make any changes to the link service layer. 

 - open with respect to data models 

5. The native file system would be used as the resource storage layer; 

 - So that the hypertext layer would be seen as a lightweight extension of the 

user's normal working environment 

6. The hypermedia layer of the model would contain no constraints to portability to 

other popular operating systems; 

 - open with respect to platforms 

7. That the model would allow the data resources and the processes to be distributed over 

a network; 

 - open with respect to platforms 



99 

 

8. That the model would scale to work in a large multi-user environment; 

 - open with respect to platforms and with respect to size. 

It would be fair to say that the first four points have been fully and successfully 

addressed by the current version of Microcosm. The solutions to axioms 1 and 2 

(any data type may be stored and any application hypertext enabled) has been 

more radical than any other system addressing the issue of application integration, 

but has knock on effects upon the consistency of the hypermedia model that are 

addressed later in chapter 11. 

Adherence to the principle in axiom 5 (use of the file system as the storage 

layer) has not yet been as successful as we would have wished. We had hoped that 

users would be able to move seamlessly between using the Microcosm file 

manager/browser and that provided by the operating system. However we have 

found that most application builders name and model their data quite differently 

when they intend to use it under Microcosm than they had previously arranged it 

on the file store. The probable reason for this is that most of our users are 

attempting to present data to naïve users within an educational field, who will 

anyway be unlikely to attempt to browse the resources in ways other than those 

provided by Microcosm. In practice we have found that users will either work 

entirely within the Microcosm file manager, in which case they will ignore the 

Windows file names completely, or else they will work entirely from the Windows 

file manager, ignoring the Microcosm file manager and allowing Microcosm to 

assign default names to the files. Movement between the Microcosm hierarchy and 

the file system hierarchy does not seem to be practical.  

One possible solution to this problem would be to abandon this principle and 

introduce a purpose built hyperbase storage layer which would replace the file 

system. This is the approach taken by many system implementors e.g. ABC (Smith 

& Smith, 1991) and Hyperform (Wiil & Leggett, 1992), and has the advantage that 

given such a layer it is possible to enforce hypermedia data model integrity 

constraints, but we are loathe to take this route as it would involve abandoning the 

"lightweight" approach and commit users to entrusting their entire working 

environment to Microcosm. The problem is caused by the fact that the current 

generation of operating systems do not provide suitable features for aliasing files, 

keeping symbolic links to files, do not provide long (English like) filenames and do 

not allow users to attach user defined attributes to files. Some operating systems 



100 

 

provide some of these features, but to use these features only where they are 

available would contravene axiom 6 (portability to other operating systems). One 

possibility that is currently under investigation is to use a fully functional third 

party document management system, such as Documentum which would entirely 

replace the file system. This idea is discussed in greater detail in chapter 9. 

Axiom 6 (portability across operating systems) has not yet presented any 

problems: prototype implementations are now available for the Apple Macintosh 

and for X-Motif. Where Microcosm applications have not used data formats that 

are specific to a particular platform it is possible to move Microcosm applications 

from one platform to another, and to link to or from data on other platforms where 

the underlying network makes this possible: for example a PC running PCNFS may 

mount a Unix filestore and access linkbases and text files normally used by the 

Unix / X-Motif version. 

Axioms 7 (distribution) and 8 (multiple users) have been fulfilled in the current 

Microcosm versions, but the rather naïve implementation has possibly exposed a 

number of problems which are discussed in chapter 11. 

7.2. Link Integrity Problems 

Integrity problems in hypermedia systems occur when an implicit constraint of the 

data model is violated. The most important implicit constraint in the standard 

hypermedia model is that a link should join two (or more) anchors. This constraint 

is violated if any of the anchors, or the documents containing those anchors, are 

missing. It might also be a violation to have unlinked anchors. The Dexter model 

(Halasz & Schwartz, 1990) ensures that integrity in these respects is maintained by  

• requiring that the within-component layer manages its own anchors. When a 

document is edited the anchors will be moved to reflect the edits. 

• forbidding dangling links. When a document containing an anchor is moved or 

deleted the corresponding link must be altered or deleted. This requires that 

the storage layer communicates to the hyperbase layer any structural changes.  

Implementing these requirements generally depends upon embedding some 

kind of link anchor within the node content, and upon maintaining all documents 



101 

 

within a storage layer that is accessible only through the hypermedia system so 

that documents may not be moved or deleted without informing the hypermedia 

system, so that those links affected may also be deleted or moved. This solution is 

inappropriate for Microcosm: we do not wish to embed mark-up within documents 

and we do not wish to prescribe the storage layer: other solutions must be 

identified. 

7.2.1. The Editing Problem 

The editing problem occurs when the contents of a node are changed so that 

anchors (or, more correctly, persistent selections) which are held externally in 

linkbases no longer address the correct object. Such edits may occur during an 

active Microcosm session, or entirely outside the system if, for example, a user 

takes a standard text editor to some text document. In any system which uses 

embedded mark-up within the document to mark the position of anchors, then this 

will rarely be a problem since, in general, as the document is edited the mark-up 

will move around with the object which it is marking. However placing hypertext 

system specific mark-up within documents contradicts our axiomatic design 

constraints.  

A number of other systems have also moved away from using internal mark-up 

and have used external references to point to anchor positions within documents. 

For example, HB3 (Leggett & Schnase, 1994) uses, and Intermedia (Haan et al, 1992) 

could optionally use, persistent selections which are maintained by the application, 

generally as a list of offsets into the file under consideration. Where persistent 

selections are external references to points or objects within documents, then there 

will be problems when the file is edited as it necessary to simultaneously update 

the external references into the document. 

The editing problem is probably the major limitation of the Microcosm model 

when it comes to scaling Microcosm to deal with globally distributed documents. 

7.2.2. The Dangling Link Problem 

The dangling link problem occurs when a link anchor has been placed in some 

document, and that document has then been moved or deleted without informing 

the hyperbase system. This problem is not unique to Microcosm, and may occur in 



102 

 

any hypermedia system where the storage layer may be accessed form outside the 

hypermedia system. Many hypermedia systems use the filestore as the storage 

layer, and map nodes onto files. In these cases it is always possible that a user with 

appropriate access rights might rearrange the filestore hierarchy or delete files.  

The World Wide Web (Berners-Lee et al, 1992) suffers particularly from this 

problem as the entire link is embedded (as a URL) in the source document. The 

destination of the link will often be a document on a remote server. If the system 

administrators of the remote server then re-organise their file structure it is possible 

that the link will no longer point to a valid document. It would be impossible for 

the remote site to inform all documents pointing to it of the changes, since there are 

no backward pointers: it would be necessary to interrogate every html document 

on every machine in the world to find out whether they pointed to this server. 

The situation is much better in Microcosm. In Microcosm all documents are 

known by unique identifiers which are resolved to file names and paths by the 

Document Management System (DMS) only at the time that the file must actually 

be located. So long as the DMS is updated to point to the new file position, then all 

links will remain valid. This problem only occurs when users move or delete files 

without informing the DMS. The default behaviour on attempting to follow a link 

to a non-existent file is simply to report the problem to the user and to ask the user 

to attempt to point the system at the file so that the DMS can update itself. 

7.2.3. Microcosm Link Structure 

Before exploring the possible solutions to the editing problem, it is worth recapping 

the linking mechanism within Microcosm. 

The following text represents a typical Microcosm link in formatted form. 

\Description Basic Ciliary Structure and Function 

\SourceSelection ciliary movement 

\RealSourceSelection Ciliary movement 

\SourceOffset 436 

\SourceDocType TEXT 

\DestSelection  

\DestOffset 0 

\DestDoctype TEXT 

\ButtonAction FOLLOW.LINK 

\SourceFile 600.04.02.92.16.39.18 

\DestFile 600.04.02.92.17.12.53 



103 

 

This link is seen to be from a specific text string ("Ciliary movement") at a 

specific offset point (436 characters through the file) in a specific source file (known 

to the DMS as 600.04.02.92.16.39.18) of type TEXT, to the top (offset 0) of another 

TEXT file. This link is to be displayed by the TEXT viewer as a button, and when 

the button is clicked the action will be to FOLLOW.LINK. i.e. a typical link in 

Microcosm link is expressed in offsets through a file. 

If a link is created as a generic link, then the tag \LinkGeneric will appear, 

indicating that the link may be followed from any point at which the 

SourceSelection appears. 

The way that selections and offsets are expressed remains the responsibility of 

the viewer for a particular data type. For example, a simple viewer for bitmapped 

pictures expresses buttons as by giving the co-ordinates of a polygon within the 

picture as the source selection. This is stored within the linkbase, e.g. 

\SourceSelection 174,63,320,63,320,75,174,75 and the linkbase will happily resolve 

this when the button is selected at another time.  

7.2.4. Identifying the Problem 

In the link examples above, if the data is changed it is possible that source and 

destination anchor positions will no longer point to the correct object. Typically, 

such changes occur when the owner of a document has edited the content of the 

document and: 

1. All the owner’s links become misplaced. 

2. Links that other users have made into this document become misplaced.  

Some small extensions to Microcosm enable us always to always know when an 

inconsistency might have occurred. At present the system linker does not place 

dates inside the links so I have produced a new filter called "Dater". This filter sits 

between the linker filter and the first linkbase, and intercepts CREATE.LINK 

messages and puts two new tags inside each link: 

\SourceDocDate This tag holds a representation of the operating system's date 

and time stamp for the file in which the source anchor exists, at 

the time that the link was made. 



104 

 

\DestDocDate  This tag holds a representation of the operating system's date 

and time stamp for the file in which the destination anchor 

exists, at the time that the link was made. 

It is now possible to apply the algorithm shown in figure 23 in order to ensure 

that there are no possible link inconsistencies, at any time that a document is 

accessed by Microcosm by whatever method (link following, from the DMS, from a 

History list etc.). This algorithm is applied by a filter called "Checker", which sits at 

the end of the filter chain, intercepting messages to dispatch documents. The 

algorithm is applied entirely within the link service layer, and does not depend in 

any way upon the format of the data in the file or the viewer being used. It is an 

entirely general algorithm for identifying the case when there might be some data 

inconsistency problem caused by file editing or filestore reorganisation.  

The algorithm relies upon the principle that whenever specific links are made 

into or out of any file, then the filestore date of that file is recorded in the link. If, 

when the file is subsequently accessed, the filestore date of the file differs from the 

appropriate date recorded in the link, then it is evident that the file must have been 

changed since the link was created. This of course does not mean that the links are 

wrong, but points to the possibility that they might be wrong, and that it is 

therefore worth warning the user, and/or attempting to check and fix any links 

that are shown to be wrong. 

Once a link, or set of links, has been shown to be suspect there is only one way 

to find out whether it is correct or not, and that is to check the context at the 

appropriate end of the anchor to see if the data that was supposed to be there is 

actually there. For example, if a link was made from the text span “Ciliary 

Movement” at some specified offset in a text file, and upon investigating the file we 

actually find the text “ry Movement is ca” at the given offset, then we know that the 

link is wrong, and in this case we might reasonably guess that the error has been 

caused by the net deletion of 5 characters from some point earlier in the text. 

The task of identifying whether a link is actually correct is more complex than 

identifying possible inconsistencies. When offsets are held as simple byte offsets 

through a file, as they are in ASCII files, then this check may be made by the DCS 

within the link service layer. However, where offsets are held in some format that 

is specific to the particular application, then we will require that the application 



105 

 

itself attempts to match the links against the offsets. This topic is described in 

section 8.5. 

 

DCS Asks file system
to return a file

   Is

the file
found?

Are we 

following
a link to
the file?

Proceed. There has

been no loss of
data integrity.

Tell user that the file
is not found, and offer 
user chance to locate
file manually

Warn user that there
is a possible
inconsistency

Try to fix the
inconsistency?

No

Yes

No

Yes

No

Yes

No

Yes

       Is the 
  DestDocDate
in the link the 
same as the 
  current OS file 
       date?

Query the on line
linkbases to return
all links with specific 
sources in this file

       Are all
SourceDocDates
the same as their
 Current OS file 
        dates?

 

Figure 23: The algorithm to identify possible integrity problems. 



106 

 

The above approach guarantees to identify possible anchor/document 

inconsistencies at the time that the document containing the anchor is accessed. 

Another useful tool that I have built is an off-line link integrity checker. This will 

iterate over all the links in a user supplied linkbase checking that the source and 

destination files still exist and that the anchors within these files are date stamped 

with the same date stamp as the current version of the file. The result is a list of 

documents that are suspect with regard to the linkbase concerned, which then 

enables the user to check the document and fix any suspect links, using appropriate 

techniques from chapter 8. Steve Rake's LinkEdit, described more fully in section 

8.2 also has a tool for identifying link anchors in missing files, but is unable to 

check whether existing files have been edited due to the lack of dates in the current 

default Microcosm link. 

7.2.5. The Extent of the Problem 

Before investigating solutions to the editing problem, it is useful to investigate the 

extent of the problem. 

Broadly speaking, data formats may be divided into 4 categories: 

• Text based information - such as ASCII, RTF, SGML, Word Processed 

Documents; 

• Bit stream information - such as bitmapped pictures, digital sound and 

video; 

• Object based information - such as AutoCAD DFX files and Windows Meta 

Files. 

• Other third party proprietary formats. 

Table 4 presents some results gained by examining a total of twelve Microcosm 

linkbases from demonstration applications used at Southampton, containing a total 

of 8042 links. I have divided the linkbases into three categories. The tutorial style 

linkbases contain those links that provide the usual hypermedia structure for 

navigating information resources. The technical documentation category contains 

many links between object oriented drawings and bitmaps. The glossary style 

linkbases contain exclusively generic links into text files. 



107 

 

 

 Table 4: Analysis of Microcosm linkbases 

Investigation of table 4 shows that the majority of links have their source 

anchors in text files or are generic links. Very few authors make links out of video 

and sound. Only a few make them out of bitmapped pictures, but those that do 

make such links tend to make a large number, as is shown by the technical 

documentation category above. However, it is very rare to edit such pictures in a 

way that actually moves the position of an object in the picture. Nearly all link 

destinations (even in text based files) are to the top of the document, which will of 

course remain the top of the document even after editing. The exceptions to this 

rule are the generic links into glossary and dictionary files, and into technical 

documents where many links are to objects within pictures and drawings. 

Object based applications, such as AutoCAD, are not a problem, since rather 

than using offsets to express link anchors, we would tend to use the name of the 

object: the name will remain the same even if the object itself is moved during an 

edit. Other third party applications are potentially more of a problem. However, 

again, investigation shows this not to be the case, since most semi-aware viewers 

only support local and generic links out of the document, and only allow 

destination links to the top of the documents. Such links are unaffected by editing. 

The above analysis points to the conclusion that the editing problem is only 

severe in the case of text based data: other applications either do not have the 

problem at all, or the problem is small, and can be resolved by informing the user 

that the problem has occurred and that links may need manually updating. 

 Tutorials Technical 
Documentation 

Glossary 

Links with source 
anchor in non-text file 

3% 57% 0% 

Destination anchor is 
whole document 

96% 39% 0% 

Generic + Local Links 48% 57% (including 
generic picture 
links) 

100% 



108 

 

Chapter 8.  Solutions to the Editing Problem 

This chapter explores some of the solutions to the editing problem that have been 

tried. The first two options (section 8.1 and section 8.2) describe the current options 

available in the release versions of Microcosm, except that the RTF viewer 

implements a limited form of the “just-in-time” link repairs described in section 

8.5. 

8.1. The Publishing Model 

A very simple solution to this problem is to adopt a publishing model. Once data 

has been added to the system it becomes read-only, so the editing problem 

disappears. Many Microcosm applications are produced to deliver what is 

essentially read-only material such as teaching materials or technical 

documentation, often using CD-ROM as the delivery media. The contents of the 

documents in such applications are not intended to be changed by the user: so long 

as the document contents do not change, then the user is free to make, delete and 

edit links knowing that the end points referenced within the link will remain 

unchanged.  

The original authors, of course, still have the problem that if they wish to make 

a new version of some document for subsequent releases of the application, they 

must manually move all the link anchors from their current position to the new 

position. 

Although this restriction might seem very severe, indeed, not a solution at all, it 

is worth noting that Microcosm had been in use for over a year before users began 

to complain about the editing problem. For the class of application for which 

Microcosm is generally used, the data content is fixed. Documents within teaching 

materials, technical documentation and historical archives, for example, once 

produced, do not change. New documents may be added to the collection, but the 

old are not generally edited. It was only when one of our major users started to 

produce a second edition of their teaching materials that they became aware of the 

significance of the editing problem. 



109 

 

8.2. A Manual Link Editor 

Perhaps the most universal solution, but also the most difficult to use, is to put the 

onus on the user who edits a document to move the link anchors manually from 

the old position to the new position. 

The current version of Microcosm has two editors that allow users to edit links. 

