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Abstract – In this contribution, Pearl’s belief propagation (BP)
algorithm is invoked for constructing a belief network, which is
employed for developing a joint detection aided transmit diver-
sity scheme and a non-binary LDPC decoder constructed over
a finite field of GF(q). An exciting bit-by-bit detection scheme
is further developed for creating the joint purly symbol-based
LDPC/transmit diversity decoder. The performance of the pro-
posed symbol-based system is benchmarked against the original
bit-by-bit detection scheme, when communicating over an uncor-
related Rayleigh fading channel using two transmitters and two
receivers. The associated detection complexities are also com-
pared .

1. INTRODUCTION AND SYSTEM SCHEMATIC

1.1. Motivation and State-of-the-Art

Since the invention of turbo codes by Berrou [1] et. al, the superior
performance of iterative decoders has attracted substantial research
interest. The family of Low Density Parity Check (LDPC) codes
originally devised by Gallager as early as 1963 [2] has also been ex-
tensively studied during the 1990s [3, 4]. More recently, Mackay,
McEliece and Cheng [5] pointed out that Gallager’s probabilistic
LDPC decoding algorithm [6], constitutes an instance of Pearl’s be-
lief propagation algorithm. Mackay and Neal demonstrated in [7] that
despite their simple decoding structure, LDPC codes are also capa-
ble of operating near the channel capacity. Richardson [8] suggested
the employment of a differential belief propagation decoding algo-
rithm for binary LDPC codes using the Fast Fourier Transform (FFT)
for reducing the decoding complexity imposed. In 1998, Davey and
Mackay proposed a non-binary version of LDPC codes [9], which
was potentially capable of outperforming binary LDPC codes. When
using Richardson’s FFT-based decoding algorithm [8], the complex-
ity of non-binary LDPCs increases only linearly with respect to the
size of the associated Galois field.

These non-binary LDPC codes may be conveniently combined
with multilevel modulation and/or multiple antenna schemes, which
are capable of supporting high data rate transmissions [10]. In this
contribution, an LDPC-coded low-complexity two-transmitter and two-
receiver scheme will be studied.

This contribution is structured as follows. In Section 2, a brief
overview of Baysian networks [11] and Pearl’s belief propagation
algorithm [11] will be given. Section 3 introduces non-binary LDPC
decoding over GF(q). Section 4 details the symbol-by-symbol joint
detection algorithm advocated. Section 5 characterises the achiev-
able performance of the proposed system in contrast to the corre-
sponding bit-by-bit detection scheme proposed by Meshkat and Ja-
farkhani [12]. The proposed system will be characterized using 4QAM,

The financial support of the Mobile VCE, UK; EPSRC, UK and that of
the European Union is gratefully ackowledged.

8PSK and 16QAM transmission schemes having a throughput of 2, 3
and 4 bits per symbol (BPS). Finally, Section 6 will provide a com-
plexity comparison, while Section 7 offers our conclusions.

1.2. System Schematic

The overall system schematic is illustrated in Figure 1. The source
bits are encoded by a non-binary LDPC encoder, and the LDPC en-
coded symbols are mapped to the corresponding QAM symbols, which
are transmitted by the multiple antenna based transmit diversity sys-
tem. The channel’s output signal r is then fed into the demodulator
where the soft-metric Mr−>v(sk) is calculated. More explicitly, the
notation
Mr−>v(sk) represents the soft metric passed from the demodulator
to the LDPC decoder based on the symbol probability of the kth de-
coded symbol of the LDPC codedword. As seen in Figure 1, these
soft-metrics are passed to the LDPC decoder, which carries out an
LDPC iteration and produces the resultant a posteriori probability
Ppost. Based on the a posteriori probability, a tentative hard de-
cision will be made and the resultant codeword will be check by the
LPDC code’s parity check matrix. If the resultant vector is an all-
zero sequence, then a legitimate codeword has been found, and the
hard-decision based sequence will be output. Otherwise, if the max-
imum number of iterations has not been reached, the a posteriori
probability will be subtracted from the original soft metric denoted
by Mr−>v(sk) and fed back to the demodulator for the next itera-
tion, as seen in Figure 1. This process continues until the pre-defined
maximum number of iterations has been encountered or a legitimate
codeword has been found.
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Figure 1: System schematic
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2. BAYSIAN NETWORKS AND BELIEF PROPAGATION

