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Abstract
As the volume of data on the Internet increases the need for better tools to handle this
flood of data is also growing. Interface agents are tools which are designed to aid the
user in using various applications. This project describes the development of an agent
which employs machine learning techniques to discover rules for filtering email. It
explains how the agent observes the user in handling mail and how these observations are
used to help automate this task. The agent is then evaluated, through testing, to examine
whether such a tool can be useful as apersonal assistant. A description of existing work
is given, along with the design rationale, and a number of future extensions are suggested.
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Chapter 1

Introduction

This report explains the need for a personalised filtering agent for Email, and describes

the process of building such an agent. This introductory chapter outlines the reasons for

the work and presents the main objectives of the project.

1.1 The Problem

Over recent years there has been a dramatic increase in the use of networks and

networked information retrieval systems. Not only has this happened in the business

sector and throughout academia, but due to the increasing number of Internet

intermediary services such as Compuserve or Demon Internet Services, an increasing

number of hosts have been appearing in the private sector. At this present time, the

internet consists of over 31 000 networks, with over two million computers connected to

it. Over 20 million people can be reached by electronic mail and have access to the

resources on the internet [Leiner 1994].

This increase has led to an explosion of information resources available over these

networks. As more information becomes available, searching or retrieving interesting or

relevant information is becoming increasingly difficult [Sheth 1994]. Whilst there is a

large amount of data available as files on different machines, much of it exists in the form

of Email, USENET news, World Wide Web servers and Gopher servers etc, and tools

have been developed to access these resources.

With access to these information sources becoming easier, and the number of users

becoming greater, the need for easier to use software is becoming critical. However with

the increase of easy to use tools for generating and distributing information, the amount

of information flowing across the networks is growing [Denning 1982]. Business and

research organisations can generate huge amounts of information, such as memoranda,

announcements of meetings and conferences etc, yet at any one time this information will

be of interest to only a fraction of the recipients [Foltz & Dumais 1992].

Information Filtering is not a new concept. It already exists in the paper world; people

buy only certain magazines that contain articles on a particular subject, and then skim

1



Chapter 1. Introduction 2

articles to find ones of intertest. With the use of electronic media, some of this filtering

can be automated by the retrieval system. Over ten years agoagentswere seen as

anthropomorphic entities which could assist the user by tracking down information it

knew its user was interested in [Kay 1984]. This description still holds true and agent

technology is growing. Agents are now emerging aspersonal assistantswhich can assist

in automating information filtering as well as information retrieval.

An agent, however, must be able to fulfill certain criteria if it is to perform successfully as

an information filter.

• As information requirements vary greatly from user to user, the filtering system

should be highly personalised to satisfy the users needs. Thismodelit has of the user

should be learned from instruction (eg defined rules or a knowledge base) or from

example (by observing the user). This model may be used over a long period of time,

yet it cannot be assumed that the requirements of the user will remain static, so the

agent must be able to notice when these requirements change and revise its model

accordingly.

• The agent should attempt to filter out as little information as possible that would

validly fit the user model, whilst removing as much information as it can that is not of

interest to the user. If the agent fails this criteria more than 50%, then its performance

is no better than random guessing and becomes a hindrance rather than an help to the

user. The main aim of the agent is toassist the user in filtering out unwanted

information, not to attempt to classify all information as relevant or irrelevant.

• The user should have some means of accepting or rejecting the decisions of the agent.

The agent is not the user interface! It is an entity which collaborates with the user to

aid them, and hence they should be able to choose when to allow the agent to perform

a task and when to perform the task themselves.

1.2 Issues the Project Addresses

The work presented within this report makes use of techniques taken from the fields of

information filtering and of interface agents. These techniques were used to build an

agent which observes and aids a user in classifying mail messages into different folders.

The following issues are addressed:
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• Making and logging observations of the user in order to build a user model. The

learning algorithm CN2 [Clark 1989; Clark & Niblett 1989; Boswell 1990] is used to

induce rules based on these observations which can then be used to model the user. A

method of applying these observations as training examples is investigated and the

problems of selecting features from a mail message is examined.

• The use of an interface agent which attempts to classify incoming mail according to

the user model. The agent is unobtrusive in the general use of the mail tool, and using

its advice is optional. The use of basic positive feedback to reinforce successful

classifications is also addressed. More advanced feedback is also examined from a

viewpoint of making the agent easy to co-operate with so that it acts as an assistant

rather than an interface to the system.

• The use of a genetic based word filter is investigated as a more advanced method of

feature extraction. The use of user feedback based on the success of the agent is used

to refine features of a message which contribute towards successful classifications.

This can be compared to the more naive use of word frequencies to determine high

entropy words.

• The use of separate, communicating units, each with a specialised role within the

system. These roles include rule generation, feature extraction, message

classification, and user observation. Not only do they aid in the maintenance of the

system but also improve usability by performing processor intensive calculations at

off-peak times.

Experimental results are used to compare different configurations of the system in order

to improve performance. These also give some indication as to the properties of the

classifications that the agent can confidently advise.

1.3 Overview of Dissertation

The remaining dissertation is organised as follows:

• Chapter 2- This presents the problem more thoroughly and examines how previous

solutions have tackled the problem. It looks at the developing work with respect to

interface agents and information filtering, and assesses the current research in the use

of learning techniques to model the user.
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• Chapter 3 - CN2 is used as the core algorithm for learning rules for mail

classification. This chapter describes this algorithm and explains the reasons for its

use within this specific application.

• Chapter 4- Learning Email Filter Rules. This chapter explains how the different

parts of the system are built up and how they work together to act as an agent in

observing and modeling the users requirements.

• Chapter 5 - Implementation. This discusses problems encountered with the

implementation of the system and how they were solved.

• Chapter 6 - Results. Due to the nature of the implementation, there are many

parameters which can be varied to improve performance of the system. Much of the

testing was concentrated on varying these parameters and observing how they

affected the performance of the system.

• Chapter 7- Conclusion. This draws together the results and presents concluding

remarks.

• Chapter 8- Future Work. The work presented within this dissertation throws up

many possibilities of future work in the area of interface agents and personalised

filters. This chapter examines some of these possible routes.



Chapter 2

Mail Filtering and Interface Agents

The advances in networking over recent years have provided a rich environment for

sharing and exchange of information. Research is continually investigating faster means

of transferring data across the internet, such as the SuperJanet project in the UK, or better

methods of storing data, such as advanced optical storage systems [Bains 1994]. Beacuse

of this improving media, the rate and complexity of information traffic is continually

growing, along with the need to handle this now overwhelming flood of data.

Visionaries, such as Denning and Kay, foresaw the need for mechanisms to aid the user in

filtering out unwanted information delivered to the user [Denning 1982] or in searching

out information of interest [Kay 1984]. These two distinct research areas of Information

Retrieval/Filtering and Software Agents are now beginning to recombine in the

development of interface agents. An interface agent can act as apersonal assistantwhich

can collaborate with the user to assist in filtering out unwanted information and acquiring

new potentially interesting information [Maes 1994].

2.1 The problem of too much information - an introduction

Tools have been emerging to handle this information in different ways. On the Internet, a

number of different tools have been developed to access some of this wealth of data

scattered across the network. These tools access servers such as the World Wide Web

(WWW), Gopher and the Wide Area Information Servers (WAIS) [Sheth 1994], as well

as more familiar services such as Usenet NEWS and Email. The World Wide Web

[Berners-Lee et al. 1994] provides a platform for building and browsing hypertext

documents, with internet links to other documents scattered on the internet. Gopher is

used for browsing hierarchically organised documents, but both this and the WWW can

contain indices to aid the user in searching for documents. WAIS responds to queries for

keyword searches and allows the user to refine searches for network based documents.

These servers rely on the information retrieval paradigm of the user requesting

information and the server responding to the query. Another paradigm, information

filtering, corresponds more to services such as Email and the News Network. Email is a

means of sending information from one user to one or more users in the form of a
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message. Usenet NEWS consists of messages organised into different topics, or

newsgroups, which can be read by any user interested in that topic. Both these services

deliver information to the user. This can leave the user swamped with a plethora of

messages, many of which the individual is not interested in. Whilst there exist basic

mechanisms to receive messages of interest, such as the newsgroup organisation

hierarchy and mailing lists, it is still possible to be overwhelmed by the high traffic of

messages found on some of the lists or newsgroups. In addition to this, there can exist a

high volume of organisational mail distributed to users within business or research

organisations, much of which is of no interest to the recipient.

2.2 Information Filtering

Information Filtering vs. Information Retrieval

There are many similarities at the abstract level between Information Filtering and

Information Retrieval [Belkin & Croft 1992]. Both are concerned with users only

receiving information that they are interested in, and so many issues in information

retrieval are also relevant to information filtering. Tw o issues however are of special

interest to the information filtering community; they are the issues of text representation

and of refinement:

• Unlike retrieval systems which are mostly designed with structured data in mind, such

as employee records, filtering systems normally have to deal with unstructured or

semi-structured data. Email messages are a good example of this type of data, in that

they hav e well defined header fields but an unstructured text body.

• Filtering normally involves a stream of incoming data over a long period of time.

However, as the requirements of the user may change over time, theprofile or

description of user interests should evolve to reflect these changes.

Issues such as the comparison of profiles with message features, or profile refinement

through such mechanisms asrelevance feedback[Salton & McGill 1983] are still as valid

within filtering as in retrieval.

Many of the issues of text representation are also valid. Two possible approaches to

representation have been widely explored;statistical approaches andsemantic

approaches. Statistical approaches operate on the words themselves, such as keyword or

probabilistic representations, or vector space representations [Salton & McGill 1983] and
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Latent Semantic Indexing [Foltz & Dumais 1992]. The semantic approaches lie within

the use of natural language [Ram 1991; Ram 1992; Riloff & Lehnert 1992]. One

Information Retrieval system,SCISOR[Jacobs & Rau 1990] makes use of a combination

of top-down and bottom-up processing techniques in natural language analysis to process

on-line news feeds.

Information Filters

In the preliminary stages of theOval project [Malone et al. 1987], Malone identified

three approaches to information filtering by surveying different people on what criteria

they use to filter information from various systems;

• Cognitive Filtering- this characterises a message by the contents and meaning of the

message. Participants in the survey looked for certain keywords or phrases to classify

messages.

• Social Filtering - this complements the cognitive approach by concentrating on the

personal and organisational interrelationships between sender and receiver. For

example, more attention may be given to messages from a superior such as a

supervisor.

• Economic Filtering- this is based on a cost-benefit assessment of a message, such as

the length of a message.

It was from these studies that the Information Lens, or Oval System was developed. A

rich set of hierarchically organised templates were used to structure mail messages. An

example of this organisation could be anotice template. This would have certain fixed

fields added to the mail message. A specialised form of this template, e.g. for meetings,

would not only inherit the structure of thenotice template but would contain extra

structured fields. User defined rules could then be defined to not only match keywords

within the text body, but to match template types and make use of the extra structured

information held within the template fields.

