HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON
FACULTY OF ENGINEERING AND APPLIED SCIENCE

School of Electronics and Computer Science

DDLS: Extending Open Hypermedia Systems into Peer-to-Peer
Environments

by

Jing Zhou

Thesis for the degree of Doctor of Philosophy

September 2004

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:jz00r@ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

DDLS: EXTENDING OPEN HYPERMEDIA SYSTEMS INTO PEER-TO-PEER
ENVIRONMENTS

by Jing Zhou

Peer-to-peer (P2P) computing is primarily characterised by decentralisation, scalability,
anonymity, self-organisation and ad hoc connectivity. It attracted considerable attention
in open hypermedia research due to its potential for supporting collaboration among
a community of people sharing similar knowledge background. The aim of this re-
search is to investigate the feasibility and potential benefits of incorporating the P2P
paradigm in open hypermedia systems to support resource sharing-based collaboration.
This is accomplished by utilising a distributed dynamic link service (DDLS) as a test
bed, addressing issues that arise from implementing the paradigm, and demonstrating
the efficiency of proposed techniques through simulation.

This research begins with the development of a prototype DDLS using the open
hypermedia paradigm for storing and presenting resources and a centralised P2P model
which adopts a central service directory for publishing and discovering resources in
a well-arranged environment. This is enhanced by an operational analysis and feature
comparison between prototypes based on the traditional client-server and the centralised
P2P models. Various P2P models are analysed to identify the key characteristics of
and requirements for the DDLS using an unstructured P2P model which empowers
collaboration in an ad hoc environment.

The second phase of this research concentrates on overcoming the challenges of
resource description, publishing and discovery posed by the unstructured P2P DDLS:
using RDF to encode information about resources, developing a clustering technique to
group resources and form the information space; and creating a semantic search mecha-
nism to discover resources; respectively. Finally, this research proposes re-organisation
techniques based on the exponential decay function and the naive estimator to enhance
the performance of resource discovery in resource sharing-based collaboration.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:jz00r@ecs.soton.ac.uk

Contents

1 Introduction 1
1.1 The Origins of Open HypermediaandtheWeb 1
1.2 Motivation: When Open Hypermedia Meets P2P Computing 3
1.3 Objectivesand Scope 6
1.4 Contribution L 8
1.5 ThesisStructure 9
1.6 Declaration 10
2 Open Hypermedia Systems 11
2.1 Introduction 11
2.2 ConceptandFeatures 11
2.3 TheFlagTaxonomy ittt 14
2.4 LinkServer Systems 15
241 Intermedia 16
24.2 SunsLinkService 17
243 MiICroCoSM 19
244 Chimera. e 22
245 Hyper-G 23
2.5 Open Hypermedia Systems and the SemanticWeb 25
2.6 SUMMANY e 27
3 Distributed Hypermedia Systems 28
3.1 Introduction 28
3.2 Models of Distributed Computing 28
3.2.1 Client-Server Architecture 29
3.2.2 Three-tier/Multi-tier Architecture 29
3.2.3 Peer-to-Peer Architecture, 30
3.2.4 Component-based Architecture 31
3.2.5 Service-based Architectureo 31
3.3 DevelopmentTraces 33
3.3.1 The World Wide Web (client-server) 33
3.3.2 DeVise Hypermedia/Webvise (client-server/three-tier) 35
3.3.3 Microcosm TNG (peer-to-peer) 38
3.3.4 HOSS (component-based) 40
3.3.5 HyperDisco (component-based) 42

CONTENTS i

3.3.6 Construct (component-based) 44
3.3.7 Callimachus (component-based) 46
3.4 Distributed Link Service (DLS) 48
3.5 Summary ... e e e e 50
4 Requirements Analysis and Design of the DDLS 51
4.1 Introduction 51
4.2 OVEIVIEW o e 51
4.3 Requirements Analysis oo 53
4.4 Design e 54
4.4.1 Resource Description, Organisation and Operations 54
4.4.2 User Interface and System Functionality 56
44.3 Architecture. 59
444 Prototypes e e e e e 59
45 Evaluation 64
451 Operational Analysis 65
4.5.2 Feature Comparison between the DDLSs with Different Archi-
tectures L 67
4.6 SUMMAIY o e e e e 69
5 Rethinking the P2P Paradigm 71
5.1 Introduction e 71
52 P2PComputing 71
5.2.1 Categoriesof P2ZPSystems 72
5.2.2 Featuresof P2P Systems 73
53 ATaxonomyof P2P Systems 75
531 CentralisedP2P 76
5.3.2 UnstructuredP2P 77
5.3.3 StructuredP2P 80
5.4 A Web-based P2P Open Hypermedia System - the Unstructured P2P
DDLS . . . e e 84
5.4.1 Characteristics and Requirements 84
5.4.2 Limitations of Existing Approaches 86
55 Summary e e e 89
6 Evolution of the DDLS into an Unstructured P2P System 90
6.1 Introduction 90
6.2 DDLSPeerNetwork 90
6.2.1 PeerRelationship 91
6.2.2 Supporting the ‘Published Topic List’ Data Structure 91
6.2.3 Construction of Peer Network 92
6.2.4 PeerDeparture 93
6.3 Resource Description 96
6.3.1 Resource Description Framework (RDF) 97

6.3.2 DDLS Resource Description 98

CONTENTS v

6.4 Resource DisCoOVery e 99
6.4.1 DDLS SemanticSearch 100
6.4.2 Major Assumptions of the Semantic Search Algorithm 100
6.4.3 Query Mechanism: Topic Query and Associated Operations . . 101
6.4.4 Distance-based Semantic Search Algorithm 102

6.5 Simulation. 102
6.5.1 Overview of the Simulator 103
6.5.2 Topic Distribution Lo 104
6.5.3 MetricsandlIssues 105
6.5.4 Single TopicSearch 106
6.5.5 Multiple TopicSearch 110

