MANAGING DIVERSITY: EXPERIENCES TEACHING PROGRAMMING

PRINCIPLES
H.C. Davis Les Carr Eric Cooke Su White
University of Southampton University of Southampton University of Southampton University of Southampton
Southampton Southampton Southampton Southampton
UK UK UK UK

hcd@ecs.soton.ac.uk
www.ecs.soton.ac.uk/~hcd

lac@ecs.soton.ac.uk

www.ecs.soton.ac.uk/~lac www.ecs.soton.ac.uk/~ecc

ecc@ecs.soton.ac.uk saw@ecs.soton.ac.uk

www.ecs.soton.ac.uk/~saw

ABSTRACT

The majority of university level courses offer a similar
experience to all students. However in the teaching of
introductory computer programming this practice has
become increasingly difficult to justify, due to the
widely differing initial experience of students. This
paper describes an attempt t provide, at low cost,
some level of differing experience depending on the
needs of the student. The students were allowed to
select for themselves which group to join. The
experiment was successful in improving student
experience and in demonstrating that the students
were capable of selecting appropriate groups.

Keywords
Differentiated Learning, Learning Programming.

1. INTRODUCTION

In the 1980's A level Computing courses became
commonplace and at the same time desktop
computers became affordable by many students.
Ever since then, university teachers of first year
introductory programming courses have needed to
concern themselves with the diversity of initial skills
and experiences of their students. The authors are
not aware of any UK Computing degree course that
requires an A level in Computing or equivalent as a
prerequisite qualification. Given the well publicized
career opportunities that are currently available in the
IT field, and the fact that not all sixth formers have the
opportunity to study computer science, it is probable
that most universities experience a similar
distribution of initial experience as we do at
Southampton. We observe that a significant number

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission.

2nd Annual Conference on the Teaching of Computing, London

of students (around 40%) have an A level or
equivalent in Computer Science. Many have a little
industrial experience, and a few have worked in IT for
a year out. Yet at the other end we observe that a fair
number of students have little experience of
computers beyond game playing.

Producing an introductory course in programming
principles to suit such a diverse range of students
has always been problematic; we must find a way of
enabling complete beginners to learn the basics,
while providing enough interesting subject matter to
keep the experienced programmers enthused. Our
typical approach to this in the past has been to teach
something that was significantly different to the
experience of the majority of students. So, in the late
80's we taught structured programming, and this was
a major change from the line numbered Basic's that
most sudents knew. Some of us took a language
independent approach as suggested by Bornat [1],
and this certainly provided a new challenge for our
experienced programmers. By the early 90's the
schools and colleges were providing a good standard
of structured programming so many universities,
including Southampton, responded by starting to
teach declarative or functional languages such as
SML, Miranda or Scheme. The paradigm shift was a
serious challenge for many experienced programmers
and they often found the work as difficult as did the
new programmers.

In the last few years the demand from students for
relevant, directly applicable and up-to-date skills has
lead many universities to move to teaching C++ or
Java, using a true object oriented approach. The first
three authors on this paper were charged with
implementing a new Programming Principles course
(CM143) in Java at Southampton, starting in October
1999. The module is the flagship course for the
Computer Science programme, and is a double unit
module, taking one third of the students' first
semester hours. The module is taken by 180
students, of whom about 100 are CS majors, and the
remainder are mainly computer engineers
(electronics and computing) and Maths with

Computer Science students. The CS students follow
this course in semester 2 with one unit in Advanced
Programming (using both Java and C++) and a
course in Data Structures (in Java).

The first year delivery of the course went perfectly
smoothly but some problems came to light when the
unit was reviewed at the end of the semester.

1. By 5 weeks through the course the experienced
students were becoming noticeably frustrated by
not being able to use the standard constructs
(e.g. loops) that they had used in other
languages. The reason for this was that the
course had been designed in a very "objects first"
approach, with the intention that this would
provide some kind of paradigm shift to inspire the
experienced programmers. This might have
worked to some extent but, quite reasonably,
they found the rate of progress through the other
programming principles, for which they already
had good analogies, tiresomely slow. This
information was expressed to us unambiguously
through the end of unit student questionnaires.

2. The atmosphere in the lectures had not been as
good as one may have wished. Students who
found the progress too slow were interrupting the
lectures to ask questions that were at a level of
detail quite beyond that expected on the course,
and this was intimidating to the students who
were new to programming, and also to the
lecturer, who had to decide at what level of detail
to answer the question, if at all.

3. Students at both extremes of the ability range
demonstrated rather more dissatisfaction with the
course than we were comfortable with.

