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1 Introduction

We consider the problem of embedding a graph on n vertices in Euclidean
space R¥, for k < n. Typically k& would be 3 or 2. By posing the problem
as minimising the squared norm of the appropriately weighted distance be-
tween adjacent points subject to natural normalising conditions we arrive
at a formulation of the problem for which the optimal solution can be sim-
ply computed in terms of the eigenvectors of the Laplacian matrix of the
(weighted) graph. For the case where the weights are chosen to be unity the
solution is independent of the uniform penalty given to non-adjacent ver-
tices. In this case and for regular graphs the technique has been applied by
Pisanski [4], who demonstrated that the generated drawings are particularly
pleasing in the case of Fullerene graphs arising in chemistry. The idea of
using eigenvectors for drawing graphs was used first in chemical setting for
molecular orbitals; see [3].

For distance-regular graphs with a second eigenvalue of multiplicity at
least k& the embedding has interesting properties; see Godsil [2].

This paper demonstrates that a problem, that has been traditionally
solved by gradient descent techniques used to minimise a measure of poverty
of the generated embedding, affords an analytical solution which can be
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implemented in an efficient deterministic algorithm [4]. At the same time it
reveals significant insights into the relations between emdeddings of graphs
and the structure of the eigenspaces of their Laplacian matrices.

The Laplacian matrix has been used in graph embedding before in Tutte’s
straight line embedding of planar graphs [5, 6]. The approach presented here
is related but corresponds to solving the equation without boundary con-
ditions. The characterisation in terms of minimising the sum of distances
between vertices is also appropriate in Tutte’s case but subject to the chosen
cycle being fixed at the boundary, see also Becker and Hotz [1].

2 Notation and Known Results

Let A(G) = (ayy) be the adjacency matrix of a simple (positively weighted)
n vertex graph GG with no loops. Note that «, v are understood to be adjacent
iflf @y, > 0. For non-adjacent vertices a,, = 0. Let the diagonal matrix D

be given by
D,y = d(?]) = Z Ay s
u:(u,v)EE(G)

the weighted degree of vertex v. The Laplacian matrix is defined to be
Q(G)=Q(A)=D — A, where A = A(G).

We summarise a few known results involving the Laplacian matrix. We
will number the eigenvalues of Q(G') given in ascending order: 0 = Ay <
Ay < ... < ), with corresponding eigenvectors j = e',e?,...,e", where j
is the all one vector, while 0 < A; if the graph is connected. In addition for
any n-dimensional real vector @ it can be verified that

2Qr= Y awle. -2, (1)

(u,v)EE(G)

3 Graph Drawing Problem

We pose the problem of embedding a graph G as finding a mapping
T V(G) — R".

We will place constraints on this mapping in order to ensure that the rep-
resentation is natural and hopefully pleasing. We will denote by 7; the
n-dimensional vector formed by taking the i-th coordinate of 7(u) for all
uw € V(G). Thus 7; is an n-dimensional vector indexed by the vertices of the



graph G. Our first requirement is that the centre of gravity of the represen-
tation is at the origin. This implies that the vectors 7; have average entry
0,or 7; L g,fori=1,...,k The next constraint is that the scaling in all
dimensions be similar. This is ensured by requiring that
n
Il = > r(w? = 1.

u=1

Finally we would like the embedding to retain maximum information about
the graph. An example of how information can be lost is given when 7; = 7;
for some 7 # j, i.e. 7; and 7; are maximally correlated. In this case we
have effectively reduced the dimension of the representation by one. Hence
maximal information will be represented if the vectors have zero correlation,
ie. 7, L 7j, for i # 7. We require adjacent vertices to be close together
weighted according to a,, (e.g. for different chemical bond types the value
might vary), and require non-adjacent vertices to be far apart. Our definition
of the graph drawing problem may therefore be stated as follows.

Problem 3.1 Graph Drawing of a graph G given by (weighted) adjacency
matriz A in RF.

Find a mapping 7 : V(G) — RF*, which minimises the following energy
function

E(r)= Y awlr@-1@I3-8 Y () - 7o)
(uw)EE(G) (u,v)¢E(G)
subject to the constraints
| 7:]] =1, 7 Lyg, fori=1,...,k
T L7, forl<i<j <k,

where 3 is a positive constant controlling the strength of the force driving
non-adjacent vertices apart. =

We are now in a position to state our main result.

Theorem 3.1 Let GG be a connected weighted graph with adjacency matriz
A. The graph drawing problem given in Problem 3.1 is solved by taking the
weighted graph with adjacency matriz

R

0 otherwise



and computing the eigenvectorsel,e?, ... e" with corresponding eigenvalues

0=XM < A2 <...< A\, and Laplacian matriz Q(B). An optimal embedding
7 is given by 7, = e't', i = 1,....k and the minimal value of E(7) is

k+1

> Ao+ k.

