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ABSTRACT

In this paper, we derived a generalised subband based
scaled aperture (SSA) beamformer, exemplarily for the
generalised sidelobe canceller (GSC). This structure is
useful for broadband beamforming where near-constant
spatial resolution over a wide range of frequencies is
desired. The generalised SSA beamformer decomposes
broadband signal into subbands, which are grouped into
octave intervals. By drawing inputs from sensors with
a wider aperture for lower octave bands, an octave-
invariant resolution is achieved. We demonstrate that
the SSA operates well across octave boundaries and ad-
ditionally can benefit from an increase performance and
reduced complexity when compared to similar subband
and fullband domain beamforming structures.

1 INTRODUCTION

Broadband beamforming using a linear uniformly
spaced array results in a frequency dependent spatial
resolution, since the later is proportionally related to
both the array’s aperture and the frequency of the tar-
get signal. Hence for an array with fixed aperture, the
spatial resolution decreases with frequency. In order to
limit the variation in spatial resolution, recommenda-
tions have been made to limit the processing of signals
to an octave [1]. To overcome the octave barrier, the
used of unequally spaced sensor arrays [2, 3], imple-
mentation of harmonic nesting structure [4, 5] and a
technique based on approximating the ideal continuous
aperture [6] have been suggested.

Based on a harmonically nested array with a scaling in
aperture for different octave frequency intervals [4, 5, 7],
this paper discusses a generic adaptive subband based
broadband beamformer having scaled aperture. De-
composing broadband sensor signals into decimated fre-
quency bands (“subbands”) is advantageous in terms of
reducing the computational complexity and additionally
increasing the convergence speed of LMS-type adaptive
beamforming algorithms [8]. Further, in this paper we
discuss how the subband approach can be exploited to
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form octave groups of subbands, which draw their in-
puts from sensor sets of different spacing and aperture
as a generalisation of [4, 9].

In the following, we review the subband based broad-
band beamforming approach in Sec. 2. Sec. 3 in-
troduces the proposed subband scaled aperture beam-
former which will be simulated and compared to stan-
dard schemes in Sec. 5. Conclusions are drawn in Sec. 6.
In our notation, we use lowercase and uppercase bold-
face characters to denote vector and matrix quantities,
respectively.

2 SUBBAND BASED BEAMFORMING

2.1 LCMYV Broadband Beamforming

Exemplarily for a broadband beamformer, we here
utilise a linearly constrained minimum variance
(LCMV) approach [10], which can be efficiently im-
plemented by means of a generalised sidelobe canceller
(GSC) [11]. The LCMYV problem for optimising array
weights can be formulated as w = argmin,, wiR,,w
subject to CH¥w = f, where w contains the filter co-
efficients and R,, is the covariance matrix of the ob-
served array data. The constraint matrix C and the
constraining vector f impose linear constraints, such as
the preservation of a signal of interest impinging onto
the array from a specific direction of arrival (DOA).
The GSC performs a projection of the data onto the
unconstrained subspace, where standard unconstrained
optimisation algorithms such as the least mean squares
(LMS) or recursive least square (RLS) algorithms [12]
can be deployed.

2.2 Subband Decomposition

Subband based beamforming requires filter banks to de-
compose the broadband sensor signals by means of anal-
ysis filter banks into K different frequency bands, which
can be operated at an N times lower sampling rate due
to their reduced bandwidth. However, for critical deci-
mation, N = K, spectral aliasing limits the performance
of any processing in the subband domain, which can be
mitigated by taking inter-subband correlations explic-
itly into accounts when designing subband based algo-
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Figure 1: Subband decomposition by mean of analysis
and synthesis filter banks.
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Figure 2: Filter bank characteristic for K = 16 and
N = 14 based on a prototype with L, = 448 coefficients.

rithms [13]. A simpler approach is to oversample sub-
bands, i.e. decimate by a factor of N < K [14], which
can efficiently suppress aliasing in subbands and permit
subbands to be processed independently.

