CHAPTER 1
Preliminary definitions and results.

1. Non Euclidean crystallographic groups.

1).

Let U denote the upper –half complex plane, {z ε 
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: Im  z  > 0}.  U can be made into a model of the non-Euclidean (written N.E.) plane as follows.



Define the N.E. length of a piecewise differentiable arc C by






y
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and the N.E. area of a measurable set E by
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The geodesics of this metric are circles and lines orthogonal to the real axis 
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 (see [14]) and are called N.E. lines.


The N.E. distance between two points in U is the length of the unique N.E. line joining them.


The metric induces a topology on U which is the same as the topology induced from the usual topology on 
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Let g denote the group of transformations of the extended complex plane, 
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A) z  , a,b,c,d real, ad - bc = 1
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B) z  , a,b,c,d, real, ad - bc = -1

cz + d

®






The set of transformations of type A forms a subgroup of index two in g, denoted by g+ (although in other contexts it is more usually denoted by PSL (2, 
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).

Each element of g is a conformal (type A) or anti-conformal (type B) homeomorphism of U onto itself.  Every conformal homeomorphism of U lies in g+  (see e.g. Springer [27]) so that g is the group of conformal and anti-conformal homeomorphisms of U onto itself.  Every element of g maps N.E. lines to N.E. lines and preserves N.E. distance. 

We topologise g as the subset of 
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{a, b, c, d: ad – bc = ±1}

by identifying (a, b, c, d) and (-a,-b, -c, -d) and taking the identification topology.  The topological group g has two components, namely g+ and g\g+.  A discrete subgroup of g is called a non-Euclidean crystallographic group which we shall always abbreviate to NEC group.   An NEC group contained in g+ is called a Fuchsian group.  If an NEC group contains elements of type B, i.e. orientation reversing elements, we shall call it a proper NEC group.

2) We can classify the elements of g by their orientation and their fixed point set.

Elements of type A are orientation preserving.  Their fixed point set is found by solving the quadratic equation
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There are three types.

(i) Hyperbolic  if  
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 > 2, with two fixed points on 
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[image: image15.wmf]{

}

¥


(ii) Elliptic  if 
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 < 2, with two complex conjugate fixed points, one of which is in U.

(iii) Parabolic if  
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 = 2, with one fixed point on 
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 U 
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Elements of type B are orientation reversing.  Their fixed point set is found by solving the equation
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They are two types.

(i) Glide reflections if a + d ≠ 0, with two fixed points on 
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 U 
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(ii) Reflections if a + d = 0, with N.E. line of fixed points.

As the elements are classified by their trace (a + d) and their determinant, conjugate elements of g are of the same type.  Each of the five types of transformations has a canonical form are listed below.


Type of element

Canonical form
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Elliptic
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Parabolic
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Glide reflection
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Reflection
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If g ε g is a hyperbolic elemkent then g is conjugate to the transformation w (z) = 
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z, > 1 and 
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 is known as the multiplier of the transformation. 
[image: image31.wmf]l

 is an ivariant of the conjugacy class.  Now  
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 gn   (z) must exist and is a fixed point of g, called the attracting fixed point.  Simarlarly 
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 g-n (z) is called the repelling fixed point.  A hyperbolic element is uniquely determined by its multiplier and its fixed points.  The same remarks apply to glide reflections.


Reflections are of order two.  The only other elements which can have finite order are elliptic elements and conversely every elliptic element in an NEC group is of finite order.

3) A NEC group Г acts properly discontinuously on U in the sense that every point z ε U has a neighbourhood V such that if γ ε Г and γV n V ≠ 
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, then γz = z.


The Г-orbit of z ε U is { γz: γ ε Г} and we for the orbit (or quotient) space, U/ Г, by giving the set of all orbits the identificaiton topology.

Definition 1.1.
A surface is a connected Hausdorff space on which there is an open covering by sets homeomorphic to open sets in 
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Definition 1.2.
A connected Hausdorff space is called a surface with boundary if it is not a surface and if it possesses an open covering by sets which can be mapped homeomorphically onto relatively open sets of a closed half-plane.

Definition 1.3.
A  Г – fundamental region   is closed set F with the properties 

1) F contains at least one element of every orbit,

2) Int F contains at most one element of every orbit,

3) The N.E. area μ (I\int F) = 0.

It has been shown  by Wilkie [28] that for every NEC group Г with compact quotient space there exists a canonical surface symbol of a fundamental region for Г from which a canonical presentation for Г can be derived.  U/ Г is a surface, with or without boundary, orientable or non-orientable, depending on the structure of Г.

It is easy to see that U/ Г is a surface with boundary if and only if Г contains reflections.


Throughout this thesis we shall only be concerned with NEC groups with compact quotient space.  By a well known result, such groups contain no parabolic elements (see Bers [3]).  Also the classification of compact surfaces is well-known (see e.g. Massey [19], Lefschetws [10], Griffiths [6]).


Every compact oreintable surface is homeomorphic to a sphere with g handles attached.


Every compact non-orientable surface is homeomorphic to a sphere with g cross-caps attached.


Every compact orientable surface with boundary is homeomophic to a sphere with g handles attached and k discs removed.


Every compact non-orientable surface with boundary is homeomorphic to a sphere with g cross-caps attached and k discs removed.


We now give a brief description of how a presentation of a NEC group Г may be obtained from a given fundamental region.  The method is found in detail in [14] and [28].


Let p ε U be a point not fixed by any element of Г.  Let F be the set of points satisfying




D (z,p) ≤ d (gz,p)     for all g ε Г,

where d 9z,p) dentotes the N.E. distance of a point z ε U to p.  F is a fundamental region for Г and is called the Dirichlet region.  It is a convex set bounded by N.E. lines, with all its vertices in Ū (the closure of U).  As Г has compact quotient space F will be a bounded convex polygon with afinite numer of sides.


