CHAPTER 3

Cyclic groups of automorphisms of compact

Non-orientable Klein surfaces without boundary

1).
In this chapter we are going toc consider the problem of when cyclic group acts as a group of automorphisms of a compact non-orientable Klein surface.  The problem for + automorphisms of compact Riemann surfaces has been solved by Harvey [7].  His results are stated below.


In [22] May has shown that the order of a cyclic group of automorphisms of a compact Klein surface S with boundary of algebraic genus (as defined in chapter 2) 
[image: image1.wmf]2

g³

 cannot be larger than 
[image: image2.wmf]22

g+

if S is orientable and 
[image: image3.wmf]g

 is even;  otherwise the order cannot be larger than 2
[image: image4.wmf]g

.  It is shown that for all values of the algebraic genus 
[image: image5.wmf]2

g³

 there are both orientable and non-orientable surface with a cyclic automorphism group of maximum possible order.


In this chapter, as in chapter 2, we shall be considering non-orientable Klein surfaces without boundary and it is interesting to note that in this case the maximum order for a cyclic group of automorphisms of such a surface again depends on whether the genus of the surface is even or odd.

2).
We now state Harvey’s results.  All surfaces from now on are assumed to be without boundary.

Theorem 3.1. ([7])

Let 
[image: image6.wmf]G

be a Fuchsian group with signature (
[image: image7.wmf]1k

g; m, , m)

K

 and let m be the 1.c.m. of {
[image: image8.wmf]1k

m,  , m}

K

.  There is a surface-kernel homomorphism 
[image: image9.wmf]n

:  Z

qG®

 (cyclic group of order n) if and only if the following conditions are satisfied.

(i) 
[image: image10.wmf]µ

i

1k

1.c.m. {m,  ,m, , m} = m, 

KK

for all i, where 
[image: image11.wmf]µ

i

m

denotes the omission of 
[image: image12.wmf]i

m


(ii) m divides n and if g = 0, m = n,

(iii) 
[image: image13.wmf]k  1, and if g = 0, k  3,

¹³


(iv) if 2׀m, the number of periods divisible by the maximum power of 2 dividing m is even. 

(Note:  If 
[image: image14.wmf] ker

Ù=q

and the above conditions are satisifed then 
[image: image15.wmf]n

Z

acts as a group of orientation preserving automorphisms of 
[image: image16.wmf]U/

L

).

Theorem 3.2 ([7]).  The maximum order for a + automorphism of an orientable Klein surface of genus g is 2(2g + 1).  This maximum order is attained for each g and hence 
[image: image17.wmf]4g2

Z

+

 is a + automorphism group for some surface of genus g, for every value of 
[image: image18.wmf]g  2

³

.


Our problem is to find an attainable upper bound for the order of an automorphism of a non-orientable Klein surface.

Lemma 3.3.
An upper bound for the order of an automorphism of a non-orientable Klein surface, S, of genus g is 2(2g-1).

Proof.


By corollary 1.31 every group of automorphisms of S is isomorphic to a group of + automorphisms of 
[image: image19.wmf]S

%

, the orientable two-sheeted covering surface of S.  If S has genus g then 
[image: image20.wmf]S

%

 has genus 
[image: image21.wmf] = g - 1

g

.  So if Zn is an automorphism group of S then it is an automoprhism group of 
[image: image22.wmf]S

%

 and by theorem 3.2 n
[image: image23.wmf] 2(2 + 1) = 2(2g - 1)

£g

.


Thus we have an upper bound for the order of an automorphism of a non-orientable Klein surface, but is this bound actually attained?  The answer to this question is in the negative as we see in the following theorem.

Theorem 3.4.
The maximum order for an automorphism of a non-orientable Klein surface of genus g 
[image: image24.wmf]³

 3 is



2g,   if g is odd,



2(g  - 1),   if g is even.

The maximum order is attained for every g, hence 
[image: image25.wmf]2g

Z

is an automorphism group of some non-orientable Klein surface of odd genus g 
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 3.

Proof.


By theorem 1.30 if Zn is an automorphism of a non-orientable Klein surface, S, of genus g 
[image: image27.wmf]³

 3 then there exists a proper NEC group 
[image: image28.wmf]G

and a homomorphism 
[image: image29.wmf]n

: Z

q®

such that ker 
[image: image30.wmf]q

is a surface group and 
[image: image31.wmf]q

(
[image: image32.wmf]+

G

) = Zn. 
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G

 must satisfy the conditions of theorem 3.1.


