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Abstract. We have designed, implemented, deployed and evaluated a
large-scale agent-oriented information system that recommends relevant
documents to users. Our recommender system is now being used across
several European institutions. Its two key features are a modular design
capable of accomodating multiple recommendation methods, and the use
of a marketplace to select and rank the best recommendations for the
user. As part of our evaluation, we have extensively simulated this mar-
ketplace in order to understand its dynamics and validate its suitability
for a recommender system.

1 Introduction

The task of developing large-scale agent-oriented information systems that can
deliver the right information, to the right people, at the right time is a major
research challenge. This problem has been exacerbated by the massive prolifer-
ation of information sources, owned by different stakeholders, available over the
Web (with their concomitant degrees of dynamism and openness) and by the
increased use of multimedia content in these sources. To this end, this paper
reports on our experiences of developing and deploying a large-scale multi-agent
recommender system [15] that is able to assist users in finding documents rel-
evant to their current context. In designing such systems, we believe there are
two key challenges that need to be addressed:

(i) Many methods for suggesting relevant information already exist and more
will be developed in the future. Some may be specialised to specific media such as
audio or video; others may be particularly suited to process information in text
documents; while others are more efficient in specific application domains, e.g.
because they rely on detailed ontological domain models. From an architectural
point of view, this means the challenge is to design a modular system that has
the ability to accommodate multiple recommending methods, and to integrate
them in a seamless and dynamic fashion as they appear on line.

(i) Given multiple recommendation methods, it is comparatively easy to
provide the user with a multitude of recommendations. However, the challenge



is to filter them and to present them to the user in a decreasing order of rele-
vance, given that the different methods have different mechanisms and different
semantics for relevance. Moreover, another difficulty is that the notion of rele-
vance is not absolute but user-defined and varies over time, typically according
to the user’s interests and activities.

For the following reasons, we chose to adopt an agent-based approach to
design and deploy a recommender system that addresses these challenges. (i)
Users can naturally be represented in the system by user agents [9] that act
autonomously on their behalf, finding information relevant to them, but also
observing their activities, so that the system can tailor its answers to their
needs. (ii) Information sources can naturally be represented as active agents
whose objective is to ensure their content is widely disseminated to appropriate
users. (744) The agent based approach is well suited as a software engineering
paradigm for distributed applications, with multiple stakeholders, in cases where
the system grows in an organic fashion, as new users and information sources
become active and new recommendation methods become available [6]. (iv) The
loosely coupled and open nature of the recommender system means the software
components need to interact in flexible ways and that such interactions cannot
be hand-crafted at design time.

Against this background, we have designed a recommender system, and have
used SOFAR [10], the Southampton Framework for Agent Research, to imple-
ment and deploy it across the authors’ institutions in Europe. In this paper, we
report on the design, the implementation and our practical experience with the
system. Our contributions are:

1. Design of a modular large-scale recommender system;

2. Design of a marketplace approach to coordinate recommendations presented
to the user;

. Practical deployment of the system across multiple European sites;

4. Empirical evaluation of the system.

w

This paper is organised as follows. We describe the structure of the recom-
mender system, and in particular we discuss its modular nature (Section 2). We
then show how a marketplace can be used to rank multiple recommendations
from heterogeneous methods (Section 3); our investigation includes an analyt-
ical study of the key parameters of the marketplace, and a simulation of its
behaviour. We then describe the deployment of our recommender system across
several European institutions and discuss the results of an evaluation process we
undertook (Section 4). This is followed by some related work and a conclusion.

2 A Multi-Agent Recommender System

For many users, the “point and click” paradigm has become the preferred method
for accessing information. Browsers on desktops or handheld devices are fre-
quently used for transparently accessing Web pages, databases and knowledge



bases [18]. However, it has become apparent that there is a need for tools that
can guide users in their information finding and navigation activities [5].

