
ANNANN –A TOOL TO SCAFFOLD LEARNING ABOUT PROGRAMS

L.A. Carr
Intelligence Agents Multimedia, ECS

The University of Southampton
Southampton, UK

 lac@ecs.soton.ac.uk
 http://www.ecs.soton.ac.uk/~lac

H.C. Davis
Learning Technology Group, ECS

The University of Southampton
Southampton, UK

 hcd@ecs.soton.ac.uk
 http://www.ecs.soton.ac.uk/~hcd

Su White
Learning Technology Group, ECS

The University of Southampton
Southampton, UK

 saw@ecs.soton.ac.uk
 http://www.ecs.soton.ac.uk/~saw

ABSTRACT
It is difficult for a student to learn about programs and
to understand the rational that went into the
development of the parts that led to the whole.
Tools for explaining this essentially dynamic process
are limited and typically static in nature. This paper
presents AnnAnn, an animated code annotator
which makes it possible to present the development
of code to large groups or for self study. The
educational benefits of this approach are examined.

Keywords
Learning to Program, literate programming, Program
Development, cogni t ive apprent iceship,
scaffolding, constructivist learning.

1. INTRODUCTION
As part of our task in helping students to learn to
program we often need to show them programs. A
constructivist view of learning to program suggests
that learning happens by iterative refinement of
understanding [1], and that an important activity in
this refinement involves the study of programs
produced by experts [2].
In the ideal world we would have one-to-one tutorials
with each student [3], where we could walk through
the intricacies of designing a solution to a problem,
and the students would gain instant feedback on
their nascent understanding as it developed [4]. In
practice we must often talk to large lecture halls full
of students, or we must ask them to conduct their
studies alone.
Presenting programs to large groups is difficult and
the problem with working alone is that example
program study materials are usually static in nature
so that it is difficult for the student to see how the
final program was developed, and programs often

contain so much information that it is hard for a
beginner to understand where to start.
This paper starts by reviewing the existing
technologies used for presenting and annotating
program evolution, then presents AnnAnn – an
animated code annotator. It concludes by examining
the benefits of using this tool from the point of view
of both the teacher and the learner.

2. LANGUAGE
Learning to program is a difficult task, requiring
engagement with a significant number of abstract
concepts and with their realisation and embodiment
in sample programs, in specific languages, solving
particular problems. In teaching programming, a
lecturer is frequently required to explain the
workings of a number of non-trivial programs so that
the students can build up an understanding of the
simultaneous threads of:
(a) the language syntax
(b) the language constructs situated in context
(c) designing a program that solves a real problem
(d) constructing a complete program
A presentation that shows a program and explains
how it works must concurrently deal with hundreds
of lines of code, many methods and possibly
multiple classes together with an explanation that
addresses each of the above issues as they
emerge.

2.1 Photocopied Acetates
The most direct way to lecture about a program is to
photocopy the listing onto acetates. This is cheap to
do and requires minimal resources, but puts an
enormous burden on the lecturer for remembering
the ‘script’ for what needs explaining in what order.
For example:
(i) show the class outl ine including

constructor;
(ii) show how its static main method creates an

instance of this class
(iii) delegate the button’s events to the event
handler object..

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission.
© 2004 LTSN Centre for Information and Computer Sciences

A typical explanation may involve the elaboration of
several dozen individual points.
2.2 Powerpoint Programming

Figure 1 shows an example from a typical Deitel and
Deitel Java How To Program lecturers’ slide set [5].
The restricted screen size means that only 24 (of the
almost 200) lines can be displayed at a time. The
blocks of explanatory text are displayed one at a time
in the running slideshow; they variously explain
variable declarations, named constants, method
invocations, flow of control , and overall effects.
The sequential presentation of the program
(through 8 slides) means that the explanation is
constrained to be in program order. The main
difficulty for the lecturer is that the explanatory texts
must be placed at a particular position on the screen
real-estate. Any alteration to the program, while
developing or maintining this resource, invalidates
the chunking of code, the position of the
explanations and of the arrows which tie them to the
program lines. It is this approach that renders the
PowerPoint solution infeasible for anything but
small, easily chunked codes samples.

2.3 Textbook Layout
A related approach is one commonly used in
textbooks, reproducing the listing as a figure (as in
figure 2, shown with numbered lines and
highlighted regions). Text in subsequent pages
refers back to individual lines. Increased freedom
with his format comes from the ability to give the
explanation in any order in the main text and to refer
back to the code out-of-sequence. The
disadvantage with parallel texts is the reader’s need
to track backwards and forwards as reference is
made to different regions of code. Bt contrast, some
textbooks embed the code fragments into the text

(as with Arnow and Weiss, Java: An Object Oriented
Approach, Addsion Wesley). This maintains the
freedom to discuss the program elements in the
most appropriate order.

t

Literate Programming
Knuth developed Literate Programming [6] as a way
of mixing documentation and code which allows the
programmer to develop very sophisticated
explanations which break up the standard program
ordering and interleave it with TeX or troff
documentation commands (the source program and
document are derived by programs called ‘tangle’
and ‘weave’). Although it has been used in a
teaching context [7], it is too complex for
Introductory programming courses as it adds an
extra layer of complexity in the programming task.

