CHAPTER 2

Maximal automorphism groups of compact

Klein surfaces without boundary.

1).
In chapter 1 we deduced Hurwitz’s result that the order of a group of + automorphisms of an orientable Klein surface without boundary (i.e . a Riemann surface) of genus g cannot be bigger than 84(g –1).  Because this bound was first obtained by Hurwitz we have the following definition.

Definition 2.1.
A group of 84(g-1) + automorphisms of an orientable Klein surface without boundary of genus g is called a Hurwitz group.


The problem of finding Hurwitz groups has been considered by Macbeath [13], [16], by Lehner and Newman [12] and by Singerman [24].


Let S be an orientable Klein surface without boundary of genus g
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 2, which admits a group of 84 (g – 1) + automorphisms.  Le 
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 be an orientable surface group such that S = 
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, then as shown in chapter 1, the group + automorphisms of S is isomorphic of 
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is the Fuchsian group with signature




(0; 2,3,7)

i.e. the group with presentation



{x,y; x2 = y3 = (xy)7 = 1}.


This group may be obtained as follows.  Let 
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 be the proper NEC group generated by the reflections c1, c2, c3, in the three sides of a non-Euclidean triangle with angles 
[image: image7.wmf]π/2, π/3, π7

.  
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 has the presentation {c1,c2,c3; c12 = c22 = c32 = (c1c2)2 = (c2c3)3 = (c1c3)7 = 1}.
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+ , the canonical Fuchsian group of 
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, is the (0; 2,3,7) group with presentation



{x,y; x2 = y3 = (xy)7 = 1},  x = c1c2, y=c2c3.

Lemma 2.2.
Every normal subgroup of 
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+  is a surface group.

Proof.




Every element of finite order in 
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+ is conjugate to either x, y or xy.  If 
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 is a normal subgroup of finite index 
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+ which contains an element of finite order it must contain one of these elements .  Suppose x 
[image: image15.wmf]ε
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.  Then under the canonical homomorphism from 
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+ to 
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+/
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, x must mapt to 1, the identity.  Suppose that y maps to 
[image: image20.wmf]y

.  Then from the presentation of 
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+, we must have
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3 = 
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7 = 1

which implies that 
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 = 1 and 
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 = 
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+.  Similarly if 
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 contains y or xy, 
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 = 
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+.  Hence every normal subgroup of 
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+ is a surface group.


We have thus shown that a finite group G is a Hurwitz group if and only if it is a homomorphic image of 
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+ , i.e. it has two generators X,Y such that X2 = Y3 = (XY)7 = 1.

2).
Maximal groups of automorphisms of non-orientable Klein surfaces without boundary have been studied by Singerman [24] and of Klein surfaces with boundary by May [20], [21], [22].  In [20] May has shown that a compact Klein surface of algebraic genus 
[image: image32.wmf]γ  2
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with non-empty boundary cannot have more than 12 (
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-1) automorphisms, the algebraic genus of a surface being the non-negative integer that makes the algebraic version of the Riemann – Roch theorem wor [4], the field of meromorphic functions of Klein surface being an algebraic function field in one variable over 
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.  (It can be shown that as long as the boundary is non-empty the algebraic genus of  a Klein surface S = 
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, where 
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is a bordered surface group, is equal to the topological genus of the surface 
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G

+.  This will be discussed more fully in chpter 4).  In [21] May shows that the bound 12(
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-1) is attained for infinitely many values of the algebraic genus 
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 and exhibits some infinite families of surfaces with boundary which admit groups of 12(
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-1) automorphisms.  In [22] it is shown that there are an infinite number of values of the algebraic genus 
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 for which there is no Klein surface with boundary with 12(
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-1) automorphisms.


In this work we shall be concerned with maximal groups of automorphisms of non-orientable Klein surfaces without boundary and it may be assumed throughout the rest of this chapter that the Klein surfaces considered are without boundary.