To this end, in this Section, we present a modular multi-agent recommender
able to assist users in finding documents relevant to their current context; these
documents may be owned by themselves or by other users. The recommender is
composed of a collection of agents operating together to recommend documents
to users, while they access information using their browser. Recommended docu-
ments are displayed in a browser sidebar, while the user navigates information in
the main browser window. A User Agent is responsible for all interactions with
the user, and for displaying recommended documents in the browser sidebar. Ad-
ditionally, the User Agent acts as the user’s representative in the recommender
system.

The different agent functionalities have been categorised in three groups, as
illustrated by Figure 1: (i) Agents managing information, (ii) Agents acting as
the community memory, and (iii) Agents computing recommendations. Each
of these will now be dealt with in turn.
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Fig. 1. Recommender Architecture

2.1 Information management

Recommended documents are computed from the community memory, which is
a store of information created and updated by users. Some agents are responsible
for managing information so that the community memory can be maintained and
expanded over time. The more comprehensive the information is, the higher the
likelihood of more documents or higher quality documents being recommended.

The system allows users to bookmark documents; references to these, ex-
pressed as URLs, are stored into the community memory. We define an Infor-
mation Manager as an agent able to manage the information pertaining to a



document referred to by a URL. There exist two instances of Information Man-
agers in the current version of the system. The Document Manager Agent is
responsible for handling static documents, whereas the News Reporter Agent
deals with dynamic documents, by periodically downloading the documents as-
sociated with the URL. An example of dynamic document is a news site such as
WWW.Cnn.com.

Other categories of documents can also be added to the system such as images
or audio files. Being modular and extensible, adding a new Information Manager
to manage a new type of document is simple. An Information Manager has to
subscribe to the Browser Agent, declaring the type of document it is interested
in. In return, the Browser Agent receives from the User Agent requests for adding
and removing documents from the community memory, and sends them to all
agents that have subscribed to such notifications. The Information Managers
interact with the Memory Interface that calls information extraction methods
in the community memory on new documents to be added, and that stores and
deletes such information upon request.

2.2 Community Memory

The community memory is the source of information used to compute recom-
mendations. The memory consists of agents acting as stores of information about
documents (Storage Agents) and of agents able to extract information (Infor-
mation Extractor Agents). A pair of Storage and Information Extractor Agents
supports a specific recommendation method; for example, the Keyword Storage
and Summarizer are agents acting as the memory for keyword-based recommen-
dations. If a new recommendation method is added to the system, a new pair of
Storage and Information Extractor Agents needs to be added to the community
memory.

Three functions are supported by a pair of Storage and Information Extractor
Agents. (i) Each pair of agents serves the need of the associated recommender
method (implemented by a similarity agent to be explained) by returning the
required information upon requests. (i) A Storage Agent acts as a repository
for information about documents bookmarked by users in the community. At the
time of creating a bookmark, the user decides whether the information should
be public or private; public information is shared by all users and can be created
anonymously or with the user’s identity. Private information is only visible by its
creator. (i1i) A Storage Agent must also support requests to delete bookmarks
from the memory.

2.3 Recommendations

Recommended documents are characterised by their degree of similarity with
the document currently viewed by the user. As there is not a universal method
of deciding the similarity of two documents, we have introduced the idea of
an abstract relationship “SimilarDocs” that represents the similarity of two
documents referred to by URLs. When the user navigates to a new document,



the User Agent issues a query requesting to find out all the documents that
bear a similarity with the current document; agents that are able to recommend
similar documents upon receiving such a query are called Similarity Agents.
Currently, we have defined three Similarity Agents based on different recom-
mendation methods.

Note that we are not developing new information extraction and retrieval
algorithms in this work; rather, we are working with standard methods (such
as keyword and metadata similarity discussed in the following paragraphs). Our
contribution is in integrating the various methods to produce high quality rec-
ommendations that are consistent with the user’s context.