The most general in its application is a program called Editman, written by Mark 

Weal, which allows a user to select a specific linkbase (or DMS file) and to display 

any field as the key field, then view all the related fields. It is also possible to limit 

the search space by some query. For example one may ask for all links that have a 

source anchor in a specific file. Using this system it is a relatively quick job to locate 

a specific record and then it is possible to delete the record or to change selected 

fields and to update the record. In this case it would be necessary to update the 

offset field for the specified anchor. This of course pre-presumes that the user 

understands how to update the offset for the specified data type. 

There are obvious limitations to this approach. Firstly, it is clear that the 

amount of manual effort required to move links around is undesirable. Secondly, 

the format of a link offset is somewhat obscure and requires the user to have an 

understanding of the internal representation of a link, which is undesirable when 

working with naïve users, and an unacceptable cognitive overhead for any user, 

however good their understanding of the system. For these reasons we have 

tended to reserve Editman as a tool for Microcosm developers rather than for users. 

A second tool, LinkEdit has been developed by Steve Rake for the less 

experienced Microcosm user. This program only works with ASCII text files and 

RTF, and understands how offsets work within these formats. It allows the user to 

open a specific linkbase, and displays the links, by default indexed by description. 

It allows the user to select all links which have a specified document as source 

document or destination document (see figure 24), and it is then possible to edit the 

source selection, source offset, destination selection and destination offset (see 

figure 25). Some special features have also been added to this program in order to 

reduce the cognitive overhead on the user. 



110 

 

 

Figure 24: Selecting links in the Microcosm Link Editor: the user has asked to view all button 

links with their source in a given document, and is about to edit one.  

Firstly, there is an option to view the source or destination document at the 

currently set offset, so it is possible to experiment with changes to the offset until 

the desired effect is achieved. Secondly there are two options "Fit Selection to 

Offset" and "Fit Offset to Selection". The first, "Fit Selection to Offset" will set the 

text of the selection to be the word at the currently set offset, whereas "Fit Offset to 

Selection" will search outwards from the currently set offset till it finds the text in 

the selection, and update the offset accordingly. 

This system is most useful when you, as the editor of the document, are aware 

of the links that you are moving. It is quite possible that some linkbases will not be 

accessible at the time of the edit, so links in these linkbases will not be updated. 

Subsequently, when the user of this linkbase identifies that changes have occurred, 

it will not necessarily be simple to relocate the links without an original copy of the 

document to compare against. 



111 

 

 

 

Figure 25: Editing a link using the Microcosm Link Editor. 

There is therefore a need to provide tools that allow automatic reconstruction of 

links that have become broken due to edits, and such tools are discussed in section 

8.5. 

8.3. Link Service Aware Editing Tools 

Perhaps the most obvious solution to our problem is to provide users with link-

aware editing tools that understand the data formats in use by the system, and 

allow the user to edit a document while maintaining link integrity. 

At first consideration this option might seem to be the solution to all our 

problems: after all, those systems which rely upon embedded mark-up provide 



112 

 

such editors. However a second consideration reveals potential problems. It is 

axiomatic in Microcosm that the system should be able to work with any data 

format. This approach, then, would require that, for every data format in use, we 

would have to implement a link aware editor. This problem is compounded by the 

difficulty of gaining access to the proprietary specifications of the data formats of 

third party applications, and the logical conclusion of adopting such a policy 

would then be to implement fully aware viewers and editors for all third party 

applications and their data formats, which would negate one of Microcosm's 

primary benefits - that of being able to quickly provide link services for new 

applications. 

Another problem with this approach is that the system is unable to tell whether 

all linkbases containing anchors within the current file are currently available and 

on-line. It is possible that some linkbases may be held on removable media, and 

others may be users' private linkbases, held in private filestore to which the system 

or the editor of the file have no access. 

Finally, no amount of link aware editors will be any good if users choose to use 

unaware editors to change a document. 

However, there are clearly cases where such an approach would be the simplest 

and most useful. For example, when an author is in the process of producing new 

or revised teaching materials, and has ownership of, and access to, all relevant 

linkbases, and will subsequently publish the materials in a read-only mode: also 

when a user is using Microcosm within their private environment, and takes full 

responsibility for ensuring that files are not updated by any other method, and that 

there are no external links to the material. As discussed in subsection 7.2.5, by far 

and away the most important need for such an editor would be with text based 

files, which in practice usually means ASCII text, RTF and word processed files.  

I have extended Word for Windows, using Word Basic, to produce such an 

editor, which supports link-aware editing for the three major formats of textual 

data that Microcosm supports, namely ASCII text, rich text (RTF) and Word for 

Windows files. 

The algorithm is as follows: 



113 

 

1. Selecting Microcosm edit mode within Word causes a message to be sent to 

Microcosm requesting that Microcosm returns a list of all links within the 

currently installed linkbases that contain specific source or destination 

anchors within the current document. 

2. The links are then stored in a table, each link being assigned a unique 

identifier. 

3. The persistent selection represented by each anchor is turned into a bookmark, 

a supported feature of Word for Windows. Button links, specific links and 

destination links are displayed in different colours. 

4. The user may now edit the file. The bookmark moves around as the text 

moves. The user may also edit within a selection. 

5. When the user elects to save the file, the file is first saved back to disk, in 

whichever format it was imported from, and the system queries the OS to 

obtain the file date of the new version. Then, one by one, the system iterates 

over the links, deleting the old link from the linkbase and creates the new link, 

with the offset and date fields updated as appropriate for the format. 

8.4. Embed the link anchor in the document.  

This is the solution implemented by many Dexter model systems, and it has 

already been stated that if this solution is adopted, then there should be no 

problem with link integrity. It would violate our first axiom if we required that all 

link anchors were embedded within the document. However, there are some 

applications that allow user-defined mark-up to be embedded within the data in 

such a way that the application can continue to operate on its data in its normal 

manner when outside Microcosm, while maintaining the position of the mark-up. 

Instead of sending and storing offsets in the link we operate with unique anchor 

identifiers (ID's). When an anchor is made in such a document we mark up the 

selection and assign an anchor ID which is stored in the mark-up. This anchor ID is 

then stored in the link as the source or destination selection. When a link is 

followed from this selection, the anchor ID is sent as the source selection and will 

uniquely match the link in the linkbase. In effect this solution is storing the anchor 



114 

 

identifiers within the links but requiring the application to maintain a table of 

corresponding persistent selections. 

Two examples of data formats that may use this system are RTF and many 

word processor data formats. RTF allows user defined mark-up which is simply 

ignored by applications that cannot understand it. The solution therefore is to 

embed such mark-up within the data at the time that the link is made. The data 

may then be edited (we use Word-4-Windows as our RTF editor), and saved back 

to disk after use while maintaining the mark-up. Word Processors often allow the 

insertion of invisible fields of some kind, and it is possible to use the same 

technique as with the RTF viewer. I have produced a version of Word for Windows 

which uses bookmarks in order to store the persistent selections, and maintains a 

table of anchor ids which map onto the bookmarks. Microcosm needed no changes 

in order to work with the system. 

Axiom 1 (The hypermedia layer should make no assumptions about the storage 

layer) is often interpreted within the Microcosm community as meaning that no 

mark-up should ever be placed within documents. It should be stressed that 

adopting this option is not a breach of this policy. The importance of this axiom is 

that it is policy not to affect data in any way that makes it impossible to continue to 

use the data with external applications that expect to handle such data. Thus it 

would be wrong to embed mark-up in, say, a windows bitmap, as this would make 

it impossible for the windows bitmap viewer to understand the data. However, 

where the data format allows user defined mark-up it may well make sense to use 

such a facility. 

The main advantage of this technique is that all link anchors (whether within 

currently installed linkbases or not) will be updated whenever the file is edited, 

even when Microcosm is not running. However, there are problems with such a 

technique: 

1. It might be assumed that once mark-up is placed within a document this 

mark-up could be used to allow the host application to indicate button 

positions. However this is not the case as a button should only be displayed if 

the matching linkbase is currently installed. It is still necessary to enable the 

application to communicate with Microcosm about which buttons should be 

displayed in a particular session. 



115 

 

2. In an environment in which many links are made in and out of a document by 

multiple users the data could become very cluttered by mark-up. 

3. Since the process of linking actually changes the file, it is necessary to save the 

file after links have been made. This is different from the usual Microcosm 

practice, and requires that the user has write access to the file. 

For reasons 2 and 3 above we have not implemented the Microcosm aware RTF 

viewer in this way, but have continued to use external link persistent selections. 

The RTF viewer is generally assumed to be used as a method of "publishing" 

documents that were originally produced on a word processor, and it would be 

undesirable to allow the end user to have write access to such materials.  

However, this method does lend itself to use by word processors in a 

personalised environment where only a single user is making links, and this user 

has write access to the file and is making frequent updates. 

8.5. Apply just-in-time link repairs. 

Subsection 7.2.4 introduced an algorithm that allows the Microcosm system itself to 

identify whether any anchors in a document that is just about to be viewed are 

possibly inconsistent with the current state of the document. Having identified such 

a situation it would be desirable to identify which, if any, links were inconsistent 

and attempt to repair them. 

Since it is the responsibility of each individual viewer to decide what data to 

store in a link as the source selection and the source offset, it is not possible for 

Microcosm itself to make such checks, so the task must be handled by the viewer 

which understands the meaning of the particular data in the link. 

The general principle of this technique is to examine the data at each given 

anchor's offset and determine whether this data is the same as the data that is 

stored in the link. If the data found at the offset was incorrect one could then apply 

some algorithm which attempts to locate the data that was stored in the link and to 

re-write the link back to the linkbase. For example in subsection 7.2.4 an example 

was introduced where a link had originally been made from the text span “Ciliary 

Movement” at some specified offset in a text file, but after the file had been edited 



116 

 

the text located at the stored offset was “ry Movement is ca”. We now know that this 

link is wrong, and on inspection we might find that the correct link anchor was 

located at a point 5 characters earlier in the text. We could now write the correct 

link back to the linkbase. 

However, the theory is simpler than the practice. In practice many destination 

anchors are stored as offsets with no selection so there is no stored information 

regarding the data expected at this offset. Also, many source anchors may be very 

short, for example the digits from a numbered list, which are highly unlikely to be 

unique within a file. In these cases it is necessary to have access to more 

information than simply the content of the anchor if we are to be able to have a 

reasonable chance of repairing the link. 

Two methods of improving this situation suggest themselves. 

1. When a link is stored a certain amount of context must be stored with the link. 

This is the surrounding information which should be unique within the file, 

and would enable the system to attempt to relocate a link by searching for this 

whole context within the file rather than relying upon the data within the 

anchor which may not be unique, or in the extreme case may not even exist. 

2. At the time that the link is stored we should not only store the forward offset 

(the offset from the front of the file) but also the reverse offset (the offset from 

the end of the file). This idea makes use of the fact that frequently any edit to a 

file will have occurred either before the anchor or after the anchor, but less 

frequently will edits have occurred both sides of the anchor. With this 

information to hand it may be possible in many cases to immediately relocate 

the link without having to resort to searching for the given context. This is the 

approach suggested by HyTime (1992), which identifies the possibility of the 

editing problem, and offers this as a partial solution. 

The problem, then, is how much context to store in the link. The less context 

that is stored, the less chance there is of this data being unique within the file. The 

more context that is stored, the higher the chance that any edit might actually alter 

that part of the file that was used as the context. The solution that I have adopted is 

adapted from the HyperTED (Vanzyl, 1993)(Vanzyl, 1994) system. A minimum size 

for a context is arbitrarily fixed as 10 characters, which are taken from the forward 

offset position. If these ten characters are unique within the file, then they are used 



117 

 

as the context: if not the string is increased by the number of characters necessary 

to make the context unique. Note that if the selected anchor text itself is unique and 

longer than 10 characters, then there is no need to store the context, as the selection 

will suffice.  

Now, when it comes to repairing a link, the algorithm in figure 26 applies. 

When all links have been checked and repaired it is necessary to give the user the 

statistics of what has happened and to ask if the user wishes to save the new links 

back to the linkbases before proceeding. 

This solution has the advantage that it makes no assumptions about integrity 

until a particular file is used, so it allows for the fact that applications outside 

Microcosm may edit the document in the meantime. However it requires the 

viewer to perform a significant task, and therefore violates our second axiom (that 

new applications may be integrated with a minimum of effort). It would be very 

difficult to adapt a third party application to perform this task, using, for example, 

a macro language, and is therefore probably only useful in heavyweight fully 

aware viewers. A further possible disadvantage of this approach is that it only ever 

mends links that are in linkbases that are actually installed at the time that the 

document is loaded, and can only mend links in linkbases to which the user has 

write access.  

The release version of the Microcosm RTF viewer uses a variant on this method. 

It does not store dates, or extended context within the link, but does store both the 

forward and the reverse offset, and uses the two offsets and the context provided 

within the stored selection in order to attempt to mend any offsets of button links 

which have sources within the document . The speed of the system is sufficiently 

fast that we had been delivering this functionality as an undocumented feature of 

the release version for many months without any user noticing any decrease in 

speed. 

A number of hypertext researchers, on hearing about this method, have 

commented that it can never guarantee 100% integrity of all links. This is true. 

However, if we postulate that the method can fix 99% of broken links (a pessimistic 

figure) then it seems a highly worthwhile addition to the system, so long as the 

user is warned of changes that have occurred and is signalled that there were links 

that could not be repaired. 



118 

 

 

   Is the
forward offset
  correct?

How many
occurrences of
the context
were found?

   Is the
reverse offset
  correct?

   Is the
reverse offset
  correct?

Update reverse offset
and dates in link

Update forward offset
and dates in link

Search the file
for all occurrences
of the context

Offer the User the
best match: this is the
longest contiguous
string of chars which
occurs in the context.

Relocate the 
link to this
point

Inform the user of
the number of
matches and offer
the link nearest 
to the old offset.

Yes Yes

No

Yes

No

0 1 >1

For each link

No

The link is consistent.
Update dates in link

 

Figure 26: Link repairs using context and offsets from both ends of a file.  

It is worth noting at this point that this method is only possible since 

Microcosm stores, for its link anchors, both the offset and the data expected at this 

offset (the context). Systems which try to keep the link service layer free of any data 

supplied by the application layer will not be able to use such a method. 



119 

 

8.6. Maintain a Shadow File 

A variation that combines the advantages of the above two techniques is to 

maintain a "shadow file". This is a file which contains the important details about 

anchors within any given document, and relates these anchors to a link identifier in 

the same way that the embedded link contained a link identifier, as shown in 

figure 27. 

 

Mydoc.txt
(the ASCII text document)

Mydoc.sdw
(the shadow file)

Linkbase #1
(Owned by user)

Linkbase #2
(owned by someone else)

id #1
linkbase #1

id #1source persistent
selection details

destination
persistent
selection details

id #2

id #3
Mydoc.txt/sdw

source persistent
selection details

 id and
 file for link
 destinationid #2

linkbase #1

id #3

 id and
 file for link
 destination

id #4

 

Figure 27: Using a Shadow File to relate selections to anchor id's. 

In this system, Microcosm always queries the appropriate shadow file for 

specific link anchors, and will then use this information to find the appropriate 

anchor from the appropriate linkbase (for source anchors) or to find the 

appropriate persistent selection (for destination anchors). The shadow file will hold 

all the information that a standard Microcosm linkbase might hold to describe a 

source or destination persistent selection, i.e. the selection, the offset, the file and 

any context. It will also keep a single copy of the related file’s system date at the 

time that it last checked the integrity of the links. 



120 

 

Now, a link-aware editor may be implemented, which maintains the 

information in the shadow file. However, it would still be possible to edit the data 

using some unaware editor such as a standard text editor. In this case the shadow 

file would not be maintained, but when the file was next loaded by the Microcosm 

viewer it would be possible to apply just-in-time link repairs, as specified in section 

8.5. 

This combination of link aware editing and just-in-time link repairs has some 

advantages. 

1. Whenever link repairs or link-aware editing are applied, all link offsets will be 

repaired - even those in linkbases which are not currently connected. 

2. There is no requirement to have write access to the data file, as was the case 

where links were embedded in the data itself. 

3. The check to see whether link repairs must be applied will be considerably 

faster, as all that is necessary is to check whether the file system date held by 

the shadow file is the same as the current file system date of the data file: 

there is no need to query the on line linkbases for relevant links, then check 

each one. 

4. The speed at which link repairs may be carried out, or a link aware editor may 

be started, will be faster, as there is no need to send a query to all the on-line 

linkbases asking for the links which have specific source or destination 

anchors in this document, as this information is exactly what is held in the 

shadow file. 

5. The requirement to carry out link repairs is likely to be less frequent, as 

whenever link repairs are applied, all anchors will be updated. The case 

where a new linkbase is introduced and links must be repaired again will not 

occur. 