In this section, we provide a rudimentary introduction to both Baysian
networks [11] and to the classic belief propagation algorithm [11].
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Figure 2: Baysian network having six nodes

Let us illustrate the associated concepts with the aid of an ex-
ample. In Figure 2, we assume that X4, X5 and X6 are the so-
called evidence or observation nodes and we would like to infer the
a posteriori probability of X1. Hence by assuming that P (X4),
P (X5) as well as P (X6) are known and given that the relationship
of the various variables is characterized by the directed links seen in
Figure 2, the a posteriori probability of X1 can be represented as
follows:

P (X1) = P (X1|X2, X3) · P (X2|X4, X5) · P (X3|X6)

·P (X4) · P (X5) · P (X6). (1)

If we use the notation Pp(Xi) for representing the parent node
set of node i, Equation 1 may be rewritten as:

P (X1) =
N∏

i=1

P (xi|Pp(xi)). (2)

In general a Baysian network consists of a set of random variables
denoted by X = {X1, X2...Xn} and these random variables are rep-
resented by the nodes of the network. Between the nodes, there are di-
rected links representing the relationship of the so-called parent nodes
with the so-called child nodes. Some of the nodes may correspond to
random variables, whose values are encountered and hence observed,
which are the previously mentioned ”evidence nodes” or ”observa-
tion nodes” [12]. When a specific set of variables corresponding to
the evidence nodes is observed, the belief propagation algorithm may
be invoked for inferring the a posteriori information corresponding
to the rest of the nodes in the network, as it was demonstrated in the
context of Figure 2.

Since LDPC codes may be conveniently characterized by the vari-
able nodes, check nodes and their inter-connections [13], a corre-
sponding Baysian network can be constructed. Furthermore, in this
contribution, the multiple antenna aided transmit diversity scheme
may also be represented as a Baysian network. Hence Section 4 will
detail the process of developing a tri-partite Baysian network for the
system proposed where the associated belief propagation algorithm
invoked for this tri-partite Baysian network will also be described.

3. NON BINARY LDPC

Gallager’s original binary LDPC codes are defined by a sparse parity
check matrix (PCM) having a relatively low fraction of non-zero par-
ity check entries in the matrix. A codeword is a legitimate one, if its

product with the PCM using modulo-2 multiplications and additions
is an all-zero vector. Davey and Mackay generalized the family of
binary LDPC codes for a Galois Field of size q, i.e. for GF(q). These
non-binary LDPC codes are defined by a similar sparse PCM, with
the exception that the non-zero entries may now assume any integer
value between 1 and (q − 1). Thus the product of a legitimate code-
word with the PCM calculated over GF(q) is an all zero vector, which
is expressed as:

∑

j∈N (m)

Hmj(xj) = 0, over GF(q), (3)

where N (m) is a set containing all the column indices of the non-zero
entries in the mth row, and the variable Hmj represents the value of
the non-zero entry in the mth row and jth column of the PCM, which
ranges from 1 to (q − 1). Furthermore, xj represents the surviving
state of the jth symbol of the codeword, which is defined as the sym-
bol state having the highest a posteriori probability among the q
number of legitimate states. Since the non-zero entries in the PCM
are elements of GF(q), they may also be represented as binary strings
constituted by p bits, where 2p = q. In Equation 3 the variable xj also
assumes values ranging from 0 to q − 1, thus it may be represented
by a binary bit string of size p = log2q. It has been shown [14] that
an M × N non-binary PCM constructed over GF(q) has an equiva-
lent binary PCM of size Mp × Np [14]. It has been shown in [15]
that LDPC codes have to have a high column weight for the sake of
achieving a good performance. However, a high column weight will
introduce more short cycles in the PCM and this in turn degrades the
achievable performance. The advantage of using non-binary LDPC
codes is that the equivalent binary weight of the PCM is increased,
while the number of short cycles may remain low [14].

As in binary LDPC codes, the non-zero entries of the PCM it-
eratively update the quantities Ra

mn and Qa
mn, where Ra

mn repre-
sents the probability of the mth check being satisfied, when symbol
n of the codeword is considered to be in state a ∈ GF (q) and the
other symbols have a separable distribution given by the probabilities
{Qb

mn′ : n′ ∈ N (m)\n, b ∈ GF (q)}. The calculation of probability
Ra

mn is formulated as :

Ra
m,n =

∑

x:xn=b

P (zm = 0|x)
∏

k∈N (m),k �=n

Qxk
mk

. (4)

More explicitly, this implies that the quantity Ra
mn represents the

Probability Density Function (PDF) of the nth symbol being in any of
the q number of legitimate states, given the knowledge of each indi-
vidual PDF for the rest of the symbols participating in the mth check,
and given that the mth check is satisfied.

