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ABSTRACT

The pioneering studies of spin-polarized tunnelling by Meservey and Tedrow
in the early 1970s showed that the conduction electrons in ferromagnetic (FM)
metals are spin polarized and that the spin is conserved in the tunnelling process.
Only recently (1995) improved material fabrication techniques have permitted
realization of the Julliére quantitative model, showing that tunnelling in
ferromagnet/insulator/ferromagnet (FM/I/FM) junctions should lead to a large
junction magnetoresistance (JMR); JMR values greater than 30% have been
achieved at room temperature. This recent success has led to several
fundamental questions regarding the phenomenon of spin tunnelling and also
the development of JMR devices. In this paper, experimental results, such as
the dependence on bias, temperature and barrier characteristics of FM/I/FM
tunnelling are reviewed briefly. The influence of inelastic tunnelling processes,
metal at the interface and material properties on the JMR is discussed. The
future direction from both the physics and the applications viewpoints, is also
covered.

§1. INTRODUCTION

Spin-polarized tunnelling (SPT), discovered by Meservey et al. (1970) and
Merservey and Tedrow (1971, 1994), laid the foundation to a new field of research.
Meservey and Tedrow measured the conduction-electron spin polarization P in
magnetic metals and compounds using the Zeeman split quasiparticle density of
states in a superconductor as the spin detector. Tunnelling from a ferromagnetic
(FM) film, with its uneven spin distribution at the Fermi level Ef, into such a spin-
split superconducting Al film reflects the spin polarization of the tunnelling electrons
coming from the ferromagnet. Values, of P recently measured are higher owing to
improved junction preparation conditions including samples grown by molecular-
beam epitaxy. Highly polarized tunnelling electrons can also be obtained through a
phenomenon called the spin-filter effect using magnetic semiconductors such as EuS
and EuSe as tunnel barriers (Moodera et al. 1988, 1990, 1993).

Julliere (1975) made the first reported magnetoresistance measurement on a
ferromagnet/insulator/ferromagnet (FM/I/FM) trilayer junction and interpreted it
by stating that the tunnelling current should depend on the relative orientation of the
magnetizations of the electrodes. The tunnel junction magnetoresistance (JMR) is
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defined in this model as

JMR —AR _Ra —Re _ 2PP
R RA 1+P1P2

where P; and P, are the spin polarization of the two FM electrodes, and R, and Rp
represent the junction resistances when the two FM layers have their magnetizations
M antiparallel and parallel respectively. This elegant model by Julliere, as we shall
see later, turns out to be quite good in predicting the magnitude of JMR seen in clean
junctions.

Although tunnelling between two FM films appears to be simple, yet it was not
successfully realized for 20 years. Several factors contributed to the failed attempts
by many groups, and success still continues to elude many. The major problems are
related to the surface roughness of the FM electrodes, the tunnel barrier, the inter-
face quality, the nature of the FM electrodes and the domain walls.

The success in observing a large magnetoresistance in FM/I/FM tunnel junctions
happened in 1995 by carefully addressing most of the problems mentioned above and
thus obtaining a greater than 10% JMR consistently (Moodera et al. 1995). The
purpose of this article is to highlight the phenomenal development in this area in the
last 4 years.

(1)

§2. FERROMAGNET/INSULATOR/FERROMAGNET TUNNEL JUNCTIONS

Magnetic tunnel junctions (MTJs) were prepared in situ by thermal evaporation.
Cryogenic evaporation through shadow masks is utilized to create a cross-geometry
junction structure of area (4-6) x 10~* cm?. In general, the first FM film (a long strip
80A thick and 0.2mm wide on a Si seed layer) is dep051ted on a liquid-N,-cooled
glass substrate. To create the tunnel barrier, 8- 16 A of Al film is deposited over it,
which is subsequently oxidized at room temperature using O, plasma. Cross-strips of
the top FM film, 100200 A thick and 0.2-0.3 mm wide were then deposited as the
second electrode. FM films were grown in an applied field of about 100 Oe.