Subband decompositions are performed by analysis
filter banks such as shown in Fig. 1, consisting of a se-
ries of analysis filters hin], £ = 0(1)K — 1, and dec-
imation by a factor N. Synthesis is achieved by up-
sampling by a factor of N followed by appropriate in-
terpolation filters gi[n]. For oversampled filter banks
(OSFBs) with N < K, which are considered here, the
filters hg[n] and gg[n] can be efficiently designed and
implemented based on the modulation of a single pro-
totype lowpass filter. In our work, we employ the gen-
eralised discrete Fourier transform (GDFT) for modu-
lation, which admits a straightforward design according
to [16]. As an example, the magnitude characteristics
for Hy(e/*?) o—e hy[n] of an OSFB with K = 16 and
N = 14 using a filter length of L, = 448 coefficients is
given in Fig. 2. Note that the resulting subband sig-
nals are complex valued, and that for real valued array
signals the shown K/2 = 8 subbands are complex con-
jugate versions of the remaining bands, which are there-
fore redundant and can be omitted from processing.

2.3 Subband Beamformer

The block diagram of a standard subband beam-
former processing fixed aperture array data is shown in
Fig. 3 [8, 17]. The analysis OSFBs, labelled A, decom-
pose the broadband array signals into subbands. Within
each subband, an independent broadband beamformer,
here exemplarily a GSC, is operated. The beamformer
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Figure 3: Subband adaptive beamformer with fixed
aperture.
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Figure 4: Directivity pattern of beamformer with fixed
aperture.

outputs form the basis of a reconstructed fullband beam-
former output by means of a synthesis OSFB denoted
as S.

The spatial resolution is reciprocally proportional to
both aperture and the frequency of the impinging wave-
form. As such, for the beamforming structure in Fig. 3,
poor resolution is encountered at the lower frequen-
cies. This effect is indicated by the directivity pattern
|A(€Q,¥)|, recording the beamformer’s gain in depen-
dency of the normalised angular frequency €2 and a DOA
9, in Fig. 4, which demonstrates a beamformer’s gain re-
sponse as a function of frequency and DOA. To overcome
this, the subband based scaled aperture beamformer is
introduced.

3 GENERALISED SUBBAND BASED
SCALED APERTURE BEAMFORMER

The subband based scaled aperture (SSA) approach uses
a different array aperture within each octave, i.e. pro-
gressively lower frequency octaves are processed by pro-



gressively wider arrays. In doing so, a constant spatial
resolution is maintained from octave to octave [4, 9]. We
commence with an example in Sec. 3.1, and generalise
the structure in Sec. 3.2

3.1 Example

An example of the proposed structure for an array oper-
ating over a range of F' = 3 octaves utilising M = 4 sen-
sors per octave is provided in Fig. 5. These octaves can
be resolved by splitting a broadband signal into K = 8
uniform subbands. Discarding the DC component in
subband #0, the lowest frequency octave is contained
in subband #1, while subbands #2 and #3 hold the
second octave and the highest frequency octave spans
subbands #4 to #7. In order to enhance spatial resolu-
tion, the array aperture is doubled when one from the
higher octave goes to the next-lower one [9]. In Fig. 5,
the subband GSC beamformer #1 operates on the low-
est band and draws its input from the largest aperture.
The GSC processors #2 and #3 operate on the next
higher octave, with the remaining 4 processors respon-
sible for the highest octave band covering 4 subbands.
The aperture size for the three octave bands are D = 3d,
D = 6d and D = 12d respectively, with d being the dis-
tance between adjacent sensors satisfying the criteria to
avoid spatial aliasing for the smallest wavelength.

The use of nested arrays such as shown in Fig. 5 is
economical, since sensors can be reused and be part of
several sub-arrays, such as the sensor signals xg[n], 22[n]
and z4[n] in the above example, which requires a total
of Miota1 = 8 nested array elements. If these sensor
positions were extracted from a linear uniformly spaced
array, it would contain Mypniform = 13 such elements
before thinning.

3.2 Generalisation

As a generalisation of the above example, it can be
shown that the sensor signals need to be decomposed
into

K =2 (1)
uniform subbands in order to set up a subband beam-
former which can resolve F' octaves. Further, the gener-
alisations for Miotar and Myniform can be shown to obey

Muniform = M + [(M - 1)(2(1?71) - 1)] ’ (2)

and
Mg = () (F + 1)+ mods(M), (3)

where |-] is the floor operator and mod, represents the
modulo-n operation. With (2) and (3), we can design an
SSA for any number of octaves F' and sensor elements
M per octave. Note that the K stated in (1) is the
minimum number of subbands required to resolve the
desired number of octaves; employing an integer multi-
ple of this K is permissible and may have advantages in
terms of algorithmic complexity and convergence speed
of an adaptive algorithm.

