Logical Architecture Strawman
for Provenance Systems

Luc Moreau, Liming Chen, Paul Groth, John Ibbotson, Michael Luck,
Simon Miles, Omer Rana, Victor Tan, Steven Willmott, Fenglian Xu

April 26, 2005

Abstract
The purpose of this document is to propose a logical architecture for a prove-
nance system. The logical architecture is specified independently of specific tech-
nologies. Specifically, we introduce our definition of provenance in the context
of service-oriented architectures, and we identify the different roles that exist in
a provenance system.

This document is the first in a series of documents aiming at specifying an architec-
ture for a provenance system. In the first instance, we focuslegi@al architecture,
which we characterise as a technology-independent abstract description of the differ-
ent roles involved in provenance systems. In order to ground this presentation, we
consider a broad view of service-orientation, which encompasses many of the tech-
nologies used to build distributed systems. In this context, we define our notion of
provenance, itself derived from the common sense definition of provenance, which we
then rely upon to elaborate our proposed architecture. In this document, numbers in
the margin of this document refer to comments in the appendix, which may discuss
technology specific aspects.

Common Sense Definition We first introduce the common sense definition of the
word ‘provenance’. Its etymology is the French verb ‘provenir’, which means to come
forth, originate. According to the Oxford English Dictionary, provenance is defined as
(i) the fact of coming from some particular source or quarter; origin, derivation. (ii)
the history or pedigree of a work of art, manuscript, rare book, etc.; concr., a record of
the ultimate derivation and passage of an item through its various owrgkewise,

the Merriam-Webster Online dictionary defines provenancgiashe origin, source;

(if) the history of ownership of a valued object or work of art or literature-rom

such definitions, we can distinguish two meanings for provenance:d&st,concept

it denotes the source or derivation of an object; secamate concretelyit is used to
refer to a record of such a derivation. We will come back to such a distinction when
we define the notion of provenance we adopt in this project.

1

Context We take the broad view that open, large-scale systems are typically designed
using aserviceoriented approach; by service, we do not intend to restrict ourselves to
a specific technology, instead we mean to refer to components that take inputs and
produce outputs. Such services are brought together to solve a given problemtypi-
cally via aworkflowdefinition that specifies their composition. In this abstract vigw,
interactions with services take place witfessagethat are composed in accordance
with servicesinterface specifications. In a service-oriented architecture (SO4S),
clients typically invoke services, which may themselves act as clients for other ser-
vices; hence, we will use the teractor to denote either a client or a service in a SOA.
Finally, the execution of a workflow will be referred to apracess 4)

In real life, actors may have internslatesthat change during the course of execu-
tion. An actor’s state is not directly observable by other actors; to be seen by another
actor, the state (or part of it) has to be communicated as part of a message sent by its
owner actor. (5)

Our broad, technology-independent approach to SOAs has formal foundations in
ther-calculus [Mil99] and asynchronous distributed systems [Lyn95, Tel94]. Accord-
ing to such a conception of the world, messages are the only mechanism used to trans-
fer information between actors. Thecalculus is of interest in this context because of
its approach to defining events that are internal to actors as hidden communications;
an asynchronous view of distributed systems is, however, a better match to service-
oriented architectures. In both cases;alculus and asynchronous distributed systems
consider that messages are also the only observable events; this is the only assump-
tion that can be made of open distributed systems, in which actors may not necessarily
wish or be able to reveal their internal behaviour or state, despite being involved in the
computation of results we wish to track the provenance of.