Another study by Stadnyk & Kass [Stadnyk & Kass 1992] examines the possibility of

building a knowledge base of description categories that users employ when deciding

whether or not to read a message. They also noticed that the type of rules employed by

users could be generated automatically using machine learning algorithms.
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Email filters have become popular in recent years and there are many which are now

freely available.Elm [Weinstein 1992] is one such filter built into a mail tool. Similar to

Oval, it allows rules to be defined by matching certain keywords within the header field

or message body. The rules can then filter out unwanted messages, sort message types

into mail boxes, or perform more complex commands.

Ram approaches the subject of filters from an Artificial Intelligence approach by applying

natural language understanding mechanisms to filtering. The PIES system (Personal

Interest Engine for Stories) [Ram 1991; Ram 1992] makes use of a model representing

the interest and relevance of different concepts. This model is used to prune away

concepts unlikely to be of interest from the story or message. An alternative approach

was used by Riloff and Lehnert with theirRelevancy Signatures Algorithmin classifying

articles about terrorism [Riloff & Lehnert 1992]. Other systems have been written to

skim and summarise news articles, such as theFRUMPsystem [DeJong 1982].

2.2.1 Interface Agents
Interface Agents are programs that provide assistance to a user for different tasks.

Information filters can be seen as agents as they aid the user in handling large quantities

of incoming information. So far the approach to developing personalised information

filters relies on having a model of the users interest. One of three approaches could be

adopted to generate this model:

• The user may customise their own rules. This approach is used in many filters, such

as theOval project. The inherent problems with this is that it requires too much

insight by the user not only into their requirements, but into how the filter will

perform with regard to these rules. The user also has to be responsible for

maintaining the rules over time, as interests often change.

• Knowledge Acquisition techniques could be used [Boose & Gaines 1989]. This is

found more in interface agents that aid a user in certain environments. For example,

UCEgo [Chin 1991] has a large knowledge base about how to use the Unix Operating

System. It uses this knowledge base to help users solve problems when using Unix.

Making use of knowledge acquisition techniques can help capture regularities in the

types of classifications users make [Stadnyk & Kass 1992]. The knowledge base no

longer requires the user to program complex rules. However this approach fails to
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customise the rules to the users specific requirements.

• Observations of the users actions can generate training examples. When applied to

machine learning techniques, rules can be induced. This will result in a personalised

rulebase with no additional work from the user.

This final approach is being used in a number of interface agents to help the user in

performing organisational tasks, such as calendar management [Dent et al. 1992; Maes &

Kozierok 1993], exploring newsgroups for interesting articles [Sheth 1994] and Email

filters [Metral 1993].

CAP (Calendar APprentice) is a personal learning apprentice which assists in managing a

meeting calendar [Dent et al. 1992]. The calendar manager is used by filling in

parameters for a given meeting. This forms training examples which are logged and

subsequently used by the learning component. The rules generated are then used to

automatically fill in parameters for subsequent meetings. In the early stages of this

project, two learning algorithms were compared;THEO which is a variant of Quinlan’s

ID3 algorithm [Quinlan 1986] producing decision trees; and Backpropagation [Rumelhart

et al. 1986], an artificial neural network (ANN) algorithm. Whilst empirical studies

showed that both learning methods produced comparable results when trained with the

same data, subsequent work concentrated on decision trees [Mitchell et al. 1994].

An interesting issue that arose from the work onCAPwas that of coverage.Coverageis

used to represent the number of classes the ruleset can cover. It was noted that as the

coverage of the rules increased, the overall accuracy decreased. This could indicate that

by making rules cover more possible classes, they can become over-generalised and

hence less accurate.

The work at MIT by Kozierok [Kozierok & Maes 1993; Maes & Kozierok 1993] used the

machine learning methodMemory-Based Reasoning[Stanfill & Waltz 1986]. An unusual

aspect of this work was the use of caricatures to provide feedback to the user of the

current state of the agent. They addressed the problem of trusting the agent by generating

a confidence value for each agent prediction. Tw o thresholds were used; the lower being

a "tell-me" threshold, where the agent needed user confirmation before performing the

action. The higher was a "do-it" threshold. Predictions with a confidence rating higher

than this could be performed automatically.
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This work was the basis for a mail filter. Metral [Metral 1993] examined the design of a

generic learning interface agent. The agent used Memory-Based Reasoning to store and

compare past situations to new ones, and made use of graphical caricatures to represent

the current state of the agent. An off the shelf mail application,Eudorawas modified to

interact with the agent.

An alternative approach to learning within agents at MIT was explored by Sheth [Sheth

1994]. A news reader was developed, NEWT (News Taylor) which made use of user

feedback to identify articles of interest. The system maintained a set of agents, each

responsible for exploring a different interest. New agents can be created by the user, and

given a profile of the users interests. The representation used for profiles and incoming

articles is based on the vector-space representation [Salton & McGill 1983]. Agenetic

algorithm approach is used to explore different profiles.Crossoveris used to combine

parts of two profiles to create a new one, whereasmutation is used to modify a user

profile. A fitness score is calculated for each profile and is modified according to a users

response to articles found by the agent.

The ideas of Genetic Algorithms were also adopted by Baclace in his Personal

Information Intake Filter [Baclace 1991; Baclace 1992]. This filter is also based on ideas

from Agoric Systems[Miller & Drexler 1988], whereby agents compete via market

trading. Each agent is sensitive to features in an article, and possesses a fitness value or

"store of money". When these features are found within a new article, the agents

sensitive to the features rate the article. Agents rating the article get charged for the

privilege of contributing towards the rating. Once the user has read the article, feedback

is returned as to how accurate the rating is; accurate agents are rewarded, whereas

incorrect agents are penalised. Crossover is used to create new agents by creating a

conjunction of two existing features.

2.3 The Proposed Approach

The Mail AGent Interface (MAGI) detailed in this dissertation draws inspiration from

both the above mentioned fields of research and utilises them in a mail agent. It makes

use of a machine learning approach to build up a user model or profile of the users

interests. User actions are observed for use in creating rules, and these rules are used to

filter incoming mail messages. The CN2 induction algorithm (described in the next

chapter) is used to induce rules based on these observations.
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The issue of confidence is addressed by use of multiple rules for any action. A single

message can fire more than one rule. For each action or classification, there will be many

rules created. A confidence threshold is set so that a minimum number of rules must fire

with the same action or classification for the action to be accepted. Once an action is

accepted by the agent, it will then be proposed to the user, who can accept or reject it.

Basic feedback is provided in the form of new training examples if the action proposed

by the agent is then executed.

The work will initially concentrate on extracting features from the message body, as well

as later using the semi-structured mail header fields. A more advanced approach is

proposed to feature extraction based on the work of Miller & Drexler, and of Baclace.

This involves a community of agents which extract features of interest from the message

body. Agents are then rewarded or penalised depending on how well they describe the

message. User feedback is used to determine the quality of the rules and the features

extracted.



Chapter 3

Inductive Learning Algorithms

This chapter describes the CN2 algorithm used in Magi, and discusses the problems

encountered in applying it in the agent.

3.1 CN2

The use of learning algorithms for inducing concept descriptions from examples has

eased the bottleneck of knowledge acquisition. Algorithms such as ID3 [Quinlan 1986]

or those from the AQ family have been especially successful. However, both families are

susceptible to domains with noisy data. Some members of the AQ family have been

developed to preprocess noisy data (eg AQ15 [Michalski et al. 1986]), but these leave the

AQ algorithm intact.

CN2 [Clark & Niblett 1989; Clark 1989] was designed to modify the AQ algorithm to

solve these problems. The algorithm works in an iterative fashion, with each iteration

searching for a complex which covers many examples of classC and few of any other

class. Acomplexis a conjunction of attribute tests. This complex forms the conditional

part of a production rule, where the classC is the result of the production rule. Once a

complex is found, the examples it covers are removed from the training set, and the rule

if complex then Class C

is added to the end of the decision list. The algorithm repeats itself until there are no

more examples in the training set.

A complex is found by using a beam search to specialise rules. A complex is specialised

by either adding a new conjunctive term, or removing a disjunctive element in one of its

selectors. A size limited set, called thestar stores all the complexes that are being

considered. These are the ‘best complexes found so far’. Initially an empty complex

which covers all the training examples is used. Specialisation has been implemented by

repeatedlyintersectingthe set of all possible selectors with the current complex. All

unchanged elements or null complexes are removed (a null complex is one that contains a

pair of incompatible selectors, for examplebig=y ∧ big=n).

12
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The star is then trimmed. This is done by evaluating each of the new complexes, and

discarding its lowest ranking elements. This is done by using two evaluation functions.

The first evaluation uses the information-theoretic entropy measure (1.1)

Entropy= −
i
Σ pi log2(pi ) (1.1)

where the lower the entropy the better the complex. First the setE’ of examples is found

which a complex covers. Then the probability distributionP = (p1, . . . , pn) of examples

in E’ amongn classes is also found. The above measure is then applied to the complex.

An alternative search heuristic can be used to trim the star. TheLaplacianerror estimate

is shown below (1.2):

Accuracy(n, nc, k) =
(n − nc + k − 1)

(n + k)
(1.2)

where:

n = total number of examples covered by the rule

nc = number of positive examples covered by the rule

k = number of classes in the problem

The second evaluation determines whether the complex issignificant. A complex is

significant if it contains a regularity unlikely to occur by chance, and thus reflects a

genuine correlation between attribute values and classes. CN2 measures this by

comparing theobserveddistribution among classes of examples satisfying the complex

with the expecteddistribution resulting from the complex selecting examples randomly.

If the difference is greater than that which can be accounted for though pure chance, the

complex is considered to be significant.

The significance is calculated by using the likelihood ratio statistic [Clark & Niblett

1989], given below (1.3):

2
n

i=1
Σ fi log 


fi

ei




(1.3)

where the distributionF = ( f1, . . . , fn) is the observed frequency distribution, and
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E = (e1, . . . ,en) is the expected frequency distribution. This statistic provides a theoretic

measure of distance between the two distributions. Under suitable assumptions, this

statistic is distributed approximately asχ 2 with n − 1 degrees of freedom.

CN2 provides an ordered list of production (or if-then) rules. Ordered rules have the

disadvantage in that they sacrifice comprehensibility. This is due to any single rule being

dependent on its preceding rules. However, their advantage is that, unlike unordered

rules, there is no need to provide an additional mechanism to resolve rule conflicts due to

two or more rules firing. Unordered rules can be produced by CN2, by changing the

evaluation function to the AQR function used by the AQ family.