Let ker 
[image: image34.wmf]q

 = 
[image: image35.wmf]L

, then 
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 will be a non-orientable surface group (with orbit-genus g),  S = 
[image: image37.wmf]U/

L

 and




[image: image38.wmf]n

Z /

GL

;

.

Hence




[image: image39.wmf]()2(g - 2)

n = / =  

()()

mLp

GL

mGmG



For g odd,  if n 
[image: image40.wmf]³

 2g then




[image: image41.wmf]2(g2)

()   < 

2g

p-

mG£p


and for g even, if n 
[image: image42.wmf]³

 2(g –1) then again 
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mG

 < 
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, so in both cases



0 < 
[image: image45.wmf]()

+

mG

 = 2
[image: image46.wmf]()

mG

 < 2
[image: image47.wmf]p

.

Since 
[image: image48.wmf]+

G

is a Fuchsian group it will have signature of the form 



(
[image: image49.wmf]1k

; m, , m

g

K

)

in which case




[image: image50.wmf]k

i1

i

1

() = 2(2 - 2 + (1 ))

m

+

=

mGpg-

å


and so we wish to consider only those signatures which satisfy the condition




[image: image51.wmf]k

i1

i

1

0 < 2 - 2 + (1 ) < 1.

m

=

g-

å


This implies that 
[image: image52.wmf]  1

g£

.  If 
[image: image53.wmf]g

= 1 then k = 1 and if 
[image: image54.wmf]g

 = 0 then k 
[image: image55.wmf]£

 5.  However for 
[image: image56.wmf]+

G

 to satisfy the condition fo theorem 3.1, 
[image: image57.wmf]k  1

¹

.  Hence 
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 = 0 and k 
[image: image59.wmf]³

 3 and it is easy to see from condition (iv) that k < 5.  Also we note if k = 3 then 
[image: image60.wmf]i

1

m

å

 <  1 and k = 4 
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1

m

å

 < 2.


Let us therefore consider NEC groups 
[image: image62.wmf]G

such that 
[image: image63.wmf]+

G

 has signature of the form (0; m1,m2,m3) or (0; m1,m2,m3,m4).  If 
[image: image64.wmf]+

G

 has signature (0; m1,m2,m3) then by theorem 1.18 there are two possibilities for the signature of 
[image: image65.wmf]G

namely

(1) (0, +, [ ], {(m1,m2,m3)}) = 
[image: image66.wmf]1

G

say,

(2) if m1 = m2, (0, +, [m1], {m3)}) = 
[image: image67.wmf]2

G

 say.


If 
[image: image68.wmf]+

G

has signature (0; m1,m2,m3,m4) then again by theorem 1.18 there are four possibilities for the signature of 
[image: image69.wmf]G

namely

(3) 
[image: image70.wmf]12343

(0, +, [ ], {m,m,m,m)}) =  say,

G


(4) if 
[image: image71.wmf]121344

m, = m,  (0, +, [m], {(m,m)}) =  say,

G


(5) if 
[image: image72.wmf]1234135

m = m,  m = m, (0, +, [m, m], {( )}) =  

say,

G


(6) if 
[image: image73.wmf]1234136

m = m, m = m,  (1, -, [m,m], { }) =  say

G



We wish to consider surface-kernel homomorphisms 
[image: image74.wmf]q

 from 
[image: image75.wmf]G

onto 
[image: image76.wmf]n

Z

such that 
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(
[image: image78.wmf]+

G

) = 
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Z

 such that 
[image: image80.wmf]q

(
[image: image81.wmf]+

G

)  = 
[image: image82.wmf]n

Z

, so to satisfy theorem 3.2 since 
[image: image83.wmf]g

(the orbit-genus of 
[image: image84.wmf]+

G

) = 0 in all cases, we must have n = m = 1.c.m. 
[image: image85.wmf]14

{m,,m}

K

.  The following lemma shows that a surface-kernel homomorphism onto 
[image: image86.wmf]n

Z

 for n> 2 does not exist in the first four of the above six cases.