Two vertices are called congruent if they lie in the same Г – orbit .  Two edges are congruent if there is an element of Г which maps one edge to the other.


If F meets one of its images gF (g ε Г) in an edge then g–1 F meets F in an edge.   These edges are distinct uless g2 = 1, i.e. unless g is an elliptic transformation of order 2 or a reflection.  If g is an elliptic transformation of order 2, Fn gF is an edge of F, say AB, which is mapped onto itself by g.  The mid-point C of AB is fixed point of g and AC is mapped on CB by g.   We add C to the set of vertices of F and regard AC and CB as two separate but congruent edges of F.  If, however, g is a reflection every point of Fn gF is fixed under g.  Such and edge of F is congruent to no other edge of F under Г.



F has the following properties (see [28]).

1. F is homeomorphic to a closed disc.

2. F\int F is a polygonal Jordan curve, i.e. a curve which is a finite union of N.E. line segments.

3. There are a finite number of points on F\int F (the vertices) dviding F\int F into Jordan arcs (the edges).

4. The edges of F are divided into three categories as follows:

a) Congruent pairs s, s’ , where s, s’  are the edges Fn gF,  Fn g-1F respectively and g ε Г but g2 ≠ 1.  Here s = gs’ .

b) Congruent pairs s, s’ where s = gs’ and g is an elliptic transformation of order 2.  In this case sus’ = Fn gF.

c) Edges s” where s” is Fn gF and g is a refletion.  Such and edge is congruent to no other edge of F and is an N.E. line segment.

5. If  Fn gF ≠ 
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 where g ε Г and F, gF do not have an edge in common then Fn gF is at most a finite number of vertices.

(A fundamental region with the above properties is called a regular fundamental region.)


The set [gF: g ε Г) forms a tesselation which fits together to cover U.  Any face of the tesselaion with the g’ F for some g’ g ε Г and so will determine a unique face of the tesselation.  Faces with an edge in common are called neighbours.
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Let F be a face and F’ another face meeting F in an edge α. Denote the group element which maps F to F’ by a so that F’ = aF.  If   α   is the edge congruent to α the a (α) = α.


To associate a surface symbol with a regular fundamenal region, e.g. the Dirichlet region, F for Г we first label the edges of type c).  The remaining edges occur in congruent pairs and we now label one edge from each congruent pair.  If α is the label of such an edge, the edge congruent to α is labelled α’ or α * according as the transformation which maps it onto the edge α preserves or reerses orientation.  If we now write dow the labels of the edges of F in order anti-clockwise we obtain the surface symbol for F which will determine the topological strcture of U/ Г.
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Starting from the Dirichlet region for Г (or any regular fundamental region for Г) F we can otbain a new fundamental region as follows.  Let α and α  be two congruent edges of F and split F into two regions F1, F2 by a polygon arc joining two vertices of F such that α ε F1, α ε F2.  Then if a (α) = α, F1 U aF2 will be a new fundamental region for Г which will have a different surface symbol.  The side of this fundamental region may not now be N.E. lines.  However, edges which are axes of reflection will still be N.E. lines.  In this way a canonical form of the surface symbol is obtained (see [28]).


There are two types of canonical forms of surface symbols.  One is for groups with orientable quotient space and one is for groups with non-orientabel quotient space.  The wsurface symbol for a group with orientable quotient space is

(1.4) [image: image517.wmf]£

ξ1 ξ1 ‘ξ2 ξ2’ · · · ξ k ξ k ‘ε1 γ10 γ11 · · · γ1s ε1 ‘ε2 γ20 γ21 · · · γ2s    ε2’· · ·



· · · εr γr0 · · · γrs       εr ‘α1 β1 α1’β1’ · · · αg βg αg ‘βg’

and the surface symbol for groups with non-orientable quotient space is
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(1.5) ξ1 ξ1 ‘· · · ξ k ξ k’ ε1 γ10 · · · γrs     εr α1 α1 *α2α2* · · · αg αg*’

which differs from (1.4) only in the last part of the symbol.


If we identify corresponding points on the related edges of the fundamental region with surface symbol (1.4) we obtain an orientable surface with boundary which is a sphere with r discs removed and g handles added.


Similarly with surface symbol (1.5) we obtain a non-orientable surface with boundary which is a sphere with r discs removed and g cross-caps added.
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On these surfaces, the edges α (in the non-orientable case) and α, β (in the orientable case) determin a canonical system of cross-cuts meeting at a base-point Q, say.  There are k distinguished points Mi in the interior of the surface and si distinguished points  Nil, · · ·         on the ith boundary component.  The lines εi  joins Q to the points M and the line εi  joins Q to a point on the ith boundary component between        and 
.


It can be shown that the set of group elements which map F on a neighbour generate Г.  We obtain the relations in Г in the following way.  There are  a infinite number of faces meeting at each vertex, each face being a neighbour of the preceding face.  If F is one of the faces going round the vertex we shall meet in order the faces a1F, a1a2F, a1a2a3F, · · · etc.  (ai ε Г).  After  a finite number of steps we come back to F so that for some n, a1a2  · · · anF = F and we obtain the relation a1a2 · · · an = 1 for the vertex, known as the canonical relation for that vertex.  Congruent vertices give rise to the same canonical relation and it is shown that every relation in the group is a consequence of the canonical relations.


Denote by a, b, c, e, x the transformation which map F across the sides α, β, γ, ε, ξ.  Then a group with surface symbol (1.4) will have presentation.
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The presentation for groups with surface symbol (1.5) (i.e. with non-orientable quotient space) will have generators 
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a

, 
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 as in (1.6).  The relations will be as in (1.6) except for the final relation which becomes

(1.7) 
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In (1.6) the elements 
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a, b

 will be hyperbolic, 
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 elliptic, 
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reflections and the 
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 will usually be hyperbolic although in exceptional cases they may be elliptic.  In (1.7), similar remarks apply, except now the 
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 are glide reflections.