3.2 Issues regarding the Application of CN2 to Mail Filtering

The approach of using CN2 to induce rules, as opposed to other approaches such as using

Memory Based Reasoning [Metral 1993] or a genetic approach [Sheth 1994] was to

generate a set of rules which could be read and modified by the user. Approaches such as

those mentioned above maintain a state of learning which is inaccessible to the user,

except through the application or other related tools. The rules generated by Magi are in

the form of production rules in a standard text file.

In order to induce rules from mail messages, one needs to select features from the

message. A message can be split into attributes, one for each fields and one for the

message body. Howev er the problem of multiple attribute values soon becomes apparent.

A filtering heuristic can be used to find features in the message body which characterise

the message (a heuristic based on frequency is described in this dissertation). A message

with similar characteristic may not generate exactly the same features, although there

may be some overlap.

This raises the issue of whether a single training example for a mail message is sufficient,

or whether a disjunct of simpler training examples should be used. Magi makes use of

multiple training examples to overcome this problem. A disjunct of examples is created

comprising of combinations of the different attribute values generated from a single mail

message.

This raises the second issue of multiple rules. If more than one example is generated and

then applied to the rules, each example may fire a rule. This introduces a need for some

form of conflict resolution; although at most one rule will fire with any giv en example if
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an ordered ruleset is used, many examples may fire many rules. Chapter 4 describes a

solution to this problem.



Chapter 4

MAGI - Mail AGent Interface

This chapter describes the mail agentMagi and details each of the components used in

building the system. Each component is described in turn; why it is needed, its

constraints, and its function within the system.

4.1 System Requirements - An Introduction

The requirement is to develop a mail agent which aids its user in handling mail. The

agent sits above the mail tool observing the users interactions with the tool. It can

interact with the mail tool in order to perform actions automatically for the user.

The following is a list of the types of actions the agent will attempt to learn from

observing the user:

• Messages which are filed away in different mailboxes for later browsing.

• Junk mail which the user is never interested in reading.

• Messages which are forwarded to other users.

These actions all fall under Malones criteria of Cognitive filtering [Malone et al. 1987],

whereby filtering is based on the contents of the mail message. Other behaviour could be

observed, such as the order in which mail is read and if this varies on the author or

recipients (Social Filtering), or the time spent reading mail or the size of the mail

messages themselves (Economic Filtering).

The agent comprises of a number of modules, each of which are responsible for certain

tasks. The main reason for this is one of performance. Each time the rulebase is

generated, the existing rules are discarded and new ones are created. This process can be

processor intensive, so it occurs as a regular batch process. Classification of new mail

messages is performed each time a new message is delivered; again to reduce processing

time when the mail tool is invoked.

An aim of the project is to make the agent as transparent as possible. Mail agents such as

that which communicates with the mail tool Eudora [Metral 1993] rely on the user

interacting with the agent in addition to the mail tool, with caricatures used to reflect the

16
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agents current state. With Magi, the agent is invisible to the user and does not effect the

users handling of mail. The only time the user is aware of the agent is when the user

requests help. Because of this the agent has to interact with an existing mail tool. The

standard BerkeleyMail tool is used.

Mail Message

Xmail

Feature
Extraction

training
log

pre_feature
log

Feature
Extraction

Attribute
Files

Rule Base

CN2

CN2

execution
log

Mail Tool User

Rule Generation
Pre-processor

Trust Processor
Classification

The Mail Interface

The Classification Engine The Rule Generation Module

Figure 1 - The Agent Overview

An overview of the agent can be seen in figure 1. This overview highlights the

modularity of the agent. The modules communicate by means of shared files. The three

modules can be summarised as follows:
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• The Mail Interface- This module is responsible for observing and negotiating with

the user. User actions on mail messages are recorded by the mail interface for later

rule generation. The interface also negotiates with the user which automated actions

to perform. These automated actions are generated by the classification engine and

are actions the agent is confident in performing.

• The Rule Generation Module- A record of user actions on mail messages is kept by

the mail interface. This record is used to generate training examples which are used

to induce rules. Each action has a givenlife-time, during which it contributes towards

rule generation. This is so that the user profile can reflect the user over a giv en time.

The rule generation module is responsible for handling this, and for pruning the

training set as training examples become old.

• The Classification Engine- This module tests each new mail message against the rule

base, and analyses the results. As many rules may fire with a given message, this

module is responsible for assessing the confidence in the results of the rules. The

term classificationhere is used to represent any mail action the agent knows about

and can perform on behalf of the user.

An important component common to both the rule generation module and the

classification engine is that of feature extraction. This is responsible for breaking up mail

messages into features which are matched against the rule base. Similarly, messages

need to be broken up into features in the same way to generate a new rule base. This

component is described below.

4.2 The Mail Interface

This module sits transparently between the user and the mail tool. With conventional

mail tools, the user issues commands directly to the tool, by typing commands or using a

graphical user interface (GUI). It then responds to these commands by displaying mail

messages or managing the mailbox, depending on the command (Fig 2).

The mail interface sits between the user and the mail tool (Fig 3). Commands are

intercepted by the mail agent before being passed to the mail tool. This allows the agent

to observe the user handling mail. Likewise, any response from the mail tool can be

intercepted by the mail agent. This allows the mail agent to observe the result of user

commands.
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Mail Tool

User

The user can interact
directly with the mail tool

Figure 2 - Using a mail tool

User

The Agent can communicate
directly with the mail tool

Mail Tool

The Agent observes the
interaction between

the user and the mail tool

The user can negotiate
with the agent

Mail Agent

Figure 3 - Inserting the mail interface above the mail tool
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As the agent lies between the user and the mail tool, the agent is able to negotiate directly

with either the user or the mail tool. In this way, the user is able to examine and select

actions proposed by the agent whilst using the mail tool. Once the user is happy with the

proposed actions, the agent is then able to interact with the mail tool directly without

affecting the user.

Whilst the agent is to be transparent to the user, the user may wish to negotiate with the

agent directly. Because of this and other considerations (see Chapter 5 -Implementation

Details) a graphical user interface was modified. This interface,Xmail, sits above

BerkeleyMail providing a graphical interface but not acting as a mail tool itself. Extra

functionality has been added allowing the user to negotiate directly with the agent. This

is discussed below inUser Feedback.

4.2.1 Capturing user actions
The agent is only interested in a subset of mail commands. These commands are mainly

responsible for filing away mail in different mailboxes, or the deletion of unread mail.

The commands are intercepted by the agent before passing to the mail tool. At this point

all that is known is that there is a message that needs to be filed away or deleted. In filing

mail messages, the agent requests the mail message from the mail tool in order to extract

features from the message at a later date. This message and the user command are stored

in a pre_featurelog file. Once thisobservationhas been made, the command has to be

executed. This is done by the agent issuing the command directly to the mail tool, and

passing the results back to the user (see fig 4).

Deletion is a different matter. Many mail tools offer the ability to undelete mail messages

during the mail reading session (BerkeleyMail is one such tool that allows this). If a log

is made of a message being deleted, this needs to be compensated for if the message is

then undeleted. In this case, the agent keeps a note of all messages deleted without

logging this fact. If the message is undeleted, this is also registered by the agent. When

the mail tool session ends, the agent then logs all the deleted messages at that point.

There may be times when administering mail that commands need to be issued without

being logged by the agent. This may be because of an atypical command or commands

which might affect the rules generated. A mechanism is provided so the user can inform

the agent to ignore the user until told otherwise.
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User

Mail Tool

The user saves the current
message in folder X

The agent intercepts this command.
It obtains the current mail message
from the mail tool, and appends this

to the pre_feature log file.

The command is then forwarded to
the mail tool, which replies to the user.

pre_feature
log file

Mail Agent

Figure 4 - Making observations on message filing

4.2.2 Automating User Actions
The classification engine examines incoming mail and determines if actions should be

proposed by the agent. These proposed actions are stored in a log file called the

execution log. Each entry comprises of the action or command the agent proposes to

issue, and some means of identifying the mail message on which the action is to be

executed.

When the user has negotiated with the agent to decide which actions are to be performed,

the agent searches for each message in the mail box and performs the actions. The agent

makes a record of the actions performed which is displayed to the user.

An important consideration here is that there has to be some way of overriding the agents

proposed actions. It is possible that the agent may mis-classify a message, due to poor

training examples or as part of the user changing their requirements. Because of this, the

facility for the user to negotiate with the agent regarding proposed actions is included. In

the majority of cases it would be expected that the user would trust the agent to perform
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its proposed actions.

Confidencein the agents proposed actions is represented by the number of rules firing to

yield the same action (see below inClassifying Messages). A trust thresholdis used to

determine whether or not the agent has high confidence in a proposed action. This

threshold is consistent across all actions and has been determined empirically.

Actions proposed by and performed by the agent are also considered for future training

examples. In this way messages, for which the agent correctly predicts the action, will

contribute towards the correct action when rules are later generated. This provides

positive feedback for the rule generation module.

Initiating agent proposed actions and negotiating with the agent as to which message-

action pairs are to be performed are two examples where the user communicates with the

agent as opposed to the mail tool.

4.2.3 User Feedback
An important function in negotiating with the agent is to be able to select which message-

action pairs proposed by the agent are to be performed. For this, the action browser was

designed. This lists all the message-action pairs,markingeach one to indicate that it will

be executed. As the messages are referenced by the message-action pairs using a unique

identification value (theMessage ID), this list can mean very little to the user. The user

can examine any message from this list. On doing so the message is displayed in the

window below. Any actions not to be performed can then be unselected. Once the user is

happy with the agent predictions, they can be performed.

Because this mechanism identifies correct and incorrect agent predictions it can be used

to provide additional feedback, both positive and negative, to the agent. This is of use to

the advanced filtering system described below (seeAdvanced Filtering). Here, feedback

is used to reward or penalise features that are used in rule generation.

This list of message-action pairs could be modified so that actions not normally proposed

can be selected. Currently thetrust thresholdis set within the classification engine. For

each message, aconfidencevalue is generated from the number of rules that fire for a

given action. The agent will propose a message-action pair if the confidence value is

greater than the trust value, ie. the agent has a high confidence in this action. This is

explained in greater detail below (seeClassifying Messages).
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An alternative approach would be to add the confidence count to each message-action

pair forming a message-action triplet. The user could also define their owntrust

thresholdsfor every possible action. For each entry in the list, the confidence count could

then be compared to these user definedtrust thresholdswithin the mail interface. If a

confidence count is greater than thetrust thresholdfor that action, then that entry could

be marked for execution.

The main advantage of this approach would be to improve user feedback. The current

action browser displays entries which the agent has high confidence in. The user can then

reject any entries not to be performed. This new approach would also list entries for

which the agent has low confidence, ie. the confidence value is less than or equal to the

trust thresholdfor the specific action. The user can then select entries which the agent

has low confidence in to be performed, or to reject entries which the agent has high

confidence in.