Furthermore, the quantity Qa
mn denotes the probability of the nth

symbol being in the state a ∈ GF (q) calculated from the probabilities
{Ra

m′n : m′ ∈ M(n)\m} according to:

Qa
m,n = αm,nfa

n

∏

k∈M(n),k �=m

Ra
k,n. (5)

More explicitly, the quantity Qa
mn is given by multiplying the intrinsic

probability fa
n by the product of probabilities Ra

mn provided by all
check nodes except the mth, indicating that the nth symbol is in state
a. Here N (i) and M(i) represented a set of column and row indices
of the non-zero entries in the ith row and column of the PCM, respec-
tively. The quantity Ra

mn and Qa
mn are updated as follows.

After each iteration, the a posteriori probability P a
n will be cal-

culated based on the intrinsic probability fa
n of the nth received

sample and on the information updated as well as delivered by Ra
mn

according to:
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P a
n = αnfa

n

∏

k∈M(n)

Ra
k,n. (6)

The quantity α in Equations 5 and 6 represents a normalization
factor required for ensuring that the conditions

∑
a∈GF (q) Qa

mn = 1

and
∑

a∈GF (q) P a
n = 1 are satisfied. In Equation 4, the term P (zm =

0|x) is acting as a binary flag, which returns a value of 1, if the current
codeword x satisfies the mth check, or 0 otherwise. More explicitly,
this expression has to be evaluated for all legitimate manifestations of
the codeword x, which becomes computationally prohibitive, when
the blocklength is high. However, since the operation of updating
the quantity Ra

mn in Equation 4 corresponds to calculating the joint
probability of all symbols within N (m) over GF(q) given in the form
of the corresponding sum multiplied by their corresponding matrix
entry, i.e. by the probability of

P (
∑

x:xn=b

xn · Hmn = a), a ∈ GF (q), (7)

thus a multi-dimensional FFT [14] over GF(q) may be invoked for the
sake of reducing the complexity imposed.

4. JOINT DETECTION SYSTEM

In this section, we will invoke the Baysian network of Section 2 for
characterising the LDPC decoder amalgamated with a transmit diver-
sity scheme originally proposed by Meshkat and Jafarkhani, which
was detected using a bit-by-bit decoding algorithm [12].

c

r

v

Figure 3: Tri-partite graph of the jointly detected transmit diversity
system using LDPC coding

In Figure 3 the squares represent the check nodes of the LDPC
code, while the circles correspond to its variable nodes. The black
dots represents the channel outputs. The connections between the
squares and the circles represent the non-zero entries within the PCM.
After the LDPC encoding process, each variable node contains an en-
coded LDPC symbol constituted by p = log2q bits. Each pair of
symbols is transmitted by the two transmitters and received by the
two receiver antennas through four propagation paths. Thus the lines
connecting the circles and black dots represent the two-transmitter,
two-receiver system. In the butterfly-shaped section of Figure 3 each
pair of the channel outputs is correlated, since they originate from the
same pair of modulated symbols, which are transmitted through four
different propagation paths by the two-antenna system. The message
passing scheme of the joint decoder may be described as follows. In
the associated equations, we will use r, v and c for representing the
received channel output, the variable nodes and the check nodes, re-
spectively.

Following the approach of [12], initially the jth soft channel out-
put is passed from the black dots in Figure 3 to the variable nodes

(circles) of the LDPC decoder and the associated confidence mea-
sures are calculated by comparing the soft channel output values to
all legitimate transmitted symbols according to [12] :

Mr−>v(bk) =
∑

all Bi

1

(
√

2πσn)nr
e
− |r−HS(Bi,bk)|2

2σ2
n ·

∏

bj∈Bi

Mv−>r(bj). (8)