6. This method does not enforce the use of one particular editor. 

 There are also some of disadvantages: 

1. The data content contained in link anchors will no longer be inside the 

linkbase. One of the advantages of keeping all such information inside the 



121 

 

linkbase is that it is possible to make queries of linkbases of the kind "Show 

me all links that contain the word disintermediation in their anchor". The 

required information is now inside the shadow files, and the query will have 

to be applied to all the shadow files, sacrificing the advantage of having this 

information centralised. 

2. There is potential for introducing a new consistency problem if the shadow 

file became "detached" from its data file, for example during re-organisation 

of the file store. 

3. Generic links would still have to be implemented from the central linkbase. 

This introduces an ugly asymmetry into the system, where all FOLLOW.LINK 

type queries would have to be applied to the shadow file (to get the specific 

links) and then to the linkbase itself (to get any generic links). Producing tools, 

such as the manual link editor, would become increasingly more complex. 

This method is, in effect re-introducing the distinction between links and 

anchors, and its major advantage is that it makes it possible to update links, even 

when the relevant linkbase is not connected. If Microcosm had been implemented 

so that all links were held in one central linkbase, but attributed with the name of 

the virtual linkbase to which they belong, then this problem would not exist, and 

the main remaining advantage of this method would be the speed increases when 

querying for relevant links. 

This method was the method that I used to implement links in my prototype 

Microcosm. It has never subsequently been implemented due to the problems of 

implementing generic links in this system, but it is possible that it would provide a 

much faster, and possibly more robust, system for dealing with editing problems in 

text than is provided by the simple link-aware editing method or the just-in-time 

link repair method on their own. 

A variation on this approach is taken by the Hyper-G system (Flohr, 1995) 

(Andrews et al, 1995), which maintains the shadow file as one of the attributes of 

the document within its object oriented database. Hyper-G documents may only be 

accessed by Hyper-G clients, which then embed the anchors into the data at the 

client end before any editing occurs, so this system has the advantage that it 

ensures complete integrity of its links, while at the same time providing many of 

the advantages of separating links from content 



122 

 

All of the methods outlined so far in this chapter (with the exception of the 

publishing model) attempt to provide tools to maintain or fix link anchors that are 

expressed as specific offsets into a data file. The next two methods attempt to solve 

the problem by avoiding it altogether.  

8.7. Avoid specific links anchors. 

Specific anchors are those which are situated over a specific object at a specific 

position within a specific file: in Microcosm terminology these are specific links, 

buttons, and destination anchors. Generic links, local links, and destination links 

which are made to the top of a file, rather than to an offset within the file, do not 

suffer form the editing problem: they are edit-proof. 

To do without buttons, specific links and specific destinations might seem 

rather a drastic loss of hypermedia functionality. However, the quality of 

hypermedia link service that may be achieved using such a system deserves closer 

inspection. 

In the paper Ending the Tyranny of the Button Professor Wendy Hall (1994) 

draws attention to the fact that clicking on buttons as the primary or sole method of 

browsing multimedia archives leads to a passive form of interaction. Query based 

navigation of the sort where the user selects an object of interest and asks the 

system, "have you any more information about this?" leads to a very much more 

active and involved navigation. 

In the paper Light Hypermedia Link Services: A Study in Third Party Application 

Integration, Davis et al (1994b) examine the quality of hypermedia system that can 

be produced using the Universal Viewer (see section 5.5) which cannot handle 

specific link anchors. Generic links and local links are provided: buttons may be 

attached to the top of a document (rather than to a specific object within the 

document) and link destinations must either be to the top of a document or to a 

macro which locates the correct object, for example by using the application's built-

in search engine (see the next section). The paper A Process Approach for Providing 

Hypermedia Services to Existing, Non-Hypermedia Applications (Kacmar, 1995) also 

introduces the idea of re-parenting an unaware application's window, and 



123 

 

providing an area at the top of the new parent window in which descriptions of 

links generally applicable to the document may be placed. 

It appears that there is an emerging body of opinion that says that specific links 

and buttons may be generally unnecessary, and could be considered to be over-kill. 

A light hypermedia link service providing links between document nodes (rather 

than between objects within nodes) may be all that users require. Further evidence 

for this viewpoint may be gained by examining a number of linkbases, as shown in 

table 4 in subsection 7.2.5. Even in the tutorial applications nearly 50% of the links 

are edit proof. 

8.8. Express specific link context in an edit-proof manner. 

If it were possible to link to objects that are separately and uniquely identified by 

the application concerned, then moving objects around within the node would not 

change their name, so it would be possible to make anchors with the "offset" 

expressed as the name of that object. 

Naming of objects is the method of linking used by SGML, and one of the 

methods supported by HyTime. It is also the approach taken by a number of open 

systems, such as PROXHY (Kacmar & Leggett, 1991) and the Sun Link Service 

(Pearl, 1989). However, we have only so far found this approach useful in object 

oriented drawing programs such as AutoCAD (see subsection 6.3.2) and 

spreadsheets (see subsection 6.3.4). The Sun Link Service attempted such an 

approach with text by treating each individual line as a pseudo-object, which then 

begs the question, if an object was known as "line 104" before an edit, what text will 

be referenced after an edit that adds an extra half line using a word wrapping 

editor? 

The modern trend of operating systems and applications towards object 

orientation such as OLE 2.0 OpenDoc and CORBA (1991) may in the long term 

provide increasingly sophisticated support for the identification of objects within 

the workspace, but the extent to which this will be useful to hypermedia 

developers would depend on how finely grained the objects are, within the file as a 

whole. 



124 

 

Another approach to specifying link anchors in HyTime is to specify anchors in 

terms of queries that will identify the object. An advantage of this approach, is that 

as well as being edit-proof, it enables links to be specified dynamically, so that 

when the contents of a document changes, the link will automatically reference all 

correct objects as specified by the destination query at the time that the query is 

made. 

A variation of this approach, for specifying anchors within a text document is 

adopted by HyperTED (Vanzyl, 1993) and is described in Vanzyl et al. (1994). This 

involves using a text search engine to find the anchor. When an anchor is created it 

is stored, along with sufficient context to ensure that the anchor is unique within 

the text. So long as this fragment of context itself is not edited, the links will be safe 

from other reorganisations, additions and deletions within the file. We have made 

use of this approach in our Universal Viewer (subsection 5.5) to provide link 

destinations - which are effectively links to the first occurrence of a specific object 

within a file - by storing keystroke macros which activate the host application's 

search engine. I have also added "Search links" as an option within word for 

windows, as an alternative to offset based links. 

8.9. Editing Bit Stream Data 

The vast majority of the discussion in this chapter has been about editing text based 

applications. This approach may be justified by pointing out that bit stream data 

such as bitmapped pictures, digital video and sound files are rarely edited in such a 

way that any specific offsets would change. Cases where this might happen are 

where an editor has been used to reduce a picture to a smaller size (although there 

should be little reason to do this since the bitmap viewer allows dynamic scaling of 

pictures) or some frames have been cut from a video, or an introduction added to 

the front of a sound track. It would probably not be economically sensible to 

produce link aware editors for such media. Just-in-time link repair relies upon 

having some context stored in the link. Although this is possible, representing such 

context in ASCII within a linkbase would be storage intensive, and the search time 

to re-locate the context for a number of links in large multimedia files might be too 

large to be practical. 



125 

 

However, the feature of link editing in such media, which does not generally 

apply to text, is that all link offsets, at least within some given area, will be affected 

by the same amount: if a picture is clipped then the x and y co-ordinates will all 

shift by the same amount: if it is re-sized, then the same multiplier would apply to 

all links: if frames are removed from a video, then the time at which all links 

should apply will be reduced by the same amount. This motivates the idea that it 

might be possible to implement a manual link editor, which allows the user to 

identify all links which will have been affected by a given edit (e.g. all links after 

the point at which frames have been removed from the video) and to modify them 

all by the same multiplier or adder. 

In practice I have only come across one case where a user needed to make 

wholesale edits to such media on a large enough scale that it was impractical to 

delete old links and to re-make the links into the new version of the document. In 

this case a large number of electrical circuit diagrams had been scanned from their 

paper versions, and these diagrams had been intensively linked with generic 

picture links. At a later stage the application authors had obtained much better 

copies of the original diagrams, and these had been scanned, sometimes at different 

scales and with different origins. The task then was to locate the same object within 

the new version of the picture. A project student is currently investigating using 

feature extraction image processing techniques to identify the best possible 

matches in the new version, and is attempting to produce a link mending tool for 

bitmaps. 

8.10. Versioning 

A further approach to the editing problem is to keep separate copies for each 

version of a file, so that link integrity is maintained by ensuring that each link is 

linked to the version of the file in which it was originally anchored. This topic is 

discussed in detail in chapter 10. 

8.11. Use of Diff Files 

A "Diff" file is the output of the diff program which compares two versions of a file 

and produces an output file which describes the difference between the two 



126 

 

versions, in terms of deletions, insertions and changes that would need to be made 

to the first file in order to arrive at the second. Given the existence of such a file it 

would be possible to calculate exactly the movement of any particular offset from 

the first file to the second.  

Unfortunately the standard diff algorithm works in terms of changes to whole 

lines, which is not the ideal solution for reconstructing offsets in terms of bytes 

through a file. For example, a particular anchor might actually be within a line that 

has been edited: all we would know would be the text of the old line and the text of 

the new line, and we would then have to resort to text searching in order to recover 

the exact offset within this line. This situation is likely to occur frequently as it is 

often the case that whole paragraphs are represented as a single line, devolving the 

word wrapping to the viewer at run time, in which case any edit within this 

paragraph will be represented by diff as a change from one line to another. 

Fortunately, there is another version of diff, known as diffb which produces 

similar output to diff, but works in terms of bytes through the file. I have produced 

a program which uses the output of diffb to produce the position of any byte offset 

in a file in a new version of that file. 

This method depends upon the existence of two versions of a particular file 

being available to repair. There are two ways that this might be used: 

1. In a system which supports versions of documents the links will be tagged 

with the version of the document into which they are anchored. When a user 

wishes to move links from an old version into a new version they may run a 

program which will generate the diff file between the two versions, and 

automatically update all the links. This would suggest that RCS should be 

used as the file storage layer, as RCS is a system which anyway maintains the 

original file and that set of diff's necessary to reach each version of the file. 

2. In a system that only supports one current version of a document, authoring 

users might be persuaded to produce the diff file at the time that the update 

edit was made, and leave dated tags in the docuverse entry for the file, 

pointing at the diff file representing the diff between the latest version and the 

one they edited. When the system discovers out of date links into the file it is 

necessary to back track through all the diff files building up a diff between the 



127 

 

current version and the version into which the original links were made, 

before applying the updates.   

The algorithm works as follows. The diffb program produces three different 

types of messages, e.g.: 

110,114d118 The 5 bytes at 110 to 114 through the old file have been deleted. The 

byte that was at 115 is now at 118 (due to the cumulative affect of 

previous edits); 

38a40,42 Three new bytes have been added, starting at the 38th character 

through the old file. They are at bytes 40-42 in the new file. 

110,114c112,120 The bytes 110 to 114 through the old file have been changed, and 

the replacement spans the bytes 112 to 120 inclusive in the new file. 

This represents a net addition of 4 bytes to the file. 

By scanning through the diff output file and identifying the last edit before the 

old offset in the old file, it is possible to calculate by how many bytes the offset has 

changed. For example, if we were looking to fix an offset that was 132 bytes 

through a file, and the last edit had been 110,114c112,120, then we would know 

that all offsets, in the region after this edit until the next edit, had been increased by 

6 bytes. Of course, decisions must still be taken about what to do in the case where 

it turns out that the offset being fixed is actually within an edit that deletes or 

changes the old offset, so this algorithm, although very fast and generally reliable, 

can still not guarantee to fix 100% of offsets. 

This method may be used as a form of "just-in-time link repairs", as described 

in section 8.5, and provides a high degree of reliability in fixing links and does not 

need the context to be stored in the link, but depends upon the user who edits the 

file arranging to either save a version or to save the diff file. Just-in-time link repairs 

based upon context make no such requirement and may even be useful in the case 

where the document has been edited without any reference to that fact that it is 

being used within the hypertext system. 

Keeping diff files between different versions of documents, and using these to 

affect “just-in-time link repairs” when a document is next viewed through an active 

Microcosm session is perhaps analogous to the situation that may occur in 

distributed databases when a link to a remote server goes down. In this case the 



128 

 

system maintains an audit trail, and this audit is used to update remote tables 

when the connection is recovered. 

8.12. Summary 

Chapter 8 has examined a number of approaches to the solution of the editing 

problem. None of these solutions is complete, in the sense that it can be used to 

solve the problem for all data types and work with all applications, so the solution 

that is adopted must depend upon the particular circumstances, and this may well 

depend upon the type of application being used. Generally speaking Microcosm 

applications fall into two categories. 

1. Published Information Systems. These are sets of teaching materials, 

electronic journals, technical manuals etc. In these cases the end user is not 

expected to edit the documents in the system. Any editing that is done will be 

done by the owner of the application, who will, in most cases, have access to 

all linkbases used by the system. The author is most likely to have used fully 

aware Microcosm viewers for all data types. In these cases a fully aware text 

and RTF editor is a perfectly acceptable solution to the problem. Where other 

users are making links into and out of the owner's files, then the fully aware 

text editor with a shadow file could improve upon the situation. 

2. Personalised Desktop Information Systems. These are the applications that 

individual users create in order to enable them to find and navigate through 

the large bodies of information that they collect in their computing 

environment, and that others put on file servers for them to access. These 

applications tend to be much more dynamic. It is quite possible that links will 

be made to other users' documents and those other users may update those 

documents at any time. The viewer applications used will tend to be third 

party applications such as word processors and spreadsheets rather than fully 

aware viewers. In these cases the editing problem is much more severe.  

 The best solution here is to use linking techniques that do not require specific 

link anchors. Generic links, local links, and iconic buttons on the application 

title bar provide a perfectly acceptable linking mechanism and, when 



129 

 

combined with other navigation methods such as computed links and 

attribute searches, provide an excellent navigation environment. 

It is interesting at this stage to speculate about how the editing problem in 

Microcosm might be improved if the system had been implemented as a 

hyperbase, with as single database server being responsible for the maintenance of 

all the nodes and links, perhaps as some virtual disk system (see section 9.3) which 

would still allow third party applications to access their data from this hyperbase. 

In this situation the hyperbase would always know when a document had been 

edited, and the hyperbase would always have access to all the links. (Presumably 

the hyperbase would implement permissions so that users could only edit 

documents and links to which they had access rights). Under these circumstances: 

1. Link aware editing is a more practical solution, since it will be a simple matter to 

make a query to the hyperbase asking for all link anchors in this document, 

rather than just the set in the connected linkbases. 

2. Perhaps more usefully, it will be possible to apply “Fix-on-Save”. In this scheme, 

at the time that a document is submitted to the hyperbase for saving, the 

hyperbase will have both the old version and the new version of the document. 

It will now be possible to apply both diff based techniques (section 8.11) and 

content based techniques, such as those used for “just-in-time” link repairs and 

for the bitmap link repairer discussed in section 8.9. This pre-supposes that there 

will exist a link repair algorithm for each data type in use, which is impractical, 

but where such algorithms have been produced it is reasonable to expect that 

they will be more accurate than is possible when only the latest version of the 

data is available. 



130 

 

Chapter 9.  Solutions to the Dangling Link Problem 

The dangling link problem was introduced in subsection 7.2.2, and occurs when a 

document that contains a link anchor is deleted, moved or unreadable. In practice 

this problem is most severe when a document containing a destination anchor is 

deleted, since users may select the source anchor and then be informed that the 

destination anchor is not available. This is frustrating as the users know that there 

was intended to be a relationship, and they were interested in discovering that 

relationship. A missing source document will never be noticed by the user unless 

the system implements bi-directional links, in which case, in this context, it is still a 

destination anchor. 

The dangling link problem is easier to deal with than the editing problem, since 

there is no need to know anything about the content of the document - only it's 

whereabouts. The following analysis considers methods of dealing with the 

dangling link problem in any link service hypermedia system. 

9.1. User Onus 

The simplest solution is to put the onus on users not to move or delete documents 

that are accessed by a hypermedia application, or to put the onus on the user to 

update the system to reflect any changes. This approach seems so simplistic that it 

might hardly deserve mentioning - except that it is the method currently used by 

many systems, including the World Wide Web and Microcosm.  

The problem with this approach is that a user may not know that the document 

is part of a hypermedia application, and even if they do, they might not know 

whether there are currently any links to the document, since the link is held 

elsewhere (in another document on another server in the case of WWW, or in a 

linkbase in someone else's filestore in the case of Microcosm, for example). 