4.3 Feature Extraction

The rule generation module utilises message features to induce rules for the rulebase.

Similarly the classification module compares message features to the rulebase to detect

messages the agent may want to propose to the user. Both modules require these features

to be extracted from the message.

The feature extraction mechanism was designed so that it could be used from both the

classification module and the rule generation module. This ensures that the message will

generate the same features for both modules.

Each message is divided into two parts. The first, the message header, contains structure

information. The second part is the message body. Two approaches to extracting features

from the message body are discussed in the sectionsBasic Filtering and Advanced

Filtering below.

The message header contains information about the routeing used by the message to

reach its deadline. It also contains information about who the sender was, the time and

date sent, recipients, status information etc. Magi is currently only interested in two of

these fields. These are theFr om andSubjectfields, which contain the sender and a brief

synopsis of the message respectively.
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The Fr om field is preserved as a single string. The subject field is parsed into words.

Words found in the common stoplist are removed, and the remaining words used. See

Basic Filteringfor more details on this parsing.

In generating rules, attribute files are generated, containing attributes which may be found

in the rule-base. These files are used for additional filtering when classifying rules (see

Classifying Messages).

4.3.1 Basic Filtering
This is the main filtering adopted by Magi. The message body is parsed into words.

Words are defined as sequences of characters delimited by whitespace, ie. space, tab, or

newline characters. These words are then sorted into descending order by frequency.

The topN words are then used to describe the message, where the numberN is defined by

the agent. Punctuation and numerics are removed to reduce spurious words. See the

sectionImplementationfor details on how words are parsed out of the mail message. An

example of this is given in Chapter 5.

A high proportion of the most frequent words found will be common words used as part

of every day language, for exampleand, is, theetc. A file containing these words, or

stoplist, is used to filter them out. As words are parsed out of the message body, the

stoplist is checked. If the word exists in the stoplist, it is immediately discarded. This is

used to improve theentropy, or information content of the high occurrence words in the

message body.

All the tests described in theResultschapter use this method of filtering.

There are many other possible approaches to this problem. The body of the message

contains a wide range of words, where verbs can exist in different tenses (eg is, was, will

be), nouns in different cases (eg tree, trees), and synonyms (eg freedom, liberty,

independence), not to mention the issues of multiple spellings (eg color, colour).

Approaches can be taken to take these considerations into account. Thesauri and word

hierarchies could also be used [Miller et al. 1990] to reduce the number of synonyms

found in messages.

4.3.2 Advanced Filtering
One problem with the basic filtering method described above is that there is limited
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feedback of the success of the rules generated. Successful agent proposals will generate

further training examples. However, some features may contribute to more than one

action, and so may cause mis-classifications. This has been partially investigated by

varying thetrust threshold.

An alternative solution, is based on the work by Baclace [Baclace 1991; Baclace 1992].

The features themselves can be monitored rewarding features which contribute towards

correct classifications and penalising features which cause mis-classifications. This is

achieved by using an additional filter to the existing basic filter. It builds up over time a

knowledge base containing a number of different features. Each feature contains afitness

value which can vary, depending on whether the feature contributes toward correct

classifications or mis-classifications.

When a new feature is encountered, ie. it does not already exist in the knowledge base, a

new entry is made. A standard starting value for itsfitnessis assigned. Once a feature

exists in the knowledge base, itsfitnessvalue determines whether the feature is passed

through the filter. Features with a lowfitnessare considered as unhelpful and are filtered

out, whereas those with a highfitnessare allowed through the filter.

The fitness of a feature has to reflect how good the feature is in determining

classifications. This is achieved by rew arding the feature by increasing itsfitnessif the

feature contributes towards a correct classification, and penalising the feature by reducing

its fitnessif the feature contributes an incorrect classification. The amount by which the

fitnessis altered is determined by the frequency of the feature in the classified message.

Thus if the feature had a high frequency then thefitnessis adjusted more than a feature

with a lower frequency.

There is the danger that once a feature’sfitnessfalls below the filtering threshold (ie. is

now filtered out), the feature can never be reused. The feature may at the time yield mis-

classification, but may be very useful to the agent at a later date, due to the user profile

changing. Once a feature is filtered out, it can never contribute towards a correct

classification and hence be rewarded.

This problem is overcome by only keeping these features in the knowledge base for a

limited period. Once a feature is considered unhelpful, ie itsfitness falls below a

threshold, itsfitnessis then decremented during each classification. Once itsfitnessfalls

below zero it is then removed from the knowledge base.
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This is in the prototype stage. Due to a lack of time at the end of the project this filter

was not complete. Hence no test results exist to show if this filtering improves

performance. An example of this mechanism is shown in Appendix A.

4.4 Learning Rules

The machine learning algorithm CN2 is used to induce rules based on a series of training

examples. The training examples are generated from two sources. The first set is

generated from observations made of the user by the agent since rules were last

generated. The observations are stored in thepre_featurelog file. Each observation

consists of the mail message and the action performed on it. It is at this point that

features are extracted from the message using the feature extraction component.

Feature
Extraction

training
log

pre_feature
log

Attribute
Files

Rule Base

CN2

Rule Generation
Pre-processor

Attribute files are created.
These are used for later filtering

All examples older that a
given time are removed
from the training log

The remaining examples are
then combined to generate
training examples for CN2

The Rule Generation Module

Figure 5 - The rule generation module

The second source of training examples comes from training examples used in past rule

generations. Once an example is used in the induction of rules, it is given ashelf-life.
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This shelf-life can be determined empirically. When rules are generated, the old ruleset is

discarded. Many of the old rules may still be valid, but may not be generated by the new

observations. This is overcome by preserving the most recent training examples over a

given time. Once a training example has been preserved for longer than this time it will

be discarded.

The advantage of this approach is that user behaviour is modelled over a recent given

time (for example, the last month). This allows for infrequent but predictable actions to

be learned, but also enables the agent to adapt to new interests. User behaviour will

change, so there is a need toforget training examples which are no longer valid. This is

accomplished by discarding old examples once they hav e exceeded this shelf-life (see

figure 5).

A single mail message will generate multiple training examples. Up toN features are

extracted from the message body, which can be used to characterise the message. The

learning algorithm accepts a single value for each attribute. The attribute can hold a

conjunction of allN features, but the features themselves and any ordering of the features

will be meaningless. An alternative approach (used by Magi) is to generate multiple

examples, each with one of the features contained by the message body attribute.

The number of training examples increases with the use of other attributes which may

contain more than one feature. The number of examples generated is given in 1.4:

Num of Examples= (a1 + a2 + , . . . , + am) (1.4)

where

a = number of possible features for a given attribute

m = number of attributes

An example of this is given in Chapter 5 (seeFeature Extraction).

The rule generation module also produces attribute files. In order to generate rules, the

learning algorithm needs lists of valid attributes and actions. These are generated at this

stage before learning the rules. The attribute files are also used for filtering in classifying

messages.
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4.5 Classifying Messages

Mail on a UNIX operating system is automatically delivered to a users mailbox. It is also

possible to send a copy to a process. This mechanism is used by theclassification engine.

When mail arrives for the user, a copy is sent to the classification engine, which then

attempts to classify the message and propose an action in the execution log.

Mail Message

Feature
Extraction

Attribute
Files

Rule Base

CN2

execution
log

When features are extracted

features not found in the
attribute files are then

replaced by the UNKNOWN
symbol - ’?’

from the mail message, any

Trust Processor
Classification

The Classification Engine

Figure 6 - The classification engine

In order to classify an arriving mail message, it needs to be broken down into features

which are then applied to the rule-base. The features generated from the message

undergo a further filter stage than when generating the rules. Each of the top occurring

set of words is then checked to see if it occurs in the correct attribute file. If it cannot be

found it is replaced withUNKNOWN (see figure 6). The reason for this is that the
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classification engine recognises this symbol and no lookup is performed. If a feature

cannot be found in the attribute files, then it will not exist in the rule-base.

Multiple testing examples are generated in a similar fashion to those generated for

learning (seeLearning Rulesabove). As in the training examples, every combination of

attributes are generated for testing. Any attributes not found in the appropriate attribute

file are replaced byUNKNOWN. Each combination is tested against the rulebase. All

rules that fire are then processed to count the number of rules firing for each different

action. For each action, if the number of firing rules is greater than thetrust threshold,

then the agent proposes the action for the appropriate message by adding it to the end of

theexecution log.

Because the number of features generated by the subject line can vary, the number of

firing rules needs to be normalised. This is achieved by treating thetrust threshold as a

percentage of test examples firing. For example, thetrust threshold may be set to 30%.

For the agent to have confidence in an action for a given message, more than 30% of the

test examples for that message must fire rules which give that action.
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Implementation Details

This chapter discusses considerations taken into account when implementing the mail

agent Magi. The agent was developed to run on a UNIX platform, and is implemented

using Bourne shell scripts and the language ‘C’.

5.1 Changes to Xmail

The main requirement in writing the agent was to allow it to observe the user whilst

allowing the user to work with the mail tool, and to allow it to interact directly with either

the mail tool or the user. This poses a problem as asynchronous communication has to

take place between the agent and both mail tool and user.

This problem has been nicely solved byxmail, written by M.Wagnitz [Wagnitz 1992].

Xmail is an X11 window based visual interface to the standard BerkeleyMail program

(see figure 7). It is written in ‘C’ and uses the X toolkit with the Athena Widget Set. Not

only does this set up and maintain a communication channel to BerkeleyMail, but it

provides a modifiable graphical user interface. A single button and dropdown menu was

added to the main interface to provide the user access to the agent.

Tw o main modifications were made toxmail. They were to observe user actions and to

handle agent actions. Due to the design of the interface, different buttons were used for

different actions. Each button causes a callback function to be executed. Calls were

added to the save buttons to call the routineActionLog (actionlog.c). The design of this

routine is very simple:

i. Thepre_featurelog file is opened for appending.

ii. The action is written to the log file

iii. Mail is queried for the appropriate mail message, which is then written to the file.

The code attached to the command button could then be executed.

The Deletion and Undeletion button created more of a problem. No log updates were

performed until the mailbox was to be updated. All deletions by the user were also

30
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performed byMail. BerkeleyMail allows deleted messages to be undeleted, provided the

mailbox has not been updated. Deletions were recorded internally in a buffer. This way

undeletions would then cancel the corresponding deletion. When the mailbox was to be

updated, the buffer was then traversed, and the remaining deleted messages were then

added to the log.