Lemma 2.3.
If G is a group of automorphisms of a non-orientable Klein surface, S of genus g then 
[image: image43.wmf]G  84(g-2).  If G = 84(g-2)

£

then G is a Hurwitz group.

Proof.



By Collary (1.31) every group of automorphisms of S is isomorphic to a group of + automorphisms of 
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, the orientable two sheeted covering surface of S.  If S has genus g, then 
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has genus 
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.  Therefore 
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£

if and only if 
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=

 i.e. if and only if G is a Hurwitz group.

Definition 2.4.
A group of 84(g-2) automorphisms of a non-orientable Klein surface of genus g will be called an H* - group.


From lemma 2.3 we can see that if G acts as an H* - group on a non-orientable surface S, then G acts as a Hurwitz group on 
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%

.  In particular every H* - group is a Hurwitz group.


Now suppose S is a non-orientable Klein surface of genus g 
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 3, which admits a group of 84(g-2) automorphisms.  Let 
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 be a non-orientable surface group such that S = 
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, then
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and thus 
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is the NEC group with signature



(0, +, [ ],  {2,3,7)}).

This is the NEC group (unique upto isomorphism) with the smallest possible area of fundamental region and is the group 
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 with presentation


{c1,c2,c3; c12 = c22 = c32 = (c1c2)2 = (c2c3)3 = (c1c3)7 = 1},


By exactly the same methods used in the proof of lemma 2.2 we can show that every normal subgroup of 
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 of finite index greater than two is a surface group.

Theorem 2.5 ([25]).  
A finite group G is an H* - group if and only if it contains three generators C1, C2, C3 which obey the relations


C12 = C22 = C32 = (C1C2)2 = (C2C3)3 = C1C3)7 = 1,

And G is generated by C1C2 and C2C3.

Proof.


If G is an H* - group, there exists a homomorphism 
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 wuch that 
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 = G, and so has gnerators as described in the theorem.  Conversely, if G has these genertors, there exists a homomorphism 
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such that 
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 = G and the kernel of 
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must be a surface group as all normal subgroups of 
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 of index greater than two are surface groups. By applying theorem 1.30 we deduce that G is an H* - group.

Corollary 2.6.
A Hurwitz group G generated by X,Y which obey the relations




X2 = Y3 = (XY)7 = 1

Is an H* - group if and only if there exists Z 
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 G such that




Z2 = (ZX)2 = (ZY)2 = 1

Proof.



If such a Z exists, then G is generated by C1 = ZX, C2 = Z, C3 = ZY obeying the relations



C12 = C22 = C32 = (C1C2)2 = (C2C3)3 = (C1C3)7 = 1.

Thus, by theorem 2.5, G is an H* - group.


Conversely, if G is an H* - group generated by C1, C2, C3 obeying the same relations as above and also generated by X – C1C2, Y = C2C3 then Z = C2 obeys the relations



Z2 = (ZX)2 = (ZY)2 = 1.

3).
In searching for Hurwitz groups an obvious first step is to look amongst simple groups.  This is because no non-trivial Hurwitz group is cyclic and any factor group of a Hurwitz group is a Hurwtiz group.  So if we factor out a Hurwitz group by a maximal normal subgroup we obtain a simple Hurwtiz group (see [14]).  Since the projective unimodular groups, PSL(2,q) (Dickson’s LF(2,q) [5]), are simple for q 
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 3, it is natural to look amongst these for Hurwitz groups.  Macbeath [16] has determined for which values of q PSL (2,q) is a Hurwitz group.  His results will be discussed later.  Here we give the definition of PSL (2,q) and some of its properties.


For each prime power, q = pn, there is a field of order q.  Moreover for every prime power, q, there is, upto isomorphism, precisely one field of order q, namely GF(q), and there are no fields of order q if q is not a prime power.

e.g.  if n = 1, q = p, prime, then GF(p) 
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 residues mod p.


