
AN EXTENSION TO SYSTEMC TO ALLOW MODELLING OF ANALOGUE

AND MIXED SIGNAL SYSTEMS AT DIFFERENT ABSTRACTION LEVELS

H J Al-Junaid and T J Kazmierski

University of Southampton

Abstract

SystemC is Hardware Description Language HDL for
digital systems. An extension is proposed in this
paper to extended the capabilities of SystemC to al-
low modelling of analogue and mixed-signal systems.
The proposed extension provides a variety of abstrac-
tion levels, from system level to circuit level. In order
to comply with the SystemC simulation cycle seman-
tics, the analogue kernel is linked to the SystemC en-
vironment via calls from the existing digital kernel.
The synchronisation of the analogue and SystemC
digital kernels is done via a lock-step method. Op-
eration of the extended, mixed-signal SystemC sim-
ulation platform is demonstrated using a practical
example of a phase locked loop frequency multiplier
with noise and jitter. We hope that results from this
research might aid the recent efforts to standardize
analogue extensions to SystemC.

1 INTRODUCTION

The need to integrate complete complex systems on
a single Chip SoC has started a new era in design
automation. SoC has created a need for powerful
CAD tools and methodologies which are capable of
integrating information from multiple heterogenous
sources (analogue parts, processors, RAM, ROM,
etc.) and have the ability to work at high level of
abstractions.

Furthermore, Analogue and Mixed-Signal (AMS)
high-level modelling is lagging behind the digital de-
sign due to its immature design methodologies [1].
This created a gap in the design of the two different
parts which slow the production rate. It is essential
to include analogue components and a system envi-
ronment into an overall simulation HDL like VHDL-
AMS or Verilog-AMS which allow a description of
mixed signal system.

The recent trend in digital system design is to-
ward C++ based modelling [2] either through li-
braries like SystemC, Cyblib or OCAPI or through
abstractions like SpecC. SystemC [3], one of the
newest hardware description languages, has become
the subject of growing interest throughout the elec-
tronic industry since the release of the first version in
September 1999. SystemC is a standard modelling

language intended to enable system level design and
IP exchange at multiple abstraction levels for com-
plex systems containing both software and hardware
components.

There is an extensive research towards Sys-
temC specification, co-simulation, co-design, co-
verification and synthesis of systems at different ab-
straction levels. Until recently, there have been few
research papers directed towards extending SystemC
to modelling AMS systems.

For instance, Einwich et al [4] presented a frame-
work support for signal processing dominated appli-
cation. The framework is based on analogue ex-
tensions for DAEs (differential and algebraic equa-
tions) and frequency domain simulation. Linear
DAE solvers are integrated into the synchronous data
flow design. An AMS simulation framework is pre-
sented by Bonnerud et al [5] for simulation of ana-
logue to digital data converters ADC. The framework
contains a C++ mixed signal module library that in-
cludes a set of flexible and customizable primitives,
compound modules and test-benches.

Another approach, proposed by Conti et al [6],
allows a description of analogue systems at low or
higher level using analogue macro-models; it adopts
a threaded analogue modules system. The method-
ology was applied to a fuzzy controller and a CMOS
inverter chain oscillator. Grimm et al [7] introduced
an ASC library, a prototype for AMS extension to
SystemC. The ASC library provides analogue or sig-
nal processing behavioural processes and their exe-
cution is controlled by a coordinator interface.

None of the papers listed above provides an ap-
proach with a general simulator for the analogue
parts to solve non-linear systems with variable time
step and addresses other essential issues which are
necessary to model general AMS systems. The aim
of this research is to extend SystemC to model ana-
logue and mixed-signal systems at a variety of ab-
straction levels, and consequently, develop a general
non-linear analogue simulator which works in parallel
with the digital simulator and both interact at spe-
cific time points when needed. A particular attention
has been devoted here to the problem of synchronis-
ing the analogue kernel with the SystemC digital ker-
nel. Our synchronisation techniques are compliant

with the definition of SystemC simulation semantics
[8].

A working group was formally established on
February 2003 to develop an extension to SystemC
called SystemC-AMS under the support of the Open
SystemC initiative OSCI. In this respect, the results
presented here might aid the recent efforts to stan-
dardize analogue extensions to SystemC.

In this paper, elements of the AMS extension
which are addressed within the scope of this research
are described in Section 2. Section 3 illustrates
the implementation of the digital-analogue inter-
faces and handles some problems which arose when
putting together the analogue and digital parts. Sec-
tion 4 explains the SystemC simulation cycle and
how it is linked and synchronised with our AMS ex-
tension. Finally, the proposed extension was ver-
ified by modelling several examples but Section 5
gives one case study of modelling a high-speed phase
locked loop with noise and jitter, which is a non-
trivial AMS system.