The number 
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m, n

 are the orders of the orientation preserving elements of 
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 and are called the periods of 
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.  We call the 
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proper periods.  We can associate with each group of NEC signature.


The NEC signature of the group
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with presentation (1.6), i.e. with orientable quotient space is 

(1.8) 
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and the NEC signature of the group with presentation (1.7), i.e. with non-orientable quotient space is 

(1.9) 
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g, -, [m,  m], {n,  n),  (n,  n)})
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.

Brackets such as 
[image: image55.wmf]111s1
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are called period cycles.  Note that once we are given a signature of a group the surface symbol and presentation are uniquely determined.  So given a signature for an NEC group 
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 we can immediately determine the topological structure of 
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.


The integer g is known as the genus of the surface and called the orbit-genus of the group.  The genus is an invariant of the surface as is the number of discs removed.  A removed disc will be called a hole or a boundary component.


An NEC group may have empty period cycles and signature of the form
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which, if the number of empty period cycles if 
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, we shall write as
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A Fuchsian group will have an orientable quotient space with no holes.  All its periods are proper periods and it is determined by its orbit-genus and its periods.  Its NEC signature is



[image: image61.wmf]1k

(g, +, [m,  m], { })

K


and is usually written
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Groups with no periods are no reflections are known as surface groups.  If the orbit space is orientable it is called an orientable surface group (sometimes known as a Fuchsian surface group) and will have signature 
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If the orbit space is non-orientable it is known as a non-orientable surface group and will have signature
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.


Groups with no periods but with reflections are known as bordered surface groups.  A group with signature
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will be called an orientable bordered surface group (with r boundary components) and a group with signature
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(g, -, [ ], {( ) })


will be called a non-orientable bordered surface group (with r boundary components).

4)

Lemma 1.10  ([17])  Let 
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 have signature (1.8) or (1.9).  Then an element of finite order in 
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 is conjugate to one of the following:

(i) A power of some 
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(ii) A power of some 
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[image: image71.wmf]iji

c (1  i  r, 0  j s).

££££


Proof.


An element of finite order in 
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 is either an elliptic element or a reflection and thus has a fixed point 
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.  If F is a fundamental region for 
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, F contains an element in the orbit of p, say gp 
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 F for some g 
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.  Thus gp, being a fixed point of 
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, lies on the boundary of F.  The stabilizers of fixed points on the boundary of F are those listed in (i) (ii) or (iii) above and as 
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 belongs to the stabilizer of one of these points our assertion is proved.


In [28] Wilkie gave some sufficient conditions for two NEC groups to be isomorphic, his work was purely algebraic,  Macbeath [17] found necessary and sufficient conditions for two NEC groups to be isomorphic but these results were not obtained algebraically.

Definition 1.11.  Let 
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 and 
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 be two isomorphic NEC groups and let 
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be the isomorphism. 
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are called geometrically isomorphic if there exists a homeorphism w of U onto itself such that
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 (g) = wgw for all g 
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We say that the isomorphism 
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can be realized geometrically. 


If the isomorphism 
[image: image87.wmf]Φ

 can be realized geometrically then the groups 
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 and 
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 are conjugate in the group of all homeomorphisms of U.  If z 
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 U , the geometrical isomorphism w maps the 
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-orbit of z on the 
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-orbit of wz, thus it induces a homeomorphism between the quotient spaces.

Theorem 1.12.  (1[1.7])  Let 
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be an isomorphism (of the group structure only) between two NEC groups.  Then 
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 can be realized geometrically.


Macbeath proved this result using Teichmuller’s theorem on external quasiconformal mappings and used it to determine the necessary and sufficient conditions for 
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 and 
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 to be isomorphic.  


The genus and orientability of a surface are geometric invariants of that surface so clearly if two NEC groups are isomorphic then the orientability and genera of their orbit spaces are the same.

4) From lemma 1.10 we see that every reflection in an NEC group is conjugate to one of the (canonical) generating reflections.  When trying to determine the number of boundary components of an NEC group, as we shall be in chapter 4, we are in fact counting conjugacy classes of reflection.

Lemma 1.15.
Let 
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be a bordered surface group and let 
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and let 
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be a reflection.  Then any conjugate of c in 
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Proof.


Clearly any conjugate of 
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  So we can express h in the form h = 
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which is a conjugate of 
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Singerman [25] has investigated some of the algebraic properties of NEC groups in particular their reflections.

Theorem 1.16.  ([25])  Let 
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ε  be a reflection,
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 a NEC group.  Then Z (c) , the centralizer of c in 
[image: image112.wmf]G

, is infinite.  In particular if c is the generating reflection associated with an empty period cycle and e is the generator in the canonical presentation for 
[image: image113.wmf]G

 commuting with c, then Z (c) = (c, e), the group generated by c and e.


Clearly, from this result, an ‘e generator’ associated with an empty period cycle must have infinite order, i.e. is hyperbolic.  In the case of 
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 being a bordered surface group this is obvious since the only elements of finite order are the generating reflections and their conjugates.


In [25] the N.E. area of a fundamental region of an NEC group was determined.  This is independent of a fundamental region chosen for the group and thus will depend only on the signature of the group.  Thus we can denote the N.E. area of a fundamental region for 
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 by 
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.

Theorem 1.17.  ([25]) 

(a) Let 
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 be a NEC group with signature (1.8).   Then the N.E. area of a fundamental region for 
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 is given by 
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(b) If 
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has signature (1.9) then
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Let 
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 be a NEC group and 
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If F is a fundamental region for 
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 then it is easily verified that 
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is a fundamental region 
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. But the N.E. area is invariant and we deduce the formula for the index of 
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, known as the Riemann-Hurwitz formula,
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[image: image133.wmf]μ () /μ(Γ)

L

,

(6) Let 
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 be a proper NEC group.  Then the Fuchsian subgroup of 
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 consisting of all elements which preserve orientation has index two in 
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 and will be denoted by 
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is called the canonical Fuchsian group of 
[image: image138.wmf]G

.