Lemma 3.5.
There does not exists a surface-kernel homomorphism 
[image: image87.wmf]in

:   Z

qG®

 for n > 2 and I = 1,2,3, or 4.

Proof.




[image: image88.wmf]13

 and 

GG

 have presentations



[image: image89.wmf]222m1m2m3

123123122313

{c,c,c;c  c  c(cc) (cc)(cc)1}

======


and




[image: image90.wmf]2222m13m2m3m4

123412341223414

{c,c,c,c; c = c = c = c = (cc) = (cc) = 

(cc) = (cc) = 1}


respectively, and are thus generated by elements of order two.  So no homomorphism 
[image: image91.wmf]in

:   Z

qG®

 exists for n > 2, for I = 1 or 3.
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G





[image: image93.wmf]2m1-1m3

{c,x; c = x = (xcxc) = 1


and since 
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Z

 is abelian any homomorphism 
[image: image95.wmf]2n

:   Z

qG®

must have




[image: image96.wmf]1

(xcxc)  1

-

q=


and hence 
[image: image97.wmf]q

cannot be surface-kernel.



[image: image98.wmf]4

G

 has presentation


[image: image99.wmf]m122m3-1m4

12121221

{x,c,c; x = c = c = (cc) = (cxcx) = 1}

.

If 
[image: image100.wmf]n

Z

 has an element of order two then it is unique and so for any homomorphism 
[image: image101.wmf]4n

:   Z

qG®

we must have



[image: image102.wmf]2

121

(cc) = ((c)) = 1

qq


and again 
[image: image103.wmf]q

cannot be surface-kernel, which completes the proof of the lemma.


The following lemma shows that there does exist a surface-kernel homomorphism 
[image: image104.wmf]5m13

:   Z, where m = 1.c.m.{m,m},

qG®

 under certain conditions.

Lema 3.6.
Let 
[image: image105.wmf]G

be a proper NEC group with signature



[image: image106.wmf](0, +, [k,],  {( )}).

l


If either K and 
[image: image107.wmf]l

are both even or have opposite parity then there exists a surface-kernel hoomorphism 
[image: image108.wmf]m

:  Z, where m = 1.c.m.(k,)

qG®

l

, such that 
[image: image109.wmf](()

+

qG

 = Zm .

(Note:  
[image: image110.wmf]+

G

 has signature (0; k,k, 
[image: image111.wmf]l

,
[image: image112.wmf]l

) and satisfies all the conditions of theorem 3.1)

Proof.




[image: image113.wmf]G

has presentation


{
[image: image114.wmf]2k-1

12121212

c,x,x; c = x = x = xxc(xx) c =1}

l

.




[image: image115.wmf]2m-1m

Zm = 1,z,z, ,z,z = 1

K


The condition that either k and 
[image: image116.wmf]l

 are both even or have opposite parity implies that m is even.  Clearly without this condition we could not define a homomorphism 
[image: image117.wmf]m

:   Z,

qG®

since 
[image: image118.wmf]G

 contains an element of order two an dif m was odd Zm would not contain an element of order two.


If we let t = g.c.d.(k,
[image: image119.wmf]l

),  so m = k
[image: image120.wmf]l

/t, then we can define a homomorphism 
[image: image121.wmf]m

:   Z,

qG®

 by




[image: image122.wmf]/t

k/t

m/2

(x1)z, which has order exactly k

(x2) = z, which has order exactly ,

(c)  = z, which has order exactly 2.

q=

q

q

l

l




[image: image123.wmf]q

is onto because 
[image: image124.wmf]l

/t and k/t are relatively prime, so there exists p,q, 
[image: image125.wmf]e

 Z (the set of integers) such that




[image: image126.wmf]k

p + q = 1.

tt

l


Therefore




[image: image127.wmf]pq

12

(xx) = z

q


and z generates  Zm .


Every element of finite order in 
[image: image128.wmf]G

is mapped to an element of the same finite order by 
[image: image129.wmf]q

 and so 
[image: image130.wmf]q

 is a surface-kernel homomorphism (by lemma 1.34) onto Zm. We also have 
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(
[image: image132.wmf]+

G

) = Zm because 
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12

x,x  

eG

, hence the lemma is proved.