Let q = pn .  Then the general linear group, GL(2,q) is defined as 



GL(2,q) = 
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The centre of GL(2,q), denoted by Z(GL(2,q)), is
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and we define the projective general linear group, PGL (2,q), as



PGL(2,q) = GL(2,q) /Z(GL(2,q)).

We define the special linear group, SL(2,q), as



SL(2,q) = 
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And the projective special linear group, PSL(2,q), is then



SL(2,q)/Z(SL(2,q)).

Z(SL(2,q)) is 
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 if p  2 and  if p = 2
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.  The order of PSL(2,q) is q(q-1) (q+1)/2 if p 
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2 and q(q-1) (q+1) if p = 2.


Under the natural homomorphism from SL(2,q) onto PSL(2,q). a matrix 
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 in SL(2,q) induces a unique element in PSL(2,q), namely the coset 
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.  Without ambiguity we can represent an element of PSL(2,q) by either of the two matrices in SL(2,q) which induce it.


The trace of a matrix 
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 in GL (2,q) and (a+d) and it is easy to show the following:-

(i) matrices in SL(2,q) which induce an element of order 2 in PSL(2,q) have trace 0

(ii) matrices in SL(2,q) which induce an element of roder 3 in PSL(2,q) have trace 0

(iii) matrices in SL(2,q) which induce an element of order 7 in PSL(2,q) have trace 
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, where 
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3 + 
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2 - 2
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 - 1 = 0.

2) We now state Macbeath’s result.

Theorem 2.7.   PSL(2,q) is a Hurwitz group if and only if 

(i)
q = p
p prime 
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±

(mod 7)

(ii)
q = p3
p prime 
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 0, 
[image: image83.wmf]1

±

 (mod 7)

(i) q = 7

In case (i) there are three distinct orientable Klein surfaces upon which the group acts as a Hurwitz group.  In cases (ii) and (iii) there is only one such Klein surface.


The two smallest Hurwitz groups are PSL(2,7) and PSL(2,8) which act on orientable surfaces of genus g = 3, g = 7 respectively.  Singerman [24] has shown that PSL(2,7) is not an H* - group but PSL(2,8) is an H* - group and this will follow from our results aswell.  Thus the smallest value of the genus for which a non-orientable Klein surface admits 84(g –2) automorphisms is g = 8.  Our problem is to establish a general result to determine when PSL

(2,q) is an H* - group given that it is a Hurwitz group.  (Since every H* - group is a Hurwitz group when looking for H* - groups we need only look amongst Hurwitz groups).


Macbeath has shown that all the groups listed above are Hurwitz groups i.e. that there always exist generators X,Y such that 



X2 = Y2 = (XY)7 = 1.

If X 
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 PSL(2,q) with order 2 then trace X = 0, so by con-jugation we can always assume that 



X = 
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Let Y = 
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 PSL(2,q).  If X and Y generate PSL(2,q) then the quadratic form             Q = 
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Q

, defined by
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is non-singular, where 
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= trace X, 
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= trace Y, 
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= trace XY (see [16]).


Now Q(
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But 
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a==




[image: image96.wmf] = trace Y = x+w

b




[image: image97.wmf] = trace XY = z-y.

g


So we can deduce that if X and Y generate PSL(2,q) then



X2 + y2 + z2 + w2 
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2.

5).
We know from corollary 2.6 that if PSL(2,q) is a Hurwitz group generated by X and Y such that



X2 = Y3 = (XY)7 = 1

Then it is an H* - group if and only if there exists Z 
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 PSL(2,q) such that



Z2 = (ZX)2 = (ZY)2 = 1.

It is left oly for us to determine when such an element Z exists.

Lemma 2.8.  Suppose that PSL(2,q) is generated by X,Y where
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Then there always Z 
[image: image101.wmf]e

 PGL(2,q) such that



Z2 = (ZX)2 = (ZY)2 = 1

Proof.