In the case of the World Wide Web the problem is not solvable, since it will 

never be possible to examine the universe of all documents on all servers in the 

world to see if they contain a pointer to a document that is about to be moved or 

deleted. All documents must remain in the same place forever, once they have been 



131 

 

made available on a server. In an attempt to solve this problem an Internet Draft of 

July 1994 proposes the adoption of Uniform Resource Names (URN's) to replace 

URL's. These would be globally unique names for each resource published on the 

Internet, which would be allocated in much the same way as IP addresses are 

currently allocated, in order to guarantee uniqueness. Once resources were 

described using URN's it would be necessary to provide some directory service 

which would map a given URN on to a URL which would actually locate the file. It 

would be the responsibility of the owner of the resource to ensure that the directory 

service provided the correct mapping at any time that their filestore was re-

organised. It is exactly this functionality that is provided by Microcosm's 

Document Management System (DMS). 

In the case of a link service that keeps all its links in one linkbase or in a set of 

linkbases that are always available to the system, it would be possible to provide a 

tool to search all links for references to the document, and change the name of the 

document to point to the new location, or remove the link altogether when the 

document is deleted. However, this would not be possible in Microcosm, because 

linkbases may be held on removable media or private filestore. Instead we have 

implemented Microcosm to allocate unique identifiers to all documents, which are 

held in the DMS along with the actual location of the file. Links do not refer to the 

filename but to the unique identifier, which indirects through the DMS in order to 

locate the actual file. This simplifies the problem from being one of changing every 

link containing the document to being one of changing a single entry in the DMS. 

However, the responsibility is still with the user to make this change or dangling 

links will occur. 

An interesting approach to ensuring that owners of documents take 

responsibility for keeping links up to date with document movements in a wide 

area link service system has been proposed by Antoine Rizk (Rizk et al, 1994) who 

suggests that all link requests on the wide area network pass through a "Kiosk" 

which will charge users for access to the link. Value added service providers might 

pay to have their links in the linkbase, and will receive payment every time the link 

is traversed to their document. Under these circumstances it seems likely that 

document owners will ensure that their links do not dangle! 



132 

 

9.2. The Closed Document File Structure. 

One solution to this problem is to organise the file structure in such a way that it is 

not possible to move or delete documents except through link service aware tools. 

This was the approach taken by Intermedia (Haan et al, 1992) which maintained all 

its documents under a specific directory in the filestore which was owned by 

Intermedia: only Intermedia itself could change this filestore. Thus applications 

which move or delete files must be written in such a way that they pass a message 

to a tool which updates the linkbase or DMS as appropriate. 

We have not adopted this solution in Microcosm, as axiom 5 of our design 

requirements stated that the native file system would be used as the resource 

storage layer so that the hypertext layer would be seen as a lightweight extension 

of the user's normal working environment. Putting all documents into an area 

owned by the hypermedia system prevents them from being accessed and used by 

tools outside the system. 

9.3. The Virtual File System 

An extension of the concept of using a closed file structure is to introduce a virtual 

file structure which is in effect a layer above the real file system to which files may 

be written. Many hyperbase implementors have adopted this approach, and refer 

to this layer as the hyperbase layer (see subsection 2.4.2). For example GMD-IPSI's 

SEPIA makes use of a hyperbase layer called Hyperbase (Schütt & Streitz, 1990) 

which was extended to CHS (Streitz et al, 1992) both of which are implemented on 

the Sysbase RDBMS: the Hyperform hyperbase (Wiil & Leggett, 1992) is currently 

being re-implemented on top of the Exodus OODBMS. Others have implemented 

the hyperbase layer form scratch e.g. ABC's Distributed Graph Server (Shakelford 

et al, 1993). 

The advantage of using a database system to implement a virtual file system is 

that one may make use of the built in facilities for maintaining integrity. For 

example, in this case, the database schema to represent the hypermedia structure 

model may state that a link connects two nodes. The DBMS may then be relied 

upon to carry out integrity checking and to enforce consistency. 



133 

 

The problem with using a virtual file system is that files that are committed to 

the hypertext system will become inaccessible to applications which cannot 

interface to the hyperbase layer, and for this reason we adopted the principle that 

the host file system would be used as the hypermedia layer (axiom 5). 

However, we have recently begun to reconsider this axiom. Mylene Melly has 

implemented a version of Microcosm on X-Windows using the Exodus OODBMS 

as the storage layer in order to inherit the concurrency control necessary for 

Computer Supported Co-operative Work (Melly, 1994). At the same time we have 

become increasingly aware that in real commercial organisations there is often a 

need for greater control of the filestore than is provided by common operating 

systems. 

A solution to this problem is to implement a virtual filestore that appears as a 

mountable server disk from the user's perspective, but allows the owner to specify 

the behaviour of the filestore in a more detailed manner than the normal operating 

system provides. For example, the Double-space system, now integral in MS-DOS 

6, compresses an entire file system into one large file and then presents this file to 

the user as if it were a disk in its own right. Users may read and write to this disk 

in a transparent manner, but in reality all disk accesses are interrupted and 

processed by the Double-space software. 

A number of commercial document management systems are now starting to 

emerge which adopt a similar approach. The Documentum system (a spin-off from 

Xerox Parc) is one such system: it allows users to access files stored on a Unix 

server from multiple clients (including Windows, Macintosh and Unix) in an 

almost transparent manner. The system allows owners to associate attributes with 

documents, including long English descriptions, provides a versioning system and 

provides a uniform access control system, which is considerably more 

sophisticated than any of these operating systems provide. There is a sizeable 

programmer's API which enables tailoring of the system. Documentum is 

implemented as an SQL database which handles the document attributes, access, 

concurrency control etc., and a filestore which is owned by Documentum, and can 

therefore only be accessed through Documentum. 

In cases where such a system is already in use, we do not see that making use of 

it as the hyperbase storage layer offends axiom 5: in effect it is the host file system. 

We are currently planning to adapt a version of Microcosm to use Documentum to 



134 

 

replace the Microcosm Document Management System, and to provide the storage 

layer. 

The advantage of using such a system, in the context of this chapter, is that the 

system will ensure that dangling links never occur. Whenever a document is 

moved the DMS entry will be updated automatically. The system may be 

programmed to invoke certain actions whenever certain events occur: it would 

therefore be possible to invoke link editing tools when a document is deleted or 

when a document is edited. 

9.4. Operating System Extensions 

In the previous section we identified two pre-requisites in order to avoid the 

dangling link problem: 

1. The DMS needs to be able to track the movement of files; 

2. The Hypermedia system needs to know when files are deleted so that it may 

fix any links that are affected. 

In the ideal world the operating system itself would provide facilities to enable 

us to achieve this. For example, the Macintosh system provides aliases for 

filenames, which enable the user to move files while they retain the same aliases, 

but since such facilities are not available across all platforms, we were not able to 

rely upon this facility (axiom 6). 

A facility that we would very much like to see built into operating systems 

would be the concept of an "interest set". Users could register interest in certain 

events in the operating system, and nominate the process that would be invoked 

when such an event occurred: in the case of Microcosm we might invoke a link 

integrity checking algorithm whenever a document was deleted or edited, and a 

DMS editor whenever a document was moved. We have investigated 

implementing such a facility for Windows, making use of the WindowsHook calls. 

However such a system would be limited by the fact that it could only trace 

filestore alterations made by the Windows File Manager, and would not be aware 

of alterations to the file system made by other utilities or applications. 



135 

 

9.5. Link Integrity Checking Tools 

All the approaches discussed above attempt to prevent the dangling link problem 

from occurring by ensuring consistency. The final two methods rely upon fixing 

the problem when it occurs. 

A simple solution is to provide off-line link integrity tools which examine all 

link anchors in a given linkbase, and after querying the DMS for the actual 

document position, check that the document is actually present. In the case where a 

document is not present there are three options: 

1. Offer to delete the link containing the anchor. 

2. Offer the user the opportunity to manually locate the document. This is the 

approach that is taken in the current version of Microcosm. 

3. Use an automatic search engine to attempt to locate the document. (see section 

9.6) 

An advantage of this approach is that it will identify links that dangle at their 

source end, which will never be discovered in the course of normal link navigation. 

In this sense it may be used as a link garbage collection tool. 

The LinkEdit program discussed in section 8.2, contains an option to identify 

dangling links, but at present all it does on discovering a dangling link, is to notify 

the user and offer to remove the offending link. This tool will check all links in a 

given linkbase to ensure that all documents are anchored in a document listed in 

the DMS, and will then check that the DMS entry actually points to a real file 

within the file system. 

9.6. The Search Engine 

This approach relies upon storing enough information about the file to locate it 

again after it has been renamed. The most universal solution is to store the file 

length, date stamp and time stamp in the DMS. These features may then be used to 

find the file again with a high degree of confidence. The problem is how far to 

extend the search if the file is not found on the disk on which it was previously 



136 

 

located. A suggested answer is to search all disks on which there are files mounted 

in the current application, but user control will be necessary. 

A search engine might be invoked whenever a link was found to be dangling, 

either at the time a link was followed or when a link integrity check was being 

conducted.  

9.7. Summary 

Dangling links do not present the same difficulties for Microcosm that are 

presented by the editing problem. Given the right environment, such as a closed or 

virtual file system, it is possible to provide tools which prevent the problem from 

occurring in the first place. Even when they do occur, any system that implements 

links externally from the content data will be able to batch process those links to 

identify dangling links. Mending dangling links may be possible, but depends 

upon there being some bounds to the size of the search area within which one 

might reasonably expect to locate the file.   

Perhaps dangling links are a social problem rather than a technical problem? In 

a library people are expected to check their books out when they remove them. 

Failing to do this will leave the library systems pointing to a source that is not 

present. The person who fails to check-out a book has behaved anti-socially to a 

greater extent than just stealing a book: they have also broken the system. 

Similarly, when we make files available on a server, for others to link into, we have 

contributed to a system. If at some later stage we move the server or the file, then 

we have broken that system, unless we adopt some method of pointing users on to 

the new version. 

From another point of view, one could argue that dangling links are not really a 

problem. If a link dangles it does no more harm than to disappoint the user: the 

editing problem is far more severe, as it can lead to the situation where link 

anchors are positioned over objects which bear no relation to the link. 



137 

 

Chapter 10.  Versioning 

10.1. Why Use Versioning in Hypermedia? 

In his paper "Reflections on Notecards: Seven Issues for the Next Generation of 

Hypermedia Systems", Halasz (1988) identified versioning of hypermedia systems 

as an issue that the systems of the day had failed to address. He saw versioning as 

important for two reasons: 

• To allow exploration of the history of the evolution of a particular hyper-

document. 

• To enable the exploration of alternative configurations. 

Three years later in his keynote speech to Hypertext '91 (Halasz, 1991) he 

commented that very little activity had taken place in this area and asked whether 

versioning was, after all, not an issue for hypermedia systems. He concluded that 

perhaps users did not require versioning, either because the nature of their 

applications did not require such functionality, or because users have been so used 

to living in the DOS, Unix and MacOS world, that they didn't know what they 

were missing. Another possible explanation is that the cognitive overhead of 

arranging versions is too high for the average user who comes to hypertext as a 

simple lightweight method for arranging information. 

However, within the past three or four years, considerable new work has been 

conducted in the area, and it is clear that industrial strength hypermedia systems 

will be required to provide some form of version control. 

Malcolm et al. (1991) believe that all versions of objects within a hypertext 

project must be under configuration control in order to enable auditability. Ted 

Nelson in his book Literary Machines (Nelson, 1981) identifies the need for 

versioning to provide safety (undoing unwanted changes) and intellectual 

backtracking, in order to understand the process by which a particular hyper-

document was derived. Hypertext projects that involve software development or 

engineering design require versioning for safety and to enable exploration of 



138 

 

alternative designs. The HAM system (Campbell & Goodman, 1988) is such an 

example, having been used as the hyperbase layer for CASE applications and CAD 

applications. 

However, versioning is not only useful to provide safety, backtracking and 

exploration of alternative designs: recent trends towards the use of external link 

anchoring models, such as Microcosm and RHYTHM (Maiolo et al, 1993), have led 

researchers to realise that versioning may be employed as a mechanism for 

ensuring data model integrity. It is this aspect of versioning that is of particular 

relevance to this thesis. 

10.2. Versioning in Software Development Environments 

Versioning and configuration management have traditionally been the province of 

software development environments. This section identifies the techniques and 

vocabulary that are in use within this community, and the next section identifies 

the problems with transferring these techniques to hypermedia systems. 

Each module in a software engineering project may be saved as a different 

version as edits are made. All the versions of a module are grouped together in a 

version group. Typically a version management system, such as RCS (Tichy, 1985), 

will store one base version of the module, along with a set of changes, or deltas, 

which describe the edits that must be made to the previous version in order to 

arrive at the new version (or vice-versa). The version management system will 

normally also store attributes with the delta, that describe the reasons for the 

change, the author, and the date of the change. In order to avoid concurrency 

problems due to lost updates, such systems usually provide a locking mechanism, 

which will only allow the first user who checks code out to check it back in again. 

Other users may check code out, but will be unable to check any changes in, unless 

they begin a new branch to the version tree. RCS does provide a merge program 

which attempts to merge two branches of the version tree back together again, but 

our experience of using this system for the development of Microcosm has shown 

that such a merge rarely has the desired effect. 

A complete software system will consist of code from a number of modules. A 

configuration describes, usually in terms of selection criteria based on dates, authors 



139 

 

and other attributes, which modules are to be used in a release of the system. A 

baseline describes the exact versions of each module that has been delivered in each 

release of the system. 

10.3. Versioning Problems Particular to Hypermedia 

On the face of it, it would seem reasonable to simply adopt the methods described 

in the previous section to version components of hypermedia systems. Indeed 

many Hyperbases, e.g. HAM (Campbell & Goodman, 1988), CHS used with Sepia 

(Haake, 1992) and HB3 (Hicks et al, 1991), incorporate a versioning engine which 

provides such functionality. However, Davis et al. (1992) point out that it is not 

always this simple. When a new version of a node is created, which node should 

the links now point to? When a new link is created in the most recent node, should 

it also be retrofitted to the old versions of the node? Østerbye (1992) divides the 

problem of applying simple versioning of components to hypertext systems into 

two categories: structural issues which are those related to the hypertext data 

model, and cognitive issues which are those related to the user interface. He 

identifies five particular problems under these two headings. 

1. Immutability 

 The standard model of versioning assumes that once a version has been 

created it is immutable: that is, it is no longer possible to change this node in 

any way: it is frozen. Østerbye argues that it would be unreasonable to 

assume that just because a node is frozen, that users would not wish to 

continue to link to and annotate that node. In systems which embed link 

anchor information within the node this would not be possible, since each 

linking action would physically change the node itself. On the other hand, 

where link anchors are stored externally, it might be the case that making 

certain types of links might actually change the meaning of the node. Would 

this be desirable? What sorts of link making should be frozen? 

2. Versioning of Links 

 In a hypermedia system we would possibly need to address the versioning of 

links as well as nodes. Three cases are identifiable. 



140 

 

 

A

A

A

B

B

B

C

C

C

A

A

A

A'

B

C

B

C

B

C

m

m

m

m

m

m'

m

n

a.

b.

c.

 

Figure 28: Problems with Versioning Links. 

 Figure 28.a shows the case where there is no versioning of links. When a link 

is moved to a new node, the link to the old node is lost. 

 Figure 28.b shows the case where links are versioned. The new version of the 

link points to the new node, and the old version to the old node. It is now 

ambiguous which link should be offered or followed.  

 Figure 28.c shows the case where we have versioning on nodes only, and new 

link making is frozen. Thus if, after node A has been frozen, we wish to point 

the link to C, we must make a new version of the node, and create a new link, 

n, to do the job. 

 Of course, it would also be possible to version both nodes and links, but this 

introduces further problems of maintaining consistency between the two. 

3. Versions of Structure 

 We would like to be able to version the entire network at various times. This is 

almost analogous to software configurations, but in some hypertext data 



141 

 

models this may be more complex due to the necessity of capturing a 

consistent set of nodes and links.  

4. Version Creation 

 In his "Introduction and Survey" (1987), Conklin refers to the cognitive 

overhead that is forced upon users in naming and describing new nodes and 

links. Any system that employs versioning must have a minimum default 

behaviour which, from the user's perspective, requires no greater effort than 

using the system without versioning. Furthermore, when versioning is being 

explicitly used, the model must be sufficiently simple to encourage users 

rather than discourage them. 

5. Element Selection  

 In a system that versions nodes, which version of the node should a link point 

to? HyperPro (Østerbye, 1992) introduces the concept of a specific version link, 

which points to a specific version of the node, and a generic version link which 

computes the version of the node from some selection criteria, which might be 

as simple as "the most recent version".  

 Element selection based on a query language would also be possible, but would 

force the user to specify the query at the time of each link creation, again 

increasing cognitive overhead. 

10.4. Versioning in Current Hypermedia Systems 

Ted Nelson's original vision of Xanadu (Nelson, 1981) always included the need for 

a versioning mechanism. Xanadu documents are constructed by a list of pointers to 

streams of bytes which are held on servers, denoting both content and links. 

Nelson suggests the idea of a "pounce", which is the list of all parts that make up a 

given document at a given time, and the idea of "alts" which would be alternative 

versions of a given document. 