If 
[image: image139.wmf]G

 is a NEC group with signature (1.8) or (1.9) then the elements of finite order in 
[image: image140.wmf]G

 are given in (i) , (ii) and (iii) of lemma 1.10.  But the elements 
[image: image141.wmf]+

iij-1ij

x,c,c lie in 

G

 and so the periods of 
[image: image142.wmf]+

G

 contain the periods of 
[image: image143.wmf]G

.


In [25] it is shown that each proper period, 
[image: image144.wmf]i

m

, is repeated twice and only twice in 
[image: image145.wmf]+

G

but each period of the form 
[image: image146.wmf]ij

n

occurs only once among the periods of 
[image: image147.wmf]+

G

.  Using this and the Riemann-Hurwitz formula which says that 
[image: image148.wmf]+

μ ()2μ ()

G=G

we deduce the following theorem.

Theorem 1.18.

(a) Let 
[image: image149.wmf]G

be a proper NEC group with signature (1.8).  Then 
[image: image150.wmf]+

G

has signature



[image: image151.wmf]r

11kk1112rs

(2g + r - 1; m, m,  m, m, n, n,  n

KK

).

(b) If 
[image: image152.wmf]G

 has signature (1.9) then 
[image: image153.wmf]+

G

has signature



[image: image154.wmf]r

11kk1112rs

(g + r - 1; m, m,  m, m, n, n,  n).

KK


7).
If 
[image: image155.wmf]G

is a NEC group we denote by 
[image: image156.wmf]N

G + (
[image: image157.wmf]G

) the normaliser of G+ of 
[image: image158.wmf]G

 and by NG (
[image: image159.wmf]G

) the normaliser of G of 
[image: image160.wmf]G

.  Let  
[image: image161.wmf]+

G

 be the canonical Fuchsian group of 
[image: image162.wmf]G

and let 
[image: image163.wmf]+

t 

ε \

GG

 so that 
[image: image164.wmf]++

Γ =  + t

GG

.  If 
[image: image165.wmf] -1

g 

ε Ng() then ggand 

GG=G




[image: image166.wmf]++-1+

g(t)g t,

+

G+G=G+G


i.e.

[image: image167.wmf]+-1+-1+

gggtg t

+

G+G=G+G


By equating together the set of orientation preserving elements on both sides of the equation we see that 
[image: image168.wmf]+-1

gg

+

G=G

so that 
[image: image169.wmf]+

g 

ε N g ()

G

 which implies that



[image: image170.wmf]+

Ng() Ng ().

GÌG



Now Ng + (
[image: image171.wmf]+

G

) is a subgroup of index one or two in Ng (
[image: image172.wmf]+

G

) and it is well-known that Ng + (
[image: image173.wmf]+

G

) is a Fuchsian group (see e.g. [14]), and thus discrete.  Therefore Ng (
[image: image174.wmf]+

G

) and hence Ng(
[image: image175.wmf]G

) is discrete.  At 
[image: image176.wmf]G
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 Ng (
[image: image178.wmf]G

), Ng (
[image: image179.wmf]G

) has a compact fundamental region (for NEC groups
[image: image180.wmf]G

with compact orbit space) and hence has compact orbit space.


We have thus proved the following.

Lemma 1.19.
Let 
[image: image181.wmf]G

 be a NEC group.

(a) If 
[image: image182.wmf]G

 is a proper NEC group and 
[image: image183.wmf]+

G

 its canonical Fuchsian group then Ng (
[image: image184.wmf]G

)
[image: image185.wmf]Ì

Ng (
[image: image186.wmf]+

G

).

(b) If 
[image: image187.wmf]G

has compact orbit space the Ng (
[image: image188.wmf]G

) is a NEC group with compact orbit space.

II
Klein surfaces and their automorphisms

1).

Definition 1.20.
A complex chart on a surface S consists of a pair (U,z) where U is an open set and z is a homeomorphism and U onto an open set in the complex plane. 
[image: image189.wmf]£

.  If S is a surface with boundary then z is a homeomorphism of U onto either an open set in 
[image: image190.wmf]£

or a relatively open set in a closed upper-half plane.

Definition 1.21.
A family of charts 
[image: image191.wmf]iii

εI

{U,z)}

W=

where I is an index set, is called a dianalytic (or complex) atlas for S if 

(i) 
[image: image192.wmf]ii

U

εI U = S,


(ii) if (
[image: image193.wmf]iijjij

(U,z),(U,z) 

ε U  U   

Ç¹Æ

then 
[image: image194.wmf]-1

i j

zz

conformal or anti-conformal homeomorphism defined on 
[image: image195.wmf]ji j

z (UU)

Ç

intersects the boundary of 
[image: image196.wmf]U

, the closed upper-half plane, then we require 
[image: image197.wmf]-1

ij

zz

to have an analytic or anti-analytic extension to an open subset of the plane.

The maps 
[image: image198.wmf]-1

ij

zz

are called co-ordinate transformations (or transition functions).

I
f S is a surface with boundary then the boundary 
[image: image199.wmf]δ

S of S consists of the points s 
[image: image200.wmf]ε

S such that s 
[image: image201.wmf]ε
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U with z (U) open in U

. But not open in
[image: image203.wmf]£

and 
[image: image204.wmf]i

z (s) 

ε IR.

 We denote the interior of S, i.e. s
[image: image205.wmf]o

\

δS, by S

.

Definition 1.22.
A Klein surface is a surface, or a surface with boundary, S with a dianalytic atlas 
[image: image206.wmf]W

.  It will be denoted by (S, 
[image: image207.wmf]W

) or just by S.


