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Experiments With Repeating Weighted
Boosting Search for Optimization
in Signal Processing Applications
Sheng Chen, Senior Member, IEEE, Xunxian Wang, and Chris J. Harris

Abstract—Many signal processing applications pose optimiza-
tion problems with multimodal and nonsmooth cost functions.
Gradient methods are ineffective in these situations, and opti-
mization methods that require no gradient and can achieve a
global optimal solution are highly desired to tackle these difficult
problems. The paper proposes a guided global search optimization
technique, referred to as the repeated weighted boosting search.
The proposed optimization algorithm is extremely simple and
easy to implement, involving a minimum programming effort.
Heuristic explanation is given for the global search capability of
this technique. Comparison is made with the two better known
and widely used guided global search techniques, known as the ge-
netic algorithm and adaptive simulated annealing, in terms of the
requirements for algorithmic parameter tuning. The effectiveness
of the proposed algorithm as a global optimizer are investigated
through several application examples.

Index Terms—Adaptive simulated annealing, boosting, evolu-
tionary computation, genetic algorithm, global search, multistart,
optimization, stochastic algorithm.

I. INTRODUCTION

OPTIMIZATION problems with multimodal and/or non-
smooth cost functions are commonly encountered in

a variety of signal processing applications. Gradient-based
algorithms become ineffective in these applications due to
the problem of local minima or the difficulty in calculating
gradients. Optimization methods that require no gradient and
can arrive at a global optimal solution offer considerable ad-
vantages in solving these difficult problems. Various research
communities have always been interested in the topic of global
optimization, due to its importance, and a variety of global
optimization techniques have been developed; see, for example,
[1]–[14]. Within the wide field of engineering, two well-known
classes of such global optimization methods are the genetic al-
gorithm (GA) [7]–[10] and adaptive simulated annealing (ASA)
[11]–[14]. Both the GA and ASA have attracted considerable
attention in signal processing applications; see, for example,
[15]–[23]. The GA and ASA belong to a class of so-called
guided random search methods. The underlying mechanisms
for guiding optimization search process are, however, very
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different for the two methods. The GA is population based and
evolves a solution population according to the principles of
the evolution of species in nature. It is by far the most widely
applied global optimization scheme in machine learning and
engineering applications. The ASA, by contrast, evolves a
single solution in the parameter space with certain guiding
principles that imitate the random behavior of molecules during
the annealing process. Unlike the conventional simulated an-
nealing [11], [24], the ASA adopts an important mechanism
called the reannealing scheme, which not only speeds up the
search process but also makes the optimization process robust
to different problems.

The motivation of this work comes out of our experience with
the GA and ASA. In line with many other researchers’ experi-
ence, we have found that the two algorithms generally perform
well in very different problems and have similarly good con-
vergence speeds. The search mechanisms of the GA are com-
plicated, as it is difficult to understand exactly how the search
space is being explored. A carefully designed GA requires major
programming efforts. This difficulty may be circumvented by
simply using an existing GA software packet. Tuning a GA,
however, is by no means an easy task and requires consider-
able experience, as there are a number of algorithmic param-
eters that need to be chosen carefully in order to achieve fast
global convergence. The ASA, to some extent, is easier to im-
plement and has less parameters that require tuning. Even so, it
is always advisable to design the ASA algorithm with cares. In
particular, the reannealing scheme and annealing schedule re-
quire carefully design and tuning. What motivates this research
is the desire to have a general global optimization algorithm that
is very simple to program and easy to tune, yet has convergence
speed comparable to those of the GA and ASA. To this end, we
propose a guided random search algorithm as a global optimiza-
tion tool, which we refer to as the repeated weighted boosting
search (RWBS).