Rj as a function of H for a Co/Al,O;/NigyF,y junction with 124 of Al,O5 is
shown in figure 1 (Moodera er al. 1998). The JMRs seen in this case (defined with
respect to the peak resistance) are 20.2% and 27.1% at 295 and 77 K respectively,
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Figure 1. Resistance versus applied magnetic field for a Co/Al,O3/NigFe,g junction at room
temperature and 77K, showing JMR values of 20.2% and 27.1% respectively. The
barrier is formed by oxidation of a 8 A Al layer. (After Moodera et al. (1998).)
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changing to 27.3% upon cooling to 4.2 K. With a Co—Fe electrode, at 77K, a JMR
of 32% has been observed (Moodera et al. 1997b). The peak value of R; can
be maintained with H turned to zero, leading to two stable states of resistance at
H =0, even in the absence of a dc bias, thus giving a non-volatile two-level memory
state.

The R; versus H curve can be understood on the basis of the Julliere model
(direction of M indicated by the arrows in figure 1). Taking Pc, =35% and
Piy Fe,, =45%, the Jullicre model gives a JMR of 27.2%, in very good agreement
with the measured values at low temperatures. Note that the JMR values apparently
in excess of the Julliére’s model predictions that have been reported (Lu ef al. 1998)
could arise because they referred to earlier unoptimized values of P (Meservey and
Tedrow 1994). The Julliere model still sets an upper limit for the JMR when adopt-
ing the updated polarization values.

JMR effects have been investigated with a number of FM electrodes including
Co, Co—Cr, Co-Fe, Fe(;Pt;; and NigyFe,,, and tunnel barriers of Al,O;, AIN and
MgO. With Co-Fe layers at both the interfaces, Sun er al (1998) have
recently reported 27%, one of the highest JMRs at room temperature. Based on
the polarization of Pcy . = 55%, the highest P value among the transition-metal
ferromagnets, one can expect a JMR of 46% for a good (Co-Fe)/Al,05/(Co-Fe)
junction.

The possibility of seeing a high JMR, its stability, the bias dependence and the
junction resistance critically depend on the quality of the tunnel barrier. Recent
realization occurred with Al,O; barriers (which had been successfully used in SPT
experiments in the past (Meservey and Tedrow 1994)) formed by oxidizing a thin Al
layer. This technique can also be used for other barrier materials such as Mg and Ta
(Gallagher et al. 1997, Moodera et al. 1997b, Plaskett et al. 1997). For FM/I/FM
tunnelling the most successful barrier materials until now have been Al,O;, AIN and
MgO, whereas other barriers that have been tried are in general non-stoichiometric
and/or magnetic (Platt ez al. 1996, 1997). These latter barriers can lead to spin
memory loss or spin scattering (see section 5).

In general, for uniform coverage the Al film thickness ranged from about 7 to
184, depending also on the type of FM electrode (Moodera ef al. 1997a, R. van de
Veerdonk and J. S. Moodera, unpublished ). There is a small range of Al thicknesses
that yield the best JMR for a given oxidation condition. With thinner Al, the uncov-
ered FM surface will become oxidized during barrier formation. On the other hand,
with too thick an Al film, excess Al metal will be left behind unoxidized, reducing the
polarization (Moodera et al. 1989) and hence the JMR. One interesting observation
was that, even with 4 A Al coverage, a JMR of 10% was seen. Uniformity and its
stoichiometry of Al,O; have been characterized using Rutherford back scattering
(RBS) and X-ray photoelectron spectroscopy (Bobo et al. 1998, Sun e al. 1998,
Matsuda et al. 1999).

