Valid Generalisation of Functions from Close Approximations on a Sample


Anthony, Martin and Shawe-Taylor, John (1994) Valid Generalisation of Functions from Close Approximations on a Sample. In, Proceedings of the First European Conference on Computational Learning Theory, EuroCOLT'93. , Oxford University Press.

Download

Full text not available from this repository.

Description/Abstract

This volume contains 17 of the contributed papers presented at the 1st European Conference on Computational Learning Theory. Also included are invited presentations on the complexity of learning on neural nets, on new directions in computational learning theory, and on a neurodial model for cognitive functions. The proceedings give an overview of current work in computational learning theory, ranging from results inspired by neural network research to those arising from more classical artificial intelligence approaches. The study of machine learning within the mathematical framework of complexity theory has been a relatively recent development. The burgeoning interest in the application of machine learning to a wide variety of problems from control to financial market prediction has fired a corresponding upsurge in mathematical research.

Item Type: Book Section
ISBNs: 0198534922
Divisions: Faculty of Physical Sciences and Engineering > Electronics and Computer Science
ePrint ID: 259690
Date Deposited: 02 Mar 2005
Last Modified: 27 Mar 2014 20:02
Publisher: Oxford University Press
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/259690

Actions (login required)

View Item View Item