Figure 5: Subband adaptive beamformer with scaled
aperture.

4 COMPUTATIONAL COMPLEXITY

4.1 Fullband Cases

A fullband fixed aperture beamformer employing a GSC
driven by a normalised least mean square (NLMS) al-
gorithm requires a computational complexity of (M L)?
multiply accumulate (MAC) operations for its blocking
matrix and quiescent vector and 3M L+3M for its adap-
tive part, with L representing the temporal dimension
— i.e. the tap delay line length — of the beamformer.
This accrues to

Civ fixed = (ML)* + 3ML + 3M (4)

If we used a nested array and utilise all available sensor
signal to operate a fullband GSC,

Cfb,nested = (MtotalL)2 + 3Mt0talL + 3Mtota1 (5)
would result, with M.t according to (3).

4.2 Subband Cases

For a subband decomposition, an efficient modulated
OSFB analysis or synthesis filter bank is associated with
Chank = (4K log, K + 4K + L,), with L, being the
length of the prototype filter [15]. Therefore a fixed



aperture subband beamformer causes extra computa-
tional complexity in the form of (M + 1) filter banks for
decomposition and subsequently reconstruction of sig-
nals according to Fig. 3. Computational savings arise
in the subband domain due to an IV times lower update
rate and an approximately N times shorter temporal
dimension required for any beamformer, although now
K parallel realisations have to be operated [8]. There,
the cost of a fixed aperture subband beamformer can be
denoted as approximately

Slorsy
N N
For the proposed SSA beamformer, the number of active
sensor signals per octave is not changed compared to the
fixed aperture scheme, but a higher number of analysis
filter banks has to be implemented according to Fig. 5,
resulting in

L
Csb fixed = + 3MN:| + (M +1)-Coank (6)

K L L
Csbmested = N [(MN)Z + 3MN:| + (Mtotal + 1) . Cbzzr’;l;

MACs per fullband sampling period.
5 SIMULATIONS AND RESULTS

In the following, we assess and compare the proposed
SSA broadband beamformer in terms of the achieved
directivity pattern and its octave-invariant resolution, in
terms of interference suppression and convergence, and
in terms of complexity to other fullband and subband
schemes drawing their inputs from sensors with a fixed
aperture.

5.1 Directivity Pattern

The flexibility of the SSA beamformer for various sen-
sor element numbers M and octaves F' is illustrated in
Fig. 6 by the example of M = 11 and F = 4, requiring
a decomposition into K = 16 subbands. Comparing the
shown directivity pattern with Fig. 4, a significant im-
provement in maintaining octave-invariant and therefore
near frequency-invariant resolution across a wide spec-
trum can be noted.

The SSA beamformer with adaptive filters incorpo-
rated enables to steer nulls towards interferers illumi-
nating the array from directions other than the look di-
rection. To demonstrate this effect, we apply two broad-
band interferers impinging onto the array from angles of
—30° and 10° respectively, while the signal of interest
lies at broadside. The simulation utilises F' = 3 oc-
taves with M = 11 sensors per octave and subsequently
K = 16. The filter banks are the ones characterised
in Fig. 2, based on a prototype of length L + p = 448
permitting a decimation factor of N = 14. After adapta-
tion, the directivity pattern in Fig. 7 illustrates the suc-
cessful nulling of the two broadband interferers. This
contrasts with Fig. 6, where no adaptation is applied
and subsequently the quiescent beam pattern is not set
to suppress any specific interferers.
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Figure 6: Directivity pattern of subband beamformer
with scaled aperture M =11, F' = 4.
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Figure 7: Directivity pattern of SSA beamformer in the
presence of broadband interferers from —30° and 10°.

5.2 Interference Suppression and Signal Distor-
tion

A performance comparison between subband scaled
aperture, subband fixed aperture and fullband fixed
aperture in term of the mean squared residual error is
carried out. The residual error here is defined as dif-
ference between the beamformer output e[n] in Figs. 3
and 5 and the signal of interest from broadside. There-
fore any remaining interference and noise as well as any
distortion imposed on the signal of interest is measured.
In the simulated scenario, the signal of interest is at the
array’s broadside, while broadband interferers impinge
form —20° at an SIR of —40 dB, corrupted by uncorre-
lated noise at 10 dB SNR. The beamformers draw their
inputs from M = 5 sensors in the fixed aperture case,
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Figure 8: Learning curves.

and Mioa1 = 9 sensors in the nested array case.