When the actual junction resistance Rt becomes comparable with the resistance
Ry, of the lead over the junction area, current flow becomes non-uniform over the
junction area, giving rise to spurious measured junction resistances (Petersen and
Vernon 1967, van de Veerdonk ef al. 1997). In extreme cases, a negative four-term-
inal dc resistance can be observed. This was qualitatively attributed to the measuring
cross-geometry artefact. This geometrical effect, which showed erroneously rather a
large value of JMR in macroscopic millimetre sized junctions (Miyazaki and Tezuka
1995), was absent in a later report by Kamugai et al. (1997).
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§ 3. BIAS VOLTAGE DEPENDENCE OF THE JUNCTION MAGNETORESISTANCE

Tunnel junctions are nonlinear elements; at low biases (much less than the bar-
rier height), they are Ohmic whereas, at higher biases they have nonlinear current—
voltage (I-V) characteristics (Wolf 1985). The dynamic conductance G versus the dc
bias has nearly a parabolic dependence. However, with a FM electrode, G versus V4,
curves can deviate noticeably. For a Co/Al,O;/NigyFe, junction, the dynamic
conductance variation with V4. is asymmetric, which is a common feature for dis-
similar metal electrodes. The presence of metal particles, magnons, magnetic impu-
rities, localization effects, multistep tunnelling and states in the barrier or at the
interface can adversely affect the spin polarizations of the tunnelling electrons by
causing spin-flip scattering (Appelbaum 1967).

Lu ef al. (1998) saw in their study of dynamic resistance a cusp-like feature at
zero bias at lower temperatures, limited to less than 100mV. They suggested that
caused most of the increase in the JMR at zero bias, whereas the decrease with
increasing V4. was due to magnon excitations at the FM-I interface. Inelastic tun-
nelling (IET) spectra measured in zero H at various temperatures (figure 2) showed a
peak (dip) at about +100mV and an additional sharp feature at about 17 meV at
lower temperatures (which was present even in junctions where only one electrode
was magnetic) (Moodera ef al. 1998). For magnetic junctions, these peaks in the IET
spectra have been attributed to magnons generated in the magnetic barrier (Tsui ez
al. 1971) or in FM electrodes during the tunnelling process (Moodera er al. 1995,
1998).

Irrespective of the junction quality, the JMR shows a significant decrease with
increasing V4. at all temperatures (Moodera et al. 1995, 1998, Beech et al. 1996, Lu
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Figure 2. 1ET spectra at three temperatures for the same junction as in figure 3, measured at
H =0. Similar spectra are seen for junctions where one electrode is a ferromagnet and
the other electrode is Al. (After Moodera et al. (1998).)
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Figure 3. JMR versus dc bias at three temperatures for the same junction as in figure 3. Data
shown are (a) the actual percentages and (b) normalized value at zero bias. The inset

shows the JMR in the low-bias region, displaying the near constancy of JMR. (After
Moodera et al. (1998).)

et al. 1998, Sun et al. 1998, Tezuka and Miyazaki 1998). The bias dependence of the
JMR at 295, 77 and 1K for the junction in figure 3 shows a monotonic decrease in
the JMR as Vg4 increases. The normalized data (figure 3 (b)) show a temperature
independence. The magnitude of the decrease depended not only on the quality of
the interfaces and barrier type but also on the FM electrode. Doped junctions (see
section 5) or junctions where two-state tunnelling is favoured by the presence of
defect states in the barrier (Zhang and White 1998) also showed an increased JMR
dependence on V. In contrast, in the undoped best junctions the JMR decreases
only to about half the value at 0.5V. Moreover it was observed that the junctions
with Ni or NiggFey electrodes showed a stronger decrease in the JMR than junctions
with Co or Co—Fe electrodes.