The Keyword Similarity and Metadata Similarity Agents recommend doc-
uments based on similar keywords and metadata. For the Weight Similarity
Agent, the similarity of two documents is determined by using the cosine simi-
larity function, over a vector representation computed by the “term frequency,
inverse document frequency” method, as used in the recommender described in
[5].

There are many other measures according to which a document can be re-
garded as related to the currently viewed document, such as similarity measures
based on the document’s context or on colour histogram. Envisioning more rec-
ommendation methods to be developed, the system allows designers to subclass
the SimilarDocs relationship into specialised definitions. New Similarity Agents
implementing different comparison algorithms can then simply be plugged into
the system. They would need to advertise their presence to the User Agent,
which would at once be able to query them, using the relation SimilarDocs.
The SimilarDocs abstract concept has therefore become the agreed interface
between UserAgents and Similarity Agents.

3 The Marketplace

From our practical experience with the system (detailed in Section 4), we ob-
served that the user becomes very quickly swamped by recommendations sug-
gested by agents. Such a phenomenon is further amplified by the modular nature
of the system, which allows us to bring new agents in the system in a seamless
manner.

To combat this, we decided it was necessary to introduce a mechanism that
was able to sort and select the recommendations according to their relevance to
the user!. In this context, we decided to adopt a market-based approach since
such systems are an efficient means of allocating scarce resources in dynamic and
open systems [2]. The market operates according to the following metaphor. A
user and the user agent acting on their behalf are selling browser space where

! Some feedback from the user is required in order to design a system that is able to
tailor information to that user. In this paper, we assume that such a feedback exists;
our focus is not on how we obtain it and we may use techniques such as user ratings
[6], bookmark information, or printing logs.



information may be displayed (the left-hand side of the browser window in Fig-
ure 1). Information providers are keen to get their recommendations advertised
in the user’s browser, and compete in a marketplace, ready to pay for such ad-
vertisements. This first flow of currency, from information suppliers to users,
needs to be counter-balanced by another flow, so that the system can reach an
equilibrium. Our second flow of currency is derived from the user’s feedback and
takes the form of a reward to the agents that provided useful recommendations
to the user. The intent of such a marketplace is that suppliers of useful recom-
mendations will be rewarded and will increase their profit, while suppliers of
information not deemed relevant will receive no reward, and so will be less able
to trouble users. In the rest of the section, we describe the design of this market
place and its evaluation.

3.1 Rationale

The fundamental observation is that in a modular recommender system like ours,
recommendation methods will be designed and implemented by different people
who will use different measures of relevance. It is therefore not possible to sort
recommendations according to their relevance only.

Our idea is to introduce a price? that recommendation suppliers are ready
to pay to have their information displayed. The bid price is seen as an adjustive
multiplicative factor to the relevance, because an auctioneer ranks recommen-
dations according to the product of their relevance and price. The price will
vary according to the dynamics of the marketplace, reaching an equilibrium for
each agent, determined by its spending and income. The intent is that an agent
uses the feedback that it gets from the user in the form of a reward to adjust
its bid price in order to be able to compete with other bidders, which may use
different measures of relevance. The resulting equilibrium is such that the prod-
uct of the relevance and price represents an absolute comparable value across
recommendation methods.

3.2 Marketplace Overview

Figure 2 shows how the marketplace is introduced into the recommender sys-
tem; due to the lack of space, we did not represent all the other agents which
remain the same as in Figure 1. In the market-based recommender, the User
Agent sends a request for N recommendations to the Auctioneer. Upon receiv-
ing this request, the Auctioneer posts a call-for-bids, which consists of a currently
displayed document, an initial price, and the number IV of requested recommen-
dations. The Auctioneer opens a new auction to allow bidders to submit their
bids. Each Bidder Agent is associated with a Similarity Agent and acquires from
it recommendations in the form of URLs with associated relevances. Bidders then
form their bids, each consisting of a URL, a bid price, and a relevance, and send

2 This is only an abstraction that we introduce in order to make the algorithm work
rather than a real currency.
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Fig. 2. Market-Based Recommender

them to the Auctioneer. The Auctioneer sorts these bids in descending order
according to the product of bid price and relevance (as discussed in Section 3.1).
Then, it selects the N best bids — a process called short-listing — and for each
of them, it obtains a payment from the corresponding bidder, and forwards the
bids to the User Agent.