The dianalytic atlas 
[image: image208.wmf]W

 is said to define a dianalytic structure on S.  Another atlas 
[image: image209.wmf]W

’ = 
[image: image210.wmf]jjj

{(v,w)}

 
[image: image211.wmf]J

 defines the same structure provided 
[image: image212.wmf]iijjieIjeJ

{U,z)(V,w)},

È

is a dianalytic atlas for S.  We say 
[image: image213.wmf]W

and 
[image: image214.wmf]W

’ are dianalytically equivalent.


A dianalytic atlas in which all the co-ordinate transformations are conformal (sense-preserving) maps will be called analytic atlas .  We say an analytic atlas on a surface S defines an analytic structure on S.


By a Riemann surface we shall mean a surface without boundary with an analytic atlas.  The meaning of the term Riemann surface with boundary should be clear.  Clearly a Riemann surface is an orientable Klein surface without boundary.


If (S, 
[image: image215.wmf]W

) is an orientable Klein surface then there are tow analytic structures on S each of which is dianalytically equivalent to 
[image: image216.wmf]W

 (see Alling and Greenleaf [2], theorem 1.2.4.).  (The proof basically involves choosing a maximal analytic atlas for S.)


Choosing between the two analytic structures is equivalent to choosing an orientation for S.  (The two resulting Riemann surfaces are anti-conformally equivalent)  So without real ambiguity we may consider an orientable Klein surface to be a Riemann surface or a Riemann surface with boundary.


We now wish to define a morphism f: S 
[image: image217.wmf]®

T of Klein surfaces.  This differs from the corresponding concept for Riemann surfaces principally in that S may “fold” along 
[image: image218.wmf]δ

T.  For this reason we need to define the folding map.  This is the map 
[image: image219.wmf]:C  U

Æ®

given by




[image: image220.wmf] (x + iy) = (x + i/y/).

F



We define a positive chart (V,w) to be a chart such that w(V)
[image: image221.wmf]C U

.

Definition 1.23.  ([2])  A morphism f: S 
[image: image222.wmf]®

T of Klein surfaces is a continuous map f of S into T, with f(
[image: image223.wmf]δ

S)C 
[image: image224.wmf]δ

T, such that for all s 
[image: image225.wmf]ε

 S there exist dianalytic charts (W,Z) and (V,w) about s and f(s) respectively, and an anlytic function F on z (W) such that the following diagram commutes.

[image: image522.wmf]U/

Γ

[image: image523.wmf]πΓ


[image: image524.wmf]π

Ù

(1.24)

[image: image525.wmf]U/

Ù


[image: image526.wmf]U/

G

[image: image527.wmf]U///

ÙGÙ


[image: image528.wmf]π

G

[image: image529.wmf]'

π

G

[image: image530.wmf]U/

Γ

[image: image531.wmf]U/

Γ'

(1.25)


In this case if F is anti-analytic then we can replace z by 
[image: image226.wmf]z

, which will make F analytic so that f is still a morphism.


Let f: 
[image: image227.wmf]S  T

®

be a non-constant morphism of Klein surfaces.

Let s 
[image: image228.wmf]ε

 S.  Alling and Greenleaf [2] have shwon that we can find dianalytic charts (U,z) and (V,w) at s and f (s) respectively, such that z (s) = 0 = w(f(s)), f (U)CV and such that g/U has the form



[image: image229.wmf]{

{

ο

-1

e

1e

g/U =w 

φ  (z)      if f (s) ε δT

         w(z)             if f (s) 

ε T

-

±

±

o

o

o


where e is an iteger, e
[image: image230.wmf]1.

³

  The integer e is called the ramification index of
 f at s and will be denoted by 
[image: image231.wmf]f

e (s)

.  We say that f is ramified at s if 
[image: image232.wmf]f

e (s)

 > l; otherwise we say thaqt f is unramified at s.


We define the relative degree of s  
[image: image233.wmf]ε

 S over f (s), 
[image: image234.wmf]f

d (s)

, to be



[image: image235.wmf]f

d(s)= 
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1  otherwise. 

ì

í

î

o


Definition 1.26.
A non-constant morphism f: 
[image: image237.wmf]S  T

®

between two Klein surfaces will be called an n-sheeted covering of T if for every point t 
[image: image238.wmf]ε

T



[image: image239.wmf]-1

ff

sef(t)

e(s)d(s) = n.

å


If 
[image: image240.wmf]f

e(s) = 1 for all s 

ε S,  f: ST

®

is an unramified n-sheeted covering, otherwise it is a ramified n-sheeted covering.


In [2] Alling and Greenleaf give detailed proof to show that every non-constant morphism between two compack Klein surfaces is an n-sheeted covering for some n.  Also if S, T and X are Klein surfaces and f: 
[image: image241.wmf]S  T

®

, g: 
[image: image242.wmf]T X

®

 non-constant morphisms then gf: 
[image: image243.wmf]S X

®

is a non-constant morphism.  If f is an n-sheeted covering of T and g is an m-sheeted covering of X then gf is an mn-sheeted covering of X.


Let 
[image: image244.wmf]12

S, S

be two homeomorphic orientable Klein surfaces.  An orientation preserving (reversing) homeomorphism f: 
[image: image245.wmf]12

S S

®

 is called a conformal (anti-conformal) homeomorphism if f is a morphism with respect to the dianalytic structures on 
[image: image246.wmf]12

S and S

.


A conformal (anti-conformal) homeomorphism from 
[image: image247.wmf]11

S to S

 will be called a +automorphism (-automorphism).  An automorphism is either a + or a – automorphism.  For any orientable Klein surface S the set of all automorphisms form a group Aut S, which contains as a  subgroup of indes 1 or 2 the group of all + automorphisms of S, denoted by + Aut S.


If 
[image: image248.wmf]12

S, S

are two homeomorphic non-orientable Klein surfaces, then a homeomorphism f: 
[image: image249.wmf]12

S S

®

 is called a conformal homeomorphism if f is a morphism with respect to the dianalytic structures of 
[image: image250.wmf]12

S and S

.  A conformal hemeomorphism of a non-orientable surface onto itself will be called a automorphism.  The set of automorphism of non-orientable surface forms a group, Aut S.