However, possibly the first realisation of versioning in real hypertext systems 

was in the concept of "contexts" (Desisle & Schwartz, 1987) used within the 

Neptune system (Desisle & Schwartz, 1986) which was built upon the HAM 



142 

 

machine (Campbell & Goodman, 1988) and used primarily for CAD applications. 

The designers of Neptune recognised the need to allow users to experiment with 

alternative configurations of a hypertext without altering the currently stored 

version, followed by the need to merge the experimental version back into the 

original hyperspace. A context is, in effect, a configuration: a set of nodes and links 

that form a private workspace. Within the private workspace new nodes and links 

may be created and old ones edited. Links may be made to new versions or old 

versions of nodes. When contexts are merged conflicts may arise, for example if the 

node in the original context has been edited at some time since a user copied the 

node out into a private workspace. The merging algorithm can spot such conflicts, 

but requires manual intervention to sort them out. The authors were possibly the 

first to observe the conflict that arises between providing a sufficiently rich 

versioning model, to cater for all situations, and the cognitive overhead placed 

upon the user. 

Intermedia (Haan et al, 1992) allowed a user controlled form of contexts called 

"webs". A web was the set of all links and anchors that a user was currently 

concerned with, and allowed a private view across a set of documents in the same 

way that is achieved by a Microcosm linkbase. However, Intermedia differed from 

Microcosm, in that access to all hypermedia links, nodes and anchors could only be 

achieved through the Intermedia layer, and this layer enforced consistency by 

ensuring that whenever any document was edited, moved or deleted, that all 

anchors referring to this document were updated or removed, and all links 

updated appropriately. 

 The PIE system (Goldstein & Bobrow, 1987) carried out versioning at two 

levels in a similar way to the standard software development environment. All 

hypertext elements were individually versioned (using a linear versioning 

mechanism) and on top of this, configurations known as "Layers" were introduced. 

A layer was a co-ordinated set of changes made from some base model. It was thus 

possible to navigate through the layers to trace the development of the system. It 

was possible to mix layers from separate projects to produce new projects, but this 

could lead to possible inconsistencies, for example when trying to merge two 

projects which both contained the same original base project, but which had been 

changed in different ways in each of the two projects being merged. 



143 

 

The current generation of Hyperbase systems have tended to build some degree 

of versioning into their systems. Within this area there appears to be some degree 

of difference on the question of whether it is necessary to version links as well as 

nodes, and this difference is often a reflection of the method used for anchor value 

representation. For example, HyperPro, which uses embedded anchors, does not 

version links (Østerbye, 1992). Nodes (and composites) may be versioned, but the 

links do not need versioning as they continue to point to the correct position in all 

versions of the document. On the other hand HB3, which uses external 

representations of anchors, does version links and anchors as well as nodes (Hicks 

et al, 1991). The authors do not address the user interface problems involved, and 

admit that this approach introduces much scope for inconsistency. 

The Hyperbase workshop at Hypertext '93 discussed the importance of 

versioning in so far as it relates to the Hyperbase data model but, in spite of strong 

representations from both sides, were unable to agree whether versioning is part of 

the hypermedia data model or simply a feature of the underlying file storage layer.    

One of the most significant pieces of recent work in the area of versioning was 

the production of CoVer (Haake, 1992), a contextual version server sitting between 

the SEPIA hypermedia system and the CHS Hypermedia server (Streitz et al, 1992). 

This system versions both nodes and links, and addresses the issue of the which 

version of a node a link should point to, and the cognitive overhead, by 

automatically assigning attributes to objects which designate the task that the user 

was undertaking at the time that the versions were created. Tasks are arranged in a 

task hierarchy, and a user who is browsing the network may follow links relevant 

to a particular task. 

The RHYTHM system (Maiolo et al, 1993) is perhaps the only system which has 

explicitly used versioning as a method to assist in the maintenance of link 

consistency where using an external anchoring model. A document in this system 

is a composite made up of inclusions of a number of smaller "atomic" documents. A 

link joins one inclusion to another. A version of a document is a new list of the 

inclusions in that document. If the appropriate inclusion is in both versions, then 

the external reference to this inclusion will remain valid. Also, if the text of the 

inclusion is edited, links to it will remain valid. 



144 

 

10.5. Versioning in Microcosm 

As we have seen from the above discussion, it is possible to devise systems that 

allow the versioning of only nodes, or the versioning of links only, or both. 

Furthermore versioning may be at two levels: the level of the individual entity or 

the level of the entire configuration. This section examines the techniques necessary 

in Microcosm to version links and nodes, and then presents a versioning scheme 

for Microcosm which versions both together. 

10.5.1. Versioning Links 

Currently when a link in a linkbase is updated by any of the link editing tools, 

what actually happens is that the old link is marked as deleted and the revised link 

is inserted as an entirely new link: a batch tool is provided which allows the user to 

garbage collect the deleted links if their number becomes significantly large. 

However, it would be a simple matter to leave the old link undeleted and only add 

the new link. Since Microcosm is quite happy to find multiple links at one source 

and to offer the user a set of destinations, this scheme will immediately work but 

would introduce the problem for the user of selecting which particular version of a 

link to follow. 

In order to help resolve which link might be followed it is necessary to adopt a 

simple concept of a context, which in this respect is nothing more than a sub-name 

for the application. An authoring user is able to select an old context or create a 

new context. Whenever new links, documents or versions of links are created they 

are marked with the time of creation and the name of the context in which they 

were created. A browsing user is then be able to subscribe to zero or many of these 

contexts, and any links found will be offered in ascending date order, along with 

the name of the context in which they were created, providing sufficient cognitive 

hints for the user to make a sensible selection. 

The fact that Microcosm works with multiple linkbases, already allows users to 

create webs in much the same way as is used by Intermedia for creating 

configurations of links. 

The problem with versioning links alone, is that this limits the changes that 

may be made to those which are represented by structure. It is possible to append 



145 

 

to a node, but not to change the content of a node, without having to edit all 

relevant link anchors. If one did change the content of a node, for example, using a 

link aware editor, then the original version of the node would be lost which defeats 

the intention of keeping versions of the links.  

10.5.2. Versioning Documents 

The situation with versioning documents (nodes) alone, is much the same as that of 

versioning links only. New versions of a document can be stored in the DMS with 

an extra attribute indicating the context in which they were created, but in all other 

respects containing the same set of attributes. The document dispatcher can be 

adapted to offer all versions, along with the information stating the context in 

which each version was created. 

The problem with this scheme is that as new versions of a document are created 

the positions of the anchors, stored in the linkbases, become outdated. Each time 

links are followed to a different version of the document it will be necessary to 

apply just-in-time link repairs, and, in the case where a user views an old version 

of a document, this will quite possibly lead to the loss of links made into more 

recent parts of a document. It is clearly necessary to keep versions of links that are 

synchronised with the versions of the documents.  

10.5.3. The Microcosm Versioning Scheme 

This subsection describes a scheme, and the necessary adaptations to the release 

version of the system, for versioning in Microcosm, that involves versioning both 

links and nodes. This scheme has not been implemented, nor is it likely to be 

implemented in the current version of Microcosm, as it would require significant 

changes to base code, and there is little user push for such a facility. However, 

subsequent client-server based versions of Microcosm intended for industrial 

strength applications may well adopt such a scheme. The purpose of presenting 

this scheme here is not so much to propose a realistic versioning system for the 

release version of Microcosm, but rather to demonstrate how such a scheme could 

assist in maintaining the integrity of the data model. 

Currently the Microcosm registry stores a list of applications (projects) of which 

it is aware. At logon time a user is required to select a particular project: this 



146 

 

information is then used to decide which set of linkbases and other filters to load, 

and is also used by the DMS to decide which set of documents it will offer to the 

user at any time. New documents added during this session will be tagged as 

belonging to the current application. In order to adopt my Microcosm versioning 

scheme, the registry list of applications must be extended to allow contexts as sub-

names for each application, and these contexts must be arranged as a hierarchical 

tree structure hanging off the base application. When a user logs on they may 

choose to create a new context at any point in the tree, or select an existing context. 

Once a new context has been formed below an existing context it will no longer be 

possible to make document edits to the original context, as shown in figure 29 

(although link making at this context level will still be possible). 

During the session, the user may edit and delete documents, and add new ones 

(assuming that they have authoring rights on this application in this context). All 

edits will only be effective at this context level. If a document is edited it will lead 

to the production of a new version of this document, marked as valid at this 

context only, and if the edit results in changes to links, then new links will be 

created, again marked as valid only in this context. 

Gerard's
Further 
Modifications

Hugh's
Suggestions

Wendy's
Changes

Gerard Must Make a new context (F)
in order to perform further modifications

as Hugh has created a context (E) off the
original modifications (C) which has the effect 
of freezing C.

Caerdroia 
Application

Gerard's
Modifications

Hugh's
Modifications

A

B

C

D

E

F

 

Figure 29: The Tree Structured Context Hierarchy. 



147 

 

The strength of this scheme is that no version of any document or link is ever 

thrown away. It will still be possible to log into the system and see only the original 

application, or to log into any other context. 

When a user is browsing within some context, the versions of the documents 

and links offered will always be the most recent up to the level of that context. For 

example, using figure 29, if a user was logged in to context C, they would be able to 

see documents and links that had been created in the original application and in C, 

up to the time that C was frozen, but not those that were made in any other context. 

The View Document Dialogue (see figure 8) will need to be altered in order to 

show only the version of a particular document relevant to the current context, but 

where a document is a version, this will be indicated, and it will be possible for the 

user to scan through and visit other versions of the document as well. Similarly, the 

link dispatcher must be modified to only show the appropriate version of a link, 

but again where a link has been versioned it will be possible to scan through other 

versions of the link, and visit the documents that they point to. For simplicity's sake 

when old versions of a document are visited by such techniques, further link 

creation within the document will be disabled. Link following will be possible, but 

only through that set of links that had been defined for that document at the time 

that the version was created. 

The release version of Microcosm contains a tool that allows the export and 

import of applications from other machines. This needs to be adapted so that it is 

possible to export a complete context, and then install it as a new base application 

as desired. This involves filtering out all the old version entries in the DMS and 

linkbases, and removing the versioning tags before exporting. 

A final tool that might be useful would be a merge tool. This could be used to 

create a new application that was the result of merging two contexts. (Note: it 

would not be used to create a new context since the context tree is a strict 

hierarchy: multiple inheritance is not allowed.) This merge algorithm would be 

non-trivial, since it would be necessary to spot cases where both contexts had made 

different versions of the same source document. In this case it would be necessary 

to ask for user intervention to decide what the final version of the document was to 

consist of, and having done that it would be necessary to resolve all the links from 

both contexts. 



148 

 

10.5.4. The Advantages of the Microcosm Versioning Scheme 

Section 10.1 identified the following motives for versioning. 

• Safety. One can undo changes; 

• Ability to investigate alternative configurations; 

• Facility for intellectual backtracking; 

• Exploration of the history of development; 

• Maintenance of link integrity. 

All of the above advantages are supported by the Microcosm versioning 

scheme, while putting little extra conceptual overhead on the user other than 

selecting the context within which they wish to work or browse. However, it is the 

aspect of maintaining link integrity that is the subject of this thesis and which 

requires further examination. 

First, it is possible to lock the system so that when a user has authoring 

possession of a particular context no other user may be using this context. This 

guarantees that no concurrency problems can occur, such as a user making links 

into a document which is currently being edited, while still allowing users to work 

in all other contexts as normal. Thus a versioning scheme may help to prevent 

concurrency problems. This concept is discussed further in section 11.3. 

Secondly, it ensures that updates made to the system do not affect other 

versions of the system, corrupting views with which other users might have been 

satisfied. For example, a user might have made links into the Caerdroia application 

in figure 29, and have taken the linkbase away on a floppy disk. These links will 

remain valid after documents have been edited, since they will point to the original 

versions of the document rather than the new versions, (which the user will still be 

able to access by browsing through the versions). 

However, there is one problem remaining. When a new version of a document 

is made, how do the old link anchors get moved into the new version? There are 

four possibilities.  



149 

 

1. Links don't get moved. 

 If the person who edits a document fails to employ any method for copying 

link anchors from one version of a document into a new version, then all the 

old links will still point to the version in the previous context. The new 

version would only service links that had been made specifically within this 

version. A user would need to browse through earlier versions in order to 

discover other links made to these versions. This would provide the highest 

degree of link integrity, in that it would guarantee that all links offered would 

be to or form the correct place and shown in the correct context that the 

original author intended, and that none would be lost. However it would 

impose a high degree of effort upon the browsing user, and it is probable that 

opportunities to make connections would be missed. 

2. Links don't need to be moved. 

 Some links do not need to be moved. For example, if the link anchors were 

embedded within the document, as discussed in section 8.4, then the new 

version would still contain the necessary anchors. Similarly, edit proof links 

such as generic links, local links and links destinations that point to the top of 

the document do not require moving. Nor do links based on search engines 

(section 8.8). All that is required to deal with such links is to adapt the link 

following mechanism so that where a document is named as the source or 

destination of a link, the engine will automatically follow links to the version 

furthest down the context tree to the current context, and will follow the links 

from any version of the same document. 

 This solution makes life very easy for the authoring user, but does open some 

opportunities for inconsistency, such as the case where an embedded link 

anchor has been removed as part of an edit. In this case the user will not be 

aware of the anchor, and will probably not look in earlier versions of the 

document, even though it will still be present in these versions. 

3. It is the editor's responsibility to see that link anchors are moved. 

 In chapter 8, a number of techniques were discussed for editing link anchors 

with specific offsets. It is the authoring user's responsibility to ensure that one 

of these methods is employed. The most likely method is that a link aware 



150 

 

editor will be used at the time that a document is edited, and this link aware 

editor will save the new versions of the links rather than replacing the old 

versions. 

4. Modified "just-in-time link repairs". 

 The current implementation of "just in time link repairs" updates out of date 

links pointing into the current document, at the time that the document is 

loaded. This algorithm may be altered to spot when there is a more recent 

version of the document within the scope of the current context and to make 

new versions of the appropriate links. This could be done using context as 

described in section 8.5, but given that, in this scenario, we have both versions 

of the document available to us it would be more appropriate to update the 

links using the diff of the two files, as described in section 8.11. 

This entire discussion on maintaining link integrity by versioning assumes that 

editing of documents is only carried out in a Microcosm friendly way. If a version 

of a document is edited off line, rather than correctly versioned, then the scheme 

will fail. In this scenario this does not seem an unreasonable restriction, in view of 

the fact that in any application where one was employing a versioning system, 

such as RCS or SCCS, one would only be able to access the documents through the 

official interface, and in this environment, creating a new version of a document 

without moving the links into the new document would be an act of deliberate 

vandalism. 



151 

 

Chapter 11.  Concurrency Problems 

Most Microcosm users currently either run the system as a single user, or else by 

mounting a set of read-only shared network resources which they supplement by 

adding private links and resources on their local machine. In these cases the 

concurrency problem does not occur. However, if two or more users are attempting 

to update the same document, DMS file or linkbase file at the same time, then 

problems may occur. The standard problem is the lost update which occurs when 

two users both load the same database record and alter it, then user A saves, then 

user B. User A's update will be overwritten by user B. The problem with the 

Microcosm DMS and linkbase files is currently even worse than this as, at present, 

each user caches all the files locally, to increase speed of response. Changes are 

written back to the central database at the time that the user quits, but there is no 

notification mechanism to inform other users that there is a need to update their 

local copies, which again can lead to lost updates. 

Clearly the current design of Microcosm is flawed with respect to concurrency 

control, and this problem can open many opportunities for loss of data (when new 

links are overwritten by another user’s updates) or for loss of data integrity (when 

updated links are lost again by another user’s updates). This chapter examines the 

science of concurrency control in hypermedia systems and examines ways that 

Microcosm could be improved to solve this problem. 

The standard method of dealing with concurrency control is to introduce some 

form of locking, whereby a transaction locks the records that it is about to alter, so 

that other transactions are unable to use it during this interval. For a treatment of 

locking mechanisms the reader is referred to any standard text on database systems 

e.g. Elmasri & Navarthe (1994). The fundamental difference with hypermedia 

systems is that transactions are typically long (Grønbæk et al, 1993), so if a user is 

working on a document it will prevent other users accessing that document for 

some considerable period. It is tempting to suggest that the document might be 

viewed by other users in a read-only mode, but in that case link making may also 

need to be disabled, otherwise link anchors might become invalid when the user 

editing the document saves. 



152 

 

In order to introduce locking into hyperbase systems it is necessary to identify 

the smallest possible component that can be locked. In practice this means making 

composite documents, where each subsection of the document is a separately 

addressable (and therefore lockable) object, and each attribute of an object is 

separately lockable. 

Hypermedia systems intended specifically for collaborative computing, such as 

EHTS (Wiil & Leggett, 1993) which is based on Aalborg University's "Hyperbase" 

(Wiil & Østerbye, 1990) and DHM (Grønbæk et al, 1993) provide specific support 

for fine grained locking mechanisms and event notification. Wiil and Leggett (1993) 

identify the following concurrency control requirements for hypermedia systems: 

1. Event notification, so users may be made aware of changes that other users have 

made to objects in the system. 