The proposed algorithm is remarkably simple, requiring a
minimum software programming effort and algorithmic tuning.
The basic process evolves a population of initially randomly
chosen solutions by performing a convex combination of the
potential solutions and replacing the worst member of the pop-
ulation with it until the process converges. The weightings used
in the convex combination are adapted to reflect the “good-
ness” of corresponding potential solutions using the idea from
boosting [25]–[28]. The process is repeated a number of times
or “generations” to improve the probability of finding a global
optimal solution. An elitist strategy is adopted by retaining the
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best solution found in the current generation in the initial popu-
lation of the next generation. The inner iteration loop, known
as the weighted boosting search process, is designed to effi-
ciently find a minimum point within the convex hull defined
by the initial population members. This capability as a local
optimizer can be explained by the theory of weak learnability
associated with boosting [25], [26]. Keeping the best solution
found in the previous generation as a member of the initial
population ensures that the information obtained regarding the
previous search region is not lost. By repeating the weighted
boosting search a number of generations, the algorithm resem-
bles a random search algorithm called the multistart [1]. How-
ever, there are important differences between the multistart and
the proposed RWBS algorithm. In the multistart, a single point
is randomly generated, and starting from this point, a local opti-
mizer is used to find a minimum. The process is then repeated.
Note that drawing randomly a number of points adopted by
the proposed algorithm is also the sampling strategy used in a
class of global optimization methods referring to as clustering
methods [1]. A number of experiments are performed, involving
three different signal processing applications, to demonstrate
the effectiveness of this proposed RWBS algorithm as a global
optimization tool. Comparisons with the GA and ASA, in terms
of software programming effort, algorithmic tuning, and con-
vergence speed, are given.

II. PROPOSED GUIDED RANDOM SEARCH METHOD

Many signal processing applications pose the following
generic optimization problem:

(1)

where is the -dimensional parameter
vector to be optimized, and defines the feasible set of .
The cost function can be multimodal and nonsmooth.
We propose a guided global search method to find a global
minimum solution of this optimization problem. The basic
component of the proposed guided random search method is
the following weighted boosting search algorithm.

A. Weighted Boosting Search as a Local Optimizer

Consider a population of points: for
. These points can be randomly chosen. Let

and , where
. Now, a th point is generated

by performing a convex combination of , , as

(2)

where the weightings satisfy and

(3)

Obviously, the point is always within the convex hull
defined by the values , . A mirror image

Fig. 1. Simple weighted search optimization process.

of is then generated with respect to and along the
direction defined by as

(4)

If or are outside , they can always be projected
back to . According to their cost function values, the best
of and then replaces . The process is re-
peated until the population converges. The convergence can be
assumed, for example, if

(5)

where the small positive scalar is the chosen accuracy.
A simple illustration is depicted in Fig. 1 for a one-dimen-

sional (1-D) case, where there are points ( , and
), , and . The fourth point is a

weighted combination of , , and , and is the mirror
image of . As is better than (a smaller cost function
value), it replaces in the population. Clearly, how the convex
weighted combination is performed is critical. The weightings

for , , should reflect the “goodness” of , and
the process should be capable of self-learning or adapting these
weightings. This is exactly the basic idea of boosting [25]–[28].
Specifically, the AdaBoost algorithm of [26] is modified to adapt
the weightings , in this weighted boosting
search process. The weighted boosting search can be seen as
an optimizer that finds an optimal solution within the convex
region defined by the initial population. Although a rigorous
proof remains to be worked out, a heuristic explanation of this
capability as a local optimizer can be given using the theory of
weak learnability [25], [26]. The members of the population ,

can be seen to be produced by a “weak learner,”
as they are generated “cheaply” and do not guarantee certain
optimal property. Schapire [25] showed that any weak learning
procedure can be efficiently transformed (boosted) into a strong
learning procedure with certain optimal property. In our case,
this optimal property is the ability of finding an optimal point
within the defined search region. Boosting is a general method
for improving the accuracy of any given learning algorithm, and
the effectiveness of the boosting strategy for a wide rang of
machine learning applications is well documented; see, for ex-
ample, [25]–[28].

B. Repeated Weighted Boosting Search as a Global Optimizer

The aforementioned weighted boosting search is a local op-
timizer, as the solution obtained depends on the initial choice
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of population. An effective strategy to “convert” a local opti-
mizer to a global optimizer is to repeat it multiple times with
some random sampling initialization. This, for example, is the
strategy adopted in a stochastic algorithm for global optimiza-
tion called the multistart [1]. We employ this proven strategy and
repeat the weighted boosting search a number of times. Each run
of the weighted boosting search process is referred to as a gen-
eration. An elitist initialization of the population for each gen-
eration is adopted, where each generation retains the solution
found in the previous generation and fill the rest of the popula-
tion randomly. This RWBS algorithm can now be summarized
as follows.