Provenance Definition We propose a definition of provenance that is inspired from
previous work [GLM04a, GLM04b, Gro04, TGX05, MGBMO05, SM03], the EU Prove-
nance project pre-prototype [XB®5] and its user requirements document [AV05]. In

the context of this documernhe provenance of a piece of data is the process that led to
the data.Referring to the two common sense definitions of provenance, we note that
such a definition is concerned with provenance as a concept. Ultimately, our aim is
to conceive a computer-basexpresentatiorof provenance that allows us to perform
useful analysis and reasoning to support our use cases. The provenance of a piece of
data will be represented in a computer system by some suitable documentation of the
process that led to the data. While our applications will specify the form that such
documentation should take, we can identify several of its general properties. Docu-
mentation can be complete or partial (for instance, when the computation has not yet
terminated); it can be accurate or inaccurate; it can present conflicting or consensual
views of the actors involved; it can be descriptive or conceptual. (6)

Provenance System and Architecture In the context of this document, @ove-

nance systens defined as a computer system that deals with all issues pertaining to
the recording, maintenance, visualisation, reasoning and analysis of the documentation
of the process that underpins the notion of provenance. Such a system is a software
implementation of gorovenance architecturenvhich identifies the different roles in

such a system, their interactions and the kind of provenance representation they are
expected to support.

As far as a provenance architecture is concerned, we distinguish the activity that
consists ofrecordingthe representation of provenance of some data from the activ-
ity that makes usef recorded provenance representation. We now further detail our
notion of “documentation of a process”, and we describe a logical architecture for
recording it and making use of it.

Provenance Representation In this section, we introduce the key elements that form

the representation of provenance in a SOA; further refinement will ultimately lead to
data types for provenance representation. In our discussion, given the provenance of
some data, we shall make the distinction between the whole of provenance and one of
its constituents, i.e., a specific piece of information documenting part of the process
that led to the data. Hence, a given element of the provenance representation will
be referred to as p-assertion(assertion, by an actor, pertaining to provenance). We
note that a given p-assertion may belong to the provenance representation of multiple
pieces of data. A p-assertion that is recorded documents a step of a process in progress,
which ultimately will lead to a piece of data. At the time of the recording, we may
ignore the piece of data that will be produced; however, the p-assertion being recorded
constitutes an element of the provenance representation of the data. For instance, when
some quality wood is being transported in the Amazon forest, one may ignore that it
will be used for creating the frame for a future famous painting, still to be painted.

Computer science has a long tradition of focusing on communications and interac-
tions as a central concept used in the study and modelling of complex systems, e.g.,
programming languages semantics, process algebrae and more recently in biological
systems models. In the context of SOAs, interactions consist of the messages ex-
changed between actors. By capturing all the interactions that take place between
actors involved in the computation of some data, one can replay an execution, analyse
it, verify its validity or compare it with another execution. Given the open nature of
the distributed systems that we consider, interactions (i.e., message exchanges) are the
only events that we can observe. Hence, describing such interactions is core to the
documentation of process.

Therefore, the documentation of a process that leads to a piece of data includes a set
of interaction p-assertionseach describing an interaction between actors involved in
the computation of the data. Practically, an interaction p-assertion contains a message
exchanged between two actors. (7

Interaction p-assertions capture the observable interactions between actors of a sys-

tem. In some circumstances, however, actors’ internal states may also be necessary to
understand the functionality, performance or accuracy of actors, and therefore the na-
ture of the result they compute. Hence, we introduce the notion alctor state
p-assertionas the documentation provided by an actor about its internal state in the
context of a specific interaction. Actor state documentation is extremely varied: it
can include the function the actor performs, the workflow that is being executed, the
amount of disk and CPU a service used in a computation, the floating point precision
of the results it produced, or application-specific state descriptions. We note that in a
distributed system, an actor state is not externally observable, and therefore can only
be captured by cooperative contribution of the actor itself.

In summary, p-asssertions can be of two disjoint kinds: interaction p-assertions
and actor state p-assertions. We note that both interaction and actor state p-assertions
are independent of the actual service technology used to implement applications.

Provenance Architecture Roles In order to support the capture and querying of
these categories of p-assertions, we have specified a provenance architecture that takes
into account a broad range of use cases [MGBMO05, AV05]. It is summarised in Fig-
ure 1, which we discuss in the rest of this section. Central to the architecture is the
notion of aprovenance storevhich is designed to store and maintain provenance rep-
resentation beyond the life of a Grid application. In a given application, one or more
provenance stores may be used in order to archive the representation of provenance:
multiple provenance stores may be required for scalability reasons or for dealing with
the physical deployment of a given application, possibly involving firewalls.