If 
[image: image251.wmf]12

S and S

 are two Klein surfaces and F: 
[image: image252.wmf]12

S S

®

 is a conformal homeomorphism then 
[image: image253.wmf]12

S, S

 are called conformally equivalent or isomorphic.

2) We shall only be concerned with compact Klein surfaces (either with or without boundary).  We now discuss how the surface 
[image: image254.wmf]U/

G

, where 
[image: image255.wmf]G

is an NEC group (with compact quotient space) may be given a dianalytic structure.

Theorem 1.27.
Let 
[image: image256.wmf]G

be a NEC group.  Then the quotient space 
[image: image257.wmf]U/

G

has a unique dianalytic structure such that the quotient map 
[image: image258.wmf]π: U  U/

®G

is a morphism of Klein surfaces.

Proof.



Since 
[image: image259.wmf]G

 acts properly discontinuously of U, this follows immediately from a result of Alling and Greenleaf ([2]) theorem 1.8.4).


The map 
[image: image260.wmf]π

is folded over the boundary 
[image: image261.wmf]U/

G

and ramified over the distinguished points of the surface.  If 
[image: image262.wmf]G

 is a surface group or a bordered surface group the 
[image: image263.wmf]π

 is unramified.  Also, it is easy to see that for z 
[image: image264.wmf]ε

U, 
[image: image265.wmf]π

(z) 
[image: image266.wmf]ε

 
[image: image267.wmf]δ (U/)

G

if and only if there exists a reflection 
[image: image268.wmf]c 

ε  such that c (z) = z

G

.  If 
[image: image269.wmf]G

is a Fuchsian group then 
[image: image270.wmf]U/

G

has an induced analytic structure with which it is a Reimann surface.


Let 
[image: image271.wmf]G

 be a non-orientable surface group or a bordered surface group, then the quotient space 
[image: image272.wmf]+

U/,where 

+

GG

is a canonical Fuchsian group of 
[image: image273.wmf]G

, is a Riemann surface.  If z 
[image: image274.wmf]ε

U let

and


[image: image275.wmf]+

+

Γ

Γ

π(z)  = [z]

π(z)  = [z].

G

G


If f: 
[image: image276.wmf]+

U/ U/

G®G

is the natural projection defined by




[image: image277.wmf]+

f ([z])[]

z

G

G

=


then the following diagram commutes





and f is an unramified two-sheeted covering of 
[image: image278.wmf]U/

Γ

.


If 
[image: image279.wmf]U/

Γ

has no boundary then 
[image: image280.wmf]+

U/

Γ

is a uniquely defined two-sheeted orientable covering surface of 
[image: image281.wmf]U/

Γ

.  If 
[image: image282.wmf]U/

Γ

has boundary then 
[image: image283.wmf]+

U/

Γ

 is a uniquely defined two-sheeted orientable covering surface without boundary of 
[image: image284.wmf]U/

Γ

.


It is a well-known result that any compact Riemann surface of genus 
[image: image285.wmf]g  2

³

can be represented in the form 
[image: image286.wmf]U/

Γ

, where 
[image: image287.wmf]G

is a Fuchsian surface group and 
[image: image288.wmf]μ (Γ) = 2π (2g - 2)

 (see Springer [27]).  This is because U is the universal covering space of all compact Riemann surfaces except the sphere and the torus.


Schiffer and Spencer [23] describe the double of a compact Klein surface S, which if S is a surface with boundary or a non-orientable surface with or without boundary, is a connected compact Riemann surface.  If S has genus g and r boundary coponents then the genus of the double of S is 
[image: image289.wmf]2g+r-1

if S is orientable and g + r –1 if S is non-orientable.  The same double is described by Alling and Greenleaf [2].  They call it the complex double and denote it by 
[image: image290.wmf]c

S

.  We shall describe in detail in chapter 4 the construction of 
[image: image291.wmf]c

S

 but for the moment we shall assume its existence and use it to prove the following theorem.

Theorem 1.28.
Let S be a compact Klein surface with genus g and r boundary components such that 
[image: image292.wmf]g  2

³

if S is orientable without boundary, 2g + r 
[image: image293.wmf]³

 3 if S is orientable with boundary and g + r 
[image: image294.wmf]3

³

 if S is non-orientable.  Then S = 
[image: image295.wmf]U/

Γ

, where 
[image: image296.wmf]G

is either a surface group or a bordered surface group.

Proof.


If S is orientable without boundary and genus 
[image: image297.wmf]g  2

³

 then S = 
[image: image298.wmf]U/

Γ

, where 
[image: image299.wmf]G

 is a Fuchsian surface group.


If S is orientable with boundary and 2g + r 
[image: image300.wmf]³

 3 then the genus of 
[image: image301.wmf]c

S

 is 




[image: image302.wmf]1

Y = 2g + r = 1  2.

³


If S is non-orientable ( with or without boundary) and g + r – 1 
[image: image303.wmf]³

 3 then the genus of 
[image: image304.wmf]c

S

, the double of S is




[image: image305.wmf]2

Y = g + r - 1  2

³

.

Therefore in both cases 
[image: image306.wmf]c

S

 = 
[image: image307.wmf]U/, 

L

where 
[image: image308.wmf]L

is an orientable surface group. 
[image: image309.wmf]c

S

is symetric and so admits and anti-conformal involution which we may represent by 
[image: image310.wmf][z][gz]

ÙÙ

®

where g 
[image: image311.wmf]ε g

is an orientation reversing transformation with the property that 
[image: image312.wmf]2

g =g and g

ε 

LLL

.  Let 
[image: image313.wmf]  + g

GLL

=

.  
[image: image314.wmf]/

GL

 has a natural action of 
[image: image315.wmf]U/

L

 sending 
[image: image316.wmf][]to[gz] and the orbit U///

LL

LGL

z


When given the induced dianalytic structure is conformally equivalent to S.  (We note here that if S has boundary then we can take g to be a reflection.)