Specify the following algorithmic parameters: —population
size; —number of generations in the repeated search;

—number of iterations in the weighted boosting search;
—accuracy for terminating the weighted boosting search.

•• Outer loop: generations For
• Generation initialization: Initialize the population by

setting and randomly generating rest
of the population members , , where

denotes the solution found in the previous gen-
eration. If , is also randomly chosen.

• Weighted boosting search initialization: Assign the ini-
tial distribution weightings ,

for the population, and calculate the cost function
value of each point

• Inner loop: weighted boosting search For

• Step 1: Boosting
1) Find

Denote and
2) Normalize the cost function values

3) Compute a weighting factor according to

4) Update the distribution weightings for

for;
for;

and normalize them

• Step 2: Parameter updating
1) Construct the th point using the formula

2) Construct the th point using the formula

3) Compute the cost function values and
for these two points, and find

4) The pair ( , ) then replaces ( , )
in the population.1

• If , exit inner loop
• End of inner loop The solution found in the th gen-

eration is .
•• End of outer loop This yields the solution .
To guarantee a global optimal solution as well as to achieve a

fast convergence, the algorithmic parameters , , , and
need to be set carefully. The appropriate values for these al-

gorithmic parameters depends on the dimension of and how
hard the objective function to be optimized is. Generally, these
algorithmic parameters have to be found empirically, just as in
any global optimization algorithm. The elitist initialization is
very useful, as it keeps the information obtained by the previous
search generation, which otherwise would be lost due to the ran-
domly sampling initialization. In the inner loop optimization,
there is no need for every members of the population to con-
verge to a (local) minimum, and it is sufficient to locate where
the minimum lies. Thus, the number of weighted boosting itera-
tions can be set to a relatively small integer, and the accuracy
for stopping the weighted boosting search can be set to a rel-
atively large value. This makes the search efficient, achieving
convergence with a small number of the cost function evalua-
tions. It should be obvious, although the formal proof is still re-
quired, that with sufficient number of repeats or generations, the
algorithm will guarantee to find a global optimal solution. The
question is as follows: Will this strategy of repeating weighted
boosting search be efficient in terms of the required total number
of the cost function evaluations? This will be investigated in the
experiments of Section III. Here, we use a simple 1-D optimiza-
tion problem to gain some experience with this RWBS algo-
rithm.

The cost function to be optimized, which is depicted in
Fig. 2(a), is given by

Uniformly random sampling in [ 8, 8] was adopted for popu-
lation initialization. With a population size , number of
weighted boosting iterations , and stopping accuracy

1It will keep the weighting � (t). This weighting value will be updated
anyway in the next round according to the new cost function value.
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Fig. 2. Experimenting with a 1-D multimodal function minimization using the
repeated weighted boosting search. (a) Cost function, where the number 100
beside the solution (point in the graph) indicates the convergence to the global
minimum in all the 100 experiments. (b) Convergence performance averaged
over 100 experiments.

for weighted boosting search as well as by setting
number of generations to , the RWBS algorithm consis-
tently converged to the global minimum point at in all
the 100 experiments conducted, as can be seen from the conver-
gence performance shown in Fig. 2(b). The averaged number of
cost function evaluations required for the algorithm to converge
to the global optimal solution is around 110.

C. Implementation Comparison With the GA and ASA

Because the GA and ASA are popular choices for global op-
timization in machine learning and engineering applications,
we compare the implementation considerations of the proposed
RWBS algorithm with the GA and ASA. The first implementa-
tion issue is the software programming effort required to code an
algorithm. It is self-evident that the RWBS is extremely simple,
requiring a minimum programming effort. The GA is anything
but simple, in terms of programming efforts. The ASA, in the
form presented in [21], is much easier to programme than the
GA but still cannot compete with the simplicity of the RWBS.
The difficulty with programming a GA can be circumvented by
simply using some existing GA software packets written by ex-
perts, but the same cannot be said with tuning a GA. To tune a
GA for a successful application requires considerable expertise,
as there are a large number of the algorithmic parameters that