In Equation 8, σn represents the standard deviation of the Gaus-
sian noise, H is an nr × nt matrix containing the complex valued
fading coefficients of each transmission path, where nr and nt are
the number of receiver and transmitter antennas, respectively. Using
bps representing the number of bits per symbol for the correspond-
ing modulation scheme, Bi represents the set of (nt × bps) − 1
transmitted bits, but excludes the kth bit bk, which contributes to the
value of the received vector r at the nr number of receivers, while
S(Bi, bk) is a vector of nt components containing the symbols corre-
sponding to the bit set of Bi and bk. More explicitly, let us consider
Figure 4, for example. When using QPSK modulation, four bits are
mapped into two QPSK symbols and transmitted by the two trans-
mitters to the two receivers. If Mr−>v(b2) is under consideration,
then we have Bi = {b0, b1, b3} and (Bi, b2) = {b0, b1, b2, b3}. The
vector r will contain elements of {r0, r1}. For a particular set of
Bi = {b0 = 1, b1 = 1, b3 = 0}, since QPSK modulation is em-
ployed in Figure 4, thus the notation S(Bi, b2) represents {11, 00} or
{11, 10}, depending on the specific value of b2 concerned.

r 0 r 1

b

Tx

Rx

b b b

s s

0

0 1

1 2 3

Figure 4: Schematic of a two-transmitter two-receiver system using
QPSK modulation

The metric Mr−>v(bk) is then passed to the variable nodes, and
the following message is calculated at the variable nodes [12]:

Mvk−>ci(bk) = αkMr−>v(bk)
∏

j∈M(k),j �=i

Mcj−>vk(bk), (9)

which is then passed onto the check nodes. The structure of Equation
9 is similar to the update formula of Qa

mn seen in Equation 5, with
the exception that the constant intrinsic information fa

n in Equation
5 has been replaced by Mr−>v(bk), as formulated in Equation 8.
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The metric Mcj−>vk(bk) of Equation 9 corresponds to Ra
kn in

Equation 5, which is then passed from the check nodes to the vari-
able nodes, and updated according to Equation 4. Then the message
Mv−>r(bk) has to be passed from the variable node back to the chan-
nel output, which is formulated as:

Mv−>r(bk) = α
∏

j∈M(k)

Mcj−>vk(bk). (10)

This operation is similar to Equation 6, however the instrinsic
information fa

n seen in Equation 6 is omitted from Equation 10 and
the metric Mv−>r(bk) is fed back to the channel output nodes from
the variable nodes. More explicitly, the reason that the intrinsic
information is omitted in this case is, because this information,
which was denoted by Mr−>v(bk) in Equation 9 has been used dur-
ing the calculation of the metric Mvk−>ci(bk) and thus it should
be excluded, when providing extrinsic information for the channel
output nodes.

Again, the above-mentioned procedure was proposed by Meshkat
and Jafarkhani in [12] for a binary system. In Equation 8, the a
priori information is calculated on a bit-by-bit basis, assuming
that the bits are independent of each other. However, this assump-
tion is only approximatly valid in Gray-coded non-binary modulation
schemes. Hence it is beneficial to combine non-binary QAM schemes
with matching non-binary LDPC codes, since this process requires no
symbol to bit probability conversion. Furthermore, we will show in
Section 6 that upon using a purly symbol based joint decoding tech-
nique, the associated decoding complexity may be significantly re-
duced. Hence the bit-by-bit based metric update formula of Equation
8 is converted to its symbol-based counterpart as:

Mr−>v(sk) =
∑

all Si

1

(
√

2πσn)nr
e
− |r−HS(Si,sk)|2

2σ2
n ·

∏

sj∈Si

Mv−>r(sj). (11)

In Equation 11, Si now represents a set of (nt − 1) number of
symbols rather than (nt × bps−1) number of bits, including all sym-
bols, except for sk, which contributes to the value of the received
vector r at the nr receivers, and S(Si, sk) is a vector of size nt con-
taining the symbols including s0 and s1, as in Figure 4. More ex-
plicitly, rather than using the bits representing the symbols in Figure
4 for the calculation of the a priori information, the symbols are
employed directly in this scheme. Hence, if symbol s1 of Figure 4 is
concerned, the vector Si will have only one element of {s0}. The a
priori information Mv−>r(sj) represents the probability of the
jth symbol, rather than that of the bits in Equation 8.