2 ELEMENTS OF THE AMS

EXTENSION

The new classes added to language cover the most
important aspects of AMS modelling. They in-
clude support for analogue System variables, ana-
logue components, corresponding virtual build meth-
ods used by the underlying solver and the imple-
mentation of analogue to digital interfaces. A cor-
responding analogue kernel has been constructed
which simulates a user code describing the system
in a simple and familiar form such as a SPICE-like
net-list or VHDL-AMS-like simultaneous equations.

2.1 Analogue System Variable

In order to provide a mechanism for modelling non-
linear AMS systems, the new language extension
should provide a notation for DAEs. In the set of
DAEs Eq. 1, the analogue system variables intro-
duced into the extension (v(t)) represent the un-
knowns.

f(v(t), v̇(t), t) = 0 t ≥ 0, v(0) = v0 (1)

The C++ concept of inheritance is used to de-
fine various types of analogue system variables, such
as nodes, currents, free variables and others. In
the proposed extension, they represent a hierar-
chy of system variables, all derived from an ab-
stract base class as illustrated in Fig. 1. Currently
only three types of variables derived from the base
class have been defined, sc_a_node, sc_a_flow and
sc_a_free_variable.

Abstract base class

sc_a_system

_variable

sc_a_node
 sc_a_flow

sc_a_free_

variable

User derived analogue system variable types

Figure 1: Analogue system variable inheritance hier-
archy.

sc_a_node is used to represent node voltages in
electrical circuits. Where sc_a_flow is used to rep-
resent flow variables (e.g. electric currents) in MNA-
like equation formulations. According to the MNA
representation of some components, like a voltage
source or an inductor, a current variable should be
introduced in conjunction with the declaration of
any of these components. The free system variable
sc_a_free_variable is introduced to define vari-
ables when describing a system or part of it by a
differential equation rather than a networked circuit
component. It is useful especially when modelling
systems at behavioural level for describing the func-
tionality of system blocks.

2.2 Analogue Components

Analogue circuit components have been proposed
here to provide equations which describe analogue
behaviour. Similarly to the system variable hierar-
chy, components are derived from an abstract base
class which contains a virtual build method invoked
by the analogue kernel. A sample component class
hierarchy is illustrated in Fig. 2 with examples of
SPICE-like circuit elements such as resistor, capaci-
tor, inductor, diode and various types of autonomous
sources. Arbitrary differential and algebraic equa-
tions can be included as user-defined components.

Abstract base class

sc_a_component

sc_a_resistor

sc_a_voltage_

source

User defined

component

sc_a_voltage_

source_ramp

sc_a_voltage_

source_sin

sc_a_voltage

_source_dc

User derived component types

VCO

Figure 2: Inheritance of analogue components.

The typical component class would contain a pair
of node pointers and a value. An example of instan-
tiating a capacitor is shown below:

sc_a_capacitor *c1= new sc_a_capacitor("c1",

nodeA, nodeB, C)

where sc_a_capacitor is a new component class
derived from the base abstract class, c1 is the compo-
nent name, nodeA and nodeB are names of analogue
system variable objects of type sc_a_node and rep-
resent the two terminals to which the capacitor is
connected, and C is the capacitance.

The base class constructor attaches each newly
created component to a global linked list of system
components to form a connected circuit. The list is
used at the matrix build time by scanning all the
components to invoke their build functions.

A net-list of an analogue circuit can be con-
structed by declaring system variables of type node
and analogue components as shown below of the loop
filter in a phase locked loop (explained later in Sec-
tion 5). Fig 3 shows its corresponding schematic.
The circuit’s data base is constructed once, prior to
a simulation.

sc_a_node n1("n1"), n2("n2"), n0("n0");
sc_a_currentS I1("I1",n1,n0,&Iin);
sc_a_capacitor c1("c1",n1,n2,3e-9);
sc_a_resistor r1("r1",n2,n0,1e3);
sc_a_capacitor c2("c2",n2,n0,4e-9);

n1

n0

n2
I1

c1=3nF

c2=

4nF

r1=1k

ohm

Figure 3: Schematic of the loop filter in PLL exam-
ple.