The user’s feedback is based on the recommendations that the user elects to
follow; the user’s selection is observed by the User Agent, which in turn notifies
the Reward Agent. The Reward Agent is responsible for sending a reward back
to the Bidder that generated the selected URL.

3.3 Simulation

In order to design the rules of the marketplace and to understand their dynam-
ics, we have used our implementation to perform simulations of the auctions
described above.

In the simulated environment, bidders generate the relevance of documents
randomly from a standard uniform distribution; similarly, the bidder to be re-
warded is the first in the ranking returned by the auctioneer. Therefore, bidders
have an equal probability of being short-listed and even rewarded. Knowing that
relevances are generated randomly and that the bid price is the variable factor
that gets adjusted by the market mechanism according to the relevance of the
bid, it makes little sense to use a single bid price for all possible relevances.
Therefore, we split the range of possible relevances [0, 100], expressed as a per-
centage, into C equal categories. When a bidder determines what price to give a
bid of a relevance R, it will use data from the most recent auction during which
a bid with a relevance of the same category was produced by the bidder.

The auctioneer’s behaviour is shown in Figure 3, while a bidder’s behaviour
can be found in Figure 4. When forming a bid for a given relevance, a bidder
refers to the most recent auction Ay with a relevance in the same category as the



current, bid. The bidder adjusts its bid price by a multiplication factor X only
if it was rewarded in auction Ay. If the bid in auction A; was not short-listed,
its price was too low, and therefore the bidder increases its bid price by Y. If
the bid in auction Aj; was short-listed but not rewarded, the bidder lost some
credit and attempts to minimise its loss for the next round by decreasing its bid
price by Z; note that the bidder has no way of obtaining the winner’s price and
therefore cannot try to compete with it by increasing its bid price in a rational
manner.

Number of auctions in the simulation: w
Initial price: P;
Sequence of auctions: Ay, Aoy Aw

Number of recommendations requested by the user: N

Initial Configuration:
— The Auctioneer gets a request for N recommendations from the User Agent.
For the auction A;, (0 < i < W), the Auctioneer

— Starts auction A; by sending a call-for-bids containing (url, N, P;, 0) to all bidders
and a timeout message that specifies the time period during which all bidders are
allowed to submit their bids;

— Gets bids from the bidders;

— Sorts all the bids according the product of the bid price and the relevance;

— Gets payment for N best bids, and notifies unsuccessful bids;

— Forwards the N best bids to the User Agent;

— Signals the end of auction A;.

Fig. 3. Auctioneer’s Behaviour

3.4 Market Mechanisms

In this Section, we discuss the market mechanisms that we have put in place. The
rewarding mechanism is the key element that needs to be defined. The Auctioneer
sorts all bids and short-lists the N best ones. Bids numbered according to their
ranking satisfy the following inequalities:

B\R, > B2Ry > ... > ByRy, (1)

where B; and R; denote the bid price and relevance of bid ¢ in the ranking with
(1<i<N).

When defining the reward, our goal is to ensure that the marketplace remains
fair and that bid prices do not spiral up in an uncontrollable manner, which
would inevitably bankrupt some of the agents, or prevent them from competing.