5. SIMULATION RESULTS

In this section, the achievable performance of the proposed system is
characterized. All simulation parameters are listed in Table 1. We
used 4QAM, 8PSK and 16QAM transmission for the sake of increas-
ing the throughput of the system. Correspondingly, non-binary LDPC
codes operating over GF(4), GF(8) and GF(16) were used. Since the
number of transmitters was set to two and the LDPC code had a cod-
ing rate of 1/2, the effective throughput was 2, 3 and 4 bits/symbol,
for the corresponding configurations. More explicitly, the effective
throughput of the modems was not reduced by the 1/2-rate LDPC
codec, because the doubled number of bits was conveyed by two
transmit antennas. A coded blocklength of 1500 bits was used.

No. of Transmitters 2
No. of Receivers 2
Max No. of Joint
Decoding Iterations 5
Channel Uncorrelated Rayleigh Fading
Average LDPC
column weight 2.5
LDPC coding rate 0.5
LDPC decoding field GF(4), GF(8), GF(16)
Modulation schemes 4QAM, 8PSK, 16QAM
System throughput 2, 3, 4 bits/symbol
Coded Blocklength 1500 bits

Table 1: System simulation parameters

0 1 2 3 4 5 6 7 8 9 10

Eb/N0(dB)
10

-5

2

5

10
-4

2

5

10
-3

2

5

10
-2

2

5

10
-1

2

5

10
0

B
E

R

16QAM
8PSK
4QAM
Bit-based + binary LDPC
Symbol-based + non-binary LDPC

Figure 5: Performance of the symbol-based joint decoding aided sys-
tem using non-binary LDPC codes for communicating over uncor-
related Rayleigh fading channels. The performance of the bit-based
joint decoding system of [12] using a 1/2-rate binary LDPC code was
also plotted as a benchmarker.

In Figure 5 it may be observed that by using the proposed symbol
based joint decoding algorithm, a better bit error ratio (BER) perfor-
mance is achieved than that of the original bit-based algorithm. An
approximately 2dB gain was achieved at a BER of 10−5 for all of the
three modulation schemes used.

6. COMPLEXITY

In this section the complexity of the proposed system is estimated.
When the number of bits per symbol is increased, calculating the a
priori probability using the bit-by-bit approach of Equation 8 will
become quite complex. Using non-binary LDPCs will also increase
the decoding complexity, however, this increase is only linearly de-
pendent on the number of bits, if the multi-dimensional FFT based
LDPC decoder of [14] is used.

As seen from Equation 8, the decoding operations require the
evaluation of all possible input symbol configurations containing the
kth bit of the original codeword, as well as the calculation of the a
priori probability provided by the neighbouring bits. Hence, for a
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* Bit-based Symbol-based
4QAM 179 91
8PSK 739 198

16QAM 3338 518
+ Bit-based Symbol-based

4QAM 27 28
8PSK 75 61

16QAM 267 144

Table 2: Complexity comparison between the bit-based benchmarker
algorithm of [12] and the proposed symbol-based algorithm using the
simulation parameters listed in Table 1.
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Figure 6: Complexity comparison between the bit-based benchmarker
algorithm of [12] and the proposed symbol-based algorithm using the
simulation parameters listed in Table 1.

system having nt transmitters and bps number of bits per symbol, the
total number of metric evaluations using Equation 8 will be 2bps·nr .
Each metric evaluation requires nt×nr number of multiplications for
determining HS(Bi, bk) in Equation 8, one multiplication for evalu-
ating the square, and one for carrying out the required division. One
substraction is needed for finding the Euclidean distance between the
received sample and each of the constellation points. Furthermore,
for each metric evaluation, bps × nt − 1 number of multiplications
are needed for calculating the a priori probability. Thus, for each
decoded bit, the required number of multiplications becomes ((bps×
nt−1)+(nt×nr+2))×2bps×nt = (nt×(bps+nr)+1)×2bps×nt .
The required number of additions is 2bps×nt . By contrast, for the
proposed non-binary system using Equation 11, the number of multi-
plications needed for the a priori probability calculation is reduced
to (nt − 1), since we are directly determining the symbol probabil-
ity. Thus the overall number of multiplications per bit for the symbol
based system is (nt × (nr + 1) + 1)× 2bps×nt/bps and the number
of additions is 2bps×nt/bps per bit.

On the other hand, upon employing non-binary LDPC codes, the
message passing between the system components becomes more com-
plex owing to the increased GF size. The number of multiplications
and additions required for each decoding bit can be represented as
7tq/log2(q) and 2tq, where t and q are the LDPC code’s average
column weight and GF size, respectively [14]. Hence the overall
complexity required by the two systems in each of the modulation
schemes is listed in Table 2, and plotted in Figure 6.