2.3 Virtual Build Method

The build method specifies the analogue behaviour
of a component. This is a virtual method with a
default body in the abstract component base class
and inherited by all derived components. The build
method consists of C++ code which defines one or
more DAEs. For example, Fig. 4 shows the ca-
pacitor representation. The figure shows the capac-
itor’s differential equation, its representation after
discretisation and part of the corresponding build

method. The resulting Jacobian stamp conforms
to the Modified Nodal Analysis formulation MNA.
Calls to BuildRhs, build the differential equations
for the capacitor or the right hand side RHS. Calls

to BuildM, which build the corresponding Jacobian
entries are optional. If these calls are not provided,
the solver will build the Jacobian using a secant ap-
proach with finite difference approximation of the Ja-
cobian entries. The entire equation set is formulated
automatically at each Newton-Raphson iteration by
scanning the linked list of components and invoking
their build methods.

void capacitor::build(void){
...
S=Sn();
CVdotn=C*S*(Xdot(a)-Xdot(b));

 BuildM(a,a,S*C);
 BuildM(a,b,-S*C);
 BuildM(b,a,-S*C);
 BuildM(b,b,S*C);

 BuildRhs(a,-CVdotn);
 BuildRhs(b,CVdotn);
}

(),..., 11 −−+== nabnabnabnab
ab

ab vvCXSCv
dt

dv
Ci &










−−+
++−−

=∆⋅








−
−

+
nnnn

nnnn
n CXbSCvbCXaSCva

CXbSCvbCXaSCva
v

SCSC

SCSC
1

RHSvJacobian =∆.

Va
a

Vb

b

a b
C

Figure 4: Capacitor equation and build function.

3 DIGITAL-ANALOGUE

INTERACTION

Connectivity between analogue and digital models
requires special consideration since the two mod-
els have different language representations. The so-
lution to this problem is to insert a special inter-
face model directly between the digital and analogue
parts. The intended interfacing solution is similar
to those adopted in VHDL-AMS and Verilog-AMS.
A/D and D/A interfaces are used only to change rep-
resentations of signals between the digital and ana-
logue domains.

3.1 Digital-Analogue Interface

interfaceDA is a SystemC module which contains
an input port of type bool and an output port of
type double. interfaceDA ports are connected to
signals of the corresponding types. A digital sig-
nal coming from digital module are transformed into
analogue signal and directed towards the analogue
module through the output port. Digital signal may
introduce instability in the analogue simulation due
to large instability changes in node voltage when the
digital node switches. Therefore rather than chang-
ing abruptly, a transformation is done by a smooth-
ing function. The smoothing is done by Eq. 2 and

shown in Fig. 5. This method is capable of handling
small time step size as well.

Sn =
Snhn + τS′n−1

τ + hn

(2)

where Sn is the input digital signal of type bool.
hn is the simulation time step size. S ′n is the
smoothed signal and S′n−1 is the past value of the
smoothed signal. τ is time constant which plays as
a control factor to shape the signal.

Digital World
 Analog World

smoothing

t

t
n

n
S

t
-

t
+

Event on

signal
 S
n

Figure 5: Handling small time step sizes.

3.2 Analogue-Digital Interface

interfaceAD is a SystemC module takes analogue
signal of type double and produce a digital bool sig-
nal. The criteria to generate a digital event is sim-
ple, if the threshold voltage E defined is exceeded,
an event with a state (high) is generated. An event
with a state (low) is produced, if the analogue volt-
age falls below the threshold voltage. Due to the fact
that the result is a digital boolean signal, an event is
to be generated at every signal change. The digital
part will react to this event if a concurrent statement
reads this signal or if the sensitivity list of a process
contains this signal.

3.3 Analogue Stepping

The time step of the analogue simulator is deter-
mined by the internal algorithm of the simulator,
which means it cannot be defined by the user. Ana-
logue simulators do not use events but instead em-
ploy an entirely different approach to time step con-
trol, namely, continuous step size adjustment, as il-
lustrated in Fig. 6, where h = hn, hn+1, ... may have
different values.

Digital World
Analogue World

h
n
 h
n+1

t
n-1

t
n
 t
n+1

t
n-1
, t
n
, t
n+1
 is analogue events generated by the

analogue kernel

Figure 6: Analogue stepping.

The implementation of analogue stepping is
based on the estimation of the Local Truncation Er-

ror LTE. LTE at tn is an error due to a numerical
approximation introduced in the time point tn.

In order to synchronise the analogue and digital
simulators at every time point, the analogue step-
ping is done in SystemC using event notifications.
The analogue kernel which is responsible for cal-
culating the estimated value of the upper step size
bound hn notifies the kernel at the time point equal
to sc_time_stamp() +hn. The digital processes will
be activated at this time point accordingly.

4 TIME SYNCHRONISATION

BETWEEN ANALOGUE AND

DIGITAL SOLVERS

The most important problem in mixed-signal simu-
lation is the time synchronisation between the event-
driven digital simulation and the numerical integra-
tion in the analogue simulation. Synchronisation is
a key issue affecting the simulation speed and ac-
curacy. Illustrated in the following sections the Sys-
temC simulation cycle and the way our analogue ker-
nel is linked to it.