2. Fine grained notification, so that it is possible to distinguish, for example between 

a write operation on a whole object and some attribute of that object. 

3. User controlled locking, in order to provide support for long transactions, such as 

editing a large object. 

4. Shared locking, so that for example, one user may at least read an object that is 

currently being edited by another. 

5. Fine grained locking, so that every attribute of an object, as well as the object 

itself, may be separately locked. 

6. Persistent collaboration information, so that in the event of a server crash it will be 

possible to restore the server process to the state at the time of the crash. 

The current implementation of Microcosm does not lend itself to such solutions 

as Microcosm is not a client-server architecture, and was not intended for such fine-

grained collaborative working. When users are working on a shared resource base 

they download the DMS database and the communal linkbase data from the server 

at the time that they begin a particular application session, and it is only at the end 

of the entire session that these database files are written back to the file server, if 

they have changed. This introduces enormous opportunities for lost updates to 

occur, since a session may be long, and many other users may have updated the 



153 

 

communal database during the session, all of which will be lost when the original 

user writes back. 

Before investigating solutions to the problem in Microcosm it is worth 

understanding why Microcosm has been designed as it has. Microcosm was never 

intended to be a client-server architecture. The current generation of PC's on which 

Microcosm runs will not operate as process servers to external clients. Instead we 

designed Microcosm as a "personal viewport on an external universe of 

information": Microcosm would be able to access any resource on any machine (of 

any architecture) so long as it could arrange to copy whatever files were needed 

from that machine. Therefore Microcosm must be able to operate where the only 

access to shared resources is via a file server. This requirement does not preclude 

Microcosm from working in a client-server mode, but precludes this from being the 

only scenario. Work on accessing remote linkbases and DMS's using peer to peer 

networking is currently a research interest within the laboratory (Hill & Hall, 1994) 

(Hill, 1994) (Melly, 1994). 

A second reason why Microcosm was not written as a client-server architecture 

is remote database access speed. In the early stages of the design of ZOG, Akscyn 

observed (McCracken & Akscyn, 1984) that speed of access to nodes in a hypertext 

environment was an essential requirement if users were not to become discouraged 

from enquiring about links. In order to ensure that the fairly complex queries that 

Microcosm makes of its linkbases and DMS were carried out at sufficient speed, 

especially when one considers the number of messages that would need to pass to 

the server and back, we felt that it was necessary to cache all the linkbase and DMS 

indexes and data locally, even if they were originally fetched from a fileserver. (In 

recent years systems have become much faster: also thanks to the WWW, users’ 

expectations of the speed of response have actually dropped, so it might now be 

feasible to implement a client-server architecture). 

Records in a Microcosm linkbase and DMS are not fixed length, neither are 

fields. In the prototype versions of Microcosm we used fixed width records and 

fields, and we used a commercial database to implement the linkbases. However it 

soon became apparent that users would wish to add their own fields (e.g. user 

defined document attributes) and that it was not possible to fix the width of a field, 

since, for example, the size of a selection might be anything from a couple of 

characters, to a large paragraph. For these reasons we re-implemented the 



154 

 

linkbases and DMS, initially using a commercially available C-Tree package, but 

this introduced further limitations, such as the number of fields that could be 

indexed, so we re-implemented again using our own in house B-Tree written by 

Ian Heath. 

This version of the database keeps each ASCII record as a line in a text file 

known as the "RAW" file, and maintains indexes, based on every field (tag) that has 

been introduced, into the records of the RAW file. A substantial API allows 

programmers to write code which queries databases based on this code. At the time 

that the code is loaded it will check to see that the indexes still correspond to the 

RAW file, and if not will recreate the indexes. Building new indexes takes 

considerably longer than copying indexes from a fileserver, so generally the full set 

of indexes are maintained on disk, with the RAW file, and copied to the user 

machine at start-up. The current system has no concept of individual record 

locking. 

Given the above information, it is now possible to investigate solutions to the 

concurrency problems that the current version of Microcosm introduces when 

using shared documents, linkbases and DMS on a fileserver architecture. 

11.1. Read-Only Shared Resources. 

The simplest solution to the concurrency problem is to prevent it from ever 

happening. All shared resources (documents, linkbases and DMS) should be made 

read-only. This appears to be a highly restrictive solution, but in many 

applications, such as the delivery of teaching materials, this solution is perfectly 

adequate. Link making will still be possible, so long as any links created are only 

saved in a private linkbase. This is anyway the usual Microcosm configuration: 

changes to the shared resources are carried out at a time when no other user is 

concurrently accessing the resources. 

Unfortunately, the current version of Microcosm does not support the idea of a 

private DMS, so it is not possible for users in such an environment to add private 

documents to the system. The modification of the Microcosm system to allow 

separate chained DMS's (in much the same way that linkbases are chained) would 



155 

 

solve this problem, but is currently not implemented: it is on the agenda for the 

next version. 

11.2. Crude Locking and Update Notification. 

As explained in the previous section, in many situations, users will not wish to 

modify the shared resources. However, in a system in which a small number of 

changes to a shared resource are envisaged at a time when other users are 

accessing the system, then it would be possible to adopt a crude user controlled 

locking and notification scheme as follows. 

Whenever a user wishes to make changes to a shared linkbase or the DMS they 

must first inform the system of their intention, which will then: 

a. Check that the file date on the shared version of the database is the same as 

the file date on the locally cached version. If not, they must first re-load the 

database. 

b. Check the lock on the relevant database. If it is locked, then someone else is 

editing it, so we must wait till they have finished. 

c. If it is not locked, then the system must now lock it. 

d. Make the required edits. 

e. Write the required databases back to the server. 

f. Unlock the database. 

In order to allow editing of a shared document the problem is more complex, 

since it is possible that links will also be changed so the system must: 

a.  Check that the file date on all shared linkbases is the same as the file date on 

the locally cached versions. Reload any out of date linkbases. 

b. Check that all locks on the linkbases and on the document to be edited are 

available. 

c. Lock all linkbases and the document.. 



156 

 

d. Edit the document using a link aware editor, or mend the links after the edit. 

e.  Write the document and linkbases back to the server. 

f. Unlock the document and linkbases. 

g. Set a flag stating the date and time at which any shared document was last 

edited. 

Locks must be kept in a shared file (which itself needs setting as read only by 

any application while changing it!) which contains a list of linkbases that are 

locked, the DMS lock, and the date of last document edit flag.  

From the point of view of any user simply browsing the system, the locally 

cached DMS and linkbases will remain consistent (if not entirely up to date) so long 

as no document has been edited, in which case it is possible that the locally cached 

links will no longer be valid. If each shared file accessed is preceded by a check on 

the date of last document edit flag, then it is possible to see whether edits have 

occurred since the local linkbases were loaded. In this case it will be necessary to 

reload the relevant shared linkbases. Of course, it is possible to check and reload 

linkbases and DMS at any time, but constant checking and reloading could become 

a nuisance. 

The above system enables users to make edits to a Microcosm application at the 

same time as other users are accessing it, but has two shortcomings. 

1. It does not ensure that private linkbases are updated at the time that shared 

linkbases are updated. This can only be solved by using one of the link repair 

methods detailed in chapter 8. 

2. If many users are making many changes, particularly document edits, the 

number of occasions on which a user needs to reload the shared linkbases and 

DMS might become so frequent as to become a serious hindrance to use of the 

system. In an application area where such frequent changes are envisaged this 

approach would be inappropriate. 



157 

 

11.3. Microcosm Version Contexts. 

Subsection 10.5.3 introduced a scheme for applying versioning contexts within 

Microcosm, and pointed to the fact that such a scheme is also useful in helping to 

prevent concurrency problems, since links and documents are never edited, but 

rather, new ones are created. In this scenario, only one user is allowed editing 

rights on a particular context at one time: other users are allowed to browse within 

the context, but may not change anything that belongs to this context. Link making 

is only be allowed into a private local linkbase, and these links cannot be 

guaranteed to remain consistent, as items within the context might be edited after 

they were made. Workers within other contexts are able to continue to work as 

normal. 

Under these conditions the only concurrency problem that remains is that, 

when the DMS and shared linkbases are written back to the server at the end of a 

session, it is possible that they could overwrite changes made during the editing 

period by other users. However, in this case, it is possible to produce a simple 

database update algorithm. This is possible because, when using versioned 

contexts, nothing in any other context is changed by the current context, and only 

one user may be editing the current context. The update algorithm then becomes a 

case of removing all records marked as belonging to the current context from the 

shared database, and adding all records from the new version of the current 

context.  

This method causes minimum disruption for other users, so long as the 

restriction of only one authoring user per context is acceptable.  

11.4. Client Server Architecture for Databases. 

If none of the above solutions to the concurrency problems are acceptable in a 

particular application, then presumably the application is one that requires a true 

co-operative working environment. The simplest way to achieve this would be to 

rewrite those parts of the architecture that handle database records and documents 

as a client-server hyperbase. 



158 

 

If this were done, then individual nodes, links and DMS records could be write-

locked. Furthermore, within such an architecture, notification control and link 

integrity maintenance would be far simpler to implement. However, the 

advantages of the simple customisation of the single user environment and the 

possibilities opened by a truly distributed architecture would be lost . 

Mylene Melly has been working on extending Microcosm for co-operative 

working (Melly, 1994). In order to achieve this she has re-implemented the 

linkbases using the Exodus object oriented database, and has done away with the 

DMS altogether. She has retained the peer to peer communications of the system. 

The result is that a filter manager can arrange to route link operations through a 

linkbase running on a remote machine, and individual records within each 

linkbase may be locked. The resulting system solves the problems of concurrency, 

but the introduction of distributed linkbases and the absence of a DMS further 

aggravates the problems of maintaining link integrity when editing documents. 

In order to produce a truly "industrial strength" version of Microcosm for large 

corporate teams working in a co-operative manner, the team are currently 

evaluating the possibility of implementing the linkbases and DMS using a 

commercial database with a client server architecture. It may well turn out that 

rather than allowing separate linkbases and DMS's the best solution is to use only 

one database to hold all links and DMS entries. Records within these databases 

could be separated into logical linkbases and DMS's by some tag, and the database 

might be distributed in order to optimise for speed at any particular site. If the 

team opt to take this route, we will have to weigh up very carefully the advantages 

of increased consistency and the ease of concurrency control, when balanced 

against the loss of openness and simplicity that is characterised by the current 

model. 



159 

 

Chapter 12.  Conclusions 

12.1. The State of Hypermedia 

Ever since the introduction of commercial hypermedia systems in the mid 1980's, 

conference keynote speakers have urged forward the research community, 

predicting that the following year would be the year in which hypermedia would 

finally become a commercial success and would be accepted by the user 

community. However, by the early 1990's the euphoria began to diminish and a 

change in tone became noticeable. Frank Halasz (1991) revisited his "seven issues 

for the next generation of hypertext" and attempted to re-focus the research 

community onto what many believed to be the important issues, but perhaps the 

best explanation of the problems facing the community was provided by Ian 

Ritchie (1992) in an attempt to instil some commercial realities.  

Ritchie explained that when a new technology is introduced, there is an initial 

phase when it is enthusiastically embraced by the "early adopters". These are the 

technophiles who take a technology and pro-actively seek a problem which can use 

this technology as a solution. During this phase, the uptake of the technology will 

be fast, but there is a limit to the growth defined by the number of such early 

adopters. However, the much larger group of users will be unimpressed at this 

stage: these are not people looking for new technologies, but people who only look 

for a solution to a problem when they have the problem, but are unable to solve it 

with any technology with which they are currently familiar. Only at this stage will 

these users begin to evaluate new technologies. 

In the late 1980's we saw the effect of the early adoption of hypermedia. By the 

early 1990's the community was becoming dispirited by the failure of the 

technology to continue to grow at the predicted rate. Now in the mid 1990's we see 

the real users making considerable use of the technology in the form of the World 

Wide Web. The importance of this system cannot be under-estimated, and its 

success has dumbfounded the pundits who forecasted that the way forward was 

ever more sophisticated systems. It turned out that what the majority of users 

really wanted more than anything else was seamless access to information on the 



160 

 

Internet! Magazines now report that Tim Berners-Lee invented hypertext, entirely 

ignoring the past history of research and development. 

However, although the Web is a very open system in some respects, there are 

application areas for which it is unsuitable in its current form: co-operative 

working environments, corporate information systems, technical documentation, 

CD-ROM publishing, and personal information environments to name but a few. 

Perhaps the problem for hypermedia has been the breadth of application areas 

in which it has attempted to provide solutions. Currently we see the acceptance of 

hypermedia in areas such as technical documentation (using systems like Guide, 

Hypercard and Microcosm) and the delivery of educational and other information 

resources (often using the Web). However, hypermedia's promise to provide new 

environments for the organisation of personal information, co-operative working 

or corporate information systems has not yet been realised.  

There are two issues to consider here. First, the user community is reluctant to 

commit to a technology in which there are no accepted standards. Of course, 

standards do exist, such as HyTime and HyperODA, but commercial realisations of 

these standards have yet to make any dent in the market place, and as yet no large 

software house has produced a system which might become a de facto standard. 

Secondly, the commercial systems that do exist do not yet provide either the 

security or the functionality that is required of industrial strength hypermedia 

systems (Malcolm et al, 1991). 

Probably the key technological issue for hypermedia now is integration. Users 

will only fully accept the technology when it is part of their working environment. 

They do not wish to be compelled to leave their current working environment and 

enter a new environment in order to be granted hypermedia functionality: this 

way, all they can do is provide static information environments, which are of 

course those application areas which have been most successful so far, for exactly 

this reason. The next generation of hypermedia systems must be integrated with 

the users' personal working environments so that they can provide and access 

multiple methods for browsing and locating information with the minimum 

disruption to their working patterns. This thesis has examined the background to 

the current state of hypermedia, and reported on those systems which are on the 

leading edge. 



161 

 

12.2. Microcosm 

The Microcosm project has been one of the first to attempt to address the issues of 

industrial strength hypermedia, by providing a link service that is entirely 

separated from the applications that access that link service, and which allows the 

applications to communicate with the link service at a number of different levels. 

The system, being modular in design, is highly flexible and can be tailored and 

extended in a number of ways in order to represent a number of different 

hypermedia models and to provide a range of functionality, particularly a rich 

array of methods for browsing and locating information. 

As a research tool, Microcosm has been used in a range of application areas, 

some of which have been described in this report, and it maybe that it is this 

flexibility that is both the strength and weakness of the system. It is very difficult to 

explain exactly what Microcosm is, just because it is so flexible that most projects 

use quite different configurations of the system, and use it for such different 

applications. This thesis has presented the design and functionality of the base 

system, the commercially released product known as Version 3, while at the same 

time introducing a number of extensions, such as the Universal Viewer, which are 

available within the research laboratory. 

12.3. Integrity Issues 

Any system which entirely separates structural information from content provides 

the potential for inconsistencies to occur, such as the editing problem (subsection 

7.2.1) and the dangling link problem (subsection 7.2.2). These problems have been 

fully explained, and a number of solutions to each problem have been proposed 

and examined, with particular reference to their application within Microcosm.  

The conclusion of these studies is that there is no one solution which 

guarantees to ensure integrity of the hypermedia structure under all conditions 

when working with a system that is as open as Microcosm; it is necessary to 

impose some conditions on the use of the system if integrity is to be assured. 

Conditions may range from simple restrictions as to the use of the system, such as 

forbidding the editing of documents except by the use of a link aware editor, 

through to providing variants of the system which are configured in such a way 



162 

 

that these problems do not occur. For example, the system might require that all 

edits cause new versions of the document, or might be implemented such that all 

DMS and link requests are serviced by a single database management system. Such 

a DBMS could control the integrity and handle the concurrency problems, while 

providing all the security features required by a commercial organisation. 

However, all of the conditions have the effect of restricting the full functionality 

of Microcosm: they are in effect closing the system in some respects. As the number 

of organisations that approach us to discuss using Microcosm for their information 

needs increases, we have begun to learn that, to some extent, this will be necessary, 

but need not have the appearance of restricting the user. To illustrate this point I 

will consider the major application areas. 

Information and educational resource delivery, and technical documentation 

have thus far been our major application areas. In these areas the opportunity for 

failures in link integrity are small: the resources are generally published in a read-

only format, and will not themselves be changed by the user. Link creation and 

editing are possible in the knowledge that the content will not be changing. The 

authors of the information may wish to produce new versions of the information, 

but they can arrange to supply the data in some form, such as RTF, for which link 

aware editing is provided. 