TABLE I
COMPARISON OF ALGORITHMIC TUNING REQUIREMENTS FOR THE

GA, ASA, AND RWBS

need to be set/chosen carefully. The ASA has very few algo-
rithmic parameters to tune, compared with the GA, but tuning
a successful ASA is still much harder than the RWBS. This is
because the choices of these algorithmic parameters have crit-
ical influence on the reannealing scheme and annealing schedule
that ensure fast global convergence. The RWBS also has very
few algorithmic parameters, and moreover, the choices of these
parameters are relatively straightforward, in comparison with
the GA and ASA. In Table I, we compare the tuning issue of
these three global optimization algorithms by listing their al-
gorithmic parameters. Since operations involved in the RWBS
are straightforward and much simpler than those for the GA or
ASA, the computational complexity of this algorithm will be
much simpler than those for the GA and ASA, provided that the
convergence speed of the algorithm, in terms of the number of
total cost function calls, is comparable to those of the GA and
ASA. Theoretical analysis of convergence speed of a generic
global optimizer is very difficult if not impossible. We therefore
turn to experiments for investigating this critical issue.

III. OPTIMIZATION APPLICATIONS

The versatility of the proposed guided random search algo-
rithm as potentially a global optimization tool is investigated
using three very different signal processing application prob-
lems. The first two applications are typically global optimization
problems, and the previous results involving the GA and ASA
are available. These results are used as benchmarkers to com-
pare with the convergence performance of the proposed RWBS
algorithm.

A. Infinite-duration Impulse Response (IIR) Filter Design

The adaptive IIR filter is a classical research area, and many
properties of IIR filters are well known [29], [30]. Because the
cost function of IIR filters is generally multimodal with respect
to the filter coefficients and the usual gradient-based algorithm
can easily be stuck at local minima, global optimization methods
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Fig. 3. Schematic of adaptive IIR filter for system identification, where x(k)
is the system input, y(k) the filter output, and d(k) the noisy plant observation.

have been applied to IIR filter design; see, for example, [15],
[16], and [31]–[34]. Consider the use of IIR filter in system iden-
tification application, as depicted in Fig. 3, where the IIR filter
with the model transfer function

(6)

is used to model the unknown plant with the system transfer
function . The IIR filter design can be formulated as an
optimization problem with the mean square error (MSE) as the
cost function:

(7)

where is the filter’s desired response, the filter’s
output, is the filter’s error signal, and

denotes the filter coefficient
vector. The goal is to minimize the MSE (7) by adjusting . In
practice, ensemble operation is difficult to realize, and the cost
function (7) is usually substituted by the time-averaged cost
function:

(8)

When the filter order is smaller than the system order,
local minima problems can be encountered [30]. To maintain
the stability during optimization, we convert the direct-form IIR
filter coefficients , to the lattice-form reflection
coefficients , and make sure that all the
have magnitudes less than 1. Thus, the filter coefficient vector
used in optimization is

(9)

Converting the reflection coefficients back to the direct-form
coefficients is straightforward [35].

Example 1: This example is taken from [30]. The system and
filter transfer functions are, respectively

(10)
The analytical MSE (7) in this case is known when the input is a
white sequence and the noise is absent. The cost function has a
global minimum at with the value
of the normalized MSE 0.2772 and a local minimum at

with the normalized MSE value 0.9762. In the

Fig. 4. Convergence performance averaged over 100 experiments for IIR filter
design Example 1. (a) Using the repeated weighted boosting search. (b) Using
the adaptive simulated annealing.

population initialization, the parameters were uniformly ran-
domly chosen as
( for stability consideration). It was found
empirically that the population size , the number of
weighted boosting iterations , the stopping accuracy for
weighted boosting search , and the number of genera-
tions were appropriate for this example, and Fig. 4(a)
depicts convergence performance of the RWBS algorithm aver-
aged over 100 experiments. The previous study [21], [34] has
applied the ASA to this example. The result of using the ASA
is reproduced in Fig. 4(b) for comparison. It can be seen from
Fig. 4 that both the RWBS and ASA have the same fast conver-
gence speed, requiring an average of 200 cost function calls to
reach the global minimum. The work [15] has applied a GA to
the same example. The result given in [15] shows that the GA is
slower to converge to the global minimum, requiring an average
of 600 cost function evaluations to do so. The distribution of the
solutions obtained in 100 experiments by the RWBS algorithm
is shown in Fig. 5.