The dc bias dependence of the JMR is not well understood. This has been
attributed to several factors: the increase in the conductance with bias, excitation
of magnons and the energy dependence of spin polarization due to band-structure
effects (Moodera and Kinder 1996, Lu et al. 1998, Moodera et al. 1998). Recent
calculations show that a significant part of the JMR decrease can be attributed to
magnon excitation (Bratkovsky 1997, Zhang et al. 1997), as also is seen from the IET
spectra (Moodera et al. 1998). In a later paper, Bratkovsky (1998) provided a model
that better fitted the JMR versus V4, data of J. Nickel, T. Anthony and J. A. Brug

(1998, unpublished) by including phonon contributions in addition to elastic tunnel-
ling and magnon processes.
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§4. ANNEALING EFFECTS AND TEMPERATURE DEPENDENCE

The effect of annealing on Rj, the JMR and the barrier parameters has been
investigated by several groups (Sato and Kobayashi 1997, Sun et al. 1998). In general
the optimum annealing temperature was found to be around 230°C (beyond which
the junctions began to deteriorate) to achieve the maximum JMR. The improvement
in the junction properties upon annealing has been attributed to barrier homogeni-
zation as seen in the RBS analysis of the O distribution (Sousa ez al. 1999) and better
magnetic properties of the FM film near the interface. At much higher temperatures,
diffusion of the metal atoms into the barrier can occur, leading to degradation of the
junction properties.

The observed JMR in MT]Js has, at low temperatures, reached nearly the opti-
mum values expected from the Julliere model, whereas it is lower at higher tempera-
tures. The T dependence of R; is found not only for MTJs but also for standard
junctions with non-magnetic (NM) electrodes. This fact suggests a NM origin of the
R; versus T behaviour. To explain this, the Julliere model has been modified by
assuming that, in addition to the conductance due to direct elastic tunnelling, a
second conductance Gg; to be present, which is taken as unpolarized and hence
independent of the relative orientation of M (Shang et al. 1998). Then the total
conductance is

G(g) = GT(l + PIPZ COS 9) + GSI) (2)

where 6 is the angle between the directions of M in the two electrodes, for example,
6 = 0° for parallel magnetizations and § = 180° for antiparallel magnetizations, and
G is the pre-factor for direct elastic tunnelling with a temperature dependence of a
few per cent between 4.2 K and room temperature as per the theory (Stratton 1962),
arising from the broadening of the Fermi distributions in the electrodes. Gg; was
assumed to be T dependent in a manner determined by the physical mechanism
responsible.

Conventionally, values for P are determined from a tunnelling measurement at
low temperatures (T < 1K). For alloys, the observation that P scaled approximately
with the magnetic moment of the alloy led to the assumption that P varied with T as
does the magnetization (Meservey et al. 1976, Mathon and Ahmed 1988,
MacDonald et al. 1998). The change AG in the conductance for parallel and anti-
parallel orientations plotted against T (where AG is proportional to P;P, and
assuming that P(T) = Py(1 — aT?*?)), shown in figure 4, directly reflected the T
dependence of P; and P,, indicating a substantial reduction in P. For the Co—Co
junction, AG showed a much weaker decay compared with junctions having
NigyFe,, as one electrode. Thus, the spin-wave-related reduction in P was larger
for NigyFe,,, showing consistency with the T for Co and NigyFe,,.

The material-dependent constant « is generally larger for the surface owing to
surface exchange softening (Mathon and Ahmed 1988). It has also been observed
that both Py and « are very sensitive to surface contamination (Pierce et al. 1982,
Mauri er al. 1988). Higher contamination at the interface can lead to higher a,
resulting in a considerable decrease in P with increasing T. Valuable insight into
these phenomena is expected to be obtained from T-dependent measurements in
MTIs, complementing other methods for determining surface magnetic properties,
while at the same time providing input for theoretical work aimed at relating P to the
intrinsic properties of the FM materials.
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Figure 4. Temperature dependence of the normalized AG for two FM junctions: (——) fits
to the theory based on thermal spin-wave excitations (Shang ez al. 1998).