In order to accumulate p-assertions, a provenance store provglgsrassion in-
terfacethat allows different actors to submit p-assertions related to their interactions
and internal states. A provenance store is not just a sink for p-assertions: it must also
support some query facility that allows, in its simplest form, browsing of its contents,
and, in its more complex form, search, analysis and reasoning over the provenance
representation so as to support use cases. To this end, we intraergeinterfaces
that offer multiple levels of query capability. Finally, since provenance stores need to
be configured and managed, an appropmaémagement interfade introduced.

Someactor-side librariedacilitate the tasks of submitting p-assertions in a secure,
scalable and coherent manner and of querying and managing provenance stores. They
are also designed to ease integration with legacy applications. Interfaces and libraries
have different purposes: the former specify the messages accepted and returned by
provenance stores, and will be the focus of a standardisation proposal to ensure that
applications can inter-operate with different implementations of provenance stores; the
latter are convenience libraries offering bindings for specific programming languages.

(8)

During an application’s execution, application servicesre expected to submit
p-assertions to a provenance store; this not only applie®neain-specific services
but also toworkflow enactment enginesdregistries Additionally, users may have

Presentation
Services

Trace
Visualiser /
Browser

Trace
Difference
Visualiser

Trace
Validity
Visualiser

Service
Quality
Visualiser

Workflow
Construction
Tool

Processing
Services
User
Management
Tool
User
Provenance
Recording
Tools
User
Requlr_smsnt
cvs Policy
Provenance
Annotater

Portlets

- Service Trace Semantic
g‘;‘:\'l‘i'gg Quality Comparison Validity
Analysers Service Analyser

Re-enactment
Service

Actor-Side
Query
Library

Provenance
Store Policy

Actor-Side
Management
Library

Workflow
Enactment
Engine

Domain-
Specific
Services

Policy-Based
Matchmaking
Discovery
Negotiation

Trace
to Workflow
Converter

Publication
Generator

Query Interface I

Management
Interface

Submission
Interface

Actor-Side
Submission
Library

i

Service
Requirement &
Capability
Policy

Figure 1: Provenance Logical Architecture

access t@oolsto manage provenance stores and to submit information to provenance
stores, such as annotations about previous execution.

Once p-assertions have been recorded in a provenance store, provenance repre-
sentation can be used Ipyocessing serviceand presentation servicesThe former
provide added-value to the query interfaces by further searching, analysing and rea-
soning over recorded provenance, whereas the latter essentially visualise the contents
of the store and of processing services’ outputs. Figure 1 provides examples of such
processing and presentation services offering functionality discussed in [MGBMO5].
For instance, processing services can offer auditing facilities, can analyse quality of
service based on previous execution, can compare the processes used to produce sev-
eral data items, can verify that a given execution was semantically valid, can identify
points in the execution where results are no longer up-to-date in order to resume ex-
ecution from these points, can re-construct a workflow from an execution trace, or
can generate a textual description of an execution. Presentation services can for in-
stance offer browsing facilities over provenance stores, visualise differences in differ-
ent execution, illustrate execution from a more semantic viewpoint, can visualise the
performance of execution, and can be used to construct provenance-based workflows.
We note that such a list of processing and presentation services is illustrative and not
exhaustive; furthermore, it does not represent a commitment by the project to deliver
these services specifically.

To be generic, a provenance architecture must be deployable in many different con-
texts and has to support user preferences. To adapt the behaviour of the architecture to
the prevailing circumstances and preferences, sepetaliesare introduced to help
configure the system in its different aspects. Specifical(y), policies state user re-
quirements about recording, e.g., to identify the provenance stores to use, the level of
documentation required by the user, desired security asp@tgolicies specify ca-
pabilities of documenting execution that services may wish to advertise (such as their
ability to provide some type of actor states documentation), but in order to fulfill these,
that they may also require from other services they rely upon (such as their need for
high throughput or highly persistent provenance storés);policies define configura-
tions of provenance stores, from a deployment and security viewpoint (e.g., resources
they use, their access control list, or registry where they should be advertised). By
making explicit all these policies, it becomes possibldigzoverservices thamatch
user or other service needs. When requested policies conflict with discovered policies,
negotiationcan be initiated to find a compromise between the offer and demand.