From Table 2 and Figure 6, it can be observed that by using the
proposed symbol-by-symbol joint decoding algorithm, the complex-
ity may be significantly reduced. For example, in case of 16QAM,
a complexity reduction in excess of 80 percent was achieved. This
complexity reduction becomes even higher for 64QAM. For the sake
of simplicity in this comparison, the complexity increase imposed by
the extra finite field multiplication during the codeword validation was
ignored.

7. CONCLUSION

In this contribution, a novel symbol based joint detection algorithm
was proposed for non-binary LDPC-coded transmit diversity-aided
transmissions. The proposed purely symbol-based system was ca-
pable of achieving a gain of approximately 2dB for QPSK, 8PSK
and 16QAM transmissions in comparison to the identical-throughput
bit-by-bit benchmarker algorithm. The scheme advocated was also
shown to be less compolex than its binary benchmarker.

8. REFERENCES

[1] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon Limit
Error-Correcting Coding and Decoding : Turbo Codes,” in Proceed-
ings of the IEEE International Confrence on Communications, pp. 1064–
1070, 1993.

[2] R. Gallager, “Low Density Parity Check Codes,” IEEE Transaction on
Information Theory, vol. 8, pp. 21–28, Jan. 1962.

[3] S. T. Brink, G. Framer, A. Ashikhmin, “Design of low-density parity-
check codes for modulation and detection,” IEEE Transaction on Com-
munications, vol. 52, pp. 670–678, April 2004.

[4] B. Lu, G Yue and X. Wang, “Performance analysis and design optimiza-
tion of LDPC-coded MIMO OFDM systems,” IEEE Transaction on Sig-
nal Processing, vol. 52, pp. 348 – 361, Feb. 2004.

[5] R. J. McEliece, D. J. C. MacKay, J. F. Cheng, “Turbo Decoding as an
Instance of Pearl’s Belief Propagation Algorithm,” IEEE Journal on Se-
lected Areas in Communications, vol. 16, pp. 140–152, Feb. 1998.

[6] R. Gallager, “Low Density Parity Check Codes,” Ph.D thesis,M.I.T,USA,
1963.

[7] D. J. C MacKay, and R. M. Neal, “Near Shannon Limit Performance of
Low Density Parity Check Codes,” Electronics Letters, vol. 33, pp. 457–
458, 13 March 1997.

[8] T. Richardson, R. Urbanke, “The Capacity of Low-Density Parity Check
Codes Under Message-Passing Decoding,” IEEE Transaction on Infor-
mation Theory, vol. 47, pp. 599–618, Feb. 2001.

[9] M. C. Davey and D. J. C MacKay, “Low Density Parity Check Codes
over GF(q),” IEEE Communications Letters, vol. 2, pp. 165–167, June
1998.

[10] L. Hanzo, T. H. Liew, B. L. Yeap, S. X. Ng, Turbo Coding, Turbo Equal-
isation and Space-Time Coding for transmission over fading channels,
ch. 9, pp. 317–390. Wiley & IEEE, 2002.

[11] J. Pearl, “Probabilistic Reasoning in Intelligent Systems,” San Mateo,
CA:Morgan Kaufmann, 1988.

[12] P. Meshkat and H. Jafarkhani, “Space-Time Low-Density Parity-Check
Codes,” vol. 2, (Pacific Grove, Monterey, CA, USA), pp. 1117 –1121,
3-6, Nov 2002.

[13] M. R. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE
Transactions on Information Theory, vol. 27, September 1981.

[14] M.C. Davey, “Error-Correction using Low Density Parity Check Codes,”
Ph.D thesis, University of Cambridge,UK, 1999.

[15] D. J. C. MacKay and R. M. Neal, “Good Error-Correction Codes Based
on Very Sparse Matrices,” IEEE Transactions on Information Theory,
vol. 45, pp. 399–431, March 1999.

12980-7803-8521-7/04/$20.00 © 2004 IEEE


	footer1: 
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004       
	nd: nd
	header: Proceedings of the 2   International IEEE EMBS Conference on Neural Engineering                      Arlington, Virginia · March 16 - 19, 2005
	footer: 0-7803-8709-0/05/$20.00©2005 IEEE