Applying lemma 3.6 to 
[image: image134.wmf]5

G

 we see that, provided m(=1.c.m.{m1,m3}) is even, we can define a surface-kernel homomorphism 
[image: image135.wmf]5m

:   Z

qG®

 such that 
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()Z.  So Z

+

qG=

 acts as a group of automorphisms of the Klein surface 
[image: image137.wmf]U/

L

= ker 
[image: image138.wmf]q

 and we know that




[image: image139.wmf]513

2(g - 2)g - 2

m =  ,

()(1 - 1/m - 1/m) 

p

=

mG


where g is the orbit-genus  of 
[image: image140.wmf]L

.


The following lemma shows us how to maximise m in terms of g.

Lemma 3.7.
Given any two integers r,s such that 




[image: image141.wmf][

]

11

r,s (1 -  - )b

rs

=


where b is a fixed integer and [r,s] = 1.c.m.(r,s) then




[image: image142.wmf][

]

2b + 4,  if b is odd,

r,s  

2b + 2,  if b is even,
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Proof.


The equation




[image: image143.wmf]11

[r,s](1 -  - ) = b

rs


is always satisfied because if b is odd put r = 2, s = b + 2 and if b is even put r = 2, s = 2b + 2.


Now suppose [r,s] > 2b + 4.  Then, since 
[image: image144.wmf]b1

 < ,

2b42

+

 the equation




[image: image145.wmf][

]
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r,s (1 -  - ) = b

rs


implies that




[image: image146.wmf]111

 +  >  .

rs2


This inequality is satisfied by only a few integer values of r and s namely (assuming without loss of generality that r 
[image: image147.wmf]£

 s)



r = 2,   s arbitrary,



r = 3,   s = 3,4 or 5

and in each case we can obtain a contradiction.

(1) r  = 3, s = 3 implies [r,s] = 3, b =1, so [r,s] < 2b + 4.

(2) r = 3, s = 4 implies [r,s] = 12, b = 5, so [r,s] < 2b + 4.

(3) r = 3, s = 5 implies [r,s] = 15, b = 7, so [r,s] < 2b + 4.

(4) r = 2, s odd implies [r,s] = 2s, b = 2 – 2, so [r,s] = 2b + 4.

(5) r = 2, s even implies [r,s] = s, b = 
[image: image148.wmf]s

2

 - 1, so [r,s] < 2b + 4.

Therefore for any value of b, [r,s] 
[image: image149.wmf]£

 2b+ 4.  Clearly 2b + 4 is the least upper bound for b odd since [r,s] = 2b + 4 when  r = 2 and s = b + 2.  We now wish to show that if b is even then [r,s] 
[image: image150.wmf]£

 2b + 2.


Suppose b is even and [r,s] > 2b + 2, then again since 
[image: image151.wmf]b1

 < 

2b22,

+

 the equation






[image: image152.wmf][

]
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r,s (1 -  - ) = b

rs


implies that






[image: image153.wmf]111

 +  < 
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 ,

so we have the same cases as before for integer values of r and s.  Now only one of these cases, namely case (5), gives us  a value of b which could be even, i.e. when r = 2, s is even, [r,s] = s and b = 
[image: image154.wmf]s

2

 - 1.  But then [r,s] = 2b + 2 and so if b is even we must always have [r,s] 
[image: image155.wmf]£

 2b + 2, the upper bound being attained when r = 2 and s = 2b + 2.  This completes the proof of the lemma.


If we put r = m1, s = m3 and b = g – 2 in lemma 3.7 then [r,s] = m and we have





[image: image156.wmf]2g,  if g is odd,

m  

2(g - 1), if g is even.
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since




[image: image157.wmf]65

13

11

() = 2(1 -  -  ) = ()

mm

mGpmG


we would obtain no larger values for m using 
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G

.


If 
[image: image159.wmf]()  , then

mG³p





[image: image160.wmf]2(g - 2)

n =   2(g - 2)

()

p

£

mG

.

Since we have considered all cases with 
[image: image161.wmf]()  

mG<p

 we have proved that the maximum order for an automorphism of a non-orientable Klein surface of genus g 
[image: image162.wmf]³

 3 is 



2g,  if g is odd,



2(g – 1), if g is even.

The maximum order is attained for each g since the NEC group with signature (0, +, [2,g],    {( )}) admits a surface-kernel homomorphism onto Z2g when g is odd by lemma 3.6 and by the same lemma the NEC group with signature (0, +, [2,2(g – 1)], {( )} admits a surface-kernel homomorphism onto 
[image: image163.wmf]2(g1)

Z

-

 when g is even.