Figure 7 - The user interface

Handling agent actions involved more work. The classification engine appends proposed

actions to theexecution logwhich is then read by the action. Each entry comprises of the

Message-Id and an action. An example of an entry can be seen in Figure 8. The

Message-Id is used to identify the message within the mailbox, and is always sought from
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the most recent message to the oldest.

s %d +msc
s %d +kdd
s %d +mead

<9405131612.AA08991@kite>
<9405131920.AA28801@eureka.gte.com>

<9405140740.AA10270@raven.eklektix.com>

The action to be performed on the messageThe message-id of a message

Figure 8 - AnExecution Log Entry

This execution logis only loaded into the interface when the user selects theaction

button. The interface is designed so that the buttons on the main window can also act as

dropdown menus. If the action button is clicked with the left mouse button, theexecution

log is loaded and executed. By clicking the button with the right mouse button a menu

appears with four options:

• action - this performs the same action as clicking with the left mouse button. The

reason for this is consistency; all menus have the same action for their top entry as the

button itself.

• Select Actions- This invokes the action browser.

• Log Actions- This turns on agent observations and logging.

• NoLog Actions- This turns off agent observations and logging.

The last two menu entries allow the user to determine when the agent observes actions.

This mechanism can be used to prevent atypical actions from being used as erroneous

training examples. By default the agent will observe and log user actions.

When agent actions are performed, the agent looks up the Message-Id of a message-

action pair in the current mailbox by requesting all the messages fromMail in turn, from

the most recent to the oldest. The agent is actually seeking the message number of the
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message with the matching Message-Id. Once this is found, it is used to complete the

command (or action) which is then sent toMail. The a summary of messages and actions

performed on them is then presented to the user (see Figure 9).

Figure 9 - Summary of agent actions

The action browser is a mechanism whereby the user can select message-action pairs and

instruct the agent to display the message. The user can also select or de-select messages

to be executed. This enables the user to provide both positive and negative feedback to

the agent about its predictions.
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Due to the lack of time at the end of the project, this browser was not completed.

5.2 Feature Extraction

This component lies at the heart of both the rule generation module and the classification

engine. Written in ‘C’, it is responsible for parsing mail messages and extracting features

from the message body. Both modules require similar behaviour, but subtle differences

exist in use:

• Rule Generation- messages held in thepre_featurelog are parsed. These also

include the actions that were performed on them. All features extracted are used,

coupled with the action.

• Action Classification- newly arrived messages are parsed so features can be applied

to the rule-base. No action is provided, and hence none appears with the features.

Attribute files are used to determine which features may appear in the rule-base;

features not found in these files are replaced with the symbolUNKNOWN.

The message is parsed a line at a time. The "Fr om", "Subject" and "Message-ID" fields

are extracted from the header, along with action information if it exists. The subject line

is also broken up into features similar to the message body. The algorithm used in

parsing the subject line and message body is as follows:

i. Periods ‘.’ are converted to spaces.

ii. All uppercase characters are converted to lower case.

iii. Whitespace characters are recognised to delimit words. Whitespace is defined as a

tab character, a space or a newline character.

iv. All non alphabetics are stripped from words.

v. Words are then looked up in the stoplist. If found they are ignored.

vi. The words are then stored in a tree data-structure. A frequency count for each

word is maintained.

Step (iv) was chosen for simplicity. It filters out punctuation. However the decision to

strip numerics may cause a loss in potential features (such as the word "CN2").

The stoplist used was the one used in generating permuted indexes -/usr/lib/eignwhich

can be found on Sun UNIX platforms. This removes commonly occurring words such as

"the" or "and". Appendix C contains the list of words found in this stoplist.
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If features are being generated for the classification engine then an extra stage in the

filtering takes place. Features not found in the attribute files generated by the rule

generator are replaced by the symbolUNKNOWN. Test examples have two constraints

imposed by the classification engine:

• a test example must contain a value for each attribute.

• only attribute values in the attribute files can be used.

The UNKNOWN symbol does not cause any rules to fire, but is special to the

classification engine and so can be used to complete the test examples.

There may be times when identical examples will be generated, because of more than one

UNKNOWN feature. These are preserved, as the number of times the rules fire is

significant in determining action classifications.

The following is an example of a message and the features generated.

From: terry

Subject: The Tao of Pooh

For a good read, this book

about Pooh is a very good book.

Read it.

The features generated are as follows:

From terry

Subject tao pooh

Body read book pooh

All different combinations of the attributes will be generated as training or test examples

for the rule generator or classification engine respectively. The examples shown below

are for the classification engine. All the features, excepttao can be found in the

respective attribute files for each attribute. Hence, tao is replaced with theUNKNOWN

symbol "?".
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Attributes

From Subject Body

terry ? read

terry ? book

terry ? pooh

terry pooh read

terry pooh book

terry pooh pooh

5.3 Rule Generation

Tw o sources of training examples are used to generate rules; the first contains dated

examples used to generate previous rules, the second contains examples from

observations made since the last rules were induced. Old training examples are kept for a

limited time, and this set of examples is pruned to remove the oldest examples before new

rules are generated.

The training examples are then parsed to build the attribute files. An attribute file

contains all the values for a given attribute found in the training examples. These are

required not only by the classification engine, but also by CN2, in order to induce rules.

The algorithm used is shown below:

i. Features are extracted from recent agent observations held in thepre_featurelog.

These features are used to generate training examples.

ii. Old training examples are pruned, so that examples used to generate the new rules

reflect usage over a giv en time period.

iii. The training examples are parsed to generate the attribute files.

iv. The new training examples are date-stamped and prepended to the old training

examples and saved for later use.

v. New rules are then induced from the training examples by CN2, which then writes

these rules in a rule-base for later classification.

5.4 Message Classification

As new messages arrive, a copy is passed to the classification engine. It is then used to
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attempt to predict how the user fill handle the message, such as deleting it or saving it.

This is performed by converting the message into a set of test examples. Features are

extracted from the message, and features not found in the attribute files are replaced with

UNKNOWN symbols. A copy of the Message-Id of the message is retained whilst

parsing the message, so the predicted action can be applied to the message by the user

interface.

The CN2 algorithm was modified to perform classifications, by reading in a rule-base and

then applying test examples to these rules. If a rule fires, then the test example with

attributes is logged, together with the action resulting from the rule. This log is then

processed to see how many and what actions fired. These actions are counted and

compared to thetrust threshold. Actions which rules fire more times than the value of

this threshold are then stored in theexecution log, along with the Message-Id.

Although CN2 generates ordered rules with a default action, this default not taken into

account when classifying rules. This partially addresses the problem of over-

generalisation, where the default attempts to catch any case not covered by the rules.

The algorithm used is shown below:

i. Features are extracted from the message. Those features which are not found in the

attribute files replaced by "?".

ii. The features are used to generate a set of test examples. The Message-Id of the

message is identified.

iii. The modified CN2 is then used to apply the test examples to the rule-base. Rules

that fire generate the attributes of the examples that fire them and the resulting

actions.

iv. The results of CN2 are counted and applied to atrust threshold. Those counts

which are greater than this threshold are then saved to be proposed to the user.

It is possible for the test example set to vary in size depending on the message. Because

of this, thetrust threshold varies depending on the size of the test set, so that equal

proportions of the sets are required to fire rules in order for the agent to propose actions

to the user.
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Experimental Results

This chapter describes the testing of the feature extraction, classification and learning

engines. It describes and evaluates the dataset used to test these modules. Each of the

experiments are described in detail, graphs of the results are presented and these results

are analysed. Detailed tables of results can be found in Appendix D.

Unlike many empirical case studies that compare different learning strategies within a

specific domain (for example within a calendar management agent [Dent et al.(1992),

Mitchell et al.(1994)] and in English Text to Speech Mapping [Diettrich et al.(1990)], this

study makes use of a single learning mechanism within its domain. The aim is to see if

the agent can correctly classifysomemail messages accurately more than 50% of the

time. Given this the following tests vary different operational parameters to explore the

system and to determine if it does provide a viable solution.

6.1 The Dataset

In order to test out the agent’s ability to learn from and classify mail actions, a large

number of mail messages was required. Six mail categories were identified and messages

were gathered over a four month period during the project (May 1994 - August 1994).

They were sorted into six files, one for each category. Two further mail files taken from

the authors archives were added to the dataset, providing eight different categories into

which mail message could be sorted.

The number of messages and size of each category file varied. Each message was

categorised purely on its contents. Factors regarding social or economic filtering [Malone

et al. 1987], such as the size of the message, its author, the recipients etc were not taken

into account. Because of this, the number of messages in each category varies.

Different types of mail message exist, such as special interest messages, organisational

mail etc. Table 6.1 identifies some of these message types, and illustrate which of the

categories in the dataset share these properties. The properties are defined as follows:

38
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mailing specific general

list interest interest
Category digest organisational

agents

cure

jobs

kdd

mead

msc

personal

phd

Table 6.1 Properties shared by the message categories in the dataset.

• digest - This is a mailing list where messages are sent to an individual who is

responsible for collating and sometimes moderating messages about the given subject

area. Each digest message will contain one or more contributing messages. The

Fr om field is consistent across each digest, and often there is little variation in the

Subjectfield.

• mailing list - Normally automated, this is a server which forwards messages sent to it

to recipients listed within a list. TheFr om andSubjectfields are those of the original

sender and so will vary with each message.

• organisational - these are messages grouped because of some organisational

structure, such as messages sent to a mail alias.

• specific interest- messages related to a specific theme, such as a music mailing list or

special interest list.

• general interest- messages covering a broader range of interests.

The following is a description of each category:

• agents- this category contains various articles, and announcements about a specific

topic; that of ‘agents’. This dataset is the smallest, having been collected for a short

period, and contains messages mostly forwarded from a single source. Hence this
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category is not expected to yield good results.12 messages

• cure - this category contains selected messages collected over a four year period. All

the messages pertain to a music mailing list.51 messages

• jobs - this category contains various messages regarding posts available in academia.

24 messages

• kdd - the messages in this category are in the form of digests from a mailing list. As

only a single digest was received every month, a number of archived digests were

added to the dataset.15 messages

• mead- again messages forming a digest from a mailing list. Messages were received

at a rate of two to three a week.29 messages

• msc - these messages were sent to a departmental mailing list regarding various

organisational matters.26 messages

• personal- messages in this category comprise of personal communications and cover

a wide range of topics.43 messages

• phd - these messages, regarding a specific topic, originated from a handful or senders

over the period of a year. This category also contains the largest number of mail

messages.64 messages

6.2 Classifying different datasets

In order to evaluate the classification engine and the rule generation module, a test suite

was dev eloped. The algorithm is listed below:

i. For each message category file a percentage of messages, selected at random, are

extracted for training the agent. These are processed to emulate the agent

observing the user’s actions, and are stored in thepre_featurelog. The action is

that of saving the message in a mail folder with the same name as the category file.

ii. Once messages from all the category files have been pre-processed and added to

thepre_featurelog, rules are then induced. Entries in thetraining log are removed,

so that only thepre_featuretraining examples are used.
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iii. For each message category file:

i. The remaining messages not used in training the agent are then passed to the

classification engine as incoming messages.

ii. The messages are then classified. Theexecution log is processed, to

investigate how many messages were classified correctly, and how many

were mis-classified.

iii. These results are appended to a test results file.