The spin-independent conductance Gg; as a function of T showed a Gg;(T) oc T”
power-law dependence with v = 1.35. Spin-independent contributions can come
from imperfections in the Al,O; barrier to provide a noticeable hopping conduc-
tance through the associated localized states because of the amorphous character of
the Al,O; insulator. Theoretical work (Glatzmann and Matveev 1988) has shown
that hopping through chains of N localized states should have a power-law depen-
dence on T, the exponent being v(N) =N —2/(N + 1). The temperature depen-
dence originates from phonon emission or absorption at the transition from
the first to the next localized chain. For N =2, v =1.33, close to the experimental
value.

§5. BARRIER DOPING EFFECTS

Magnetic junctions allow us to study electron spin scattering in a systematic and
controlled manner, that is by introducing a well defined amount of known foreign
elements into the barrier. Note that scattering at Ef is of importance here, as tunnel-
ling electrons generally originate from states in a narrow energy interval around the
Fermi level. For that purpose, Co/Al,O;/NigyFey, junctions prepared with sub-
monolayer amounts of dopants incorporated into the middle of the insulating
oxide were studied (Jansen and Moodera 1998).

When a spin-flip event occurs in the barrier, a spin-up electron tunnelling from
the FM1 layer has to enter a spin-down empty state in the FM2 layer. In other
words, for electrons that change their spin during tunnelling, it is as if the magne-
tization of electrode 2 has been reversed, that is they exhibit an inverse JMR.
Denoting their fraction by f, the conductance for parallel M becomes
(1 — /)Gp + fGxp and similarly for the antiparallel case, leading to

(1-2/)IMR"

1— fIMR? ~’ (3)

JMR =
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Figure 5. Normalized JMR versus thickness 7 of the layer of impurities present in the tunnel
barrier. Data, measured at 77 K, are shown for Co (@), Pd (1), Cu (O), and Ni (m),
together with a linear fit (——) (Jansen and Moodera 1998).

where JMR" is the junction magnetoresistance in the absence of spin-flip scattering
(f =0). In a first approximation, the JMR is thus expected to decrease linearly with
the fraction f.

Dopants such as Ni, Co, Pd, Au and Cu investigated at the submonolayer level
showed a significant reduction in the JMR with increasing dopant content. Figure 5
shows the nearly linear decrease in JMR with increase in the dopant thickness for
various dopants, Co showing the weakest suppression compared with even Cu or Au
(not shown). The linear dependence as expected by equation (3) assumed that the
dopant-covered junction area increased linearly with increasing thickness ¢ and also
that the fraction f of tunnelling electrons that experience spin flip scales linearly with
t. The weak influence of Co was ascribed to the dominant presence of Co** with no
magnetic moment, whereas Ni and Cu ions were in an oxidation state with a mag-
netic moment. These results agreed with other studies of these ions in Al,O; matrix.
Thus incorporation of a submonolayer level of dopants in the barrier in MTJs leads
to severe reduction in the JMR as a result of spin scattering. In other words, any-
thing short of single-step tunnelling appears to reduce the JMR.

§6. M AGNETIC TUNNEL JUNCTIONS WITH NON-MAGNETIC INTERFACE LAYERS AND
INVERSE JUNCTION MAGNETORESISTANCE EFFECTS

The basic phenomenon of spin transport through a normal metal layer is not well
explored. One can utilize MTJs for such studies. Inserting an ultrathin layer of a NM
metal layer at the FM-I interface in a MTJ drastically decreases the JMR, irrespec-
tive of the metal (NM layer of Ag, Al, Au, Cu, Pd or Pt) used as shown for some
elements in figure 6. In all cases, the JMR reached negligible values with just a few
monolayers of the NM layer at the interface. Similar effects were observed by Sun
and Frietas (1999) with Cu at the interface. These results are consistent with our
earlier direct SPT measurement of the polarization through Au layers using a super-
conducting Al film (Moodera ef al. 1989). In other words, these observations show
the surface sensitivity of tunnelling as well as the rapid decrease, due to dilution
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Figure 6. Normalized JMR versus thickness ¢ of the layer of different normal metal impu-
rities at the interface of Co/M/A1,O3/NigyFe,y junctions. Data, measured at room
temperature, are shown for Ag (M), Au (), Pt (@) and Cu (O) with lines to
guide the eye (——). The inset shows spin transport through a normal metal: depen-
dence of the JMR on the bias voltage for increasing thickness of the Au interface layer
ina )Co/Au/A1203/NiFe tunnel junction at 77K for 7y = 0.4nm (Moodera et al.
1999).

effects, in the polarization which is induced in the NM layer by the underlying FM
layer.