Where Microcosm is being used to provide a personalised information 

environment, the situation is quite different: the information will be frequently 

changing and the file store will be occasionally reorganised. However, in this case 

the quality of information environment required is generally quite different. Link 

source anchors may be generic or local, so are not subject to the editing problem, 

and destination anchors are generally whole files, or can be expressed in terms of 

queries rather than byte offsets, again avoiding the editing problem. Also, in such 

an environment one can reasonably expect the user to take responsibility for 

ensuring that the DMS entries are maintained. The problem here is more one of 

providing a light hypermedia link service with the minimum disruption to the 

working environment, rather than one of ensuring link integrity. 

It is in the area of co-operative commercial information environments that the 

link integrity problems are most severe. In such an environment users will wish to 

share data, co-operatively edit data and publish data, while still allowing other 

users to link into and out of the information. In a large scale environment, systems 



163 

 

which rely upon techniques such as just-in-time link repairs (section 8.5) may well 

cause such a heavy load on the system, as it is currently implemented, that they 

would not be practical. For such an environment it will be necessary to resort to a 

client server technology to serve the documents and the links, and to hold these 

links in such a way that the system can control the integrity, either by only 

allowing link aware editing, or by using a versioning system of the kind described 

in subsection 10.5.4. 

12.4. The Future 

In section 12.1 I examined the current state of hypermedia. There are application 

areas in which hypermedia has been successful, notably all aspects of information 

publishing, such as electronic journals, technical documentation and the delivery of 

educational material. There are those that advocate that, with the advent of the 

Web, hypermedia has passed through the stage of being an active research topic, 

and is now no more than a development problem. However, I disagree with this 

view, and in this final section will summarise some of the important issues that 

must still be addressed. 

There are many application areas in which hypermedia has still to make its 

mark. People use computers, mainly, to store and retrieve information. 

Hypermedia has the potential to provide the richest set of tools for providing the 

functions necessary to store and retrieve heterogeneous information. One might 

envisage the hyperbase as the “killer application” of the future, in much the same 

way that relational database has been for the previous decade. 

Hyperbases for corporate information management, or even personal desktop 

management have not yet arrived. The designers of Microcosm always intended 

that the system would be used in such areas. The problem now is to build the 

industrial strength version of the product, that will provide all the qualities 

associated with commercial database systems, such as persistence, versioning, wide 

area network accessibility, multiple users and concurrency control, along with a 

range of tools for maintaining, manipulating, tailoring and extending the system. 

Perhaps one of the most exciting recent developments in hypermedia has been 

the realisation that hypermedia is about more than simply clicking on buttons. 



164 

 

Hypermedia can provide an interface through which a user may ask the system to 

find out what it knows about any object within view, and with the advent of agent 

technology the system can reach out to the whole of the Internet in search of this 

information. Microcosm was designed from the beginning as a system that allowed 

the user to select objects and ask questions about the object, and the filter chain 

makes it possible to dynamically install any process, local or remote, that might 

help to service a request. The subject of the use of agents to support the information 

environment will, alone, be a topic for research for the foreseeable future. 

The future of the Microcosm system, or indeed any other link service, depends 

upon making the link service available to all the tools and applications that users 

expect in their working environment, with a minimal disruption to their working 

practices.  If users are to be encouraged to invest the effort to make trails and links 

available to other users, the integrity of the systems of the future must not become 

corrupted every time that a document is moved or edited. This thesis has examined 

in this issue in detail, and suggested a number of approaches to ensuring that such 

integrity can be maintained.  



165 

 

Bibliography 

Akscyn, R., McCracken, D.L. & Yoder, E. KMS: A Distributed Hypertext for Sharing 
Knowledge in Organizations. Communications of the ACM. Vol 31(7). pp 820-
835. July 1988. 

Anderson, K.M., Whitehead, E.J. Jr. & Taylor, R.N. Chimera: Hypertext for 
Heterogeneous Software Environments. In: The Proceedings of the ACM 
European Conference on Hypermedia Technology, ECHT '94. Edinburgh. 
pp 94-107. ACM Press. 1994 

Andrews K., Kappe, F. & Maurer, H. Hyper-G: Towards the Next Generation of 
Network Information Technology. Journal of Universal Computer Science, 
April 1995. 

Apple Computer Inc. Inside Macintosh: Inter-application Communication. Addison 
Wesley. 1994 

Apple Computer Inc. OpenDoc Technical Summary. 1993 

Aßfalg, R. (ed.). The Proceedings of the Workshop on Open Hypertext Systems, Konstanz, 
May 1994. 

Beitner, N.D.. & Hall, W. Putting the media into hypermedia. In: The Proceedings of 
the IS&T/SPIE Conference on Multimedia Computing and Networking 
1995, Vol. 2417. 1995. 

Berners-Lee, T.J., Cailliau, R. & Groff, J-F. The World Wide Web. Computer Networks 
and ISDN Systems 24(4-5), pp 454-459. 1992 

Berners-Lee, T. Hypertext Transfer Protocol (HTTP), available by ftp as http-spec.ps 
from info.cern.ch in directory /pub/www/doc. CERN, 1993 

Bernstein, M. An Apprentice that Discovers Hypertext Links. In: A. Rizk, N. Streitz and 
J. Andre eds. Hypertext: Concepts, Systems and Applications. The Proceedings of 
The European Conference on Hypertext, INRIA, France. pp 212-223, Cambridge 
University Press. 1990 

Bernstein, M. Enactment in Information Farming. Technical Briefing in: The Fifth 
ACM Conference on Hypertext. ACM. 1993  

Bigelow, J. Hypertext and CASE. IEEE Software 5(2). Mar. 1988 

Brown, P.J. Turning Ideas into Products: the Guide System. In: Proceedings of the 
ACM Hypertext '87 Workshop. The University of North Carolina at Chapel 
Hill. pp 33-40. Nov. 1987. 

Buchanan, M.C & Zellweger, P.T. Specifying Temporal Behaviour in Hypermedia 
Documents. In: D. Lucarella, J. Nanard, M. Nanard, P. Paolini. eds. The 
Proceedings of the ACM Conference on Hypertext, ECHT '92 Milano, pp 262-
269. ACM Press, 1992. 

Bush, V. As We May Think. Atlantic Monthly, pp 101 - 108, July 1945. 

Campbell, M & Goodman, J. HAM: A General-Purpose Hypertext Abstract Machine. 
Comm. ACM 31(7). pp 856-861. July 1988. 



166 

 

Carr, L.A., Barron, D.W., Davis, H.C. & Hall, W. Why Use HyTime?. EP-ODD, Vol. 7 
No 1. 1994a 

Carr, L.A., Davis, H.C. & Hall, W. Using HyTime Architectural Forms for Hypertext 
Interchange. Information Services & Use. 13(2). 1993 

Carr, L.A, Hollom, R.J., Hall, W. & Davis, H.C. The Microcosm Link Service and its 
Application to the World Wide Web. In: Cailliau, R., Nierstrasz, O. & Ruggier, 
M. (eds.). The Proceedings of the First World-Wide Web Conference. pp 25-34. 
CERN. May 1994b. 

Cawley, Ashman, Chase, Dalwood, Davis & Verbyla. A Link Server For Integrating 
the Web with Third Party Applications In: The Proceedings of AusWeb95, 
http://www.scu.edu.au/ausweb95/papers/integrating/cawley/ 

Conklin, J. Hypertext: An Introduction and Survey. IEEE Computer 20, 9, pp 17 - 41. 
1987. 

Conklin, J & Begeman, M.L. gIBIS: A Hypertext Tool for Exploatory Policy Discussion. 
ACM TOIS. pp 140-152, Oct 1988. 

Davis, H.C., Hall, W., Heath, I., Hill, G. & Wilkins, R. Towards an Integrated 
Information Environment with Open Hypermedia Systems. In: D. Lucarella, J. 
Nanard, M. Nanard, P. Paolini. eds. The Proceedings of the ACM Conference on 
Hypertext, ECHT '92 Milano, pp 181-190. ACM Press, 1992. 

Davis, H.C., Hall, W. & and Heath, I. Media Integration Issues within Open 
Hypermedia Systems. In: Damper, R.I., Hall, W. & Richards, J.W. (eds.) 
Multimedia Technologies and Future Applications. Pentech Press, 1994a. 

Davis, H.C., Knight, S.K. & Hall, W. Light Hypermedia Link Services: A Study in Third 
Party Application Integration. In: The ACM Conference on Hypermedia 
Technology, ECHT '94 Proceedings. pp 41-50. ACM. Sept. 1994b. 

Davis, H.C. & Heath, I. An Evaluation of Actor for Developing Windows Applications. 
Technical Report, CSTR 89-5. The University of Southampton. 1989. 

Davis, H.C. & Hey, J.M.R. Automatic Extraction of Hypermedia Bundles from the 
Digital Library. In: Shipman, F.M. III, Furuta, R.,& Levy, D.M. The 
Proceedings of Digital Libraries ‘95. Texas A&M University, June 1995 

Davis, H.C., Hutchings, G.A. & Hall. W. A Framework for Delivering Large-Scale 
Hypermedia Learning Material. In: Hermann Maurer. ed. Educational 
Multimedia and Hypermedia Annual 1993, Proceedings of ED-MEDIA '93, 
Orlando, Florida, USA, AACE. 1993. 

Davis, H.C. Using Microcosm to access Digital Libraries. In: Schnase, J.L., Leggett, J.J., 
Furuta, R.K. & Metcalfe, T. (eds.). The Proceedings of Digital Libraries '94. 
Texas A&M University, June 1994. 

Davis, H.C.  To Embed or Not to Embed..., Communications of the ACM, Vol 38(8), 
pp 108-109. August 1995. 

DeRose, S.J & Durand, D.G. Making Hypermedia Work: A User's Guide to HyTime. 
Kluwer Academic Press. 1994 



167 

 

Desisle, N & Schwartz, M. Neptune: A Hypertext System for CAD Applications. In: The 
Proceedings of ACM SIGMOD '86. Washington D.C. pp 132-142. ACM 
Press. May 1986. 

Desisle, N.M. & Schwartz, M.D. Contexts - A Partitioning Concept for Hypertext. ACM 
Transactions on Office Information Systems, pp 168-186, Vol. 5(2) April 
1987 

Duck, S. Hall, W., Pickering, C. & Riley, M. A Project Management Based Decision 
Support System for Use in the Construction Industry. In: Powell, J.A. (ed.), 
Proceedings of the Conference on Informing Technologies to Support Engineering 
Decision Making. pp 143-154. EPSRC. Nov. 1994. 

Durham, T. The Gathering of an Information Harvest. Computing. 27th April 1989. 

Elmasri, R. & Navathe, S.B. Fundamentals of Database Systems (Second Edition). 
Benjamin Cummings. 1994 

Engelbart, D.C. A Conceptual Framework for the Augmentation of Man’s Intellect In 
Vistas of Information Handling, Vol. 1, Spartan Books, London. 1963. 

Flohr, U. Hyper-G Organizes the Web. Byte 20(11). pp 59-64. November 1995. 

Fountain, A.M., Hall, W., Heath, I. & Davis, H.C.. MICROCOSM: An Open Model for 
Hypermedia With Dynamic Linking, In: A. Rizk, N. Streitz and J. Andre eds. 
Hypertext: Concepts, Systems and Applications. The Proceedings of The European 
Conference on Hypertext, INRIA, France. Cambridge University Press. 1990 

Fox, E.A., Akscyn, R.M., Furuta, R.K. & Leggett, J.L. Digital Libraries: Introduction. 
Communications of the ACM, Vol. 38(4), pp 22-29, April 1995. 

Gladney, H.M., Ahmed, Z., Ashany, R., Belkin, N.J., Fox, E.A. & Zemankova, M. 
Digital Library: Gross Structure and Requirements. IBM Research Report RJ 
9840. IBM, May 1994. 

Goldstein, I. & Bobrow, D. A Layered Approach to Software Design. In: Barstow, D., 
Shrobe, H. & Sandwell, E. (Eds.). Interactive Programming Environments , pp 
387-413, McGraw Hill, 1987. 

Goodman, D. The Complete Hypercard Handbook. Bantam Books, New York. 1987. 

Goose, S. & Hall, W. The Development of a Sound Viewer for an Open Hypermedia 
System. CSTR 94-03.. The University of Southampton, U.K. 1994. 

Greif, I. Hypertext and Group-enabling: Lessons from the Desktop. Key-note address 
given at Hypertext '93. Seattle, Washington. November 1993. 

Grønbæk, K. & Trigg, R.H. Design Issues for a Dexter-Based Hypermedia System. In: D. 
Lucarella, J. Nanard, M. Nanard, P. Paolini. eds. The Proceedings of the ACM 
Conference on Hypertext, ECHT '92 Milano, pp 191-200. ACM Press. Nov. 
1992 

Grønbæk, K. & Trigg, R.H. From Embedded References to Link Objects: Toward a New 
Data Model for Open Hypermedia Systems. To be published in The 
Proceedings of Hypertext ‘96. ACM 1996 



168 

 

Grønbæk, K., Hem, J.A., Madsen, O.L. & Sloth, L. Designing Dexter-Based Co-
operative Hypermedia Systems. In: Proceedings of Hypertext '93, Seattle, 
Washington, November 1993. ACM. 1993 

Grosky, W. & Mehrota, R. (eds.). IEEE Computer, Special Issue on Image Database 
Management. Dec. 1989 

Haake, A. CoVer: A Contextual Version Server for Hypertext Applications. In: D. 
Lucarella, J. Nanard, M. Nanard, P. Paolini. eds. The Proceedings of the ACM 
Conference on Hypertext, ECHT '92 Milano, pp 43-52. ACM Press, 1992. 

Haan, B.J., Kahn, P., Riley, V.A., Coombs, J.H. and Meyrowitz, N.K. IRIS 
Hypermedia Services. The Communications of the ACM. 35(1) Jan. 1992.  

Heath, I. An Open Model for Hypermedia: Abstracting Links from Documents. PhD 
Thesis. The University of Southampton. Oct. 1991. 

Halasz, Frank G.", Reflections on NoteCards: Seven Issues for the Next Generation of 
Hypermedia systems, Communications of the ACM, 31(7), pp 836-855, 1988 

Halasz, F. & Schwartz, M. The Dexter Hypertext Reference Model. In: The Proceedings 
of the Hypertext Standardization Workshop. pp 95-133, Gaithersburg. US 
Government Printing Office. Jan. 1990. 

Halasz, F. & Mayer, S. (edited by Grønbæk, K. & Trigg, R.H). The Dexter Hypertext 
Reference Model. Communications of the ACM. pp 30-39. 37(2). Feb. 1994. 

Halasz, F. Seven Issues Revisited. Keynote speech to Hypertext '91, San Antonio, 
1991 

Hall, W. Ending the Tyranny of the Button. IEEE Multimedia 1(1). 1994.  

Hall, W & Davis, H.C. Hypermedia Link Services and Their Application to Multimedia 
Information Management. J. of Information and Software Technology, pp 197-
202, 36(4). 1994. 

Hall, W., Hill, G.J. & Davis, H.C. The Microcosm Link Service. In The Proceedings of 
Hypertext '93: the Fifth ACM Conference on Hypertext. Seattle, 
Washington, November 1993. pp 256-259. ACM Press. 1993a 

Hall, W, Lewis, P.H. & Davis, H.C. Enhanced Handling of Images and Digital Video 
Sequences in Multimedia Information Systems. SERC Project GR/J53614, 1993b 

Hammwöhner, R & Rittberger, M. KHS - Ein offenes Hypertext-System. Technical 
Report 28-93 (WITH-3/93), Department of Information Science, University 
of Constance. 1993. 

Hardman, L., Bulterman, D.C.A. & van Rossum, G. Adding Time and Context to the 
Dexter Model. Communications of the ACM. pp 50-63. 37(2). Feb. 1994. 

Hicks, D.L, Leggett, J.J, & Schnase, J.L. Version Control in Hypermedia Databases. 
Technical Report TAMU-HRL 91-004. Hypertext Research Laboratory, 
Texas A&M University. July 1991. 

Hill, G.J, Wilkins, R.J & Hall, W. Open and Reconfigurable Hypermedia Systems: A 
Filter Based Model. Hypermedia 5(2). 1993 



169 

 

Hill, G.J. & Hall, W. Extending the Microcosm Model to a Distributed Environment. In: 
The ACM Conference on Hypermedia Technology, ECHT '94 Proceedings. 
ACM. Sept. 1994. 

Hill, G.J. Extending an Open Hypermedia System to a Distributed Environment. PhD 
Thesis. The University of Southampton. April 1994 

HTML. HTML overview, http://www.ucc.ie/info/net/htmldoc.html, 1994 

Hutchings, G.A. Patterns of Interaction with a Hypermedia System: A Study of Authors 
and Users. PhD Thesis. The University of Southampton. June 1993. 

Hutchings, G.A., Carr, L. & Hall, W. StackMaker: an Environment for Creating 
Hypermedia Learning Material. Hypermedia, 4(3). pp 197 - 212. 1993a. 