Protocol for Recording p-assertions We introduce PReP, the Provenance Record-

ing Protocol, which specifies the messages that actors can asynchronously exchange
with the provenance store in order to record p-assertions [GLM04a, GLMO04b]. While
PReP identifiebowp-assertions should be recorded, it does not spadignto do so.

Such flexibility must be provided in order to customise recording according to the ap-
plication’s needs: if the application requires provenance to be used immediately while

execution still proceeds, p-assertions may be submitted synchronously with execution;
alternatively, when provenance is used after application completion, p-assertions may
be recorded asynchronously so as to reduce recording overhead. Actor-side libraries
offer support for such asynchronous recording of p-assertions.

Query Interfaces In order to be useful, the provenance stores must support queries
over the provenance representation, whatever the state of the process documentation
(complete or not, detailed or not). Furthermore, while we have identified application-
independent constituents of provenance representation, we also expect provenance
gueries to refer to domain specific aspects. Therefore, multiple query interfaces will
be provided in order to support various query capabilities. These interfaces remain to
be specified.

Conclusion This document has introduced the notion of provenance of some data
in the context of SOAs, which we expressed in terms of interaction and actor state p-
assertions. It has also identified some key roles involved in a provenance architecture.
This document is a living document which will continue to evolve in order to meet
future requirements.

The document is complemented by a security logical architecture, which analyses
the security issues relevant to the provenance architecture and identifies its core com-
ponents. In the future, we will analyse the proposed logical architecture against the
captured technical requirements. Instantiations of the logical architecture to specific
technologies and applications will then be proposed.

1 Appendix: Notes

This appendix refers to annotations introduced in the margin of the logical architecture
document.

Note 1 Specifically, the following are all considered as “services” because they all
take some inputs and produce some outputs: Web Service, Corba or RMI objects,
command line program.

Note 2 With such a broad definition, we see that WS-BPEL, WSFL, VDL, Dagman’s
DAGs or Gaudi are all workflow frameworks capable of expressing the composition of
services. Likewise, a script calling several command line commands is also regarded
as a workflow.

Note 3 Such messages take the form of SOAP messages for Web services. In the case
of command line executables, we do not have explicit messages; instead, they take
some explicit arguments potentially representing both inputs and outputs. We also
see a memory shared by two threads as a way of implementing such message-passing
mechanism; the message itself is the information stored in the shared memaory.

Note 4 Our definition of process, like the Unix notion of process, refers to an instance
of a running program (workflow here).

Note 5 At this stage of the specification, we do not make the distinction between re-
source and service [CalFB4] since they are defined in the context of the specific Web
Services technology. Our broad view of message allows us to include in a message the
necessary reference to resources, as required by WSRF.

Note 8 We note that the definitions introduced here are in no way restricted to elec-
tronic data; they are equally applicable to physical objects. Specifith#yprove-

nance of some object is the process that led to the ghkijastrepresented by the doc-
umentation of the process that led to the ohjdebr a discussion of the relationship
between the provenance of an object and a data, we refer the reader to a companion
document in preparation.

Note 7 In a Grid application based on command line executables, an interaction
p-assertion includes the executable fully qualified name, its inputs and its outputs,
whereas in a Web Services based approach, interactions documentation will include
input and output SOAP messages, and a reference to the service, port and operation
being invoked. In the latter case, we note that an interaction p-assertion includes not
only the SOAP message body, but also its envelope, containing valuable information
such as security, addressing, resource or coordination contexts.