However, in Co/Au/Al,03/Nig,Fe,, junctions, for a Au (in some cases also for
Cu) film thickness in the range 5-8 A, a negative JMR effect and an unexpected bias
voltage dependence was observed, as shown in figure 6 (Moodera et al. 1999),
Theoretical calculations by Vedyayev et al. (1997) and Zhang and Levy (1998) had
predicted oscillations of JMR in FM/NM/I/NM/FM systems as a function of the
normal (NM) metal thickness, the interface layer behaving like a quantum well
leading to the formation of quantum well states (QWSs) when a resonance condition
was fulfilled. Also, according to calculations by Zhang and Levy, the JMR suppres-
sion length in the NM layer could be as much as even 100 A when it was flat whereas,
for a rougher FM—-NM interface, the coherence was broken, thereby reducing the
JMR more rapidly with increasing NM layer thickness. However, in interpreting the
experimental results, one has to pay attention to the possibility of interfacial mixing
of the atoms (especially in sputtered samples, e.g. Co/Cu), which would yield a
spurious decay length. Numerical calculations by our group for the presence of
QWSs, based on a model first proposed by Slonczewski (1989), qualitatively
explained the experimental features, including its bias dependence (Moodera et al.
1999). Such studies may allow one to engineer a special electrode with strong spin
filtering, for example by choosing a FM/NM/FM trilayer electrode with a suitable
NM layer thickness.
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Inverse JMR effects were also observed by Sharma er al. (1999) in NigoFey
electrodes tunnel junctions with Ta,Os and by de Teresa et al. (1999) in
Co/SrTiO;/Lag 7Sr;3MnO; junctions. They reported a strong bias dependence of
the JMR, which was also polarity dependent. The JMR even changed sign with the
dc bias, whereas with Al,O; barriers the JMR was positive at all bias voltages. These
features have been attributed to the band-structure effects in Ta,Os and NigyFe,,
resulting in the negative polarization at the Ta,Os—clectrode interface. The main
assumption that Sharma et al. made to explain their data is different band features
and Ep for NigyFe,, at the interface of Al,O; or Ta,O;s. They also pointed out the
dependence of the inverse JMR magnitude on the barrier oxidation time, which
seems to indicate some role played by the barrier defects in these observations, for
instance spin-flip scattering.

§7. APPLICATION POTENTIAL

Several main areas of possible application for JMR devices are non-volatile
magnetic random access memory elements, read head sensors, large arrays of sensors
for imaging and ultraflow-field sensors (Prinz and Hathaway 1995, Daughton 1997,
Prinz, 1998). Some of the advantages of JMR elements over others are the large
signal as well as sensitivity, a non-volatile memory, better radiation hardness and
inherent small size. Other issues are dielectric breakdown, noise, long-term stability
and switching times. Considerable work is going on in this area (Gider ef al. 1998,
Koch et al. 1998, Nowak er al. 1998). SPT on an atomic scale is still in an early stage
to be technologically viable or even useful for fundamental studies. Among the
various approaches, using optically pumped GaAs tip enables spin-polarized
vacuum tunnelling and thus imaging of magnetic domain structure of FM films
(Alvorado and Renaud 1992, Prins er al. 1996). Another approach was chosen in
the use of the exchange-split surface state of a ferromagnet to study surface magnet-
ism by SPT (Wiesendanger er al. 1990, Bode et al. 1998). There is great promise in
these techniques.
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