Number of auctions in the simulation: w

Number of the selected URLs requested by the user: N

Sequence of auctions: Ay A, . Aw
The reward for the winning bidder in auction @ for bid j: 0;,;

Sequence of categories of relevance: C1,Cs,...,Cec
The cost paid by a bidder in auction i for bid j: pij
Percentages by which a bidder adjusts its price: XY, Z

Initial Configuration:
— Allocate an amount of credit to each bidder

For the auction A;(1 <i < W), the bidder:

— Generates N random relevances and calculates a bid price for each of them. Form-

ing bid j(1 < j < N), for relevance R;:

e Let us assume that relevance R; comes from category C°(1 < ¢ < C). Let k

denote the most recent auction Ap(l < k < 1), where the bidder made a bid
with a relevance from C°; let £ be the number of that bid then; let By, , be its
bid price. The bid price B;; for information with relevance R; in the current

auction should be:

If ok,e >0, then B ; = XBp , (Rewarded)

Ifore =0 and pr,e > 0, then Bf; = B; ,(1 — Z) (-~ Rewarded and
short-listed)

Ifore =0 and pg,e =0, then B;; = B; ,(1+Y) (= Rewarded and
— short-listed)

o If A; is the first auction for a relevance in category C¢ that the bidder produced,

then Bf; = P;.
— If it has enough credit, informs the Auctioneer of the bids:

e For each bid j accepted by the Auctioneer, it has to pay the bid price pi,; = B ;

for it (otherwise p; ; =0);

e For each bid j which leads to a reward, this bidder gets o;,; from the reward

agent; (otherwise o;; =0).

— Waits for the next auction to be signalled after getting a message indicating the

end of the auction from the Auctioneer.

Fig. 4. Bidder’s Behaviour

In our initial design, we chose a reward that was directly related to the bid price
and relevance of the winner. Our simulations indicated that this gave a decisive
advantage to the first winner, which could artificially increase its bid price in
the second auction; if then successful, it would keep increasing its bid price, out-
biddings all other agents. To combat this, we define the reward for the winning
bidder (with bid price By and relevance R;) as a function of the second best bid:

_B:Ra+3d
=2t



with 6(§ > 0) a public parameter, which we also include in the call-for-bids sent
by the Auctioneer. For similar reasons, the parameter § must be chosen with a
reasonable value to maintain the fairness of the market.

3.5 Rational Bidding

Having defined the auction parameters, we discuss the values of the parameters
X,Y, Z that a rational agent may adopt. Referring to the notation of Figure 4,
a bidder needs to decide what its bid price Bf; is in auction A;, for a bid of
relevance R; of category C'°, knowing that the most recent of its bids in that
category took place in auction Ay, with bid price By, 4, relevance Ry, reward oy, ¢
and cost pg ¢-

Rational behaviour for a bidding agent was explained above. So now, let us
study what the optimum value of X is, if the agent was rewarded in auction
Aj. We assume that the second best bid in the next round of the auction will
be characterised by price B} and relevance R%. The bidder will attempt to win,
which implies that:

BYR} < BY,R; (3)
Given its current credit Kj, it can estimate what its new credit K;;; will be.
BYRY + 6
Kiy1 = Ki + 22— - B;; (4)

R;
The bidder will increase its credit if the reward is greater than the cost of pub-
lishing the recommendation:

BYRE+6 .

% - Bf; >0, (5)
or

B ;R; < BYR} +. (6)

So in order to win and make a profit, the bid price must satisfy equations (3)
and (6), summarised in the following constraints.

BIR} < B;R; < ByR} +6 (7)

We assume that the bidder who submits a bid price B} with relevance R}
submitted a price By with relevance R} in the previous auction, and that the
relevance of the bid is preserved RY = Rf. Assuming that all bidders are ratio-
nal and follow the algorithm of Figure 4, we can therefore rewrite B, B; ; in
equation (7), and we obtain:

(1- Z)BYRS < By, XR; < (1~ Z)BYRS + 6 ®)

Since bidders are independent of each other and bids are private, they ignore
the behaviour of other bidders. However, the reward as defined in (2) can be
rewritten for auction Ay.
BYRE + 0
O = ——F——
Ry

9)



After substituting (9) in (8), we obtain constraints on X:

(1 — Z)(UngRk’g — 5) <X < (1 — Z)(UszRk’g — 5) +6
B R; - B R;

(10)

There is a further constraint that X must remain positive to avoid generating
negative prices, which would be meaningless: X > 0. So, the value of X is
constrained by LB < X < UB, with:

(1—Z)(okRie —0)

LB = max(0, - ) (11)
B R;
B (R;

For convenience, we introduce x €]0, 1] as a percentage dictating the value of X
as follows: X = LB + x(UB — LB).