Hutchings, G.A., Hall, W & Colbourn, C.J. Patterns of Students' Interactions with a 
Hypermedia System. Interacting With Computers. 5(2). 1993b 

HyperODA, HyperODA - a Working Draft for Extending ODA Standards to Support 
Hypermedia Applications. ISO/IEC JTC1/SC18/WG3 N1898, 1992 

HyTime, Hypermedia/Time-based Structuring Language, ISO/IEC 10744:1992, 1992 

Julienne, A. & Russell, L. Why You Need ToolTalk. SunExpert Magazine pp 50-59. 
Mar. 1993. 

Kacmar, C.J. & Leggett, J.J. PROXHY: A Process-Oriented Extensible Hypertext 
Architecture. ACM Trans. on Information Systems, 9(4) pp 299-419. Oct. 
1991. 

Kacmar, C. J. A Process Approach for Providing Hypermedia Services to Existing, Non-
Hypermedia Applications. To be published in EPODD, 1995. 

Lawton, D.T. & Smith, I.E. The Knowledge Weasel Hypermedia Annotation System. In 
The Proceedings of Hypertext '93: the Fifth ACM Conference on Hypertext. 
Seattle, Washington, November 1993. pp 106-117. ACM Press. 1993 

Leggett, J. & Schnase, J. Dexter with Open Eyes. Communications of the ACM 37(2) 
pp 77-86. Feb. 1994 

Leggett, J.L., Schnase, J.L., Smith, J.B. & Fox, E.A. Final Report of the NSF Workshop 
on Hyperbase Systems. TAMU-HRL 93-002, Texas A&M University. July 
1993. 

Lewis, P.H., Wilkins, R.J., Griffiths, S.R., Davis, H.C. & Hall, W. Content Based 
Navigation in an Open Hypermedia Environment. In: The Proceedings of the 
IEE Colloqium on Document Image Processing and Multimedia 
Environments. IEE, November 1995. 

Li, Z., Davis, H.C. & Hall, W. Hypermedia Links and Information Retrieval. In: The 
Proceedings of the 14th British Computer Society Research Colloquium on 
Information Retrieval, Lancaster University, 1992 

Li, Z. Information Retrieval for Automatic Link Creation in Hypertext Systems. PhD 
Thesis, The University of Southampton, U.K. October 1993. 

Lovins, J.L. Development of a stemming algorithm. Mechanical Translation and 
Computational Linguistics, 4, pp 22-31, 1968. 



170 

 

Maioli, C., Penzo, W., Sola, S. & Vitali, F. Implementing External Anchors in the Dexter 
Reference Model. Technical Report. Laboratory of Computer Science, 
University of Bologna, Italy. 1993a 

Maioli, C. Sola, F. & Vitali, F. Wide Area Distribution Issues in Hypertext Systems. In: 
The Proceedings of ACM SIGDOC '93. ACM Press. 1993b 

Malcolm, K.C and Poltrock, S.E & Schuler, D. Industrial Strength Hypermedia: 
Requirements for a Large Engineering Enterprise, In The Proceedings of 
Hypertext '91 San Antonio, Texas. ACM Press, 1991 

McCracken, D & Akscyn, Experience with the ZOG Human-Computer Interface System. 
International Journal of Man-Machine Studies, pp 293-310, Vol. 21, 1984  

Melly, M. Co-operative Working in X-Cosm. Poster at ECHT '94 Edinburgh, Sept. 1994. 

NCSA Mosaic. http://www.ncsa.uiuc.edu/SDG/Software/WinMosaic/ 
HomePage.html, 1994 

Nelson, T. Literary Machines. Published by the author. 1981. 

Nielsen, J. Multimedia and Hypermedia: the Internet and Beyond. Academic Press. 
1995. 

Nielsen, J. The Art of Navigating Through Hypertext. Communications of the ACM. 
33(3). pp 296-310. 1990. 

Noll, J. & Scacchi, W. Integrating Diverse Information Repositories: A Distributed 
Hypertext Approach. IEEE Computer 24(12) pp 38-45, Dec. 1991 

Corba, OMG Technical Document 91-12-1, Revision 1.1. The Common Object Request 
Broker: Architecture and Specification, December 1991. 

Østerbye, K. Structural and Cognitive Problems in Providing Version Control for 
Hypertext. In: D. Lucarella, J. Nanard, M. Nanard, P. Paolini. eds. The 
Proceedings of the ACM Conference on Hypertext, ECHT '92 Milano, pp 11-22. 
ACM Press, 1992. 

Pearl, A. Sun's Link Service: A Protocol for Open Linking. In: Proceedings of 
Hypertext '89. Pittsburgh, Pennsylvania, November 1989. pp 137-146. ACM. 
1989 

Poltrock, S. & Schuler, D. Conference Report: Hypertext '93. ACM SIGLINK 2(3), Dec. 
1993 

Price, R. MHEG: an Introduction to the Future International Standard for Hypermedia 
Object Interchange. The Proceedings of the First International Conference on 
Multimedia. pp 121-128. ACM Press, 1993 

Rahtz, S.P.Q., Carr, L.A & Hall, W., Creating Multimedia Documents: hypertext 
processing. In: McAleese, R & Green, C., (eds.) Hypertext: state of the art. 
intellect, 1990. 

Rhiner, M. & Stucki, P. Database Requirements for Multimedia Applications. In: 
Kjelldahl, L (ed.) Multimedia: Systems, Interaction and Applications, Springer 
Verlag, pp 269 - 282. 1991. 



171 

 

Ritchie, I. The Future of Electronic Literacy: Will Hypertext Ever Find Acceptance?. 
Keynote Speech at: The ACM Conference on Hypertext, ECHT '92 Milano, p 1. 
ACM Press, 1992. 

Rizk, A., Maezieux, F. & Legger, A. A Distributed Hypermedia Link Service on a WAN: 
An Experiment with MHEG on the ATM network. Eurographics'94 symposium 
on multimedia/hypermedia in open distributed environments (EG-MM'94), 
Graz, Austria, June 6-9, 1994 

Rizk, A. & Sauter, L. Multicard: An Open Hypermedia System. In: D. Lucarella, J. 
Nanard, M. Nanard, P. Paolini. eds. The Proceedings of the ACM Conference on 
Hypertext, ECHT '92 Milano, Italy, December 1992, pp 181-190. ACM. 1992 

Robert M. Akscyn, Donald L. McCracken, and Elise A. Yoder. KMS: A distributed 
hypermedia system for managing knowledge in organisations. Communications 
of the ACM, 31. pp 820-835, July 1988. 

Salton, G., Yang, C.S. & Wong, A. A Vector Space Model for Automatic Indexing. 
Comm. ACM 18(11), pp 613-620, Nov. 1975. 

Schnase, J.L., Leggett, J.J., Hicks, D.L., Nürnberg, P.J. & Sánchez, J.A. HB1: Design 
and Implementation of a Hyperbase Management System. EPODD 6(1) pp 35-63. 
March 1993. 

Schnase, J.L., Leggett, J.J., Furuta, R.K. & Metcalfe, T. (eds.). The Proceedings of 
Digital Libraries '94. Texas A&M University, June 1994. 

Schütt, H.A. & Streitz, N.A. Hyperbase: A Hypermedia Engine Based on a Relational 
Database Management System. in A. Rizk, N. Streitz and J. Andre eds. 
Hypertext: Concepts, Systems and Applications. The Proceedings of The European 
Conference on Hypertext, INRIA, France. pp 95-108, Cambridge University 
Press. 1990 

Shakelford, D.E., Smith, J.B. & Smith, F.D. The Architecture and Implementation of a 
Distributed Hypermedia Storage System. In: The Proceedings of Hypertext '93, 
Seattle, Washington, November 1993. ACM. 1993 

Shipman, F.M. III, Furuta, R.,& Levy, D.M. The Proceedings of Digital Libraries ‘95. 
Texas A&M University, June 1995 

Shneiderman, B. User Interface Design for the Hyperties Electronic Encyclopaedia. In: 
Proceedings of the ACM Hypertext '87 Workshop. The University of North 
Carolina at Chapel Hill. pp 189-194. Nov. 1987. 

Smith, J.B. & Smith, F.D. ABC: A Hypermedia System for Artefact-Based Collaboration. 
In The Proceedings of the Third ACM Conference on Hypertext, Hypertext 
'91. San Antonio, Texas. pp 179-192. Dec. 1991 

Streitz, N, Haake, J., Hannemann, J., Lemke, A., Sculer, W., Schutt, H. & Thuring, 
M. SEPIA: A Co-operative Hypermedia Authoring Environment. In: D. 
Lucarella, J. Nanard, M. Nanard, P. Paolini. eds. The Proceedings of the ACM 
Conference on Hypertext, ECHT '92 Milano, pp 11-22. ACM Press, 1992. 

Tichy, W.F. RCS - A System for Version Control. Software Engineering and Practice, 
1985 



172 

 

Tompa, F.W., Blake, G.E. & Raymond, D.R. Hypertext by Link-Resolving Components. 
In: The Proceedings of Hypertext '93: the Fifth ACM Conference on 
Hypertext. Seattle, Washington, November 1993. pp 118-130. ACM Press. 
1993 

Uniform Resource Locators. http://info.cern.ch/hypertext/WWW/Addressing/ 
URL/Overview.html, 1994 

Vanzyl, A.J. HyperTED Technical Description. http://adrain.med.monash.edu.au/ 
HyperTEDTechnical.html, 1993 

Vanzyl, A., Branco, Heath. I & Davis. H.C. Open Hypertext Systems An Examination 
of Requirements, and Analysis of Implementation Strategies, comparing 
Microcosm, HyperTED, and the World Wide Web. Available form the authors. 
1994 

Vanzyl, A.J. Open Hypermedia Systems: Comparisons and Suggestions for 
Implementation Strategies. In: Wiil, U.K & Østerbye, K. (eds.). The 
Proceedings of the ECHT '94 Workshop on Open Hypermedia Systems, 
Edinburgh, Sept. 1994. Technical Report R-94-2038. Aalborg University. 
October 1994. 

Wiil, U.K & Leggett, J.J. Hyperform: Using Extensibility to develop dynamic, open and 
distributed hypertext systems. In: D. Lucarella, J. Nanard, M. Nanard, P. 
Paolini. eds. The Proceedings of the ACM Conference on Hypertext, ECHT '92 
Milano, pp 251-261. ACM Press, 1992. 

Wiil, U.K. & Leggett, J.J. Concurrency Control in Collaborative Hypertext Systems. In: 
The Proceedings of Hypertext '93: the Fifth ACM Conference on Hypertext. 
Seattle, Washington, November 1993. pp 14-24. ACM Press. 1993 

Wiil, U.K & Østerbye, K. (eds.). The Proceedings of the ECHT '94 Workshop on Open 
Hypermedia Systems, Edinburgh, Sept. 1994. Technical Report R-94-2038. 
Aalborg University. Oct. 1994. 

Wiil, U.K. & Østerbye, K. Experiences with HyperBase - A Multi-user Back-end for 
Hypertext Applications with Emphasis on Collaborative Support. Department of 
Computer Science Technical Report R 90-38. Aalborg University, October 
1990. 

Wilkins, R.J. The Advisor Agent: a Model for the Dynamic Integration of Navigation 
Information within an Open Hypermedia System. PhD Thesis. The University of 
Southampton. U.K. Sept. 1994. 

Wilkins, R.J., Griffiths, S.R., Lewis, P.H., Davis, H.C. & Hall, W. Media-based 
Navigation with Generic Links. To be published in the Proceedings of 
Hypertext ‘96. ACM, April 1996. 

Wright, P & Lickorish, A. An Empirical Comparison of Two Navigation Systems for Two 
Hypertexts. In: McAleese, R & Green, C., (eds.) Hypertext: state of the art. 
intellect, 1990. 

Yankelovich, N., Haan, B., Meyrowitz, N., & Drucker, S. Intermedia: The Concept and 
the Construction of a Seamless Information Environment. IEEE Computer, 21(1) 
pp 81-96. 1988 



173 

 

Glossary of Microcosm Terms 

Anchor. Strictly speaking, an anchor is the object which is the end point of a link 

(source or destination), and which contains the information to enable the system to 

locate a persistent selection within a node. Microcosm does not have any 

identifiable separate anchor objects, but they are implicit within the definition of 

the link. The terms anchor, persistent selection and link end-point are used 

interchangeably within the Microcosm community. Anchors in Microcosm are not 

limited to representing persistent selections, and, for example, a source anchor 

could be an event in a temporal media viewer and a destination anchor might be 

some process, or a macro to be invoked by some viewer. 

Application. In Microcosm the term "application" is used to refer to all the 

resources that comprise a specific project: the list of documents, the linkbases, the 

installed filter set and all default settings within the registry. 

Button. A button is the binding of some specific selection and an action. The button 

will be coloured or highlighted in some way devolved to the viewer. When the 

button is double-clicked, the action will be performed. Typically the action will be 

"follow-link". 

Computed Links. Computed links are achieved by information retrieval, using an 

inverted index of all the text known to the indexing program. The computed linker 

will offer the user a ranked list of the documents that contain, statistically, the best 

match of vocabulary to that in the query. 

Document. The term “document” is used synonymously with “file” or “node”. 

Document Control System (DCS). The DCS is the kernel of Microcosm which 

handles messages from viewers, and organises to dispatch viewers with given data, 

and to send messages to viewers. 

Document Management System (DMS). The Document management system is a 

database which holds attributes for each document known to Microcosm. It is 

keyed by a unique identifier for each document, and attributes will include the 

description of the file, the location of the file on the file system, the logical type(s) 

of the file (where it will appear in the Microcosm hierarchy) and the physical type 



174 

 

of the file which determines which viewer will be used to display it. User defined 

attributes such as keywords and authors may also be stored. 

Filter. A Filter is a process which receives Microcosm messages from the Filter 

Manager. On receiving a message it analyses the message for any tags it 

understands. If it does not understand any of the tags it will simply pass the 

message back to the Filter Manager. If it understands a tag it will take some action, 

and may then block the message, change the message, or create new messages, 

which are passed back on to the Filter Manager. Filters are used to implement the 

hypermedia functionality. For example the linker, the linkbases and the computed 

linker are all filters. 

Filter Manager (FM). The filter manager is responsible for handling the ordered list 

of currently installed filters, and dispatching messages to each of these filters. 

Generic Link. A Generic Link is a link that will be available from any place where 

the selection recorded in the link is made. For example, the text string "Microcosm" 

may be made into a link that points to the top of a file describing Microcosm. 

Thereafter it will be possible to follow this link from any occurrence of this text 

string in any file. 

History. Microcosm maintains a history of all documents that have been seen by 

the user in the current session, along with the information about the method by 

which this document was reached, such as the name of the link that was followed, 

or the fact that the document was launched from the "select a document" dialogue. 

Link. A link is a binding of a source (what must be done to make this happen) and 

a destination (what will happen if you do this). In reality most links are 

connections between some source selection, e.g. a string at some specific point in 

some file, to a destination selection, e.g. a selected area of a bitmap. However, links 

may also be anchored on events and processes. 

Linkbase. A linkbase is a database (and the software to handle that database) 

which can store links, and can be queried to find links. 

Linker. The linker is the program which intercepts messages to start and complete 

links, and then sends a create-link message to the linkbases. It contains the 

interface which allows the user to specify the type of the link. 



175 

 

Local Link. A local link is one which may be followed from any occurrence of an 

object within a specific file. For example, in a file describing the game of chess, a 

local link may be made from the string “king” to a file containing a picture of a the 

chess piece and to a text file containing the description of the moves that a king 

may make. A generic link would not have been appropriate in this example since 

the meaning of the word “king” may have different connotations outside the file 

about chess. 

Message. A Microcosm message consists of a number of tagged fields. The action 

field defines the action that the sender intended to be carried out, and the 

remaining fields contain as much data as is needed (and possibly more) for any 

filter or viewer to handle the message. 

Micon. A Micon is a moving icon which is an abstract of a piece of video. 

Mimic. A mimic is a pre-defined guided tour through some set of resources.  

Node. In Microcosm a node is a file or document. 

Persistent Selection. In general hypertext terminology, a persistent selection is an 

active area in some data when viewed by a hypertext aware viewer. Generally 

these persistent selections are expected to be coloured or highlighted in some way, 

in which case the Microcosm equivalent of persistent selections are buttons. 

However, Microcosm also supports selections which are not highlighted in any 

way, but which, when selected by the user, will allow some action to be taken. In 

Microcosm a selection, whether persistent or not, is just one case of a link end-point 

or anchor.  

Registry. The registry is a database which holds all the settings needed by 

components of Microcosm. It is conceptually the same as a Windows INI file. 

Viewer. A viewer is any program which is able to display data and allow the user 

to browse that data. A viewer may be fully aware, in which case it handles all the 

Microcosm protocols, semi-aware , in which case it handles some of the Microcosm 

protocols, or unaware, in which case it handles none of the Microcosm protocols, 

but may still be able to provide hypertext functionality via the Universal Viewer. A 

viewer may also be an editor.     