Example 2: This is a third-order system with the system
transfer function given by

(11)

In the simulation, the system input was a uniformly dis-
tributed white sequence, taking values from ( 1, 1), and the
signal-to-noise ratio was SNR dB. The data length used in
calculating the MSE (8) was . When a reduced-order
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Fig. 5. Distribution of the solutions (a , b ) (small circles) obtained in 100
experiments for IIR filter design Example 1 by the repeated weighted boosting
search. (a) Entire search space, where the large square indicates the global
minimum and the large circle the local minimum. (b) Zooming in the global
minimum.

filter with and was used, the MSE was mul-
timodal, and the gradient-based algorithm performed poorly as
was demonstrated clearly in [34]. It was found that for the pro-
posed RWBS algorithm, , , ,
and were appropriate. Fig. 6(a) depicts convergence
performance of the RWBS algorithm averaged over 500 exper-
iments. In [21] and [34], convergence performance using the
ASA was obtained by averaging 100 experiments,2 and this re-
sult is also replotted in Fig. 6(b).Again, it is seen from Fig. 6
that both the RWBS and ASA have the same fast global conver-
gence speed. The distribution of the solutions obtained in 500

2There were typing errors in [21] and [34]: The input sequence x(k) was
uniformly distributed in (�1, 1) and not in (�0.5, 0.5).

Fig. 6. Convergence performance for IIR filter design Example 2. (a) Averaged
over 500 experiments using the repeated weighted boosting search. (b) Averaged
over 100 experiments using the adaptive simulated annealing.

experiments by the RWBS is illustrated in Fig. 7. It is clear that
for this example, there are infinitely many global minima, and
the global minimum solutions for ( , ) form a 1-D space.

B. ML Joint Channel and Data Estimation

Consider the digital communication channel, whose received
signal at sample is modeled by

(12)

where is the channel length, are the channel impulse
response taps, the symbol sequence is independently
identically distributed with an -pulse amplitude modulation
(PAM) symbol constellation, and is a channel Gaussian
white noise. Let

(13)

be the vector of received data samples, the corresponding
transmitted data sequence, and the channel tap vector, respec-
tively. The joint maximum likelihood (ML) estimate of and

is obtained by maximizing the conditional probability density
function of , given and . Equivalently, the ML solution is
the minimum of the cost function:

(14)
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Fig. 7. Distribution of the solutions obtained with the repeated weighted
boosting search algorithm in 500 experiments for IIR filter design Example 2.
(a) (a , a ) as circles and (� , � ) as crosses. (b) (a , a ) as circles, (b , b )
as squares, and (� , � ) as crosses.

that is

(15)

This joint ML estimate, however, is too expensive to compute
except for the simplest case. In practice, suboptimal solutions
are sought for computational purposes. The algorithm based on
a blind trellis search technique [36] is such an example.

The joint minimization process (15) can also be performed
using an iterative loop first over the data sequences and then
over all the possible channels

(16)

The inner optimization can be carried out using the standard
Viterbi algorithm (VA). The previous research has used the

Fig. 8. (a) Mean square error and (b) mean tap error against number of VA
evaluations averaged over 100 experiments, with 2-PAM symbols and data
samples N = 50, using the repeated weighted boosting search algorithm.

quantized channel algorithm [37], the GA [18], and the ASA
[21] to perform the outer optimization. In this study, we apply
the RWBS algorithm to perform the outer optimization. Specif-
ically, given the channel estimate , let the data sequence
decoded by the VA be . Then, the cost function used by the
search algorithm is the MSE

(17)

The search range for each channel tap is since the
channel can always be normalized. In practice, convergence of
the algorithm is observed through the MSE (17). In simulation,
the performance of the algorithm can also be assessed by the
mean tap error (MTE), which is defined as

MTE sgn (18)

Note that since both ( , ) and ( , ) are the solutions
of the blind joint ML estimation problem, the channel estimate

can converge to either the true channel or .
In the simulation study, the channel was given by