Figure 1: Powerpoint Slide
Deirel and Deitel: Java: How to Program [5]

Figure 3: Literate Programming

Figure 2: Text Book Figure
Deitel and Deitel: Java: How to Program [5]

3. ANNANN
AnnAnn is a simple documentation system that
embodies a constructive explanation paradigm,
allowing the lecturer to work from a familiar starting
point by showing (and explaining) a small change to
take the code one step closer to the final solution
[8].
The AnnAnn compiler takes an original file, and a list
of changes to be applied and produces a Web
presentation in Dynamic HTML. An extract of an
AnnAnn file is shown in figure 4; the rather terse
syntax (similar to the UNIX patch command) allowing
the author to create blocks of micro-explanation. We
have recently developed a GUI based editor (figure
6) which allows the user to specify the changes
directly and to annotate these changes.
The aim of an AnnAnn explanation is to start with a
familiar program (in the most extreme case, a Hello
World program, applet or JFrame) and by applying
successive small changes (adding and initialising an
array, fleshing out a for loop, creating a user
interface object) to turn it into a different program for
a different purpose. A Hello World program can be
turned into a character-by-character file reading
program in a dozen steps, three more steps will
enable line-by-line reading, four more create a
program which reads from pages on the Web etc.

Each block in an AnnAnn file identifies a region of
the program that needs to be altered, the altered
text and a paragraph of explanation indicating to the
students why the change needed to occur and how
it achieves its goals.
Figure 5 shows AnnAnn in use. A code fragment is
on display, and explanation of the next change to
make is on display, and the highlighted lines are

about to be replaced. The user can step backwards
and forwards through all the steps between the
initial code and the final code till they properly
understand the reason for each addition.

AnnAnn takes a base program and a file of
annotated changes and produces a family of HTML
files
1. A simple set of HTML files that are backwards

compatible with all browsers that support style
sheets.

2 . A compact, frames-based Dynamic HTML for
modern browsers

3. A printable version that combines all the
changes for each step onto a single slide.

Since AnnAnn displays through standard web
browsers it is suitable for use in lectures are for
students to study alone.

4. THE EDUCATIONAL PERSPECTIVE
When searching for an educational perspective on
the pedagogic appropriateness of various
approaches to programming it seems although there
have been some examples of mapping approaches
to educational theory, the predominant approach
has moved little from Lemos’ 1979 perspective that
“most of the literature consists of subjective
opinions on the most effective methods of
instruction for a given programming language”. [9]
We have shown that AnnAnn provides teachers with
a way to explain the development of a program from
some known and previously understood situation to
a more complex program possibly using features a
student may not have previously understood.

So far we've made the computer print out a static message.
Instead, lets make it do a bit of work - I've always had
trouble with my seven times table and I'd like to check
what 5 * 7 is.
< "Hello World"
> 5 * 7

Now that I think of it, I need to know 6 * 7 as well.
< 5
> 6

And 7*7.
< 6
> 7

There is one quantity here which is varying each time I
try out the program. I could put it in a Java *variable*,
which helps the program model the fact that I am
looking for *something* times seven.
< 7
> <i>something</i>

Figure 4: AnnAnn explanation language

Figure 5: AnnAnn in use

The end goal of designing good programs has
always been that the student will learn how to
decompose problems into appropriate classes with
appropriate methods (or to make some other top
down structured design). But some thought shows
that it is unreasonable on teachers’ parts to assume
that this is a skill that students can be expected to
pick up easily in the first instance before they have
learned about programming “in the small” and the
whole paradigm of programming and state
machines. Failed attempts at teaching object first
programming have lead some (e.g. [10]) to observe
that this is an inappropriate way to learn
programming.
The authors are firm supporters of the “object first”
approach to learning programming, but after some
years of taking this approach have come to
understand, as have many others (e.g. [11][12]) the
enormous cognitive leaps that we are asking our
students to take. In the past when students were
presented with a Basic interpreter and
experimented initially at the command line they
slowly built up a model of what the computer was
doing, whereas when we teach programming in
Java, they have an enormous number of new
concepts to understand within typically a few weeks.
We have observed that while students who have
some previous understanding of programming can
cope with our approach, students who have no
previous experience of programming often struggle
[13].
Anecdotally we are familiar with the student who
turns up asking for help half way through the course
saying they have just realised that “they just don’t
know where to start – they don’t understand
anything”. This is typically at the point in the course
when we ask the students to complete their first
non-trivial assignment, and on investigation the
problem turns out to be that while they have
succeeded in getting a tenuous grasp of the
concepts of class and methods, they do not yet