6.6 Understanding the Semantic Search through Simulation 115

6.7 Summary e e e e e e 116

7 Re-organising the DDLS Peer Network 117

7.1 Introduction 117

7.2 ConceptandForms 118

7.3 Supporting the ‘Query History’ Data Structure 119

7.4 Criteriaand Metric 120

7.5 Enabling Techniques 122
7.5.1 Exponential Decay Function-based Usefulness Decision 123
7.5.2 Simulation on Exponential Decay Function Supported

Re-organisation (EDFSR) 124
7.5.3 Naive Estimator-based Usefulness Decision 128
7.5.4 Simulation on Naive Estimator Supported Re-organisation

(NESR) e 130
7.5.5 Re-organisation with VirtualOverlap 132
7.5.6 Comparison between EDFSRandNESR 137

7.6 Understanding the Utility of Re-organisation. 140

7.7 Consistency Maintenance of Associated Data Structure 142

7.8 Review of Re-organisation 144

7.9 Summary ... e e e e e 146

8 Conclusions and Future Work 147

8.1 Conclusions 147

8.2 FutureWork e 149
8.2.1 SystemEnhancements 149
8.2.2 ResearchDirections 151

A Related Work on Semantic Search 154

A.l LatentSemanticIindexing, 154

A.2 Simple HTML Ontology Extensions 155

A.3 ASCSSemanticSearch 156

A.4 W3C Semantic Search 156

CONTENTS V]

B Definitions of Terms and Variables Used in Simulation 158

Bibliography 159

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

The Flag of Hypermedia Systems 14
Intermedia Architecture 16
Sun’s Link Service Architecture 18
Microcosm Architecture o 20
Chimera 2.0 Architecture 22
Hyper-G Architecture 24
Service-based Architecture Lo Lo 32
Web Architecture e 34
DHM Architecture e 36
Microcosm TNG Architecture 38
HOSS Architecture 41
HyperDisco Architectureo 43
Construct Architecture o 45
Callimachus Architecture 46
An Example of Using the XML model and Syntax to Represent the

DDLS Linkbase 55
Screenshot of the DDLS User Interface - the ‘Link Service’ Tab 57
Screenshot of the DDLS User Interface - the ‘Linkbase Config' Tab . . 58
Centralised P2P Model forthe DDLS 60
Client-Server Model forthe DDLS 62
Component Interaction in the Client-Server DDLS 63
Component Interaction in the Centralised P2PDDLS 64
Composition of Task Time for a Link Retrieval Request 65
Topics Following Zipf's Distribution 88
An Example of Using Chord to Model the DDLS Search Space 88
Construction of the SemanticOverlay 93
A Peem,., Joins the SemanticOverlay 94
Contact with Peers Lostduetoa LeavingPeer 94
Leaving Peep, Notifies Contacts of its Neighbours 95
Algorithm for Leaving Peew; Notifies Contacts of its Neighbours . . . 96
PeerDeparture e 96
An Example of Using the RDF Model to Represent the DDLS Linkbase 99
The Typical Specification of DDLS Topic Queries 101

Vi

LIST OF FIGURES vii

6.9 Algorithm for Query Processingat. 103
6.10 Average Recall Level at Progressive Hop Counts in Single Topic Search
(Zipf's Distribution) o 108
6.11 Average Recall Level at Progressive Hop Counts in Single Topic Search
(Uniform Distribution) 108
6.12 Average Recall Level at Progressive Hop Counts in Multiple Topic Search
(Zipf's Distribution) 112
6.13 Average Recall Level at Progressive Hop Counts in Multiple Topic Search
(Uniform Distribution) o 113
7.1 Query History op; atan Instantof Time 120
7.2 Usefulness of Candidates for Neighbourgof 122
7.3 Average Reduction in Hops to Achieve the Maximum Recall with EDFSR,
wr.=5% .o e e 125
7.4 Average Number of Hops to Achieve the Maximum Recall with EDFSR,
FOM) = €730 . . o 126
7.5 Average Reduction in Hops to Achieve the Maximum Recall with EDFSR,
FM) = €780 . o o 126
7.6 Average Maximum Recall and Average Broadcast Rate with EDFSR,
FM) = €730 . . 127
7.7 Computation oﬁ»ﬁh(t) based on Query History @f 129

7.8 Average Number of Hops to Achieve the Maximum Recall with NESR . 130
7.9 Average Reduction in Hops to Achieve the Maximum Recall with NESR 131

7.10 Average Maximum Recall and Average Broadcast Rate with NESR . . 131
7.11 Semantic Search without Virtual Overlap 132
7.12 Average Maximum Recall with EDFSR= 50, f(m) = e~ 50 133
7.13 Average Number of Hops to Achieve the Maximum Recall with EDFSR
h="50, f(M) = €750 . v v 134

7.14 Average Broadcast Rate with EDF3R= 50, f(m) = €750 135
7.15 Re-organisation Leads to the Same Clustering but Distinct Topologies . 136
7.16 Average Maximum Recall with NESR=50 137
7.17 Average Number of Hops to Achieve the Maximum Recall with NESR,

h=D500 . . 138
7.18 Average Broadcast Rate withNESR=50 139

7.19 p; Maintains the Published Topic List Up-to-date 143

List of Tables

4.1

6.1
6.2

6.3

6.4

6.5

6.6

6.7

6.8

7.1

8.1

Feature Comparison between the Client-Server and the Centralised P2P

DDLSS e 67
A Published Topic List in the Cacheof Peer. 91
Relationship between the Cache Rate and the Average Number of Hops
(Zipf’s Distribution) 107
Relationship between the Cache Rate and the Average Number of Hops
(Uniform Distribution) 107
Average Number of Hops to Achieve the Maximum Recall (Zipf's Dis-
tribution) 110
Average Number of Hops to Achieve the Maximum Recall (Uniform
Distribution) 110
Multiple Topic Search based on Two Topics with Distinct Popularities

in Zipf's Distribution 111
Multiple Topic Search based on Two Topics with Distinct Popularities

in Zipf’'s Distribution (Continued) 112
Multiple Topic Search based on Two Topics with Distinct Probabilities

from Uniform Distributions 114
Comparison between EDFSRandNESR 139
Technologies from Multiple Disciplines Supporting the DDLS 147

viii

Acknowledgements

First and foremost, | would like to thank my supervisor, Professor Wendy Hall, for her
time in revising reports, papers and thesis, for her support in attending workshops and
conferences, and for her efforts in helping me overcome difficulties throughout my PhD.
My PhD experience would be significantly less memorable without her.