In the following section, we will show the effects of Y and Z. In summary, we
have defined a sealed-bid one-shot auction system, where the reward allocated
to the winner is a function of the price of the best bid coming from another
bidder. A new auction is initiated every time the user visits a new URL.

3.6 Analysis

The main auction parameters are the initial price P; and the reward variable 0
defined as a proportion of P;. From a bidder’s viewpoint, the parameters X,Y, Z
can be changed. In this section, we show the effect of these parameters through
various simulations. Figure 5 shows the change of a bidder’s bid price in 500
auctions for two different values of 4. In these simulations, we are using 6 bidders,
3 recommendations are requested by the user and only one agent gets rewarded;
agents use five categories of relevance (C = 5).

For all six bidders, the patterns of their bid prices are similar. Here, we only
show the evolution of prices for one bidder taking part in the auction; prices
are plotted for each of the 5 relevance categories adopted. The bids with the
smallest relevance [0%-20%] have a higher price than other bids most of the
time: since their relevance is low, the bid price has to be increased in order to
be able to compete with bids with higher relevance. The time to reach such a
level depends on the percentage by which the bid price is increased. Then, the
bid price oscillates when a suitable level has been reached.

Once equilibrium has been reached, a difference between the two graphs is
that, in a given category, the bid price in the top graph is higher than that in the
bottom graph. This indicates that the bid price is decided by & to some extent,
the higher the reward (related to d), the higher the bid price is, if all the other
parameters remain the same. A low value of § maintains equal opportunities
amongst bidders. If § has a high value, the range of possible values for X is
wider. Therefore, the probability of making profit in the next round is higher.
This leads to unequal opportunities of winning, which is shown in the Figure 6,
where some bidders win less over the series of auctions.
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So far, we have obtained the simulation results that account for the effect of §
on the bid price, number of wins and credit. However, the unsatisfactory aspect
is that at the end of 500 auctions, the bidders have a relatively low credit. As we
discussed earlier, if we keep on increasing the value of §, this may help keep the
credit, but in some extreme cases, one of the six bidders ends up winning most
of the time, which is in contradiction with our design objectives. As far as a
bidder’s credit is concerned, spendings cover short-listed bids, whereas incomes
come from the reward obtained by the bidder. Given a fixed value of d, bidders
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Fig. 7. Bidder’s Credit (Y = 5%, Z = 5%, § = 90%P;)

can still maintain their credit by keeping the price of winning bids as low as
possible.

The parameter X can take any value in the interval |LB, U B], cf. equations
(11) and (12), according to the percentage x. Taking a small value of z, the bid
price is maintained close to the estimated bid price of the second bidder, which
results in a maximised profit. The top graph in Figure 7 displays the credit
during an auction, where z is set to 10%, whereas the bottom graph shows the
credit for a smaller value of z (1%). We see that the credit increases over time
in the latter case.

Being restricted by space, we only describe our observations about the roles
of Y and Z in the auction without showing any simulation graphs. Higher values
of Y and Z widen the range of bid prices. If the value of Z remains the same,
then the higher the value of Y is, the higher the bid price increases. On the
other hand, for the same value of Y, the higher the value of Z is, the lower the
bid price becomes. Additionally, higher values of Z tend to preserve the agent’s
credit. Indeed, from equations (11,12), a higher value for Z implies a lower value
for X.