Let Z = 
[image: image102.wmf]  PGL(2,q).
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We want Z2 = 1, so we require trace Z = 0 i.e.




[image: image103.wmf] = -

da


(Note:  It is easy to shwo that a matrix in GL(2,q) which induces an element of order two in PGL(2,q) must have trace 0).


We also wan (ZX)2 = 1, so we require trace ZX = 0 i.e.
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Now
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so that


trace ZY = 
[image: image106.wmf](xw) + (y+z)

a-b


and since (ZY)2 = 1 we must have trace ZY = 0 i.e.



[image: image107.wmf](xw) = -(y+z).
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Hence given any value for 
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we can always find a value for 
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 such that Z satisfies the required relations (if x = w, put 
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 = 0 and then 
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 can take any value).  But we must ensure that Z 
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PGL(2,q) i.e. that det Z 
[image: image113.wmf]¹

 0.


Now det Z = - (
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2+
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2) and we know that
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(x-w)  = -
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(y+z).

If we square both sides of this equation and add 
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2 (x-w)2 to both sides we get
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2(y+z)2 + 
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2(x-w)2.

From which, since xw-yz = 1 (because Y 
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 PSL(2,q)), we can deduce that
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Put
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For X and Y to generate PSL(2,q), 
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xyzw2,
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 so T always exists.


If x = w, T=0 which implies that 
[image: image127.wmf]b

= 0 and 
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can take any value except zero, so



det Z = (
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2) 
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If X 
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 w, since T 
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 0, we can write
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Now 
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  0 and so  - 1  -1

TT

¹¹

 which implies that 
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and hence again det Z 
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 0.

Therefore there always exists an element Z 
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 PGL(2,q) such that


Z2 = (ZX)2  = (ZY)2 = 1.

Theorem 2.9.
If PSL(2,q) is a Hurwitz group generated by X,Y such that X2 = Y3 = (XY)7 = 1 then it is an H* - group if and only if (3 - 
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2) is a square in GF(q), where 
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 = trace XY.

Proof.


As X,Y generate PSL(2,q) we can assume that




X = 
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Y = 
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xw – yz = 1, 
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  Since the order of Y is three and the order of XY is seven we know that



x + w = trace Y = 
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and if



z – y = trace XY = 
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then 
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 is a solution of the equation 
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 in GF(q). By the proof of lemma 2.8 there exists an element Z 
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 PGL(2,q) of the form
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satisfying the relations




[image: image150.wmf]222

Z  (ZX)(ZY)1

===


and 
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By corollary 2.6 PSL (2,q) is an H* - group if and only if Z 
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 PSL(2,q) i.e. if and only if det Z = -(
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)

a+b

 = 1 (in GF(q)).

We know that x+w = 1 and z-y = 
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, so squaring both expressions and using the fact that xw – yz = 1 we can deduce that 
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substituting this expression in(*) we obtain
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so 
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This equation has a solution for 
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if and only if ( 3 - 
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x

) is a square in GF(q).  Given a value for 
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 we can find 
[image: image163.wmf]a

 as in the proof of lemma 2.8.


Hence PSL(2,q) is an H* - group if and only if ( 3 - 
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x

) is a square in GF(q).


We now now the conditions under which PSL(2,q) is an H* - group.  We can, in fact, directly relate the condition imposed on 
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to properties of GF(q).


If the equation
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has three roots 
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so if –1 is a square in GF(q) then either (3 - 
[image: image170.wmf]2

i

t

) is a square for all i (i = 1,2,3) or it is a square for one value of i only.  If –1 is not a square in GF(q) then either (3 - 
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) is never a square or it is a square for two values of i.


In GF(q) (q = pn, p prime), if q = 1(mod 4) or p=2 then –1 is a square, otherwise (i.e. if q = (i.e if q 
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 3 (mod4)) –1 is not a square.  Thus we can tell immediately for how many values of i (=1,2,3) it is possible for (3 - 
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) to be a square in GF(q).