CHAPTER 4

Covering of Klein surfaces.

1).
In chapter 1 we saw that every nonconstant morphism between two compact Klein surfaces is an n-sheeted covering for some n, possibly ramified.  If a morphism f: T 
[image: image164.wmf]®

 

S of Klein surfaces is a ramified n-sheeted covering then s 
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 S has a neighbourhood V such that f-1(V) has n components each of which is mapped homeomorphically onto V by f except where the covering is ramified or folded.


If T is ramified over s 
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 S ( we say a point t 
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 T is over a point s 
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 S if f(t) = s) then at each point in the set f-1(s) severla sheets of the covering surface T hang together, the number of sheets at one point being the ramification index e of f at the point.  Over such points, locally, the covering map f looks lie z 
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 ze.  If S has non-empty boundary and T has no boundary component over one ( or more) boundary components of S then the covering is folded over that boundary component of S.  for all points t 
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 T over 
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S at which folding occurs df(t) = 2, where df(t) is the relative degree of f(t) as described in chapter 1.  The following is an example of a folded covering.

Example 4.1
Let S be an orientable Klein surface with r 
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 1 boundary components and genus g.  Let S* be a surface homeomorphic to S and let h: S 
[image: image173.wmf]®

 S* be the homeomorphism.



If 
[image: image174.wmf]iiiI

(U,z)

e

W=

 is an analytic atlas of S we can define an analytic atlas  
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* and S* by putting 
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* equal to the set of charts 
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(h(U),z)

e

 where




[image: image178.wmf]z(h(p))z(p), for all p  S.
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It is easily seen that 
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* is an analytic atlas.


Now form a new Klein surface T as follows.  Consider the space SUS* and 

‘glue’ the borders together by identifying, for p 
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[image: image181.wmf]d

S, p and h(p).  An analytic atlas 
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T  is defined on T by 
[image: image183.wmf]W

T = 
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1 U
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2 , where 
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1 consists of all charts (U, z) on S such that U
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 EMBED Equation.DSMT4  [image: image188.wmf]d

S = 
[image: image189.wmf]Æ

, together all charts (h(U), 
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) on S* and 
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2 is the set of all charts (Uuh(U),w), for all U such that U
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 EMBED Equation.DSMT4  [image: image193.wmf]d

S 
[image: image194.wmf]¹

 
[image: image195.wmf]Æ

 and 



w(p) = z(p)   





for all p 
[image: image196.wmf]e

 S



w(h(p)) = 
[image: image197.wmf]z(p)



This definition is consisent on 
[image: image198.wmf]d

S is mapped to the real line.  It is trivial to show that this defines an analytic atlas for all charts in 
[image: image199.wmf]W

1.  We use the reflection principle, which says that if V is an open set in 
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 symmetric ab out the real line and if g is an analytic funciton defined on V and g(
[image: image201.wmf]V)

ÇÌ

¡¡

) then g(z) = 
[image: image202.wmf]g(z)

, to shwo that the co-ordination transformations associated with 
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2 are analytic.


The Klein surface (T, 
[image: image204.wmf]W

T) obtained in this way is orientable with genus 2g + r – 1 and no boundary.  This surface is the ‘classical’ double of an orientable Klein surface with boundary as described by Schiffer and Spencer [23].


Note that the homeomorphism h now acts as an anti-conformal involution on T.


The covering map f: T 
[image: image205.wmf]®

 S is the identity on all points of T except those which are on the union of the boundary of S and S* which is closed curve in T.  So f maps points T in pairs onto the interior of S except the points on the union of the two boundaries, a neighbourhood of such a point being mapped onto a neighbourhood of a point on the boundary of S, i.e. onto a half-closed disc.  Hence over the boundary of S the covering map locally has the form of the folding map 
[image: image206.wmf] ((x + iy) = x + iy).

ÆÆ


2).
We shall begin by considering 2-sheeted coverings of Klein surfaces.  These are otherwise known as double covers.


In[2] Alling and Greenleaf define a double cover as follows.