(19)

The algorithmic parameters for the RWBS were set to ,
, , and . Figs. 8 and 9 show the evo-

lutions of the MSE and MTE with 2-PAM and 4-PAM symbols
and different values of SNR, respectively. All the results were
averaged over 100 experiments. The previous research [21] has
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Fig. 9. (a) Mean square error and (b) mean tap error against number of VA
evaluations averaged over 100 experiments, with 4-PAM symbols and data
samples N = 100, using the repeated weighted boosting search algorithm.

applied the ASA to the same problem, and for a comparison,
the results given in [21] are replotted in Figs. 10 and 11 for the
2-PAM and 4-PAM cases, respectively. Compared the results
of using the RWBS and ASA in these four figures, it can be
seen that the two algorithms have the same convergence speed
in terms of the estimated MSE for this blind ML joint channel
and data estimation. The results also shows that the RWBS is
more accuracy than the ASA in terms of the MTE measure.
The study in [18] applied a well-tuned micro GA to the same
problem, and the results obtained in [18] showed that the micro
GA has slightly faster convergence speed than the ASA in terms
of the MSE but has poorer accuracy in terms of the MTE. The
accuracy of the proposed RWBS algorithm is demonstrated by
the distribution of solutions obtained in 100 experiments for the
case of 4-PAM with SNR dB, which is depicted in Fig. 12.

C. Novel Kernel Classifier Design Approach

The state-of-the-art kernel modeling techniques, such as the
support vector machine (SVM) and relevant vector machine
(RVM) [38]–[41], have widely been adopted in classification
applications. Typically, a kernel classification technique con-
siders every training input pattern as a candidate kernel center
and uses a single fixed kernel width for every kernel function.

Fig. 10. (a) Mean square error and (b) mean tap error against number of VA
evaluations averaged over 100 experiments, with 2-PAM symbols and data
samples N = 50, using the adaptive simulated annealing algorithm.

Fig. 11. (a) Mean square error and (b) mean tap error against number of VA
evaluations averaged over 100 experiments, with 4-PAM symbols and data
samples N = 100, using the adaptive simulated annealing algorithm.

A parsimonious or sparse representation is then sought. The
value of the common kernel width has critical influence on the
performance of the classifier and has to be learned via cross
validation. This subsection reports an alternative kernel clas-
sifier design approach that incrementally constructs a sparse
kernel classifier using the RWBS algorithm [42]. Unlike most
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Fig. 12. Distribution of the solutions obtained in 100 experiments for the
4-PAM case with SNR = 30 dB and data samples N = 100. (a) (â , â , â ),
and (b) (â , â ), using the repeated weighted boosting search algorithm.

kernel classification methods, which restrict kernel means to the
training input data and use a fixed common variance for all the
kernel terms, the proposed technique can tune both the mean
vector and diagonal covariance matrix of individual kernel by
incrementally maximizing the Fisher ratio for class separability
measure. The RWBS algorithm described in Section II is used
to append kernels one by one in an orthogonal forward selection
(OFS) procedure.

Consider the two-class kernel classifier of the form

sgn with (20)

where is an -dimensional pattern vector with its associ-
ated class label , is the classifier output for
input , and is the estimated class label for ; ,

denote the classifier weights, is the number of
kernels, and , denote the classifier kernels. We
allow the kernel function to be chosen as the general Gaussian
function , with

(21)

where the diagonal covariance matrix has the form of
diag . Given the pairs of training

data , let us define the modeling residual as
. Then, the classifier model (20) over the

training data set can be expressed in matrix form as

(22)

where , ,
the kernel matrix with

, and the classifier weight
vector . Let an orthogonal decomposi-
tion of be , where is an upper triangular
matrix with unity diagonal elements, and

...
...

...
...

(23)

with orthogonal columns that satisfy , if . The
model (22) can alternatively be expressed as

(24)

where the “new” weight vector , satisfying
the triangular system .