At LTSN-ICS 2000, Tony Jenkins from Leeds
University presented a paper [2] describing a
differentiated approach to teaching introductory
programming. At Leeds they used an aptitude test to
categorize students as either Rocket Scientists,
Averages or Strugglers. Rocket Scientists were
already highly proficient programmers. Strugglers
were those who would need support to help them
achieve a fair standard. A fourth group, Serious
Strugglers, emerges during the course, and these
students are the ones who need the most support.
The Averages are those who will pass the course well
with only occasional assistance; The Rocket
Scientists probably do not need to attend the course
and were given alternative projects to keep them
enthused. The Strugglers were given extra attention
in the form of supervised hands-on lab sessions with
high teacher to student ratios.

The Jenkins presentation inspired a considerable
amount of conversation during which it became
apparent that many universities were attempting to
identify different groups of students and to channel

appropriate support to these groups. The level of
formality of the groupings tended to vary.

At Southampton we were convinced that we would be
better able to concentrate on the students who
needed support if we could remove the rocket
scientists (actually we called them space cadets; we
felt this best acknowledged their experience while
reminding them they still had things to learn) from
the mainstream classes. We decided to conduct an
experiment in 2000. The aims of this experiment were

to find out whether student satisfaction would be
improved by providing differentiated experiences
for the groups of students at either extreme of the
initial experience continuum;

to find out whether students were capable of
correctly deciding for themselves which group
they belonged in;

The remainder of this paper describes how we
restructured the unit, the data we collected from the
students, and a comparison of this data with the final
results on the course. We conclude by suggesting
further work and providing some results which we
believe may be useful to the community as a whole.

2. CM143 RESTRUCTURED

Initially all students attended four lectures per week,
attended a 2 hour supervised (and crudely marked)
hands-on lab per week and completed a coursework
every fortnight. Final marks were produced 50% by
unseen examination, 40% from coursework results
and 10% from lab marks,

In the new scheme, we decided to reduce the
standard lecture load to three lectures per week.
Space Cadets were not expected to attend these
lectures. The fourth lecture was now split into two.
The space cadets attended one session, and the
strugglers attended another. Those who were in
neither group were given independent study time. The
space cadets were not required © attend the labs;
instead they could carry out the required work
independently and bring along their logbook as
evidence. Assessment was not altered. Space
cadets were required to do all the labs and
courseworks, and do the examination.

The space cadets were expected to follow the lecture
course by reading chapters from the book and by
doing the same lab and coursework as the other
students. The one lecture slot they attended was
used to set and analyze weekly challenges. These
challenges were set with aspirit of enthusiasm for
discovery and informally addressed both the higher-
level goals (step-wise design, object-oriented
decomposition) and practical programming
considerations (how to create graphical and
interactive programs, how to use the Java API

documentation, how to reuse code from the Web).
Attendance for the sessions was good, usually
reaching about 75%, however it was difficult to
encourage students to submit their solutions to the
challenges with only the most enthusiastic four or five
(10%) egularly contributing. This proportion rose to
50% for a Spirograph drawing applet set as one
week's challenge which became a joint assessment
exercise in which each student assessed the code of
three other students.

The extra Strugglers lectures were taken by the
lecturer responsible for the lab course, with the
intention that the strugglers would work in a small
group in which they would feel confident to discuss
their problems, and would be able to revise the work
of the previous week with a different person.

3. GROUPING THE STUDENTS

We took the attitude that the students should be
responsible for grouping themselves. No student was
forced to join any particular group. Indeed we had no
firm record of who was in which group as the
groupings were fluid throughout the year. Since the
main lecture course was at a different time from the
space cadet and struggler lecturer, students were
free to attend both space cadets sessions and the
standard lecture course. A few did.

In order to assist students to select which group they
might be in, at the beginning of the year we asked
students to complete an Initial Skills Survey. This
consisted of six simple multiple choice questions.
The most important question was as follows

"Which one of the following best describes your
attitude at the start of this course on Principles of
Programming in Java?"

1{ 1 am an experienced programmer, and | don't
believe that | will learn much new from this course.
I shall join the space cadet group.

2| I'm a bit of a hacker with a fair amount of previous
programming experience. | should be able to
manage the routine part of this course with ease. |
am considering joining the space cadet group

3| Although | have a fair amount of previous
experience with computing, | have little or no
experience of the things that this course covers, so
| don't expect the space cadets group is the place
for me - but I'll keep an eye on it.

4] | have a bit of previous experience, and | expect that
with careful attention | will get along fine on this
course.

5] | have very little or no previous experience of this
sort of computing, and | am expecting to have to
work hard for success in this course.

6| | have little or no experience of computing, and | am
worried by the challenge of this course - will | be

| | able to do it?