Definition 4.2.
A morphism f: T
[image: image207.wmf]®

 S of Klein surfaces is a double cover  if each s 
[image: image208.wmf]e

 S has a neighbourhood V such that f-1 (V) has two components, each of which is mapped homeomorphically onto V by f; of f-1(s) = {t} and there exist dianalytic charts (Ut,zt) and (Us,zs) of t and s respectively such that zt(t) = 0 = zs(s), f(Ut) 
[image: image209.wmf]Ì

Us and



[image: image210.wmf]t

2

st

2

t

(i)

z    if s  S and t  T,

(ii)        zfUt  =   z   if s  S and t 

 T,

z     if s  S

(iii)

feded

ì

ï

feded

í

ï

ed

î



[image: image211.wmf]f

 being the folding map; f is unramified if (ii) and (iii) never occur.


This is clearly compatible with definition 1.26 with n = 2.  Alling and Greenleaf proceed to show the existence and uniqueness of three special double covers, the first of which is described in the following theorem.

Theorem 4.3  ([2]).  Let S be a Klein surface.  There exists a double cover f: Sc 
[image: image212.wmf]®

 S of S by an orientable Klein surface without boundary Sc (here we allow Sc to be disconnected) such that Sc has an anti-conformal involution 
[image: image213.wmf]s

 with f
[image: image214.wmf]s

 = f.  If (S’c f’, 
[image: image215.wmf]s

) is any other such triple, then there is a unique conformal homeomorphism 
[image: image216.wmf]r

: S’c 
[image: image217.wmf]®

 Sc such that f’
[image: image218.wmf]r

 = f.


Further, f is unramified, 
[image: image219.wmf]s

 is the only anti-conformal sutomorphism of Sc such that f
[image: image220.wmf]s

 = f and Sc is disconnected if and only if S is orientable and 
[image: image221.wmf]d

S = 
[image: image222.wmf]f

.


The triple (Sc, f, 
[image: image223.wmf]s

) is called the complex double of S and is usually just denoted by Sc .  It corresponds to the ‘classical’ double of a Klein surface described in [23], where it is hwon that if S is orientable with genus g and r 
[image: image224.wmf]³

 1 boundary components then Sc has genus 2g + r – 1 and if S is non-orientable with genus g and r boundary components then Sc has genus g + r – 1.  If S is orientable then the complex double is the same as the double described in example 4.1


Sc can be constructed as follows (see[2]).  Let (Uj,zj)j
[image: image225.wmf]e

J be a dianalytic atlas of S.  For each j 
[image: image226.wmf]e

 J, let 
[image: image227.wmf]j

U

¢

 
[image: image228.wmf]º

 Uj 
[image: image229.wmf]º

 
[image: image230.wmf]j

U

¢¢

, and z’j = zj, zj, z”j = 
[image: image231.wmf]z

j.  Let 
[image: image232.wmf]W

 be the disjoint union of the 
[image: image233.wmf]j

U

¢

s and make identifications of the following two types.

(1) If W is a component of Uj
[image: image234.wmf]Ç

Uk and if zjzk-1 is conformal (respectively anti-conformal) on zk(W), then identify its image in 
[image: image235.wmf]j

U

¢

 with its image in
[image: image236.wmf]k

U

¢

 (respectively its image in 
[image: image237.wmf]j

U

¢

 with its image in 
[image: image238.wmf]k

U

¢¢

) and its image in 
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U

¢¢

 with its image in
[image: image240.wmf]k

U

¢¢

 (respectively its image in 
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U

¢¢

 with its image in 
[image: image242.wmf]k

U

¢

).

(2) Let Bj = 
[image: image243.wmf]d

S
[image: image244.wmf]Ç

Uj and identify its image in 
[image: image245.wmf]j

U

¢

 with its image in 
[image: image246.wmf]j

U

¢¢

 .

Let Sc be the quotient space of 
[image: image247.wmf]W

, with all the above identifications.  Let 
[image: image248.wmf]j

ˆ

U

be the image of 
[image: image249.wmf]j

U

¢



 EMBED Equation.DSMT4  [image: image250.wmf]j

 U

¢¢

È

.

Let Sc be the quotient space of 
[image: image251.wmf]W

, with all the above identificaitons.  Let 
[image: image252.wmf]j

ˆ

U

 be the image of 
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 in Sc and let 
[image: image255.wmf]j

ˆ

z

 map 
[image: image256.wmf]j

ˆ

U

 into 
[image: image257.wmf]£

 as follows: 
[image: image258.wmf]jjjjjj

ˆˆ

zu = z and z U = z.  