The fullband beamformer represents a traditional
time domain implementation where no decomposition
of the broadband signal is carried out. It is either ap-
plied to M = 5 uniformly spaced array elements, or
alternatively utilises all Miota) input, and applies a tap
delay line of L = 64 to each sensor signal. The sub-
band beamformers use K = 16 channel filter banks with
N = 14 and prototype length L, = 448 as characterised
in Fig. 2. The temporal dimension of the subband based
beamformer is shortened accordingly. In all cases, the
GSC is operated in combination with an NLMS algo-
rithm [12]. The adaption of the beamformers starts at
n = 0 with a step-size of u = 0.5, and at n = 20000 the
step-size is reduced by a magnitude of 10.

Learning curves depicted in Fig. 8 indicate that the
SSA outperforms the fixed aperture subband based
beamformer in having faster convergence speed and
lower steady state error. The latter is due to an en-
hanced suppression of interferers at low frequencies,
where the increased spatial resolution is of benefit. Sur-
prisingly, the steady-state MSE performance is the same
as the fullband algorithm exploiting all Mea sensors,
which is however reached at a substantially lower com-
plexity.

To further analysis the characteristic of the beam-
formers, power spectral densities (PSD) of the various
steady-state errors are presented in Fig. 9. The fullband
fixed aperture having M = 5 sensors exhibits high power
at lower frequencies, trailing off as frequency increases.
The subband fixed aperture scheme has similar PSD
characteristic to the fullband albeit a sightly lower PSD
at lower frequencies. This corresponds to the directivity
pattern in Fig 3, where the larger beamwidth at lower
frequencies allows more signal power to pass through the
system. As the beamwidth narrows towards the higher
frequencies, better resolution is observed. The proposed
SSA approach gives a fairly octave-invariant PSD due to
different aperture sizes. The octave structure is clearly
visible in Fig. 9, where lower interference suppression
can be seen at the lower frequencies within each octave.
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Figure 9: PSD of residual error at steady state.

Fig. 10 shows the gain response of the SSA beam-
former from broadside. This figure indicates that the
0 dB constraint towards broadside is fulfilled and that
the ripple of the beamformer gain is fairly small despite
the subband edges and the integration of various aper-
tures within the beamformer. This also highlights that
peaks in the PSD of the subband approaches in Fig. 9
are not due to distortion effects at the octave margins
but are a result of slow convergence at the band edges of
individual subbands caused by low input power to the
adaptive algorithm [18].

5.3 Complexity

For the scenario in Sec. 5.2 with M = 5 and F = 3,
Miota = 9, K = 16, N = 14, and L, = 448 for the
proposed SSA scheme, the arising computational com-
plexities are given in Fig. 11. The SSA beamformer
requires an extra 4 sensors inputs and hence 4 more
analysis filter bank operations compared to the subband
fixed aperture architecture. Note that the computa-
tional complexity of the subband schemes in general is
significantly lower than the fullband approach. For the

t AMAMAAAAMP AR

-0.05 o

gain from broadside / [dB]

0.2 L L L L L I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

normalised angular frequency Q/mt

Figure 10: Gain response of the SSA beamformer to-
ward broadside representing the distortion imposed on
the signal of interest.
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Figure 11: Computational complexities of fullband fixed
aperture, subband fixed aperture and subband scaled
aperture.

simulations in Sec. 5.2, where SSA and a fullband nested
array beamformer utilising all My, = 9 sensor signals
provided a similar steady-state performance in terms of
interference suppression, it can be noted that the com-
putational complexity differs by 2 orders of magnitude.

6 CONCLUSIONS

We have proposed a subband based scaled aperture
beamformer which has the ability to maintain approx-
imately constant resolution across a wide frequency
range. Poor resolution encountered by fixed aperture
beamformers at low frequencies can be overcome by
drawing sensor inputs from a nested array, such that
lower octaves correspond to an array of increased aper-
ture. We have shown that the constraint is fulfilled
across the octave band margins, and only limited by
the filter bank’s distortion function, which can be kept
as small as necessary by design.

Additionally, the SSA scheme inherits the low compu-
tational complexity of general subband approaches. We
have compared various broadband beamforming imple-
mentation in both the fullband and subband domain,
whereby the SSA does not suffer any degradation with
respect to the MSE performance when compared to a
fullband scheme exploiting the entire sensor array data
albeit at a much higher cost.
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