I would like to thank Professor David De Roure for his technical support in my
research, his feedback on papers and thesis, and his confidence in my capability. | am
also grateful to Vijay Dialani for the numerous thought provoking conversations that
kept me on the right research path.

My sincere appreciation also goes to Muan Hong Ng, whose friendly smile helped
me settle down in the Intelligence, Agents, Multimedia Group when | first arrived;
Zhuoan Jiao and her family who have always been concerned about me and made my
life more enjoyable; Christopher Bailey for proof-reading my thesis and supplying me
with very helpful comments; Norliza Mohamad Zaini for her time and patience to fami-
larise me with SOFAR; Danius Michaelides for his thoughts and experience on mobile
link services; Mark Thompson for his academic papers which were impossible to obtain
online!; and Georgia Roidouli and Nor Aniza Abdullah for their good company.

This thesis is dedicated to my parents, sister and husband
Lean Zhou, Jiana Huang, Jian Zhou and Wei Deng

Abbreviations Used

AP
ASCS
ASM
CAN
CB-OHS
CGl
CNS
COHSE
COM
CPU
CRI
CSCW
DAML
DBMS
DCS
DDLS
DHT
DLS
DMS
EDFSR
FIFO
FMS
FTP
HBMS
HCM
HCMT
HPMT
HR
HTML

Application Program Interface

Agent Semantic Communication Service
Association Set Manager

Content Addressable Network
Component-Based Open Hypermedia System
Common Gateway Interface

Context Name Service

Conceptual Open Hypermedia Services Environment
Component Object Model

Central Processing Unit

Compound Routing Index
Computer-Supported Cooperative Work
DARPA Agent Markup Language

Database Management System

Document Control System

Distributed Dynamic Link Service

Distributed Hash Table

Distributed Link Service

Document Management System

Exponential Decay Function Supported Re-organisation
First In First Out

Filter Management System

File Transfer Protocol

HyperBase Management System
Heterogenous Communication Model

HOSS Communications Model Toolkit

HOSS Process Model Toolkit

Hierarchy of Resemblance

HyperText Markup Language

Xi

ABBREVIATIONS USED Xii

HTTP
IR
IRIS
JVM
LAN
LFU
LRU
LSI
LSS
Microcosm TNG
NESR
NLS
NNTP
OHS
OHSWG
OWL
P2P
RDF

RI

RMI
RPC
SCM
SDE
SHOE
SM
SMTP
SOA
SOAP
SoFAR
SSA
STA
TCP/IP
TTL
uDDI
URI
URL
UuID
VOM

HyperText Transfer Protocol

Information Retrieval

Institute for Research in Information and Scholarship
Java Virtual Machine
Local Area Network

Least Frequently Used

Least Recently Used

Latent Semantic Indexing

Link Server System

Microcosm: The Next Generation

Naive Estimator Supported Re-organisation
oNLine System

Network News Transfer Protocol

Open Hypermedia System

Open Hypermedia Systems Working Group
Web Ontology Language

Peer-to-Peer

Resource Description Framework

Routing Indices

Remote Method Invocation

Remote Procedure Call

Segregated Communication Model

Software Development Environment

Simple HTML Ontology Extensions

Storage Manager

Simple Mail Transfer Protocol
Service-Oriented Architecture

Simple Object Access Protocol

Southampton Framework for Agent Research
Semantic Search Agent

Semantic Translation Service

Transmission Control Protocol/Internet Protocol
Time-To-Live

Universal Description, Discovery and Integration
Uniform Resource Identifier

Uniform Resource Locator

Universally Unique Identifier
Versioned Object Manager

ABBREVIATIONS USED Xiii

WSDL Web Service Description Language
WwWwW World Wide Web
W3C World Wide Web Consortium

XML eXtensible Markup Language

Chapter 1

Introduction

1.1 The Origins of Open Hypermedia and the Web

Information is the extraction and interpretation of raw data, with the ultimate goal of be-
ing further analysed and utilised. When receiving information from the external world,
human memory associates different pieces of information and establishes complex in-
formation structures that reflect such relationships to facilitate comprehension and re-
view. These structures, because of the way human memory works, are therefore rarely
linear.

This essential feature of human memory was captured in the ‘Memex’, a device
for individual use conceived by Vannevar Bush, President Roosevelt’s science advi-
sor during the Second World War. He depicted the system in his article, ‘As We May
Think’ (Bush 1945), that supported rapid and natural non-linear access to information
by means of associative indexing. Bush also envisioned the concept of trails in the
Memex, which associated related information under specific themes that could be re-
trieved subsequently for a review.

Ted Nelson embodied his enthusiasm for Bush’s original ideas and coined the term
hypertextin 1965 when describing his Xanadu system. He stated in his book ‘Dream
Machine’ that hypertext meant ‘non-sequential writing’ (Nelson 1987) and ascribed the
non-sequential nature of hypertext to the non-sequential structure of ideas. As a model,
Xanadu was intended to incorporate a universal repository for all information and lit-
erature ever published with all versions of the documents coexisting. Relationships
between information were allowed to be instantiated as hyperlinks, or links, which not
only connected chunks of information, but also provided a structuring mechanism to be

1

Chapter 1 Introduction 2

utilised to navigate through the vast information space. Xanadu employed transclusions
as the fundamental mechanism to realise the virtual presence of the same material in
distinct contexts through embedded shared instancing (Nelson 1995), therefore effec-
tively managing information reuse and other issues. However, the implementation of

Xanadu has yet to be a reality.

The vision of the Memex as ‘an enlarged intimate supplement’ to human memory
was profoundly shared by Douglas Engelbart who endeavoured to augment ‘the human
intellect’ in view of mankind’s inability of coping with the ever increasing complexity
and urgency of challenges in human situation (Englebart 1986). Engelbart gave a public
debut of the oNLine System (NLS) at the Fall Joint Computer Conference in San Fran-
cisco in December 1968. The 90 minute presentation successfully demonstrated, among
others, innovative hypertext features which included cross-references and hyperlinking,
and illustrated the use of NLS in collaborative group work.