¢¢¢¢¢¢

  It is easily seen that 
[image: image259.wmf]j

ˆ

z

 is a homeomorphism .  Using the reflection principle, we can see that 
[image: image260.wmf]-1

kj
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z z 

 is analytic on 
[image: image261.wmf]jjjjjJ

ˆˆ

ˆˆ

z(U): thus (U,z)

e

 is an anlytic atlas of Sc.  Let f: Sc 
[image: image262.wmf]®

 S be induced by the identity maps 
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 Uj.


The two points p and 
[image: image267.wmf]ˆ

p

 of Sc which lie over the same point s 
[image: image268.wmf]e

 S are called conjugate points .  If p corresponds to a boundary point of S the p = 
[image: image269.wmf]ˆ

p

.  The correspondence between conjugate points of Sc defines a one-one anti-conformal mapping, 
[image: image270.wmf]s

, of Sc onto itself.  Clearly 
[image: image271.wmf]s

2 = 1 and f
[image: image272.wmf]s

 = f.


If S = 
[image: image273.wmf]U/

G

, where 
[image: image274.wmf]G

 is either a non-orientable surface group or a bordered surface group, then 
[image: image275.wmf]U/

+

G

 is the uniquely defined two-sheeted orientable covering surface without boundary of S.  So, as Sc is unique.



Sc = 
[image: image276.wmf]U/

+

G


This will be discussed in more detail in section 5 of this chapter.  


We describe the other two special doubles in a less formal way as they will not be used in any formal proofs.


If we construct 
[image: image277.wmf]W

 in exactly the same way as above but employ only identifications of the first type we obtain an orientable Klein surface with boundary which is an unramified double cover of S.  This double cover, called the orienting double by Alling and Greenleaf and denoted by So, is disconnected if and only if S is orientable.  If S has r boundary components then So has 2r boundary components.  If 
[image: image278.wmf]oc

S then S = S

d=f

.

Examples 4.4.
If S is a Mobius strip then So is an annulus and Sc is a torus.  If S is a Klein bottle with a hole then So is a torus with two holes and Sc is a sphere with two handles attached (see example 4.14).


The third double cover is also unramified ad is called the Schottky double .  It is obtained by modifying the procedure to construct the complex double so that identifications always occur between 
[image: image279.wmf]j

U

¢

 and 
[image: image280.wmf]k

U

¢

 (and 
[image: image281.wmf]j

U

¢¢

 and 
[image: image282.wmf]k

U

¢¢

) or more directly we can take two copies of S with opposite orientations and glue them together on the boundary.  We denote the Schottky double of S by Ss.  If S is orientable then Ss = Sc.  If S is non-orientable then so is Ss and Ss is disconnected if and only if 
[image: image283.wmf]d

S = 
[image: image284.wmf]f

.

Example 4.5.   If S as a Klein bottle with one hole then Ss is a sphere with four cross-caps attached.  If S is the projective plane with two holes then Ss is again a sphere with four cross-caps.

3)

Definition 4.6
Let F: T 
[image: image285.wmf]®

 S be a covering of Klein surfaces.  The fibre of a point  s 
[image: image286.wmf]e

 S is the set of points f-1(s) in T.  A homeomorphism g: T 
[image: image287.wmf]®

 T is called a covering transformation if g takes each fibre to itself, i.e. fg = f.  Elarly the set of covering transformations forms a group under composition of maps.


Let 
[image: image288.wmf]1

G

 be an NEC group so U/
[image: image289.wmf]1

G

 is a Klein surface and let 
[image: image290.wmf]2

G

 be a subgroup of 
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G

 of index n.  Then 
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G

 is a NEC group and U/
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G

 is a Klein surface which is an n-sheeted covering surface of U/
[image: image294.wmf]1

G

, possibly ramified.


If 
[image: image295.wmf]i

:UU/

G

p®G

 is the natural projection and we put 
[image: image296.wmf]ii

(z)[z]

GG

p=

 then the covering map is the natural map f: U/
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G

 
[image: image298.wmf]®

 U/
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G

 defined by



F([z]
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G

) = [z]
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G

.