4.1 SystemC Simulation cycle

Like in the case of most high-level HDLs, a SystemC
model consists of a hierarchical network of parallel
processes, which exchange messages under the con-
trol of the simulation kernel process [3] and concur-
rently update the values of signals and variables. Sig-
nal assignment statements do not affect the target
signals immediately, but the new values become ef-
fective in the next simulation cycle [8]. The kernel
process resumes when all the user defined processes
become suspended either by executing a wait state-
ment or upon reaching the last process statement.
On resumption, the kernel updates the signals and
variable and suspends again while the user processes
resume. If the time of the next earliest event tn is
equal to the current simulation time tc, the user pro-
cesses execute a delta cycle.

4.2 Proposed Mixed-Signal SystemC

Simulation cycle

In this proposed research, the digital and analogue
simulation cycles are combined. Hence, a set of
computations of the analogue equations is executed
between the digital evaluation points. To comply
with the SystemC execution semantics, the proposed
mixed-signal simulator comprises an analogue kernel
(see Fig. 7), which runs as a SystemC process and
drives the user defined analogue modules.

The analogue kernel repeatedly executes its sim-
ulation cycle, which might involve delta cycles and
backtracking. Analogue simulators use continuous

Initialization

*

Process 1

Analog

kernel

process

Digital

Kernel

process

All processes suspended

. . .

START

STOP
Process n

Figure 7: The proposed simulation cycle of a Sys-
temC system with analogue kernel.

step size adjustment to minimize the errors caused
by the numerical integration method.

It is therefore necessary for the analogue kernel
in a SystemC environment to handle delta cycles in a
manner similar to that of digital processes. However,
the state of the analogue solver may not be updated
until after the SystemC kernel advances the simu-
lation time ahead of the current simulation time tc,
unless a delta cycle occurs and reevaluation of the
current step is necessary.

The technique used in this project for synchro-
nisation is the lock-step one. The analogue simula-
tor calculates the step sizes and the digital simulator
uses these values. The analogue kernel advances until
the current simulation time and, before suspending,
schedules an event at the time equal to the current
simulation time plus the next selected step size. The
method has been implemented in the extended lan-
guage by modifying the SystemC kernel specified by
(sc simcontext.cpp) from the SystemC library.

5 CASE STUDY: 2GHZ PHASE

LOCKED LOOP

To verify the functionality of the proposed SystemC
mixed-signal simulator, a case study of modelling a
2GHz Phase Locked Loop (PLL) is illustrated. PLL
is non-trivial system to model. Systems of this kind
usually put standard SPICE-like simulators into dif-
ficulties because of the disparate time scales of their
transients. As a typical simulation in a system of this
kind might require a hundred million time points, ex-
cessive CPU times often occur when the entire sys-
tem is modelled on the circuit level. The capacity of
SystemC to enable system level mixed-signal mod-
elling can vastly reduce simulation times where con-
cepts need to be verified quickly and detailed circuit
level modelling is not required. Fig. 8 shows a block
diagram of the modelled PLL.

Phase

Detector

LPF
 VCO

Divide

by 2000

Charge

Pump

f
vco

2GHz

f

div

f

ref

1MHz
 I
noise

up

down

noise

source

Figure 8: 2GHz Phase Locked Loop with noise and
jitter.

5.1 Noise Module

One of the major concerns in the design of PLLs
is noise and jitter performance. For example in
transceiver designs, jitter from a PLL directly acts
to degrade the noise floor and the selectivity of the
transceiver. Jitter is modelled here as a Gaussian
process with zero mean. It is assumed that only the
charge pump was subject to jitter and its signal can
be expressed as in Eq. 3,

Inoisy = I(t+ Jitter(t)) (3)

PLL noise behaviour is difficult to predict with
traditional circuit simulators because a PLL gener-
ates repetitive switching events as an essential part
of its operation, and the noise performance must
be evaluated in time-domain when large signals are
present. Most classical simulators, SPICE being the
best example, are not capable to simulate noise in
PLLs. Using the extended SystemC, suitable noise
modules can be constructed with no difficulty. The
noise module here relies on the standard C++ ran-
dom number generator function rand() and includes
a Box-Muller converter of uniform random numbers
to Gaussian distribution.