Other questions identified what formal education they
had had, what computing experience they had, and
what programming languages they knew. Based on
their answer to the above we suggested that those
who gave answer 1 should join the space cadet
group. To those who answered 2 we suggested they
gave the space cadet sessions a try, but that they
should keep attending the main lecture course until
they were confident which way to go. Those who
answered 5 or 6 were advised to attend the extra
struggler lecture as well as the main sessions.

From the 161 replies to our initial skills survey we
extracted the following interesting information.

Previous Qualification %
A Level Computer Science 40%
Other FE/HE Qualification 2%
Professional Qualification (Microsoft/Java Cert. 6%
etc)
None of the Above 60%
Table 1: Previous Qualifications in CS.
Initial Cs CE Others Total
Confidence Majors Majors
1 (Very Confident) (9 2 0 11
(8%) (6%) (0%) (7%)
2 24 12 0 36
(22%)| (35%) (0%)| (22%)
3 37 7 2 46
(33%)| (21%) (13%)| (29%)
4 24 5 8 37
(22%)| (15%) (50%)| (23%)
5 13 7 4 24
(12%)| (21%)| (25%)| (15%)
6 (Unconfident) (4 1 2 7
(4%) (3%) (13%)[(4%)
Total 111 34 16 161

Table 2: Confidence at Start of Course for Computer
Scientists, Computer Engineers and Others (Mostly
Maths with Computer Science).

From Table 1 we can see that we had around 65
students with A level Computer Science (and in some
cases other qualifications as well), which was around
40% of the class. One would expect that these
people, assuming they had been successful in their
studies (which is likely given the 22 point minimum A
level entry requirement) would rate themselves in the
top 2 or 3 initial confidence levels.

From Table 2 we can see that around 45 students
rated themselves in the top 2 confidence bands. Our
best estimate of the number of people who were

treating themselves as space cadets through the
course was about 40, so this tallied. The interesting
thing was to look at how many students who had no
formal qualification still rated themselves as space
cadets, and why? A total of 18 students who had no
formal experience beyond GCSE had rated
themselves in the top two levels of experience. We
examined the other questions on their forms, and
found the following.

Experience #1 | #2 | #3 | #4 | #5 | #6

OO Programming Yes| No | Yes| Yes| Yes|No

Other Significant
Programming Yes| Yes| Yes| Yes| Yes|No

Web Site Maintenance Yes| Yes| No [Yes| No |Yes

LAN Network Admin Yes| Yes| Yes| No | No | No

Total Students 10| 4 1 1 1 1

Table 3: Initial Experience of Students who had no A
level or equivalent, but still rated themselves in the top
two confidence bands.

From table 3 we can see that most of these students
may have had good reason to rate themselves as
confident. One of the students in column #2 gave
inconsistent answers to questions (which made us
suspicious of his understanding of the questions),
and the student in column #6 may have been over
confident. We will revisit the results for these
students in the next section.

4. RESULTS

At the end of the module we were able to measure
the success of our approach in three ways.

The first thing we did was to plot the final result on
the module, for each student, against their initial
estimate of confidence. The results are shown in
figure 4. They are not entirely surprising. We see that
on the whole all the first three confidence bands
produced fairly similar marks - although there were a
few people in band 2 (maybe the bottom 5 results)
who appear to have been overconfident, and might
have done better with more structure and help. We
are able to identify that these students did not
engage with the space cadet sessions, nor attend
the main lectures. We also note that (nearly) all the
failures (<40%) came from students in the bottom 3
confidence bands. But it is also rewarding to note
that a good many students in the bands 4 and 5 still
scored good marks on the module.

Of the 18 students identified in table 3 as rating
themselves confident but having no formal
qualification, all scored over 60%. Twelve of them
scored over 70%, including the two students whose
confidence estimates were possibly questionable.

The second thing we were able to do was to measure
the improvement in student feedback at the end of
the course. The student response to the first
questionnaire was about 0% of the cohort, and to
the second it was 83%. The results are shown in
table 5, and demonstrate a significant improvement in
student response. In particular the tail has reduced in
size and the number of very satisfied students has
increased. Since the questionnaires are anonymous
it is not possible to relate the results back to the
individual students; however from the response to
other questions we are able to deduce that this shift
is almost entirely due to making the space cadets
happier. In 1999-2000 we were able to deduce that
around half of those who were unhappy with the
course (giving it 1, 2 or 3) were unhappy because the
course was too easy. The other half were unhappy
because the course was too hard. In 2000-2001 the
number who rated the course too easy had was down
to a few individuals. We believe that this was the
major cause in the improvement in student response.

