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Proposition 4.9.
Let f: T
[image: image28.wmf]®

S be a connected unramified double cover of Klein surfaces such that T = U/
[image: image29.wmf]G

, where 
[image: image30.wmf]G

 is a surface group, possibly bordered.  Then there exists a surface group 
[image: image31.wmf]D

, possibly bordered, such that S = U/
[image: image32.wmf]G

 and 
[image: image33.wmf]G



 EMBED Equation.DSMT4  [image: image34.wmf]<

 
[image: image35.wmf]D

 with index two.

Proof.



If f: T 
[image: image36.wmf]®

 S is a double cover then there exists an automorphism 
[image: image37.wmf]t

: T 
[image: image38.wmf]®

T such that 
[image: image39.wmf]2

t

= 1 (
[image: image40.wmf]t

 is the correspondence between point(s) in the same fibre).   If T = U/
[image: image41.wmf]G

 then by proposition 4.8 there exixts a homeomorphism 
[image: image42.wmf]w

 
[image: image43.wmf]e

 g which induces 
[image: image44.wmf]t

 such that 
[image: image45.wmf]1

 = .

-

wGwG

 and since 
[image: image46.wmf]2

t

 = 1, 
[image: image47.wmf]2

w

 
[image: image48.wmf]e

 
[image: image49.wmf]G

.


Let 
[image: image50.wmf]D

 be the group generated by 
[image: image51.wmf]G

 and 
[image: image52.wmf]w

, i.e.




[image: image53.wmf]D

 = 
[image: image54.wmf]G

 = 
[image: image55.wmf]w



 EMBED Equation.DSMT4  [image: image56.wmf]G

.

Then  
[image: image57.wmf]G



 EMBED Equation.DSMT4  [image: image58.wmf]<

 
[image: image59.wmf]D

 with index two and 




[image: image60.wmf]U/

S =  = U/

G

D

DG


Clearly f can now be defined by 
[image: image61.wmf]f([z]) = [z]

GD

.


From this proposition we can deduce that all double covers of S = U/
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Proof.

We define 
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Since 
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(ii) When 
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We thus have the same situation as in the orientable case except that there are no bi’s giving us that the number of homomorphisms in this case is






[image: image110.wmf]g2r1

21

+-

-



Since there are 2a – 1 homomorphisms 
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has 2a – 1 subgroups, ker 
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Theorem 4.11.
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(Note we specify that S has non-empty boundary because this theorem does not hold for r = 0 as, from the proof of lemma 4.10, it is easy to see that if r = 0 the number of homomorphisms is 
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The result in theorem 4.11 agrees with the number of connected unramified double covers of a Klein surface with boundary found by Alling and Greenleaf from their topological approach ([2]).
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In presentation (A) the orientation preserving generators are the ai’s, bi’s and ei’s (all hyperbolic), the only orientation reversing generators are the reflections, ci.  The only difference in presentation (B) is that the ai’s are orientation reversing (glide reflections).
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Theorem 4.12.
Let 
[image: image144.wmf]1

G

 be a bordered surface group with orbit-genus g and r boundary components.  Let 
[image: image145.wmf]q

: 
[image: image146.wmf]1

G

 
[image: image147.wmf]®

 Z2 be a homomorphism defined on the canonical generators of 
[image: image148.wmf]1

G

 (described above) and let ker 
[image: image149.wmf]q

 = 
[image: image150.wmf]2

G

.  Define a map
[image: image151.wmf]q

t

 from {c1,c2, … cr} (the set of generating reflections) to {0,1,2) such that



[image: image152.wmf]ii2

i2 2

i2

2  if c,e  

(ci)  = 1  if c  ,ei  ,   for all i = 1 

... r

0  if c,  

q

eG

ì

ï

teGeG

í

ï

eG

î


Then
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and the number of boundary components of 
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(iii) 
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We now give some examples to show how theorem 4.12 can be used.

Example 4.13.

Let S be an orientable Klein surface with genus g = 1 and r = 1 boundary components (i.e. a torus with one hole), then S = U/
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, where 
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 is and orientable bordered surface group with signature
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and all possible numerical pairs of values for h and s can be found from the Riemann-Hurwitz formula
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But using theorem 4.12 we can determine which pairs of values actually occur and the orientability of 
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We now list the homomorphisms.  From the proof of lemma 4.10 we see that we must have in all cases 
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By applying theorem 4.12 in each case we obtain the number of boundary components of 
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 and its orientability.  Then we use the Riemann-Hurwitz formula to determine the orbit-genus, h.

e.g. in (1), theorem 4.12 implies that 
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 is orientable and has no boundary components (s = 0) so
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So from the Riemann-Hurwitz formula we deduce that h – 2.


We can now list the signatures of  
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 in each of the above cases.
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In (1) the Klein surface U/
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 is orientable with genus 2 and no boundary.  (2), (3) and (4) represent different double covers of S because they come from different homomorphisms but in each case U/
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 is orientable with genus 1 and 2 boundary components (i.e. a torus with 2 holes).  In (5), (6) and (7) U/
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 is non-orientable with genus 4 and no boundary, each case representing a different double cover of S.

Example 4.14  Let S be a non-orientable Klein surface with genus g = 2 and r = 1 boundary components (i.e. a Klein bottle with one hole).  Then S = U/
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, where 
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 is non-orientable bordered surface group with signature




(2, - , [ ], {( )}).


[image: image531.wmf]1

G

 will have generators a1, a2, c, e with relations 
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As in example 4.13 if 
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By lemma 4.10 the number of homomorphism 
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.  For brevity we abbreviate glide reflection generator to g.f.g.. The homomorphisms are
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Applying theorem 4.12 and the Riemann-Hurwitz formula in each case we obtain the signature of 
[image: image542.wmf]2

G

 to be


[image: image543.wmf]2

2

2

(1)(2, +, [ ], { })

(2)(1, +, [ ], {( )})

(3)

(2,, [ ], {( )})

(4)

(5)

(6)(4, , [ ], {( )}).

(7)

ü

-

ý

þ

ü

ï

-

ý

ï

þ



As before different homomorphisms giving the same signature for 
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 represent different double covers of S.  Any connected unramified double cover of S will be isomorphic to one of the seven Klein surfaces, U/
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, represented above.

Example 4.15.
Let S be an orientable Klein surface with genus g = 1 and r = 2 boundary components (i.e. a torus with two holes).  Then S = U/
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 where 
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 is an orientable bordered surface group with signature.
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If 
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By lemma 4.10 the number of homomorphisms 
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 is 31, we must have 
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 in each case.  Let ker 
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