This test was repeated for training percentages from 20% to 80% in 10% steps. A lower

percentage would provide insufficient training examples to train the agent, and a higher

percentage would leave to few test examples to adequately test the rules.

Care should be taken when examining these limits for categories with low message

counts such asagentsand kdd; as little as a single message from these categories may

have been used to train or test the agent at these boundaries.

A sample set of results is shown below. Coverage tables similar to those found in the

rules are used to identify the categories of mis-classified messages. This information

could be used in future work to discover categories which have a more than random

overlap in features. For now the results were analysed to calculate the proportion of

messages that are correctly classified by the agent, as opposed to the number of mis-

classifications made.

Training with 50%

Thu Sep 1 12:49:44 BST 1994

./testdir/kl_agents 4 agents 4 [ 4 0 0 0 0 0 0 0 ]

./testdir/kl_jobs 10 jobs 2 [ 1 2 0 1 0 0 0 0 ]

./testdir/kl_kdd 6 kdd 6 [ 0 0 6 0 0 0 0 0 ]

./testdir/kl_msc 9 msc 1 [ 4 0 0 1 0 0 0 0 ]

./testdir/kl_cure 28 cure 12 [ 0 0 0 0 12 0 2 0 ]

./testdir/kl_mead 18 mead 18 [ 0 0 0 0 0 18 0 0 ]

./testdir/kl_personal 31 personal 3 [ 1 0 0 1 1 0 3 0 ]

./testdir/kl_phd 30 phd 21 [ 0 0 0 0 0 0 0 21 ]
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Each entry contains the number of messages tested of that category, the category name,

the number of correct classifications made and a table listing the total number of

classifications made for that category file.

The CN algorithm was used with the evaluation algorithm set tolaplacian, with a

significance threshold of 0.0 and a star size of 5. These parameters have remained

throughout all the testing described in this dissertation.

The original tests concentrated on features generated from the message body. No

attributes were provided by the subject or from fields. The number of featuresN = 10

was arbitrarily chosen. Thetrust threshold,T was set to 2, so that more than two rules

have to fire with the same action before the agent has confidence in the result.

The test was repeated 30 times, and from theses results averages were calculated. Tw o

results,proposed actionsand effective actions, are generated for each category. The

proposed actions, or PA (shown as a solid line) represents the percentage of successful

proposals made by the agent for a given category. Theeffective actionstake into account

mis-classifications made whilst classifying a given category.

EA is calculated by the equation shown below (1.5)

EAc = 2PAc −
m

i=1
Σ PAi (1.5)

where EAc = the effective actionsvalue of categoryc, PAc = proposed actionsof

categoryc, and the accuracy distributionPA = (PA1, . . . ,PAm) is the proposed action

value PA for each category. Neg ativeeffective actionsare replaced with a value of zero.

This measurement (shown as a dashed line) provides a better indication of the

performance of the agent.

6.2.1 Results
The following eight graphs show the percentage of correct classifications made by the

agent in determining each category. Each graph corresponds to each of the categories

tested. For each point the standard deviation has been calculated and is shown. Tables of

results are then given on the following page and discussed.
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p p

% agents cure jobs kdd mead msc personal phd

20 11.48(11.18) 19.51(11.73) 42.94(16.77) 56.29(26.34) 95.88 (9.02) 6.06 (6.33) 4.76 (3.58) 65.90(12.29)

30 12.41 (9.74) 32.60(10.95) 46.46(17.52) 61.51(24.25) 98.88 (2.74) 8.31 (7.45) 5.73 (4.92) 75.01 (9.07)

40 12.42(10.72) 40.94(10.28) 52.39(16.25) 69.04(21.51) 99.56 (1.48) 13.71 (9.22) 8.44 (5.52) 81.39 (6.08)

50 14.92(10.53) 46.84 (8.38) 54.79(14.57) 79.91(19.14) 99.75 (1.22) 19.94 (8.69) 10.03 (6.57) 84.06 (5.67)

60 15.48(18.17) 54.47(12.32) 63.27(16.12) 84.15(14.44) 99.45 (1.87) 24.63(11.44) 15.20 (7.19) 87.33 (4.17)

70 16.67(24.38) 58.55(16.65) 64.07(18.03) 84.42(23.52) 96.00(19.60) 25.95(22.07) 15.33(10.32) 85.13(18.36)

80 16.46(29.12) 65.82(15.76) 66.70(25.23) 88.53(16.70) 99.75 (1.22) 35.40(26.12) 15.20(12.60) 90.77 (8.50)

Percentage of Proposed or Predictive Actions, PA

% agents cure jobs kdd mead msc personal phd

20 0.00 (0.00) 16.39(10.58) 31.07(19.57) 52.86(27.59) 95.56 (9.42) 3.48 (6.33) 0.00 (0.00) 60.43(14.36)

30 1.14 (5.60) 27.64(11.86) 31.00(22.68) 53.31(29.24) 98.53 (3.96) 2.95 (6.74) 0.00 (0.00) 69.25 (9.68)

40 2.17 (5.95) 35.61(12.55) 38.13(22.75) 56.47(29.29) 99.34 (1.79) 5.91 (9.65) 0.00 (0.00) 74.96 (6.30)

50 1.00 (4.90) 41.30(10.21) 38.64(20.72) 73.63(25.28) 99.50 (1.70) 10.03(10.79) 0.00 (0.00) 77.19 (6.39)

60 2.13 (7.48) 47.77(14.44) 48.03(23.14) 77.24(20.59) 99.45 (1.87) 11.28(14.83) 0.00 (0.00) 78.37 (6.31)

70 4.33(12.27) 53.98(17.62) 48.74(23.06) 79.29(26.64) 96.00(19.60) 13.88(23.38) 0.50 (2.45) 75.40(18.58)

80 4.51(12.50) 60.70(17.46) 53.52(32.67) 88.03(17.28) 99.75 (1.22) 20.13(26.26) 0.67 (3.27) 77.73(12.96)

Percentage of Effective Actions, EA

6.2.2 Discussion
The results indicate that regularities are being discovered within the training examples.

For each of the categories, there is an increase in PA as the number of training examples

increases. There is some increase in standard deviation towards the higher testing

percentages; the increase becomes noticeable above 60%. This is probably explained by

the smaller number of examples being tested per category, hence variation in results can

increase. Bothagents, kdd and to some extentjobs also had higher standard deviations

overall than the other categories, though this can be explained by these three categories

having the smallest number of examples for training and testing.

The results for the two general interest groups,mscandpersonalare poor. This could be

an early indication that the agent may have difficulty in inducing rules for these

categories. Of the remaining special interest categories, all butagentsshow reasonable

performance. The categorymeadperformed really well, despite the anomalous result at

70% which was probably due to to a rogue result.

The EA results show a similar picture, except that these predictions were lower. Standard

deviations are also slightly higher overall in these results. This implies a number of mis-

classifications are being made, and that thetrust threshold is set too low. The results

from agentsand personal indicate that classifications for these categories are mostly

random, as there are approximately equal numbers of misclassifications as correct

classifications.
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The following table and graph show an overall percentage of correct classifications for all

the specific interest categories with the exception ofagents. Whilst this does not show

the overall accuracy of the system, it does indicate that, for some categories the agent can

begin to be a help to the user.

% PA EA

20 56.10 (25.26) 51.26 (27.10)
30 62.89 (22.94) 55.95 (26.16)
40 68.66 (20.74) 60.90 (23.89)
50 73.07 (19.50) 66.05 (23.08)
60 77.73 (16.46) 70.17 (19.83)
70 77.63 (14.06) 70.68 (17.31)
80 82.31 (13.64) 75.95 (17.04)

% PA

% trained
0

100

0 100

Specific Interest

Effective Specific Interest

Overall Percentage of predicting special interest messages

6.3 Varying the trust threshold - T

The results so far have indicated that whilst many correct classifications are made by the

classification engine, a number of bad classifications, or mis-classifications also occur.

This is suggested by the difference between the EA and the PA values. One way of

reducing mis-classifications is to increase thetrust threshold. This would result in

requiring more rules to fire for the correct classification, and less incorrect rules firing.

Three sets of experiments were performed. Each was identical to the test outlined in the

above section,Classifying different datasets, except that thetrust threshold varied. The

valuesT = 3, 4 and 5 were tested, and compared to the above tests whereT = 2.

Again, the evaluation algorithm set tolaplacian, with a significance threshold of 0.0 and

a star size of 5. Only features from the message body were used, and the number of

features,N was left at 10.

6.3.1 Results
The results of these experiments, complete with graphs can be found in Appendix D.
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6.3.2 Discussion
The results clearly indicate that by increasingT, the following two effects occur:

• the number of inaccuracies or mis-classifications fall, and

• the number of correct classifications drops.

These two phenomena are illustrated in the graph below. An overall average (for PA and

EA) is calculated for each value ofT. For each training percentage, an overall percentage

of correct predictions is calculated across all categories (see results in Appendix D).

These overall percentages are averaged out to give an average PA and average EA for

each value ofT. These values are plotted below. TheProposal Accuracyis calculated

from these two values, and is an approximation of the percentage of correct

classifications.

Overall Overall Proposal
PA EA Accuracy (%)

T

2 50.01 (7.29) 41.77 (5.97) 83.52
3 39.56 (7.85) 36.01 (6.71) 91.03
4 29.33 (6.04) 28.14 (5.93) 95.94
5 19.22 (5.20) 18.72 (5.17) 97.40

% PA

0

100

2 3 4 5 = T

Overall Average

Effective Overall Average

Average PA and Average EA with respect to T

Results indicate that there is an initial decrease in mis-classifications, followed by smaller

decreases asT increases, but that the decrease in correct classifications falls consistently

by about 10% per increase inT. This indicates thatT = 3 may be a good value for

calculating agent confidence.

The EA value does not increase forpersonal, but a drop in percentage of proposed

actions occurs indicating that predictions are unlikely to be made for this category.
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6.4 Varying the number of message body features -N

So far, the number of features extracted from the message bodyN has been set to 10.

Tests on the decay of frequency in extracted features (see Appendix B) which were based

on N = 10 indicated that there was little difference in frequency between the lowest

frequency words considered. Because of this, the next three tests were concerned with

varying this number of features. The test was performed with the values ofN set to 7, 8,

then 9.

6.4.1 Results
The results of these experiments, complete with graphs can be found in Appendix D.

6.4.2 Discussion
A similar trend occurs in reducingN as occurred in increasingT in the previous tests. As

N is reduced, the percentages of correct classifications and mis-classifications fall. This

is illustrated in the graph below. SeeVarying the trust threshold - Tfor details on

calculating these values.