The concepts and philosophy initiated by Bush, Nelson and Engelbart led the way
for the hypertext system research and development that followed. The first working hy-
pertext system, named the Hypertext Editing System running on an IBM 360/50 main-
frame computer, was built at Brown University by Andries van Dam, Ted Nelson and
several Brown graduate students in 1967 with most of interface being text-based (Car-
mody et al. 1969). The first working hypermedia system appeared on the horizon when
Aspen Movie Map was developed at the Massachusetts Institute of Technology by An-
drew Lippman in 1978 (Nielsen 1990). The tehypermediaalso coined by Nelson,
extends the notion of hyperlinks to include links among any set of multimedia objects,
including the area of a picture, sound, motion video sequences and virtual reality.

The advent of the World Wide Web (also known as WWW, W3 and the Web)
(Berners-Lee et al. 1992), the most widely used and successful hypermedia system
to date, is considered an important milestone that has demonstrated the possibility of
effecting hypermedia across the Internet. The Web is nothing more (or less) than a
universe of network accessible information connected by an enormous number of hy-
perlinks. It achieves universal readership by using a number of essential concepts in-
cluding that of hypertext, and uses data formats (e.g. HT)Mind Internet protocols
(e.g. FTB, NNTP® and HTTP) that make it open, extensible and standard.

The Web is open in the sense that information from a variety of sources can be
incorporated in the Web and can be accessed with a Web browser running on computer

IHyperText Markup Language
2File Transfer Protocol

SNetwork News Transfer Protocol
“HyperText Transfer Protocol

Chapter 1 Introduction 3

platforms supported by heterogeneous hardware and software. However, the way in
which the Web is open differs significantly from the concept of ‘open hypermedia’ as
defined by the hypermedia community. The Web can not be thought of @zesumy-
permedia system because it is unable to support an open set of clients that can enjoy the
services provided by the Web and to support an open set of data model formats. The
concept of an open hypermedia system (OHS) predates the Web and dates back to the
mid 1980s when Sun'’s Link Service (Pearl 1989) was shipped with Sun’s programming
in the Network Software Environment. The Link Service advocated a loose coupling
between the management of data and the management of links with links stored sepa-
rately from data. Such an external link model is in contrast to the embedded link model
(Davis 1998) that the Web employs in which links are stored in documents. The idea
of separating hypermedia link facilities from data storage and display functionality is
characteristic and crucial in achieving the objectives of open hypermedia research and
development.

The external link model has been recognised and encapsulated into a wide range
of OHSs, for example Microcosm (Fountain et al. 1990), DHM (Grgnbeaek et al. 1993,
Grgnbaek and Trigg 1994), Chimera (Anderson et al. 1994), Hyper-G (Andrews et al.
1995) and HyperDisco (Wiil and Leggett 1997). The link ser¥ji¢he term of which
was foremost used by Pearl (1989), acts as a middleware component of the client’'s
computing environment. By accessing and manipulating hyperlinks separately from
the document, the link service allows hypermedia link facilities to be accessed by an
open set of applications, thereby enhancing their performance with hypermedia linking
functionality without a rewrite of the applications themselves.

1.2 Motivation: When Open Hypermedia Meets P2P
Computing

OHSs have employed distributed architectures since the late 1980s because access to
computer networks potentially became commonplace and empowered both a variety of
distributed online information to be utilised and groups of distributed teams to collab-
orate. The prevalent model is that of client-server and three-tier (see Section 3.2). The
client-server model has been adopted by a number of OHSs and the three-tier model
is more commonly observed in the integration of these systems and the Web. By inte-

5The link service belongs to one of the OHS categories in the Flag taxonomy (@sterbye and Wiil
1996), whereas every OHS requires a link service of one form or another to support the hypermedia
linking functionality of the system.

Chapter 1 Introduction 4

grating with the Web, OHSs allow collaboration on a global scale. Example systems
include Chimera, Hyper-G, DHM and HyperDisco in which users can appreciate the
benefits from both systems.

The client-server and three-tier architectures assume explicit logical separation be-
tween the roles of a server and that of a client, and neglect the circumstances in which
both the functionality of a server and a client is desirable possession of a single program.
For instance, users of a distributed hypermedia system may anticipate to exchange in-
formation. Under such a circumstance, an information requestor (client) may also be an
information provider (server). The distinction between the server and the client blurs
as multiple roles are required of a program. The enabling technologies, such as peer-
to-peer (P2P) computifigClark 2001), is a promise that can be used to support such a
system.

Suppose there is a research community in which people sharing similar knowledge
background maintain network accessible resources, or documents, for resource sharing-
based collaboration within the community. Upon the insertion of documents into their
storage, people capitalise on their knowledge to analyse, categorise and annotate the
documents. The associated intellectual products, such as categorisation and annotation
information, are intended to be used by people in the community to discover and acquire
documents of interest from other peers. Semantically related documents are organised
and described by a concept hierarchy: the most abstract concept (as well as the doc-
uments it is used to annotate) sits at the top of the hierarchy while the most concrete
concepts (as well as the documents they are used to annotate) reside at the bottom. The
hierarchy bears a tree structir@ecause people may have different viewpoints on the
same document, sharing resources, including documents, categorisation and annotation
information, enables people to understand other peers’ opinions on the same concept
a document conveys by means of the way the document is categorised and annotated.
For instance, if a person anticipates obtaining documents with a topic on the history
of hypermedia, he/she can submit a query to other peers. A recipient peer compares
the query against the annotation information about the documents he/she maintains and
returns the matches if possible. Some of the documents in the result set may be directly
related to the history of hypermedia, while others may be associated with the enabling
technologies closely involved in the evolution of hypermedia. Nonetheless, the result
reflects the different opinions of peers on the same topic, and due to the similar knowl-
edge background peers possess, the query result may be of help for understanding a

SAlthough the term P2P computing is new, the basic P2P technology can date back to at least 1979
when USENET was originally implemented.