Finally, we have compared our rational agents against bidders choosing their
price randomly, and bidders continuously choosing the same price (the initial
price). Figure 8 shows the behaviour of one rational agent against 5 bidders
choosing random prices; a similar graph is obtained for bidders with a fixed
price. The top curve is the credit of the rational agent, which shows that our
strategy consisting of reducing the cost of publishing wins in the long term.
The rational agent is more able to maintain its credit, and can therefore outlive
agents not applying such a strategy.
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4 Deployment and Evaluation

The recommender system has been implemented using the SOFAR agent system
[10], and we have deployed it across several sites in Europe. The recommender
system and SOFAR total about 120,000 lines of code. In this section, we report
on our deployment experience, and our evaluation of the system.

Distributed Deployment. At first, our prototyping took place on a single
machine, where we were running all the agents in a single JVM. When the system
reached a satisfactory degree of stability, we separated the User Agents from the
rest of the recommender system. Typically, each user would run a browser and
a user agent on their machine; the user agent will discover through a lookup
service the location of the recommender system and would interact with it over
the network. At this stage, all agents were still running in a single laboratory in
Southampton. The next stage has been to deploy User Agents in the different
European sites. In particular, this required us to introduce some support for
firewalls. This was our targeted deployment, which would enable us to evaluate
the system.

Currently the community memory is a centralised component, but we want
it to be distributed, created dynamically, and shared across the network. We are
confident that no single solution will be suitable for all imaginable configurations.
Therefore, we are aiming again at defining a modular architecture that could be
configured in multiple ways. Our solution is to introduce a community proxy
agent that could act as a recommender method in another community. This
would allow communities to be linked to other communities through such proxies,
hereby supporting a distributed organisation of communities.

Evaluation. We undertook a trial in order to evaluate the recommender sys-
tem, without the marketplace, and then with the marketplace. We adopted three
topics for the purpose of evaluation: “auctions”, “mobile agents” and “games”.
In the first stage, we populated the community memory, by bookmarking a series
of documents that we found relevant to each topic. In the second stage, we made
use of the recommendation methods based on keywords, weights, and metadata.
Each user involved in the trial visited a series of documents of their choice in
these topics, and was recording recommendations from each method. In the third
stage, we analysed the recommendations and drew the following conclusions.



In the evaluation, all the recommendations provided by the weight similarity
method are from the same topic as the document being viewed; we observed a
rate of success of over 99%. In general, many recommendations supplied by the
keywords method belong to the same topic as the document currently viewed
(77%); however a few recommendations are from different topics. Finally, we
did not get any significant result about the metadata similarity, because only a
small percentage of the pages visited contained metadata. In general, most of the
recommendations for a document are from the desired topic. Recommendations
from the weight-based method are more precise than those from the other two
methods.

Another experiment was set up to assess the recommender system with a
marketplace. We started with a given document. After following 15 recommen-
dations from the same agent, we returned to the initial document. We observed
that the ranking of recommendations had changed. The recommendation sup-
plied by the agent was now top of the recommended list. This experiment shows
that the marketplace allows a recommendation method to score highly if re-
warded regularly for its recommendations.

Extensibility. We also evaluated the extensibility of our architecture, by
integrating new recommendation methods into the framework. Without inside
knowledge of the system, two new recommendation methods were successfully
integrated in a single day — the main work was to wrap the existing function-
ality with the SimilarDocs relation. Both of the recommendation methods are
based on the notion of trails [14], which, unlike guided tours, constitute a specific
path a user has chosen in exploring a set of documents. Two types of trail-based
recommendations were provided. In the first type, documents are recommended
based on people’s browsing behaviour. The agent’s knowledge has been primed
with about half a year of proxy logs from 50 people working in an IT related
research organisation. The agent suggests related URLs based on the order of
traversal (as recorded in the proxy logs) and ranks them according to their fre-
quency. The second type of trail-based recommendation agent uses an Artificial
Neural Network (ANN) and the same proxy data as a training set for the net-
work. The agent actually suggests related domains (rather than complete URLSs).
Domains are considered related if users traverse often between them.