Overall Overall Proposal
PA EA Accuracy (%)

N

10 39.56 (7.85) 36.01 (6.71) 91.03
9 34.60 (6.41) 32.50 (5.86) 93.94
8 30.06 (7.26) 28.16 (6.49) 93.67
7 25.65 (5.94) 24.74 (5.82) 96.45

% PA

0

100

10 9 8 7 = N

Overall Average

Effective Overall Average

Average PA and Average EA with respect to N

The above trend is more apparent when observing separate categories with higher

proposal percentages (egphd or kdd). The trend is less obvious in the above graph, due

to the averaging effects of using the very low proposal percentages, which are relatively

uneffected by varyingN.
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The trend is not as marked as that shown by varyingT. Both trends indicate that there is

some correlation between these two factors, and more work is needed here to determine

ideal values for them.

6.5 Using the rest of the mail message

Once aspects of the message features had been explored, the use of header fields was

investigated. The two fields of interest were theFr om andSubjectfields. Three further

tests were performed:

i. Incorporate theFr omfield with message features

ii. Incorporate theSubjectfield with message features

iii. Incorporate both theFr omandSubjectfields with message features.

Testing was performed withN = 10 andT = 3. The number of training examples varied

with tests involving theSubjectfield. No investigation was made to see if this would

effect the accuracy of classifications, however the classification engine takes into account

the number of test examples when calculating confidence in a prediction from thetrust

thresholdT (seeChapter 5 - Message Classification).

Tests involving just theSubjector Fr om field were not performed, due to the small

number of test examples that would be generated.

6.5.1 Results
The results of these experiments, complete with graphs can be found in Appendix D.

Due to time, only 16 iterations of testii , incorporating theSubjectfield were carried out.

6.5.2 Discussion
The results of these experiments were compared to those generated from using the

message body only.

Using theFrom field

Almost all the categories benefited from theFr omfield. Though timings and rule size are

not discussed in this dissertation, these tests generated significantly smaller rule sets, and

consequently both rule generation and classification appeared much faster than with any
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other tests.

The only category adversely effected was thejobs category. An analysis of this dataset

showed few regularities in theFr om fields, but this was also the case for categoriesmsc

andpersonal, both of which showed some improvement.

The performance of the two mailing list digests,kdd andmeadimproved radically when

the Fr om field is used. This was not surprising as each message from the mailing list

came from the same source. Hence every training example will contain this same value

for theFr om attribute, and provided that a rule exists which tests for this attribute value,

rules will fire for each testing example.

Theagentscategory also did surprisingly well. On analysing this small dataset it can be

seen that nearly all the messages were forward from the same source.

The handling of theFr om field was very naive; the whole field was used with little

parsing. More information could be extracted from this field if more advanced parsing

were used, for example to recognise internet addresses in different forms (for example

<everson@COM.BBN>and<everson@bbn.com>), extracting the senders full name, or

the name of any forwarding agent (egRussel Winder <R.Winder@cs.ucl.ac.uk> (by way

of jhunter (Jim Hunter))).

Using theSubjectfield

Although there was an overall increase in actions proposed by the classification engine,

the accuracy of these predictions fell dramatically when using theSubjectfield. Though

this is shown in the accuracy graph below, it is very apparent from the results of the

individual graphs for each category.

Again the digest categories,kdd and meadperformed very well, due to having very

similar features in the subject line for each message of the digest.

The small categoryagentperformed better with the use ofSubjectfeatures.

The confidence value calculated from thetrust threshold varies linearly with the number

of features tested. Due to time, no tests were performed to investigate the effects of

increasingT or changing this confidence calculation with varying numbers of test

examples. This work, had it been completed, may have explained whether this factor is
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responsible for the drop in accuracy, or whether it is due to theSubjectfield itself.

Using bothFrom and Subjectfields

The graphs below show the percentage accuracies overall and percentage classifications

overall for the agent when using different attributes from the mail message.

approximate % accuracy (AC)
all subject from body

%

20 91 81 93 93
30 90 79 92 92
40 89 76 91 91
50 89 76 91 91
60 88 76 91 89
70 89 77 91 89
80 92 79 92 90

all

subject

from

body

% AC

% trained
0

100

0 100

% of predictive actions (PA)
all subject from body

%

20 49.71 41.49 47.93 25.69
30 54.41 46.00 53.92 32.63
40 57.79 49.08 57.60 36.84
50 60.06 51.82 60.04 40.61
60 62.36 53.17 62.93 44.03
70 64.17 56.27 62.50 48.18
80 66.19 58.78 64.78 48.95

all

subject

from

body

% PA

% trained
0

100

0 100

The percentage accuracy is calculated from dividing the effective actions by the

predictive actions. As the predictive action value is the number of times a prediction is

made, and the effective action value takes into account mis-classifications, these values

can be used to approximate accuracy values. Note that these values are an indication only

and do not represent the actual accuracies.

Adding theFr omfield or using both header fields appears to make little difference overall

to the accuracy of predictions. However, addingSubjectfield attributes only to the

message body attributes causes the accuracy to drop to values as low as 34% (calculated

av erage accuracy fromcurecategory).
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Likewise, examining the percentage predictions made by the classification engine show

that by applying theSubjectfield to message body features causes a reduction in the

number of classifications made can be seen, whereas making use of theFr omfield causes

an overall increase in proposed actions.

6.6 Concluding remarks

The results show that a reasonable percentage of incoming mail messages can be

classified with a high degree of accuracy. Making use of theFr om field improves both

the number of predictions and the accuracy of predictions, whereas including features

from theSubjectfield has no beneficial effect.

These results are promising as an agent need not classify every incoming message.

However, any classifications made must be accurate. Issues such as coverage of rules

[Mitchell et al. 1994], have not yet been investigated, but are strongly relevant to this aim.
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Conclusion

The work in developing Magi has demonstrated that it is possible to build an agent which

is capable of learning email filtering rules from observations. The results show that

features from the body of an email message can be utilised as well as more traditional

features such as the subject or sender fields. The use of a trust threshold provides a high

accuracy of classifications which can be made on some messages, thus providing the

service of apersonalised assistantto the user.

This work examines some of the considerations in designing and developing an interface

agent. An agent which allows a user to access their mail through a widely used mail-tool

was dev eloped, and some of these considerations implemented.

The results suggest that applying information found in theSubject field does not

necessarily improve performance as would be expected, whereas utilising theFr om field

can improve both accuracy and number of predictions for the majority of mail categories.

52
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Future Work

The results of testing this agent raise many questions. Much is still unknown about the

behaviour of this agent, such as the effects of varying the number of featuresN and the

trust threshold when using header information. Other header information, such as the

recipients or the date sent could also be used.

Whilst the experimental results demonstrate that the agent is capable of learning from a

user and assisting the user in managing mail, little testing was performed on actual mail

users. Also, the tests reflect the applicability of the agent to a single user (the author)

who’s classifications were used. As criteria for sorting mail may vary with each

individual, more testing is required before any further claims can be made about the

agent.

An important issue that was not investigated within this work was the effects of

modifying the learning algorithm’s parameters. The evaluation functions used the

Laplacian error heuristic and the default significance threshold. Other heuristics and

significance thresholds could have been explored. This may provide a means of reducing

coverage. Coverage represents the proportion of training examples that can becovered

by the rules. Tests on varying coverage [Mitchell et al. 1994] show that accuracy can

increase as coverage is reduced.

The work on Magi proposed, but did not complete, a more advanced form of filtering

which itself can adapt to the users needs through user feedback (by using the action

browser). Other forms of filtering could also be explored, such as implementing thesauri

or better means of correlating similar words due to case, tense etc (such as car & cars or

catch & catching).

Organisational information could be used. This could improve performance on categories

such asmscused in this report, where all the senders are members of an organisation. A

variant on this has been explored by Maes [Maes 1994] whereby agents can communicate

with each other to judge their model of the users. Mitchell [Mitchell et al. 1994]

proposes the idea of co-operative learning, whereby rules are learned by pooling training

examples from users. This could aid learning rules about organisational matters.

53
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The learning and classification engines could be applied to other domains, such as

USENET news readers or calendar managers (both have been explored to some degree,

see Chapter 2). Agents could be made to communicate with each other across domains,

thus gaining insights into the users requirements.
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Appendix A

Example of the Advanced Filter

This example demonstrates the advanced filter described in Chapter 4. Due to time this

was not implemented in the agent, but remains as future work to be applied to the agent.

Values given in this example are arbitary and are used to help explain the filter. In the

implemented version, they would be determined empirically.

Imagine that the knowledge base contains, among others, the following five entries:

Feature Fitness

yeast 67

honey 50

above 31

knowledge 45

fire 2

and that the threshold where features become unhelpful was 30. The featureknowledge

did not exist prior to building the most recent set of rules. Because of this thefitness

value is set to a standard starting value. In this example, this starting value is 45. The

featurefire has afitnessvalue less than the helpfull threshold. This feature will filtered

out for the classification module and rule generation module.

All four features above the helpfull threshold exist within the rules. The following

example shows four rules which illustrate this. See the documentation of CN2 [Boswell

1990] for a description of the rules andcoverage tablesshown below. The rules below

have been simplified for brevity.

Each action defined in the attribute files has an index into the coverage table. Each entry

indicates how many training examples are covered by that rule. The first entry in the

table refers to the action "s %d +mead" whereas the second to "s %d +kdd".

The featureaboveis less specific than the other three features. Three training examples

were responsible for the action in that rule, but the feature was also found in other

training examples for different actions. Whilst this may mean that the rule may cause
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mis-classifications, it may still fire to generate correct classifications.

...

IF feature = yeast

THEN action = "s %d +mead" [5 0 0]

ELSE

...

IF feature = honey

THEN action = "s %d +mead" [3 0 0]

ELSE

...

IF feature = knowledge

THEN action = "s %d +kdd" [0 1 0]

ELSE

...

IF feature = above

THEN action = "s %d +kdd" [1 3 1]

ELSE

...

A sample of the rule-base

A message arrives and the action is classified as "s %d +mead". Three features found in

the message areyeast, honey and above. A score is then calculated based on the

frequencies of these features in the message. Preliminary studies on frequency decay

indicate that this decay is logarithmic (See appendix B), so a simple equation is used to

calculate the score. The frequencies are normalised across all features used in

classification and the log of this percentage used. This equation is presented as part of

the example, and may not be the equation finally used in the implementation, but

illustrates the calculation of the score.

Score= (int) ln (
frequencyi

Σ frequency
* 100 )

The following table illustrates the frequencies for the individual features and their

calculated scores. The sum of all frequencies used here is 35.
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frequencyi

Σ frequency
* 100

Feature Frequency Score

yeast 12 34 4

honey 20 57 4

above 3 12 2

As this message has been classified correctly, the three features are rewarded. This is

done by adding the score for each feature to the feature’sfitness. The knowledge base

now looks like this:

Feature Fitness

yeast 71

honey 54

above 33

knowledge 45

fire 1

Note that thefitnessvalue for the featurefire has been decremented. This occurs with

ev ery classification. Once thefitnessfalls to zero the feature will be removed from the

knowledge base. This mechanism is used to allow features to be reused at a later date.