In each concept hierarchy, there is a single root concept and each concept (except the root concept) in
the hierarchy must be a child of (at least) one parent concept. Moreover, the hierarchy must be cycle-free.

Chapter 1 Introduction 5

topic from different perspectives.

The scenario above exhibits the following notable properties: equal capability and
dispersed autonomy of individuals, and a collaborative relationship implied among in-
dividuals. People in the research community can simultaneously be resource requestors
and providers. Each of them is independent in making decisions and performing ac-
tions, whereas collaboration based on resource sharing becomes crucial when peers’
knowledge can assist in accommodating information needs or broadening individual’s
view. To turn the preceding scenario into reality, several key issues should be taken
into account which include how resources can be discovered among multiple providers
under certain circumstances, for instance in one well-arranged environment and in an-
other with ad hoc properties, how resources should be organised and manipulated to
potentially facilitate their presentation to requestors, and how resource discovery can be
expedited.

The use of P2P technologies is to effect and enhance collaboration among people
in the research community. The primary functionality of the technologies in the scenario
lies in their support for efficient resource discovery and acquisition. A centralised P2P
(Lv et al. 2002) approach would typically establish a central directory for resource pub-
lishing and discovery, and allow the subsequent resource acquisition to occur directly
between peers. In contrast, an unstructured P2P solution would preclude the existence
of any form of central authority and realise resource discovery through some search
mechanism and routing protocol that needs to be investigated.

Meanwhile, the responsibility of organising, manipulating and presenting resources
falls back upon some other orthogonal technologies, one of which that attracts the at-
tention of this work is the DLS. The DLS (see Section 3.4) is a Web-based OHS which
satisfies a user’s information needs by providing hyperlinks that refer to the documents
of interest. The paradigm of information provision, acquisition and presentation exhib-
ited by the DLS fits in with the scenario of resource sharing-based collaboration within
a research community.

The concept of grounding an OHS on a P2P architecture is not new. Microcosm
(Fountain et al. 1990) and Microcosm TNG (Goose 1997) maintained some form of
central repository to facilitate resource discovery in the systems. Microcosm was de-
ployed across a set of workstations and peers could share their resources with others
of interest. This enabled all available resources to be extensively utilised by the user
community. However, Microcosm was never developed into a P2P system.

It is recognised by this work that the use of a centralised P2P model in which com-

Chapter 1 Introduction 6

munication and management of computing tasks rely on central servers is no longer
feasible for an environment with an ad hoc nature (see Section 5.4.1). This work there-
fore attempts to identify the requirements for a Web-based OHS, more specifically an
open link service, based on an unstructured P2P model which serves to enable resource
sharing-based collaboration in ad hoc settings. Other efforts this work makes are to
discover a solution that supports the realisation of such an open link service and to
explore techniques that can enhance the performance of resource discovery for better
collaboration.

1.3 Obijectives and Scope

The ultimate objective of this work is to explore how the open hypermedia approach can
be augmented by P2P technologies to continuously function in a collaborative environ-
ment in which a dispersed resource (in the form of links and link8asepository is
available for sharing. The primary enabling technologies upon which this work is built
are open hypermedia and P2P computing. They complement the mission of each other’s
in fulfilling the goal of this work - open hypermedia deals with storage, manipulation
and presentation of resources while P2P technologies provide solutions to publishing,
discovery and acquisition of resources for sharing in distributed environments. There
are some critical issues that neither is able to address, for instance, the mechanisms
for resource description and clustering that facilitate efficient resource discovery. This
calls for other technologies to be involved. As will be described, the Semantic Web
(Berners-Lee et al. 2001) and Information Retrieval (IR) (Belkin and Croft 1992) pro-
vide promising technologies that satisfy the requirements of this work.

The Semantic Web is an extension to the current Web in which information is
made understandable for machine consumption, and is based on the Resource Descrip-
tion Framework (RDF) standards (Lassila and Swick 1999) and other standards to be
defined. The RDF provides a simple graph-based model for representing information
about resources on the Web. The mechanism for defining groups of related resources
and the relationship between these resources is missing in the RDF and is instead pro-
vided by RDF’s vocabulary description language, RDF Schema (RDF-S). The RDF and
RDF-S layer in the Semantic Web infrastructure effects support for some basic querying
and reasoning. van Ossenbruggen et al. (2002) envisioned the potential of RDF-enabled
search mechanisms to yield a significant improvement over the traditional keyword-
based search mechanisms. This bears much implication for open hypermedia research

8A linkbase is a collection of links.

Chapter 1 Introduction 7

because of the following reasons. Firstly, the hypermedia community has long recog-
nised the need for good query and search mechanisms (Halasz 1988). Moreover, the ex-
ternal link model adopted by OHSs is inherently able to make the RDF-enabled query
and search mechanism possible. Semantic relationships between links and linkbases
could be encoded and stored externally by link servers, thus allowing a search for links
to be conducted at both link and linkbase levels. This work primarily explores the way
that resources (links and linkbases) should be expressed and maintained at link servers
to facilitate querying and searching in environments with varying degrees of decentral-
isation of control.

To realise resource discovery in ad hoc environments, an overlay network which
comprises all peers running the open link service should be established. Ideally, the way
that the overlay network is constructed should take into account certain relationships
between peers or resources that peers maintain to assist discovery. Related work on the
overlay network can be seen in CAN (Ratnasamy et al. 2001), Chord (Stoica et al. 2001)
and Pastry (Rowstron and Druschel 2001). Because of the exclusive requirements for
the open link service (see Section 5.4.1) this work investigates, the clustering techniques
(Theodoridis and Koutroumbas 1999) which have been extensively studied in IR will be
employed to organise the overlay network in a way that facilitates resource discovery
by grouping peers on the basis of similarity of certain features of their resources.