Let p be the natural projection of 
[image: image317.wmf]U/ onto U/// and let p[z]{[]]{[gz]}.

LLL

LLGL==

z


The correspondence 
[image: image318.wmf]{[z] = {[z]}[z] is 

LLG

®

one-one and is a conformal homeomorphism from the following diagram



As the maps 
[image: image319.wmf]π,π

GL

and p are all open, continuous and analytic.  Therefore 
[image: image320.wmf]U/

Γ

is conformally equivalent to S.

From theorem 1.28 we see that the only compact Klein surfaces not representable as 
[image: image321.wmf]U/

Γ

, where 
[image: image322.wmf]G

is a surface group or a bordered surface group, are in the orientable case the sphere (g = 0, r = 0), the torus (g = 1, r = 0), the closed disc) g = 0, r = 1) and the closed annulus  (g = 1, r = 1) and in the non-orientable case the projective plane (g = 1, r = 0), the Mobius band (g = 1, r = 1) and the Klein bottle (g = 2, r = 0).

3) We shall now develop the theory of automorphisms of Klein surfaces without boundary.


The representation of homeomorphisms between compact Riemann surfaces by homeomorphisms of U is well –known (see e.g. Macbeath [13], Bers [3]) and the results extend to Klein surfaces without boundary.


Let 
[image: image323.wmf],'

GG

be two surface groups.  Put




[image: image324.wmf]π(z)[z]

GG

=


We say a homeomorphism w:  U
[image: image325.wmf]®

U induces a homeomorphism f: 
[image: image326.wmf]U/

ΓU/Γ'

®

 if the following diagram commutes.







Clearly if w: 
[image: image327.wmf]UU

®

is a homeomorphism such that 
[image: image328.wmf]1

w

Γw'

-

=G

then the mapping 



f)[z]
[image: image329.wmf]G

) = [wz]
[image: image330.wmf]'

G


is well defined and f is a homeomorphism.


If f: 
[image: image331.wmf]U/

ΓU/Γ'

®

is a homeomorphism then using results in the theory of covering spaces we can deduce that there exists a homeomorphism w: 
[image: image332.wmf]UU

®

which induces f.  This mapping w is not uniquely defined for f is also induced by 
[image: image333.wmf]w

γ,γ ε , as fπfπ = fπγ

GGG

G=

.  It follows that w also induces an isomorphism i: 
[image: image334.wmf]'

G®G

 defined by  i 
[image: image335.wmf](

γ)

 
[image: image336.wmf]-1

= w

γw

 and so 
[image: image337.wmf]w

Γw

-

 = 
[image: image338.wmf]'

G

.  F is conformal or anti-conformal if and only if w 
[image: image339.wmf]ε

 g.  Also if 
[image: image340.wmf]U/ and U/'

GG

 are orientable surfaces then f is orientation preserving if and only if w is orientation preserving so that f is conformal if and only if w 
[image: image341.wmf]ε

 g. 
[image: image342.wmf]1

w

Γw'

-

=G

we deduce the following well-known result.  If 
[image: image343.wmf],'

GG

are orientable (non-orientable) surface groups then 
[image: image344.wmf]U/, U/'

GG

are conformally equivalent if and only if there exists  w 
[image: image345.wmf]ε

 g+ (w 
[image: image346.wmf]ε

 g) such that 
[image: image347.wmf]1

w

Γw'

-

=G

.


If we put 
[image: image348.wmf]'

G=G

we see that f is an automorphism of 
[image: image349.wmf]U/

Γ

if and only if w 
[image: image350.wmf]ε

 Ng (
[image: image351.wmf]G

).  The group of automorphisms of 
[image: image352.wmf]U/

Γ

 is isomorphic to Ng (
[image: image353.wmf]G

)/
[image: image354.wmf]G

.  If 
[image: image355.wmf]G

 is an orientable surface group then the goup of + automorphisms of 
[image: image356.wmf]U/

Γ

is isomorphic to Ng+(
[image: image357.wmf]G

)/
[image: image358.wmf]G

.


May [21] has infact extended this result and has shown that if 
[image: image359.wmf]G

 is a bordered surface group then the group of automorphisms of 
[image: image360.wmf]U/

Γ

 is Ng (
[image: image361.wmf]G

)/
[image: image362.wmf]G

.  We discuss these ideas as related to Klein surfaces with boundary in chapter 4.


Groups of + automorphisms of compact Riemann surfaces have been well-studied by Hurwitz [8], Macbeath [13], [14], [15], Harvey [7], Maclachlan [18] and Singerman[24], [26].


If S is a compact Riemann surface of genus 
[image: image363.wmf]g2 then = U/ where 

³LL

is an orientable surface group and




+Aut S = Ng + 
[image: image364.wmf]()/

LL


which is a quotient of two Fuchsian groups.  Any subgroup G of + Aut S is therefore of the form




G = 
[image: image365.wmf]/

GL


Where 
[image: image366.wmf]G

is a Fuchsian group.  Conversely, any element of Ng+(
[image: image367.wmf]L

) induces a + automorphism of 
[image: image368.wmf]U/

L

 so that 
[image: image369.wmf]/

GL

 acts as a group of + automorphisms of 
[image: image370.wmf]U/

L

.


Therefore a necessary and sufficient condition for a group G to be a group of + automorphism of a compact Riemann surface S = 
[image: image371.wmf]U/

L

 is that there is a homeomorphism from a Fuchsian group 
[image: image372.wmf]G

 onto G such that the kernel is the orientable surface group 
[image: image373.wmf]L

.