Discussion. Our practical experimentation shows that introducing a market
mechanism in a recommender system appears to be a useful mechanism to control
the ranking of recommendations made by multiple heterogeneous recommender
methods. Some practical but challenging aspects still need to be investigated to
make it a routinely useable system. (i) Obtaining user’s feedback that really
reflects how a user found a document useful. (%) How to handle bidders that
go bankrupt: their inability to perform well during a browsing session may not
reflect on their capacity to deliver useful recommendations in different contexts.
(#5i) The system should be able to react promptly to support users’ changes of
context.



5 Related Work

There have been several other attempts to develop large-scale, agent-based dis-
tributed information management systems. The computational market of SIGMA,
System of Information Gathering Market-based Agents [7], is a model of decen-
tralised decision making for the task of information filtering in multi-dimensional
spaces such as the Usenet netnews. Most related to this work, is the University
of Michigan Digital Library [4] which uses a variety of marketplaces to moder-
ate a range of digital library services, the InfoSleuth system [13] which exploits
user, middleware and resource agents to deliver complex information services,
and Retsina which provides a rich infrastructure of user, task and middleware
agents for information management activities [17]. Mullen and Wellman’s Simple
Computational Market model [12] aims to tackle the problem of when and where
to establish mirror sites for the more popular information services. Competitive
agents choose to set up mirrors based on going prices for network bandwidth,
computational resources, and the information service. In contrast to this work,
however, here we report on the application of our technology to a particular in-
formation management task (that of recommending relevant documents). This
means we need to specify and implement specific marketplace structures and
endow agents with specific decision making capabilities.

Some authors have also studied user feedback. For instance, Baclace [1] de-
scribes a personal, adaptive recommendation system that uses an exit-question
to rate documents. Ratings collected in this way have the property of being
minimally articulated, which is an advantage when preferences are difficult to
describe. The goal of this work is to direct readers’ attention in a self-correcting
way with as little user effort as possible, and to utilise ratings automatically to
connect readers whose interests concur.

Filtering systems have also been the subject of investigation. From a user’s
viewpoint, Sheth [16] demonstrates a learning approach to personalised infor-
mation filtering using relevance feedback and genetic algorithm. The system is a
collection of information filtering interface agents which has learning capabilities
of specializing users’ interests and exploring new potential domains. On a larger
scale, the Stanford Information Filtering Tool (SIFT) [19] is a tool to provide
information dissemination service, which supports full-text filtering using well-
known information retrieval methods and is capable of processing large volumes
of information against a large number of profiles.

The system described in the current paper could be applied to other forms
of recommendations, including the recommendation of expertise as in its agent-
based predecessor, MEMOIR [3]. Letizia [8] was an early agent-based recom-
mender system which is also coupled to a Web browser; it has the additional
feature of scouting ahead of the user’s current position on the Web. Amalthea
[11] also uses a notion of “credit” in the context of an evolutionary approach
to information filtering and discovery but does not have the full flexibility of a
marketplace.



6 Conclusion

We have designed an agent-based modular distributed recommender system and
have deployed it over multiple institutions in Europe. In order to be able to
rank recommendations provided by multiple methods and to select the most rel-
evant ones, we have conceived a new marketplace, based on repeated single-shot
sealed-bid auctions, with a reward based on the second best bid price. We have
performed an analytical study of the marketplace, and using our implementa-
tion, we have extensively simulated it, showing that it achieves fairness and that
it rewards agents that make useful recommendations. Using our deployed sys-
tem, we have undertaken a first evaluation, which validated the key properties
of the recommender.

We will use this deployed architecture in our future work. First, we wish to
refine the notion of community memory, making it distributed across multiple
sites, and allowing users to dynamically select communities they want to extract
information from. Second, we want to investigate the means by which the market
mechanism can adapt to the behaviour of a user who works on simultaneous
multiple tasks. Third, users’ feedback is crucial in this context and needs to be
further addressed.
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