This work will begin with extending the original DLS into a centralised P2P link
service which encapsulates a central service directory for resource discovery in a well-
arranged distributed environment. For explanatory and comparison purposes, another
link service prototype that adopts a client-server architecture - the common architecture
shared by many OHSs, will also be developed. This work will then identify the unique
characteristics of and requirements for an unstructured P2P link service that supports
resource sharing-based collaboration in an ad hoc environment. The absence of a central
service directory in the unstructured P2P link service entails improvements on the the
centralised P2P link service. Firstly, this work will need to devise mechanisms for
describing, maintaining and manipulating resources which aim to facilitate resource
discovery. Secondly, a search algorithm should be available for resource discovery in
an ad hoc environment. Finally, techniques that expedite resource discovery should
also be explored. Because these techniques are particularly intended to enhance the
discovery performance of the link service, this work will conduct an evaluation of gains
in the discovery performance that consists of an analysis and a series of simulation to
demonstrate the proposed techniques.

To distinguish it from the original DLS, the extended version will be referred to as

Chapter 1 Introduction 8

the DDLS (Distributed Dynamic Link Service) throughout this thesis.

1.4 Contribution

This work differs from others in the sense that it presents a collective effort which
primarily takes advantage of technologies of both open hypermedia and P2P computing
to support resource sharing-based collaboration within a community in which people
share similar knowledge background. The main contribution of this work attributes to
its awareness of a fact that has not attracted sufficient attention before, i.e. the inability
of current P2P technologies to help address the problems that an OHS, as required by
the scenario mentioned earlier, faces. To circumvent the arising challenges, this work

e devises a way of modelling the information (about resources) space and of estab-
lishing the overlay network.

e develops a search algorithm which utilises the semantic relationship between (re-
sources of) peers to discover the resources of interest on the overlay network.

e investigates the application of enabling techniques to enhance discovery for im-
proved collaboration by re-organising the peer network.

Although a number of OHSs, e.g. DHM, HyperDisco and Construct (Wiil and
Nurnberg 1999), provide support for different modes of collaboration by means of
mechanisms such as the awareness service, event notification, concurrency control and
access control, their solutions are centralised and therefore incapable of supporting col-
laboration in an ad hoc context. This work focuses on how to support collaboration with
the absence of a centralised service directory in a distributed environment. The DDLS
approach explored by this work leaves issues such as which collaboration services are
necessary in a specific OHS and how to implement the services untouched. Instead, it
revolves around mechanisms that describe, publish and discover resources to make col-
laboration in an ad hoc setting a reality. In essence, the DDLS approach is not limited to
facilitating only resource sharing-based collaboration as described in Section 1.2. Any
OHS that needs collaboration support (Reich et al. 1999) in an ad hoc environment will
benefit from utilising the methodology that this work has explored. As a consequence,
this work can be regarded as a supplement to research on collaboration support in the
open hypermedia community.

Chapter 1 Introduction 9

Moreover, this work is one of the few practices that implement open hypermedia
services, or likewise, based on the Semantic Web infrastructure. By using RDF to en-
code information about resources and a semantic search mechanism to support resource
discovery, this work provides a manifestation of the potential of the Semantic Web to
promote open hypermedia research.

Finally, this work proposes the adoption of the unstructured P2P model in the
DDLS to support collaboration in ad hoc settings, and investigates all the related is-
sues that collectively enable the realisation of the DDLS. This enriches the research on
unstructured P2P systems as described in Section 5.3.2 by providing experience of im-
plementing the unstructured P2P paradigm in a different application domain - the OHS
which, due to its characteristics, poses specific challenges to the DDLS approach (see
Section 5.4.1).

1.5 Thesis Structure

The remainder of the thesis is structured as follows:

Chapter 2, Open Hypermedia Systems, provides an in-depth look into the field
of open hypermedia systems, describes the core concepts and philosophies in detalil,
and documents the research themes in the area by providing a selection of influential
systems.

Chapter 3, Distributed Hypermedia Systems, presents a review of distributed com-
puting models and examines their development and evolution from the author’s perspec-
tive. Moreover, a selection of distributed hypermedia systems with various software
architectures are described.

Chapter 4, Requirements Analysis and Design of the DDLS, presents the moti-
vation and design of extending the original DLS into a truly distributed dynamic link
service. In particular, several aspects of software engineering are involved. Two pro-
totypes that adopt a client-server architecture and a centralised P2P architecture are
described, respectively. An analysis and comparison between the architectures of both
are performed.

Chapter 5, Rethinking the P2P Paradigm, presents an overall review of contempo-
rary P2P solutions from the architectural perspective. Also, the characteristics of and
requirements for the DDLS are examined in detail, which explains why the existing
approaches do not fit the conceived scenario for this work (see Section 1.2).

Chapter 1 Introduction 10

Chapter 6, Evolution of the DDLS into an Unstructured P2P System, explores the
extension of a centralised P2P DDLS (see Chapter 4) to an unstructured P2P system.
The approach to resource description at the linkbase level is proposed and a distance-
based semantic search algorithm is presented. Simulation is conducted which helps
understand the behaviour and performance of the algorithm, with varying distributions
of potential resources and different query profiles involved.

Chapter 7, Re-organising the DDLS Peer Network, introduces the concept of re-
organisation and its supporting data structure, query history, upon which re-organisation
of the peer network primarily depends. The exponential decay function and naive es-
timator are proposed to support re-organisation, and their different effectiveness and
applicability are demonstrated by a series of simulation.

Chapter 8, Conclusions and Future Work, summarises this work and presents pos-
sible future directions of the research.

1.6 Declaration

This thesis represents the author’s personal view of the field. It is all the author’s inde-
pendent work, with the exception of that described in Section 6.4 which was conducted
in conjunction with Vijay Dialani.

Chapter 2

Open Hypermedia Systems

2.1 Introduction

This chapter presents open hypermedia systems (OHSSs), a field that offers significant
concepts, philosophies, experience and lessons potentially benefiting the entire hyper-
media community. A selection of influential OHSs, chosen on the basis of the Flag
taxonomy (Jsterbye and Wiil 1996), are described to present the core concepts and
philosophies, and to document the research development in the area. This is followed
by a description of the close relationship between open hypermedia research and that of
the emergent Semantic Web.