Note 8 In a concrete instantiation of the logical architecture for Java and Web Ser-
vices technologies, interfaces will be specifiedbyDL, whereas libaries will be Java
classes, generated tsgdl2java , implementing the stubs necessary to communicate
with the provenance stores, with possibly some basic convenience functions.

2 Terminology

In this appendix, for reference, we provide definitions of concepts that are related to
provenance.

A log/logbookis an official record of events during the voyage of a ship or aircraft
(OED). Anaudit trail is a record of the computing processes which have been applied
to a particular set of source data, showing each stage of processing and allowing the
original data to be reconstituted; a record of the transactions to which a database or
a file has been subjected (cf. TRACE). (OED)trace is the detailed examination
of the execution of a program or part of one (usu. to investigate a fault) with the aid
of another program that can cause individual instructions, operands, and results to be
printed or displayed as they are reached by the first program; the analysis so obtained,;
also, a trace program. (OED)

In the context of databases, thdy-provenancef a piece of output data is the
set of all witnesses to why that piece of data exists in the output, whereae-
provenancealescribes which pieces of source data contribute to a piece of output data
[BKTO1]. Given a warehouse data iteinfinding the exact set of source data items
from whichi was derived is termed thaata lineageproblem [CWWOQO0].

References

[AV05]

[BKTO1]

[CalFFr04]

[CWWOO]

[GLMO04a]

[GLMO4b]

[Gro04]

[Lyn95]

[MGBMO5]

[Mil9g]

[SMO03]

Arpad Andics and Laszlo Varga. User requirements document. Technical
report, MTA SZTAKI, February 2005.

Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and
Where: A Characterization of Data Provenance.lnternational Con-
ference on Database Theory (ICQDRPO01.

Karl Czajkowski, Donal Ferguson adn lan Foster, Jeffrey Frey, Steve Gra-
ham, Igor Sedukhin, David Snelling, Steve Tuecke, and William Vam-
benepe. The WS-Resource Framework, March 2004.

Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a
warehousing environmenACM Trans. Database Syse5(2):179-227,
2000.

Paul Groth, Michael Luck, and Luc Moreau. Formalising a protocol for
recording provenance in grids. Rroceedings of the UK OST e-Science
second All Hands Meeting 2004 (AHM’Q&ottingham, UK, September
2004.

Paul Groth, Michael Luck, and Luc Moreau. A protocol for recording
provenance in service-oriented grids. Pmoceedings of the 8th Inter-
national Conference on Principles of Distributed Systems (OPODIS’04)
Grenoble, France, December 2004.

Paul T. Groth. Recording provenance in service-oriented architectures. 9
month report, University of Southampton; Faculty of Engineering, Sci-
ence and Mathematics; School of Electronics and Computer Science,
2004.

Nancy Lynch. Distributed Algorithms Morgan Kaufmann Publishers,
December 1995.

Simon Miles, Paul Groth, Miguel Branco, and Luc Moreau. The re-
quirements of recording and using provenance in e-science experiments.
Technical report, University of Southampton, 2005.

Robin Milner. Communicating and mobile systems: thealculus Cam-
bridge University Press, 1999.

Martin Szomszor and Luc Moreau. Recording and reasoning over data
provenance in web and grid serviceslnternational Conference on On-
tologies, Databases and Applications of SEmantics (ODBASE@B)

ume 2888 olecture Notes in Computer Sciengages 603—-620, Cata-
nia, Sicily, Italy, November 2003.

10

[Tel94]

[TGX05]

[XBC+05]

Gerard Tel.Introduction to Distributed AlgorithmsCambridge Univer-
sity Press, 1994.

Paul Townend, Paul Groth, and Jie Xu. A provenance-aware weighted
fault tolerance scheme for service-based applicationBradn. of the 8th
IEEE International Symposium on Object-oriented Real-time distributed
Computing (ISORC 2005May 2005.

Fenglian Xu, Alexis Biller, Liming Chen, Victor Tan, Paul Groth, Si-
mon Miles, John Ibbotson, and Luc Moreau. A proof of concept design
for provenance. Technical report, University of Southampton, February
2005.

11