=2

If Ap41 < Apy2 then the optimal embedding is unique up to orthogonal trans-
formations in R*.

Corollary 3.1 In the case where the graph is not weighted (i.e. ay, €
{0,1}), the optimal embedding does not depend on the parameter 3.

Proof: If the graph is not weighted and has adjacency matrix A, then
B = (14 8)A. Hence the Laplacian matrices Q(A) and Q(B) also satisfy
Q(B) = (1+8)Q(A). This implies that they have the same eigenvectors with
the corresponding eigenvalues of Q(B) multiplied by a factor of 14+ 3. Hence
by the theorem the optimal embedding does not depend on the parameter

O.n

4 Proof of Result

First note that we can rewrite the energy function E(7) as follows.

E(r)= Y (aw+Plr@)—r@li-6 >  lr(w) =73 (2)

(u)EE(G) (u,v)EE(Ky)

where K, is the complete graph on the vertices of G. If we consider the
complete graph in equation (1), the following equality is obtained for an n
dimensional real vector .

2T Q(K,)z =2t (nl — J)z = Z (zy — ,)* (3)

u, eV (Ky)

In general we have the following relation for an embedding 7 and graph &
with adjacency matrix A and Laplacian matrix Q.

> |7 () = 7(0)[[3

(u,v)EE(G)
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u,v)EE(G) 1=1
k

G (T(w)i = 7();)*

1 (u,w)EE(G)

K3

B

TiTQTiv (4)

=1

by equation (1). Combining the results of equations (2), (3) and (4), we
obtain the following expression for the energy function (7).

k
E(r)= ) m'Q(B) = B(nl = J)]7 (5)
=1
Let j = e!,...,e" be the eigenvectors of Q(B) with corresponding eigen-

values 0 = Ay < Ay < ... < A, and assume that HeZH =1fori>1. We
have

[Q(B) + B(nl — J)]e' = o,
while for i > 1, €' L j and so

[Q(B) + B(nl = J)]e' = (X + fn)e'.

Hence the eigenvectors of Q(B) are also eigenvectors of Q(B) + p(nl — J).
Expressing 7; in the eigen-basis, we have

n

N

i = z,uie ’
=2

where ! = 0 since 7; L 7 = e!. Hence we can write the energy of 7 as

k n
E(r) =) > (u)*A
1=1 £=2
n k
=3 ) ()
=2 =1
The condition 7, L 7; now becomes p; L p;, while the condition ||| = 1
becomes ||g;|| = 1. Since the y; can be extended to an orthonormal basis



matrix M for which M7 is also orthonormal we have

k

vi=) (u) <1

=1

with Y7, v = k. Hence, the minimum will occur when v} = 1 for ( =
2,...,k+ 1 and v} = 0, for £ > k+ 1. This can be achieved by taking

,uf'l =1 or 7; = e'*! as stated in the theorem. Note that the minimum
energy is

k+1

> Ao+ Bk

=2

If Ap42 > Agy1, then we must have l/l? = 0 for £ > k+1 for a minimum to be
achieved. This implies that jq, ..., us span the same space as e?, ..., eft!
and can be obtained by an orthogonal transformation of these vectors. Hence
the optimal embedding is unique up to orthogonal transformation in R*. u

5 Conclusions

In our requirements on the embedding we are forcing the graph to “look
spherical”. For graphs with natural excentrical shape our method does not
give natural pictures. This problem may also explain why occasionally a
better image is created by taking the 2nd, 4th and 5th eigenvectors, [3], [4],
rather than the three eigenvectors corresponding to the three smallest non-
zero eigenvalues. The following figure shows how our method draws the
Cartesian product of two paths P, X P,,2 < n < m < 10. The fullerene
graph on figure 3 is taken from [3].

We have not considered the case where edges are allowed to have neg-
ative weights. We have seen, however, that adding multiples of the matrix
J — I does not affect the eigenvectors of the Laplacian matrix, though corre-
sponding eigenvalues are increased. Hence we can add a multiple of J — I to
a graph with negative weights in order to create one with only positive ones.
This will shift the energy function by a fixed amount and so the optimal
embeddings of the two graphs will coincide, though the minimal value of
the energy function will of course change. Hence the procedure can also be
used to find optimal embeddings of graphs with negative weights as might
occur in chemical bonds with different repelling strengths.



Figure 1: The Cartesian product of two paths P, X P,,2 < n < m < 10,
where the coordinates are given by the second and third eigenvector of the
Laplacian matrix.

It is not clear how the results might be generalised if the norms used are
altered, either in the energy function of the accompanying constraints on
the vectors 7;. It may well be that in this case the approach taken in this
paper is not applicable and a more standard method of energy minimisation
must be applied.
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Figure 2: The Buckminster fullerene. The coordinates are determined by
the 2nd, 3rd and 4th eigenvector.
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Figure 3: A fullerene on 60 vertices. The coordinates are determined by the
2nd, 3rd and 4th eigenvector.