2.2 Concept and Features

An important consideration in the field of hypermedia systems is the distinction between
structure and content. A hypermedia system that imposes a data model (structure and
data formats) on its hypermedia enabled applications is considered to be closed, since
applications have to be custom-made to participate in the hypermedia environment. An
OHS, however, only imposes a structure format on its hypermedia enabled applications
and allows content to be stored outside the system. The applications can store content in
different formats, which encourages the integration and use of third-party applications.

An OHS is typically a middleware component in the computing environment of-
fering hypermedia functionality to applications independent of its storage and display
functionality. It enables the client applications to create, edit, delete and activate links

11

Chapter 2 Open Hypermedia Systems 12

which are maintained and manipulated separately in linkbases. Hypermedia services
can also be used by other third-party applications, programs and services in the com-
puting environment (Wiil 1997).

The termopenmeans that OHSs allow an open set of clients (applications) of the
hypermedia services provided by the systems and support an open set of data model
formats. In contrast to closed hypermedia systems, such as the Web, OHSs exhibit a
variety of advantages and circumvent the limitations of closed hypermedia systems due
to the inherent weaknesses in their architecture, data model, protocol and enabling tech-
nologies. The advantageous properties that OHSs possess are highlighted as follows.

1. Separation of links from documents
The open hypermedia model enables the maintenance and manipulation of hyper-
media links separately from the documents they describe, which fundamentally
differs from the model of closed hypermedia systems. The separation of links
from documents enables links to be applied to documents in any format (Carr
et al. 1998a).

2. No imposition of mark-up on data
OHSs allow more types of data model formats which are not limited to either
HTML or image formats. New data model formats can be supported in OHSs by
enabling the applications capable of handling the required data model formats.
Applications are extended to make hypermedia functionality available in the hy-
permedia environment with minimum efforts while the data content remains un-
altered.

3. Integration with third-party applications
Unlike the closed hypermedia system, an OHS provides a linking protocol be-
tween applications and the OHS that allows any application to participate in the
hypermedia service. Through the linking protocol, applications are loosely inte-
grated into the hypermedia environment with various levels of hypermedia aware-
ness.

4. Context-specific query
The task-specific query context can be specified by a user, or inferred by a user
interface agent. Therefore, link following is affected not only by the selection
of the link source but also the user's dynamic context that indicates the kind of
resources they would like to follow up.

5. Easy to add new functionality
A component-based approach was suggested by Wiil @mdidérg (1999) for the

Chapter 2 Open Hypermedia Systems 13

design of OHSs. The component technology empowers the specification of the

services of a component in an implementation independent manner. Each com-
ponent provides descriptions of services in a separate interface serving a domain
model, concealing the concrete implementation. The approach enables an exten-
sible architecture in which a new hypertext domain can be added with ease by

defining an interface for the description of services presented in that domain.

6. Distributable hypermedia structure processing
OHSs adopt different software architectures, spanning from traditional centralised
client-server systems with a central storage server running on & tté\Rulti-
layer systems with multiple storage servers operating within different Internet
domains. The decentralisation of storage relieves the burden on a single server
and enables hypermedia structures to reside in the vicinity of where they may be
requested.

Links are first-class entities in an OHS. The central feature of an OHS is that it
can make use of link specifications stored in linkbases and manage the links separately
from documents. By allowing links to be manipulated separately, an OHS decreases
document maintenance efforts as there is no need for a document to be revised in order
to change its links. An open link service allows the performance of any application to
be enhanced with hypermedia functionality without a rewrite of the application (Carr
et al. 1995), which is also a minimal requirement for an OHS.

Hall et al. (1996), based on their experience gained from the design and develop-
ment of Microcosm (see Section 2.4.3), summarised the essential properties in defining
a truly open hypermedia system as follows.

1. Size no limitations, with regard to either the size of objects or the maximum
number of such objects, should be imposed by the hypermedia system.

2. Data formats the system should allow import and use of data in any format,
including temporal media.

3. Applications the hypermedia system should provide facilities for any applica-
tion to access the hypermedia service in order to participate in the hypermedia
environment.

4. Data models the system should be configurable and extensible to allow new
hypermedia data models to be incorporated. Furthermore, interoperability is an
important property that the system should possess.

1Local Area Network

Chapter 2 Open Hypermedia Systems 14

5. Platforms it should be possible to implement the system across a variety of plat-
forms.

6. Users the system should support multiple users and allow the users to maintain
their private views of the objects in the system.

To fully satisfy such a definition there is still a long way to go in OHS research.
Examining the OHSs documented later in this chapter demonstrates that the efforts from
the OHS community have only achieved part of the entire specification. However, the
definition of openness as described will serve as a signpost, showing future directions
for open hypermedia research.

2.3 The Flag Taxonomy

The Flag taxonomy (@sterbye and Wiil 1996) was built on the terminology of the Dexter
hypertext reference model (Halasz and Schwartz 1994) which was a popular model
covering ideas and experience from advanced hypermedia research at that time. The
taxonomy aimed to serve as a framework to describe, classify and compare different
hypermedia systems in a system independent way.

(o)
I\itorage %D Viewer Contents
anager S
&3
Storage Linking
]
=
Data Model | & Session
s Structure
Manager 2 Manager
£
Storage Runtime

FIGURE 2.1: The Flag of Hypermedia Systems
(Dsterbye and Wiil 1996)

Figure 2.1 reveals that the taxonomy does not represent hypermedia systems by a
layered architecture as that in the Dexter model. Rather, it distinguishes between the
storage aspect and the runtime aspect on the one hand, and structure and contents on
the other, leading to four functional modules (illustrated by the white rectangles) and

Chapter 2 Open Hypermedia Systems 15

four protocols (illustrated by the grey rectangles). The Storage Manager corresponds
to the within-component layer in the Dexter model, and the Data Model Manager re-
sponsible for storing the structure of a hypertext maps to the storage layer in the Dexter
model. The taxonomy divides the Dexter runtime layer into the Viewer module and
the Session Manager module, which bridge the Dexter within-component layer and the
runtime layer to reflect the exclusive property of the OHS that contents can be stored by
applications outside the hypermedia system.