Let us consider the three cases in theorem 2.7 seperately.

(i) q = p, prime p 
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1(mod 7).  In this case there are three distinct traces 
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 yielding elements of PSL(2,q) of order seven.  As Macbeath [16] has shown that in this cse there are three distinct orientable Klein surfaces on which PSL(2,q) acts as a Hurwitz group it is clear that the number of values of I(=1,2,3) for which (3 - 
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) is a square in GF(q) corresponds to the number od distinct non-orientable Klein surfaces on which PSL(2,p) acts and an H* - group, for if two Klein surfaces have non-conformally equivalent orientable two-sheeted covers then they themselves must be distinct.

(ii) q = p3, p prime p 
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2 or 
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3(mod 7).  In this case the three traces 
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 are conjugate under the automorphism group of GF(p3) which induces automorphisms of PSL(2,p3)  (see [16]).  Since automorphisms preserve squares ( 3 - 
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 3(mod 4) PSL(2,p3) is clearly not and H* - group.  In the former case which occurs when either p = 2 or p 
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 1(mod 4) PSL (2,p3) is an H* - group acting on one non-orientable Klein surface only because it acts only on one orientable Klein surface, S say as a Hurwitz group (as shown by Macbeath [16]).  So if it acted as an H* - group on more than one non-orientable Klein surface, say on K1 and K2, they would have the same orientable two-sheeted covering surface S and there would exist anti-conformal involutions ci, I = 1,2, of S such that
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where 
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 denotes the group generated by 
[image: image188.wmf]i

s

.  


From lemma 1.32 we see that 
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2 must oth commute with every element of PSL(2,p3) and since 
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 PSL (2,p3) which has a trivial centre, 
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2 and hence K1 
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 K2.

(Note: PSL (2.8) is now a special case and clearly from the above is and H* - group acting on one non-orientable Klein surface because 8 = 23.)

(iii)
q = 7.  The fact that PSL(2,7) is not an H* - group follows directly now since the only solution of 
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 in GF(q) is 
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= 2, and (3 – 22) = -1 is not a square in GF(7) because 7 
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 3(mod 4). 
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and we have proved the following.

Theorem 2.10.

(i) If q = p prime and p 
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 1 or 13(mod 28) then PSL(2,q) is an H* - group acting on one or three distinct non-orientable Klein surfaces.   If q = p prime and p 
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 -1 or –13(mod 28) then PSL(2,q) is an H* - group acting on two distinct non-orientale Klein surfaces if (3 - 
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 are three roots of the equation 
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.  Otherwise PSL(2,p) is not an H* - group.

(ii) If q = p3, prime then PSL(2,q) is an H* - group if and only if p = 2 or p 
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 5, 9, -3 or –11(mod28).  In this case ther eis only one non-orientable surface on which the group acts as an H* - group.


By Dirichlet’s theorem on primes in an arithmetic progression there are an infintie number of compact non-orientable Klein surfaces for which the upper bound for the order of the automorphism group is attained.  The result shows also that there exist and infinite number os simpe H* - groups.

Example 2.11. 
q = p = 13

By theorem 2.10, PSL(2,13) is an H* - group.  Does it act on one or three non-orientable surfaces?


GF(13) 
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 residues mod 13.  Let 
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(Note: 6.4.7.) 
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 -1(mod 13).)

So PSL (2,13) is an H* - group acting on only one non-orientable Klein surface of genus 15.

6).
For each prime p 
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 and then determined when (3 
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In (a) PSL(2,p) is an H* - group acting on one non-orientable Klein surface.  In (b) PSL(2,p) is an H* - group acting on three distinct-non-orientable Klein surfaces.  In (c) PSL (2,p) is an H* - group acting on two distinct non-orientable Klein surfaces.  In (d) PSL(2,p) is not an H* - group.
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