have enough practice or confidence to design a
program on their own.
From an educational point of view the thing to do
when you ask students to make large cognitive
leaps is to provide scaffolding– artefacts that hide
some of the complexities of a problem so that the
students may keep their eye on the big picture and
achieve the major goal of the exercise [14]. Ideally
such artefacts should be “fadeable”, so that they
may be incrementally removed as the student learns
to work without the scaffolding.
A simple example of a scaffolding tool that we are
familiar with in program development is the input line
completion and formatting feature in many IDEs
which, for example, give us hints as to the number
and purpose of the parameters to a method as we
are typing.
AnnAnn is a scaffolding tool in that it provides a way
to explain to students the design process by
dynamically presenting each part of the solution as it
is needed. This feature may be used by a teacher in
class to demonstrate to students how a program is
designed, or how a particular programming principle
may be applied, or it may it may be used by students
wishing to study the problem in their own time (and
possibly at a distance).
Another education perspective is to view AnnAnn
as a tool to aid cognitive apprenticeship [15]. The
structure of the tool is such that it easily supports the
skilled practitioner demonstrating to the novice the
methods they choose to use when building a
program. As such it sits between the place where
the ‘master’ builds the program in front of the novice
using totally authentic tools; and where the novice is
provided with an overly complex completed product.
It may also be that the use of the tool directs the
master into making explicit ‘tacit knowledge’ which
they routinely draw upon to build a program.

Figure 6: AnnAnn Authoring GUI

5. CONCLUDING REMARKS
We have described AnnAnn, a tool to assist
students to understand programs and we have
described its use. We have explained the reasons
why we developed the tool, and justified the
educational frameworks within which we believe it
sits.
In practice we have found two distinct modes in
which we use this tool. The first is to explain the
application of new programming principles,
constructs and patterns as the focus of a teaching
event. We have also found it useful as a tool to
document and explain some complicated template
code prior to students being required to make
alterations and additions as the basis of some
coursework, saving contact time.
A visit to the AnnAnn website [8] will provide the
reader with numerous examples of its use, and the
first author can provide the tools to others on
request. What AnnAnn now needs is community;
we hope that others will contribute both to the on-
line examples and to the development of the tools.

6. REFERENCES
[1] Mayes, J.T. Learning Technology and

Groundhog Day. In W. Strang, V. Simpson, & D.
Slater (Eds) Hypermedia at work: Practice and
Theory in Higher Education, Canterbury,
Univers i ty o f Kent Press. 1995.
http://apu.gcal.ac.uk/clti/papers/Groundhog.ht
ml

[2] Said Hadjerrouit . A constructivist approach to
object-oriented programming. In the
Proceedings of the 4th annual SIGCSE/SIGCUE
ITiCSE conference on Innovation and
technology in computer science education pp
171—174. ACM Press 1999

[3] Bloom, B. S.. "The 2 sigma problem: The search
for methods of group instruction as effective as
one-to-one tutoring." Educational Researcher
13: 3-16. 1984

[4] Ben-Ari, M. Constructivism in computer science
education.In the Proceedings of the twenty-
ninth SIGCSE technical symposium on
Computer science education, Atlanta, Georgia,
pp 257-261, ACM Press, 1998

[5] Deitel, H.M. and Deitel, P.J. Java How To
Program. Prentice Hall. 1997

[6] Donald E. Knuth, Literate Programming ((CSLI
Lecture Notes, no. 27.) Stanford, California:
Center for the Study of Language and
Information, 1992), xvi+368pp.ISBN 0-937073-
80-6

[7] Stephen Shum and Curtis Cook. Using literate
programming to teach good programming
practices, ACM SIGCSE Bulletin, v.26 n.1, pp.
66-70, March 1994

[8] http://www.annann.org/ last accessed 25 March
2004.

[9] Ronald S. Lemos, Teaching programming
languages: A survey of approaches ACM
SIGCSE Bulletin,Proceedings of the tenth
SIGCSE technical symposium on Computer
science education, Volume 11 Issue 1, Jan
1979

[10] David Callear: Teaching Programming: Some
Lessons from Prolog: In the Proceedings of the
LTSN-ICS 1st Annual Conference, Heriot-Watt,
2000

[1 1] Zhu H & Zhou M. Methodology First and
Language Second: A Way to Teach Object
Oriented Programming. ACM OOPSLA ’03,
Anaheim Ca. 2003

[1 2] Roger Duke, Eric Salzman, Jay Burmeister,
Josiah Poon, Leesa Murray December (2000)
Teaching programming to beginners - choosing
the language is just the first step Proceedings of
the Australasian conference on Computing
education

[13] Davis, H.C., Carr, L.A., Cooke, E.C. & White,
S.A.. Managing Diversity: Experiences
Teaching Programming Principles. In the
proceedings of the 2nd LTSN-ICS Annual
Conference, London. 28 - 30 August 2001

[1 4] Hogan and Pressley. Scaffolding student
learning instructional approaches and issues.
Cambridge, Brookline Books. 1997

[1 5] Collins, A., J. S. Brown and S. Newman.
Cognitive Apprenticeship: Teaching the Craft of
Reading, Writing and Mathematics. Knowing,
Learning and Instruction: Essays in Honor of
Robert Glaser. L. B. Resnick. Hilldale, NJ,
Erlbaum.