Whilst this feature may lead to incorrect classifications at the present time, this may not

be the case in the future.

Another message arrives. This time the action is classified as "s %d +kdd". The feature

abovewas the only feature responsible for this classifiction. However this is a mis-

classification. The table below shows the newly calculated score. The sum of all

frequencies was 18.

frequencyi

Σ frequency
* 100

Feature Frequency Score

above 18 100 5
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The featureabovewill now be penalised by subtracting this score from itsfitness. As the

knowledge base now shows, thisfitnessvalue has fallen below the helpfull threshold.

This feature will now be filtered out in subsequent filtering. As with the featurefire, its

fitnesswill be decremented at each classification.

Feature Fitness

yeast 71

honey 54

above 28

knowledge 45

It is interesting to note that the featurefire has now been removed from the rule-base.

This is due to itsfitnessvalue falling to zero at the last classification. This feature will

now be included for classification or rule generation if it appears in future messages.



Appendix B

Frequency Decay in Extracted Features

Feature Extraction used within Magi is based on word frequencies within a body of text.

The topN occuring features are used in classifying actions for incomming messages and

generating new rules. Because of this, the rate of frequency decay was investigated.

The results of this test were used as a basis for the calculations used in the advanced

filtering. The number of features used,N, was set to 10 for this test. Each action

classification file (see Chapter 6) was tested.

For each test, the topN features are extracted complete with frequency counts. These

frequency counts are then normalised using equation (1) to give percentages for each

feature. These are averaged across all messages to give the graphs shown below.

% Fq =
frequencyi

Σ frequency
* 100 (1)

It is expected that increasingN will cause the curve to flatten, as extra features will

become less frequent. As the frequency falls, there is a greater chance the features will

occur in other action classifiaction messages.

These results indicate that there is little difference in frequency between the lowest

frequency words. Due this, tests were performed with the testbed, with the value ofN

varying from 7 to 10. The effects of varying this value is discussed in Chapter 6.

The graphs for each mail category used in the testsuite are shown below.
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% Fq

Decreasing Freq
0

25

0 10

agents

% Fq

Decreasing Freq
0

25

0 10

cure

% Fq

Decreasing Freq
0

25

0 10

jobs

% Fq

Decreasing Freq
0

25

0 10

kdd

% Fq

Decreasing Freq
0

25

0 10

mead

% Fq

Decreasing Freq
0

25

0 10

msc

% Fq

Decreasing Freq
0

25

0 10

personal

% Fq

Decreasing Freq
0

25

0 10

phd



Appendix C

/usr/lib/eign

This Appendix contains the list of words in the file /usr/lib/eign which was used as a

stoplist to filter out common words from message bodies.

the of and to a in

that is was he for it

with as his on be at

by i this had not are

but from or have an they

which one you were her all

she there would their we him

been has when who will more

no if out so said what

up its about into than them

can only other new some could

time these two may then do

first any my now such like

our over man me ev en most

made after also did many before

must through back years where much

your way well down should because

each just those people mr how

too little state good very make

world still own see men work

long get here between both life

being under never day same another

know while last might us great

old year off come since against

go came right used take three
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Appendix D

Complete results

This appendix contains the full set of results generated and used within the report.

D.1 Results - Classifying different datasets

% agents cure jobs kdd mead msc personal phd Overall

20 11.17(11.30) 20.60(11.37) 41.26(18.90) 60.35(26.14) 96.84 (7.63) 7.05 (7.31) 3.99 (3.34) 63.08(12.15) 38.04(31.10)

30 13.73(11.33) 32.44(12.01) 45.59(18.12) 65.07(24.77) 98.97 (2.51) 10.56 (9.97) 5.28 (4.59) 74.73 (9.49) 43.30(31.77)

40 13.08(12.22) 40.00(11.12) 50.62(17.68) 71.14(19.94) 99.71 (1.23) 14.71(11.85) 7.49 (5.02) 80.79 (7.69) 47.19(32.25)

50 17.02(11.16) 45.01 (9.98) 53.00(16.63) 79.36(17.51) 99.83 (1.01) 20.20(12.16) 9.19 (6.53) 83.46 (6.58) 50.88(31.89)

60 17.21(17.20) 53.20(11.53) 59.35(17.69) 85.59(14.34) 99.63 (1.56) 24.19(12.16) 12.94 (7.45) 87.85 (4.30) 54.99(31.97)

70 18.29(22.80) 57.16(15.92) 61.75(18.50) 86.41(21.46) 97.22(16.43) 24.50(20.70) 15.08(10.42) 86.97(15.78) 55.92(31.04)

80 17.50(28.18) 63.48(14.99) 63.34(26.97) 92.04(14.89) 99.82 (1.04) 34.58(25.75) 15.19(11.98) 91.30 (7.95) 59.66(31.77)

Percentage of Predictive Actions, PA

% agents cure jobs kdd mead msc personal phd Overall

20 1.55 (5.43) 17.34(10.98) 30.02(21.80) 56.29(26.52) 96.51 (8.02) 3.95 (7.05) 0.00 (0.00) 58.16(13.53) 32.98(32.38)

30 2.12 (7.42) 27.60(12.80) 30.11(24.20) 56.70(28.99) 98.73 (3.45) 4.30 (8.17) 0.00 (0.00) 69.08(10.46) 36.08(33.56)

40 2.55 (6.50) 34.71(12.96) 36.70(23.94) 59.11(26.90) 99.42 (1.67) 6.88(11.51) 0.00 (0.00) 73.93 (8.80) 39.16(33.88)

50 1.22 (5.12) 39.79(11.29) 36.66(23.27) 72.37(23.44) 99.50 (1.67) 10.53(12.42) 0.00 (0.00) 76.18 (8.58) 42.03(35.09)

60 2.88 (8.57) 46.63(13.92) 43.95(23.21) 77.43(25.02) 99.63 (1.56) 11.35(13.76) 0.00 (0.00) 78.83 (6.55) 45.09(35.56)

70 4.40(12.95) 51.63(18.20) 47.17(23.45) 80.99(27.72) 97.22(16.43) 12.65(20.14) 0.62 (2.59) 76.41(16.45) 46.39(34.83)

80 6.13(15.30) 57.41(17.27) 49.85(33.48) 90.76(15.88) 99.82 (1.04) 20.79(27.25) 0.46 (2.74) 78.18(13.09) 50.43(35.75)

Percentage of Effective Actions, EA

% PA

% trained
0

100

0 100

Overall

effective Overall

See Chapter 6 -

Classifying different datasets

N = 10

T = 2

Features message body

Subject no

From no

Iterations 30

66



Appendix D. Complete results 67

% PA

% trained
0

100

0 100

agents

effective agents

% PA

% trained
0

100

0 100

cure

effective cure

% PA

% trained
0

100

0 100

jobs

effective jobs

% PA

% trained
0

100

0 100

kdd

effective kdd

% PA

% trained
0

100

0 100

mead

effective mead

% PA

% trained
0

100

0 100

msc

effective msc

% PA

% trained
0

100

0 100

personal

effective personal

% PA

% trained
0

100

0 100

phd

effective phd



Appendix D. Complete results 68

D.2 Results - Varying the trust threshold T = 3

% agents cure jobs kdd mead msc personal phd Overall

20 4.21 (6.73) 9.18 (7.08) 20.93(17.67) 35.15(27.59) 84.69(15.48) 5.43 (5.58) 2.71 (1.83) 43.20(11.94) 25.69(26.39)

30 7.97 (9.87) 15.14 (8.24) 28.02(17.57) 50.19(27.20) 92.49 (6.06) 8.43 (6.92) 3.15 (2.02) 55.67(10.77) 32.63(29.18)

40 6.77 (8.11) 20.37 (8.36) 38.57(14.22) 59.38(24.49) 94.36 (5.62) 10.41 (7.27) 3.17 (1.93) 61.67 (9.65) 36.84(30.50)

50 8.92(11.44) 25.35 (8.10) 41.65(17.24) 69.91(17.49) 96.16 (4.67) 11.96 (9.12) 4.41 (2.90) 66.53 (9.87) 40.61(31.59)

60 13.39(20.16) 30.53(11.29) 47.07(15.44) 74.30(21.13) 97.08 (4.33) 15.34(10.25) 5.73 (3.93) 68.77(12.64) 44.03(31.15)

70 18.83(21.80) 37.20(12.11) 53.00(18.96) 77.67(22.45) 97.03 (5.16) 20.06(14.77) 8.51 (5.83) 73.16(10.07) 48.18(30.10)

80 16.38(27.55) 40.22(13.27) 58.31(26.39) 76.11(24.79) 97.46 (6.72) 14.64(20.77) 12.81(11.39) 75.66(13.09) 48.95(30.64)

Percentage of Predictive Actions, PA

% agents cure jobs kdd mead msc personal phd Overall

20 0.64 (2.38) 8.71 (7.08) 16.66(18.09) 34.31(28.09) 84.69(15.48) 4.30 (5.19) 0.00 (0.00) 42.88(12.29) 24.02(27.26)

30 3.25 (8.66) 14.68 (8.32) 21.55(16.93) 47.70(28.60) 92.49 (6.06) 5.99 (6.98) 0.00 (0.00) 55.22(10.90) 30.11(30.32)

40 1.39 (5.31) 19.74 (8.45) 31.24(14.99) 55.21(29.13) 94.36 (5.62) 8.01 (7.99) 0.00 (0.00) 61.05 (9.81) 33.87(31.49)

50 1.50 (5.65) 25.11 (8.37) 34.13(19.65) 67.44(20.53) 96.16 (4.67) 7.59 (9.04) 0.00 (0.00) 65.55(10.52) 37.18(33.33)

60 0.83 (4.49) 30.05(11.27) 39.02(19.84) 72.63(21.44) 97.08 (4.33) 10.07(10.59) 0.22 (1.20) 66.85(12.98) 39.60(33.83)

70 0.00 (0.00) 36.75(12.24) 46.88(22.77) 75.06(24.38) 97.03 (5.16) 14.86(15.62) 0.94 (2.84) 71.69(11.14) 42.90(33.98)

80 1.15 (6.08) 39.16(13.79) 50.80(31.56) 75.00(25.91) 97.46 (6.72) 13.55(20.81) 5.51(10.25) 72.29(16.59) 44.37(33.42)

Percentage of Effective Actions, EA

% PA

% trained
0

100

0 100

Overall

effective Overall

See Chapter 6 -

Varying the trust threshold T

N = 10

T = 3

Features message body

Subject no

From no

Iterations 30
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