A sparse -term classifier model can be selected by incremen-
tally maximizing a class separability measure in an OFS proce-
dure [43], [44]. Define the two class sets

, and let the numbers of points in be , respectively,
with . The means and variances of training sam-
ples belonging to classes in the direction of basis are given
by

(25)

and

(26)

respectively, where for and for
. The Fisher ratio, which is defined as the ratio of the

interclass difference and the intraclass spread, in the direction
of is given by [45]

(27)

At the th stage of incremental modeling, the th kernel term is
constructed by maximizing the Fisher ratio (27) with respect to
the kernel mean vector and the diagonal covariance matrix

. The algorithm presented in Section II is used to perform
this optimization task [42]. The forward selection procedure is
terminated at the th stage if

(28)
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Fig. 13. Training and test error rates versus size of selected classifier for the
synthetic data set using the OFS-RWBS algorithm.

TABLE II
COMPARISON OF CLASSIFICATION FOR THE SYNTHETIC DATA SET

is satisfied, where the small positive scalar is a chosen toler-
ance that determines the sparsity of the selected classifier model.
The appropriate value for is problem dependent and has to
be found empirically. Alternatively, cross validation can be em-
ployed to terminate the OFS procedure. The least square solu-
tion for the corresponding sparse classifier weight vector is
readily available, given the least square solution of .

The synthetic two-class problem and Diabetes in Pima
Indians, taken from [46], were used to investigate this pro-
posed kernel classifier design approach, which is referred to
as the OFS-RWBS, and to compare the results with those
obtained using the existing state-of-the-art methods: the
SVM and RVM [41]. The data sets were obtained from
http://www.stats.ox.ac.uk/PRNN/.

Synthetic Data. The dimension of the feature space was
. The training set contained 250 samples, and the test set had

1000 points. The optimal Bayes error rate for this example is
around 8%. With the population size , number of
weighted boosting iterations (the inner loop simply
runs iterations), and number of generations , we
applied the OFS-RWBS algorithm to the 250-sample training
set, and Fig. 13 depicts the training and test error rates versus
the size of the selected classifier. The result of Fig. 13 indicates
that the four-term classifier is sufficient, and Table II compares
this constructed four-term classifier with the results of using the
SVM and RVM techniques given in [41]. It can be seen that the
four-term classifier constructed by the OFS-RWBS algorithm
achieves the optimal Bayes classification performance.

Pima Diabetes Data. The dimension of the input space was
, the training data set contained 200 samples, and the test

data set had 332 samples. With the population size ,
number of weighted boosting iterations , and number
of generations for the OFS-RWBS algorithm, Fig. 14
shows the training and test error rates versus the size of the
constructed classifier, which clearly indicates that a four-term
classifier is sufficient. Table III compares the performance of

Fig. 14. Training and test error rates versus size of selected classifier for the
Pima Diabetes data set using the OFS-RWBS algorithm.

TABLE III
COMPARISON OF CLASSIFICATION FOR THE PIMA DIABETES DATA SET

this constructed four-term classifier with those obtained by the
SVM and RVM methods, quoted from [41]. The superior classi-
fication performance of the proposed design approach over the
other two designs is self-evident.

IV. CONCLUSIONS

A guided random search optimization algorithm has been
proposed. The local optimizer in this global search method
evolves a population of the potential solutions by forming a
convex combination of the solution population with boosting
adaptation. A repeating loop involving a combined elitist and
random sampling initialization strategy is adopted to guarantee
a fast global convergence. The proposed guided random search
method, referred to as the repeated weighted boosting search,
is remarkably simple, involving minimum software program-
ming effort, and can easily be adopted to a variety of practical
applications. The versatility of the proposed method has been
demonstrated in three different signal processing applications.
In the two of these applications (IIR filter design and blind
joint ML channel and data estimation), the proposed global
search algorithm is seen to be as efficient as the GA and ASA
in terms of global convergence speed, characterized by the
total number of cost function evaluations required to attend
a global optimal solution. In the third application, which is
a novel incremental construction of sparse kernel classifiers,
the proposed algorithm compares favorably with the existing
state-of-the-art kernel classification techniques: the SVM and
RVM. This study has demonstrated the potential of the pro-
posed algorithm as a generic global optimizer, and further study
is warranted to carried out an in-depth theoretical analysis as
well as to compare it with other global optimization methods
in a wider investigation.
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