Relationship Between Final Result
and Initial Confidence Band
100 -
90 -
80 - $
o ‘ L 2
5 70 ;
[&)
@ 607 $ i
3 50 $ o * FINAL
: : :
S 40+ PO ¢ : s
®
c 30 -
iT *
20 A s o
10 T ’
0 T : r r r .
0 1 2 3 4 5 6
Inititial Confidence Band

Table 4: Chart Showing Relationship between Final
Result on Module and Initial Confidence.

5 4 3 2 1 Av
very good | fair poor | very
good poor

1999- | 13% 61% 20% | 4% 2% 3.78
2000

2000- | 22% | 62% 13% | 3% 0% 4.04
2001

Table 5: Showing improvement in student answers to
the question "Overall, how did you rate this course".

The final test we were able to apply was to ask the
students at the beginning of the semester two course
"Advanced Programming”, how confident they felt

about JAVA programming at this point. The results
are shown in Table 6. The results show an small
reduction in the number who feel unconfident to start
this course.

99/00 | 00/01
Brilliant. I'm after your job. 5% 8%

Competent. | might not have learnt 46% 52%
everything yet, but | can do what |
need to.

OK-ish. A bit shaky on some bits 32% 26%
and pieces.

Timid. Can do simple programs but 16% 14%
| can't see how to write new
programs for new problems.

Completely lost! Couldn't write a 0% 0%
"Hello World" program without help.

Table 6: Initial Confidence on Advanced Programming

5. RELATED WORK

The principle of enabling differentiated learning has
been well established in school teaching [3].
Essentially learning and teaching methods are
differentiated to match the needs of individuals within
a group. Specific targets for differentiated learning
have typically included gifted learners [4] and learners
with special educational needs, although the
approach is also appropriate to teaching a wide range
of educational abilities within a learning group.

Because of the selective nature of Higher Education,
there has not been any widespread perceived reed
for a differentiated approach, and where such
approaches have been adopted, they have been set
in the context of individual learning differences and
accommodating the differentiated needs of different
learning styles [5].

In the teaching of computer programming much of
the debate focuses around the curriculum and
appropriate languages and approaches to the
conceptual content rather than on teaching methods
which will support individual differences amongst the
learners. However there have been some
experiments with a differentiated approach [6], [1]. A
more expensive solution to this problem is to write an
Open University style self paced course, enabling all
students to study in their preferred level of detail.

6. CONCLUSIONS

This paper has presented the results of an
experiment to improve student perception of an
introductory programming course by allowing
students to select for themselves which of three
courses of study they would follow. By comparison
with previous years, the results certainly demonstrate

that allowing students who already feel confident to
study at their own pace, while providing them with a
set of challenges was successful; this group of
students were generally much more satisfied with
their experience. Also we have shown that such
students are capable of self selection; we see no
evidence of the need to present students with
aptitude tests.

The level of satisfaction with the course for the
strugglers did not seem to improve; we had a similar
percentage of students who found the course too
hard, and who blamed their failure on the course
administrators for providing insufficient support.
However, the initial confidence on the successor
course was encouraging and indicates that
confidence has improved on previous years.

We believe that there is room for considerably more
research into why a small group of students fail this
course every year, although they appear to be very
well qualified to study the subject; we believe that
usually the problems are environmental rather than
intellectual, but have only limited evidence to support
this.

The only cost of the re-arrangement of this course
has been the need for one extra weekly lecture (the
struggler's weekly revision lecture), and believe that
this investment has been worthwhile.

7. REFERENCES

[1] Bornat, Richard Programming from First Principles.
Prentice Hall International,1987

[2] Jenkins T & Davy T, Dealing With Diversity in
Introductory Programming paper. LTSN-ICS 2000,
Edinburgh. http://www.ics.ltsn.ac.uk/pub
conf2000/Papers/jenkins.htm

[3] Tomlinson C A, The Differentiated Classroom:
Responding to the Needs of All Learners
Association for Supervision and Curriculum
Development, Alexandria, Virginia 1999

[4] Brown M E and Riley T L, Clever Kids and
Computers: Catching the Wave. acec98 Australian
Computers in Education Conference Adelaide
Australia 1998 http://www.cegsa.sa.
edu.au/acec98/papers/p_brown.

[5] Huber T & Pewewardy C “Maximising learning for
all students: a review of literature on learning
modalities, cognitive styles and approaches to
meeting the needs of diverse learners.” CORE. Vol.
14, no. 3: 90

[6] Jenkins T A participative approach to teaching
programming; Proceedings of the 6th annual
conference on the teaching of computing/3rd annual
conference on integrating technology into computer
science education on Changing the delivery of
computer science education, 1998, Pages 125-129