5.2 Voltage-Controlled Oscillator

The VCO generates a square wave whose frequency
is proportional to the input signal level. The VCO
frequency is the rate of change of the phase (Eq. 4),

ϕ̇(t) =
dϕ

dt
= f(v) = fc + df ∗ Vfilter (4)

Where Vfilter is the output voltage of the loop
filter, fc is the center frequency of the VCO, and
df = fmax−fc

Vmax

is the VCO gain. The VCO was mod-
elled as an equation class and not in circuit level.
In the class of the VCO there are methods to add

the VCO contribution to the system jacobian. Equa-
tion classes such as VCO class are inherited from the
component class so that it allocates its place in the
jacobian. Part of the VCO class is shown below:

vco::vco(char nameC[5],SystemVariable *node_a, sc_signal<bool>
*Vout): component(nameC,node_a, 0, value){

Vco=Vout;
phi = new sc_a_free_variable("phi");

}

void vco::build(void){ ...
phase = X(phi);
phase=fmod(phase,1.0);
if(phase > 1.0)

PhaseNoisy = phase + Pnoise;
if (PhaseNoisy > 0.5)

Vco->write(true);
if (PhaseNoisy < 0.5)

Vco->write(false);

double fmin=0.5e9, fmax=5e9, Vmax=3.3, df, fc=2e9;
df= (fmax-fc) / Vmax;
double S, Qdotn, freq;
S=Sn();
Qdotn=Xdot(phi);
freq = fc + df * (a->readn());

if (freq < fmin || freq> fmax)
{

if (freq < fmin)
freq = fmin;

else freq = fmax;

BuildM(phi,phi,S);
BuildM(phi,a,0);
BuildRhs(phi,-Qdotn + fc + (a->readn()) * df);

}
else{

BuildM(phi,phi,S);
BuildM(phi,a,-df);
BuildRhs(phi,-Qdotn + fc + (a->readn()) * df);

}
}

5.3 Simulation

The system was simulated with extremely small ana-
logue steps which are required to accurately reflect
the effects of noise and jitter. To enforce a step size
of 10ps or less, the charge pump module is sensitive
to a 100GHz clock, whereas the digital modules are
sensitive only to their input signals. Fig. 9 shows dif-
ferent system values in the first micro seconds of the
simulation. Table 1 shows some simulation figures.

Table 1: PLL simulation figures
Simulation time 200µ Sec
Number of steps 20 Millions
CPU time 1157.37 Sec

6 CONCLUSION

Amixed-signal simulator based on SystemC has been
developed to simulate a general analogue and mixed-
signal systems modelled at different abstraction lev-
els. The proposed simulator achieved a good results
and capable of operations, some recent simulators are
unable to perform. Operations such as noise analy-
sis, reasonable CPU time even with 20 Million time

f

div

f
ref

Up

I
noise

-4u

-2u

0

2u

4u
 [I]

0
 1u
 2u
 3u
 4u
 5u
 6u
 7u
 8u

Time [s]

V
f

0

0.4

0.8

1.2

0
 1u
 2u
 3u
 4u
 5u
 6u
 7u
 8u

[V]

Time [s]

0

1

0

1

0

1

Figure 9: 2GHz Synthesizer simulation results.

steps and modelling at different levels in the same
design. The extension is still under further develop-
ment and is aiming to cover more AMS aspects and
more case studies.

References

[1] Pichon F. Blanc S. and Candaele B., “Mixed-
signal modelling in vhdl for system-on-chip ap-
plications,” in European Design and Test Con-

ference, Paris, France, 6-9 March 1995, pp. 218–
222.

[2] Celoxica, Survey of System Design Trends, De-
cember 2003.

[3] Open SystemC Initiative OSCI Documents, Sys-

temC Language Reference Manual, 2003.

[4] Einwich K. Clauss Ch. Noessing G. Schwarz P.
and Zojer H., “Systemc extensions for mixed-
signal system design,” in FDL, Lyon France, 3-7
September 2001.

[5] Bonnerud T. Hernes B. and Ytterdal T., “A
mixed-signal functional level simulation frame-
work based on systemc,” in CICC, San Diego
California USA, 6-9 May 2001.

[6] Conti M. Caldari M. Orcioni S. and Biagetti G.,
“Analog circuit modelling in systemc,” in FDL,
Frankfurt, Germany, 23-26 September 2003.

[7] Grimm Ch. Meise Ch. Heupke W. and Wald-
schmidt K., “Refinement of mixed-signal systems
with systemc,” in DATE, Messe Munich, Ger-
many, 3-7 March 2003.

[8] Mueller W. Ruf J. Hoffmann D. Gerlach J. Kropf
Th. and Rosenstiehl W., “The simulation seman-
tics of systemc,” in DATE, Messe Munich, Ger-
many, 13-16 March 2001.