Since 
[image: image302.wmf]2 1

f= 

GG

pp

 and 
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G

p

, I = 1,2, is a morphism f is itself a morphism of Klein surfaces.

Definition 4.7.  The covering f: U/
[image: image304.wmf]2

G
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G

 is called a normal covering if 
[image: image307.wmf]21

  

GG

<

.


This definition is just an extension of the idea of a normal covering of a Riemann surfac as defined in [1].


If f: U/
[image: image308.wmf]2

G
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 U/
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G

 is a normal covering then the group G 
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G

/
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G

 acts as a group of covering transformations and it is easy to show that G acts transitively on each fibre i.e. if  x1, x2 
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 U/
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G

 and are in the same fibre then there exits g 
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 G such that g(x1) = x2.. 


If 
[image: image316.wmf]q

 is a homorphism from 
[image: image317.wmf]1

G

 onto a group G of order n, then ker 
[image: image318.wmf]q

 is a normal subgroup of 
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G

 of index n.  Every subgroup of 
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G

 can be found in this way.  So we can find every n-sheeted normal covering of U/
[image: image321.wmf]1

G

 by looking at all possile homomorphisms from 
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G

 onto all possible groups of order n.


If 
[image: image323.wmf]1

G

 is a surface group or a bordered surface group then any subgroup 
[image: image324.wmf]2

G

 or 
[image: image325.wmf]1

G

 will be a surface group, possibly bordered and U/
[image: image326.wmf]2

G

 will be an unramified covering surface of U/
[image: image327.wmf]1

G

.

4).
For n = 2 the problem of finding all subgroups of index n in 
[image: image328.wmf]1

G

 is greatly simplified since there is (up to isomorphism) only one group of order two, namel Z2, the cyclic group of order two with presentaiton {z: z2 = 1} and any subgroup of index two must be a normal subgroup.  Therefore by looking at all homeomorphism from 
[image: image329.wmf]1

G

 onto Z2 and considering the kernel of each one we can find all 2-sheeted coverings of U/
[image: image330.wmf]1

G

 of the form U/
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G

 where 
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G
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G

 with index two, every one of which will be normal.


If S is a Klein surface such that S = U/
[image: image335.wmf]1

G

 where 
[image: image336.wmf]1

G

 is a bordered surface group, and we consider a homomorphism 
[image: image337.wmf]q

: 
[image: image338.wmf]1

G

 
[image: image339.wmf]®

 Z2 then U/ker 
[image: image340.wmf]q

 will be a connected unramified normal double cover of S.  The question we ask is:  can every connected unramified double cover of S be represented as the orbit sapce of a subgroup of index two in 
[image: image341.wmf]1

G

 with the natural covering map?


To answer this questionw e need first to establish a more general fact, that is to show that an automorphism of a Klein surface is induced by an automorphism of the upper hal-plane even if the Klein surface has boundary.  This result has also been obtained by May [21] but by a different though analogous method.

Proposition 4.8.
Let S be a Klein surface such that S = U/
[image: image342.wmf]G

 where 
[image: image343.wmf]G

 is a surface group , possibly bordered, and let g: S 
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 S be an automorphism of S.  Then there exists a homeomorphism 
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 g, such that 
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 = 

-

wGwG

, which induces g.

Proof.

Case (i):  If 
[image: image348.wmf]S = ,

df

 then we use ordinary covering space theory as in chapter 1 to show 
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 exists.

Case (ii)  If 
[image: image350.wmf]S = ,

df

 let (Sc, f, 
[image: image351.wmf]s

) be the complex double of S .  As 
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S is non-empty, Sc is connected.  Cosnider the map gf: Sc 
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 S.



[image: image354.wmf]gf()g(f)gf  (by theorem 4.3).

s=s=


So (Sc, gf, 
[image: image355.wmf]s

) is another triple representing the complex double of S.  Therefore by theorem 4.3 there exists a unique conformal homeomorphism 
[image: image356.wmf]cc

: S  S such that gf = f

r®r

.

Sc is an orientable Klein surface without bounday so there exists a homeomorphism 
[image: image357.wmf]+

  g (infact   g) which induces 

wewer

 as described in chapter 1.  If 
[image: image358.wmf]+

c

: U  U/ = S

+

G

p®G

 is the natural projection, we have the following commutative diagram.
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