Using this we can compact orientable Klein surface without boundary since
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If 
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has signature (h; 
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and by considering all possibilities (see Macbeath [14]) we can show that 
[image: image378.wmf]μ()  π/21

G³

 with equality holding only when 
[image: image379.wmf]G

 is the Fuchsian traing (0; 2,3,7).  We have thus shown that 
[image: image380.wmf]G  84 (g - 1)

£

.  This bound was first obtained by Hurwitz [8], who showed that it was attained when g = 3.  Since then it has been shown to be attained for infinitely many g (e.g. Macbeath [13]).  We shall look more closely at this problem in chapter 2.


Let S be a non-orientable compact Klein surface without boundary of genus 
[image: image381.wmf]g  3

³

so that S = 
[image: image382.wmf]U/

L

, where 
[image: image383.wmf]L

 is a non-orientable surface group, then



Aut S 
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And since 
[image: image385.wmf]N()

L

V

is a NEC group with compact quotient space any group of automorphism of 
[image: image386.wmf]U/

L

will be isomorphic to 
[image: image387.wmf]/

GL

 where 
[image: image388.wmf]G

 is a NEC group.  Conversely 
[image: image389.wmf]/

GL

 acts as a group of automorphisms of 
[image: image390.wmf]U/

L

.

Thus a group of automorphisms of a non-orientable Klein surface without boundary of genus 
[image: image391.wmf]g  3

³

 is finite.

Theorem 1.30. ([24])  A necessary and sufficient condition for a finite group G to be a group of automorphisms of a compact non-orientable Klein surface without boundary S of genus 
[image: image392.wmf]g  3

³

 is that there exists a proper NEC group 
[image: image393.wmf]G

 and a homomorphism 
[image: image394.wmf]θ:G

G®

such that the kernel of 
[image: image395.wmf]θ

is a surface group and 
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.

Proof.


If G is a group of automorphisms of S then 
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=GL

where 
[image: image398.wmf]L

is a non-orientable surface group such that S = 
[image: image399.wmf]U/

L

 and 
[image: image400.wmf]G

 is a proper NEC group.  Hence there exists a homomorphism 
[image: image401.wmf]θ:G

G®

 whose kernel is a non-orientable surface group.  Thus there exists
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Then 
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 = 
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G

 + t
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G

.  Let 
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(
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G

) = G+.  So


G = 
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(
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Which implies that 
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Conversely suppose there exists a homomorphism 
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such that 
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(
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G

) = G and ker 
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 is a surface group 
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.  Now if 
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 were an orientable surface group 
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G

, so that 
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 is the kernel of the restriction of 
[image: image431.wmf]θ

 to 
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G

.  Thus
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/
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Which is impossible as 
[image: image438.wmf]μ

(
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G

) = 2
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(
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).  Therefore 
[image: image442.wmf]L

 is a non-orientable surface group and G is a group of automorphisms of a non-orientable Klein surface without boundary of genus 
[image: image443.wmf]g  3

³

.


If we let 
[image: image444.wmf]S

%

 = U/
[image: image445.wmf]L

+  then 
[image: image446.wmf]S

%

 is the uniquely defined two-sheeted orientable covering surface of S = 
[image: image447.wmf]U/

L

.

Corollary 1.31.
If G is a group of automorphisms of S then G is a group of + automorphisms of  
[image: image448.wmf]S

%

, its orientable two-sheeted covering surface.

Proof.


S = 
[image: image449.wmf]U/

L

, so by theorem 1.30 G = 
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/
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 where 
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 is a proper NEC group.  The group 
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 has a natural action on S.  If 
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 then
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As 
[image: image457.wmf]L

 is a non-orientable we can without loss of generality assume that 
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so that G has a well-defined action on 
[image: image462.wmf]U/

+

L

.  It follows that G is a group of + automorphisms of 
[image: image463.wmf]S

%

 = 
[image: image464.wmf]U/

+

L

.

Lemma 1.32.
If 
[image: image465.wmf]s

is an anti-conformal involution of 
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%

 such that S = 
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/
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 (where 
[image: image469.wmf]s

 denotes the group generated by 
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) and G is a group of automorphisms of S (which by corollary 1.31 is a group of + automorphisms of S (which by corollary 1.31 is a group of + automorphisms of 
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) then 
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 commutes with every element of G.

Proof.


S = 
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L

, 
[image: image474.wmf]S

%

 = 
[image: image475.wmf]U/

+

L

 and by anti-conformal involution 
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 of  
[image: image477.wmf]S

%

 such that S = 
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/ 
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 is of the form.
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By theorem 1.30 G = 
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/
[image: image483.wmf]L

, where 
[image: image484.wmf]G

 is a proper NEC group.  Let g = 
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L
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/
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, which from the proof of corollary 1.31 is a + automorphism of 
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and
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We note here that if S is a non-orientable Klein surface without boundary of genus g then 
[image: image493.wmf]S

%

 has genus g – 1 from the Riemann-Hurwitz formula.

Definition 1.33.
A homomorphism from a NEC group onto a finite group whose kernel is a surface group is called a surface-kernel homomorphism.

Lemma 1.34.
A homomorphism 
[image: image494.wmf]θ

 from a NEC group 
[image: image495.wmf]G

 onto a finite group G is surface-kernel if and only if for every element x of finite order in 
[image: image496.wmf]G

, 
[image: image497.wmf]θ

(x) has the same finite order.

Proof.



A NEC group is a surface group if and only if it contains no elements of finite order.  It is then clear that if 
[image: image498.wmf]θ

 preserves the orders of the elements of finite order in 
[image: image499.wmf]G

, ker 
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 must be a surface group.  Converseley, if 
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 is a surface-kernel homomorphism and x 
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 is an element with finite order m then 
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(x) has order d dividing m.  This implies xd  
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 ker 
[image: image506.wmf]θ

 and as ker 
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 is a surface group, d = m.

Note:
As every element of finite order in an NEC group 
[image: image508.wmf]G

 is conjugate to a generator of 
[image: image509.wmf]G

, 
[image: image510.wmf]θ

 is surface –kernel if and only if 
[image: image511.wmf]θ

 preserves the orders of the elliptic and refelection generators.
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