Each functional module provides functionality to neighbouring modules by means
of available protocols. The Storage protocol encapsulates the Storage Manager from
both the Viewer and the Data Model Manager because the Flag taxonomy divides stor-
age into contents and structure aspects. The Linking protocol provides necessary op-
erations which bind the Viewer and Session Manager functionality together. The Pre-
sentation protocol defines the operations in the Data Model Manager and the Session
Manager available to each other.

The taxonomy emphasises the distinction between structure and contents as the
major criterion to identify an OHS, and excludes any approach to OHSs that imposes a
data model on their hypermedia enabled applications. The categories of OHSs, accord-
ing to the Flag taxonomy, include two fairly independent domains: link server systems
(LSSs) and open hyperbase management systems (HBMSs) (Wiil and Leggett 1997).
LSSs (e.g. Microcosm and Chimera) revolve around the development of middleware
components that allow existing tools to use hypermedia linking functionality, whereas
open HBMSs (e.g. DHM and HyperDisco) focus on the development of middleware
components that not only provide linking but also storage functionality to be utilised.
This thesis is only considering LSSs.

2.4 Link Server Systems

The link service, a term first used by Pearl (1989), allows hypertext (or hypermedia)
facilities to be accessed by an open set of applications, thereby acting as a middleware
component of the user’s computing environment in which links are allowed to connect
objects in any media without any restrictions on the data format. Link server systems
prefer an external link and reference model in which a link service stores links and con-
tent references while leaving the original document intact since no mark-up or anchor
tables are embedded in the document. With all the information about links being kept in
a separate linkbase, links to and from a document can be traced by querying against the
linkbase. As links become independent objects in terms of management, the revision

Chapter 2 Open Hypermedia Systems 16

of links in a changed document is unnecessary. Besides, links may be applied to serve
other legacy systems with data on read-only media.

2.4.1 Intermedia

Intermedia (Meyrowitz 1986, Yankelovich et al. 1988), developed at Brown Univer-
sity’s Institute for Research in Information and Scholarship (IRIS) from 1985 to 1990,
was the first advocate for an open hypermedia philosophy. It was a multi-application
hypermedia system designed to support teaching and research in educational settings.
Intermedia was intended to model how hypermedia functionality should be handled at
the system level to provide linking capabilities integrated into the desktop environment.

Intermedia Process

MacApp Link Server Process
Intermedia Layer Link Client socket Link Server
Word Building Graphics Building
Block Block C Tree Database
Inter | Inter | Inter | Inter | Inter | Inter
Word | Draw | Val | Video | Play | View

Link
Database

Intermedia
Document
Tree

FIGURE 2.2: Intermedia Architecture
(Haan et al. 1992)

The overall architecture of Intermedia, based on the client-server model (Sec-
tion 3.2.1), is shown in Figure 2.2. From the operating system’s perspective, the In-
termedia system appeared as two distinct processes, the Intermedia process and the
link server process that communicated via sockets. The first bottom layer of the Inter-
media process consisted of applications sharing functionality defined in its immediate
upper layer. The word and graphics building blocks in the second layer were imple-
mented for encapsulating important end-user functionality and providing a consistent
user interface. The Intermedia layer, providing classes for implementing the core link-

Chapter 2 Open Hypermedia Systems 17

ing functionality, extended MacApp’s classes and added the functionality necessary to
specific applications. The link client was a library bound with the Intermedia layer.
The link server was also implemented as a library associated with a database manage-
ment system (DBMS) running as a separate process. Intermedia was only implemented
for Apple’s version of the UNIX operating system. It presented to users customised
integrated applications operating on their own document types that conformed to user
interface standards for consistency purposes. Thus, users would encounter quite identi-
cal implementations of features seen elsewhere across multiple applications.

Intermedia allowed users to create bidirectional links between specific locations
in documents (created by its dedicated applications shown in Figure 2.2) of different
types. This was a distinctive property unseen in other systems, such as HyperCard (Ap-
ple Computer Inc. 1989), NLS (Englebart 1986) and Notecards (Halasz et al. 1986).
Intermedia named these specific locations ‘anchors’. Information about anchors and
links between the anchors were stored separately from documents they described. Col-
lections of anchors and links were partitioned into webs. Users could alter their working
context by switching from one web to another, and therefore a different set of anchors
and links in the web were superimposed on the documents that users were browsing.
To maintain data consistency, the deletion of an Intermedia document would lead to the
deletion of all the anchors and links within and to the document throughout the Link
Database. Concurrency control was implemented in Intermedia to help manage mul-
tiple users sharing a network of hypermedia material. Intermedia supported multiple
users with granted access rights to read and annotate (anchors and links of) a single
document simultaneously, but only one user to write a document at a time.

Intermedia was a pioneering hypermedia systémat achieved academic success
and aroused great research interest. However, due to the failure of convincing other
people to adopt its protocol and the lack of funding to upgrade to a new operating
system, Intermedia fell into disuse in the early 1990s.

2.4.2 Sun’s Link Service

Sun’s Link Service (Pearl 1989) was not a hypertext system in its own right but provided
a protocol and linking functionality for integrating linking mechanisms into existing ap-
plications in a distributed workstation world. The link data and object data were stored

2Intermedia was considered a monolithic hypermedia system because its architecture tightly con-
trolled data, hypermedia structures and the user interface of the system. Also, Intermedia allowed only
dedicated applications to access its hypermedia services and therefore it might be best described as a
partially open hypermedia system.

Chapter 2 Open Hypermedia Systems 18

and managed separately. Manipulating and storing objects were undertaken by indepen-
dent editing applications. A linking protocol was designed to facilitate communication
between the Link Service and the integrated applications.

- Application Application -
Stored Stored
Document Document
Link Library Link Library

Link Library

Link Service

\
Link
Database

FIGURE 2.3: Sun’s Link Service Architecture
(Pearl 1989)

The Link Service (see Figure 2.3) comprised the protocol specification, a link
server program, a library that defined the protocol for integrating with the Link Ser-
vice and utilities for managing the link databases (i.e. linkbases). Integrating with
the Link Service required little change of applications. Each integrated application in-
cluded a link library which was part of the link server process to communicate with the
link server, and therefore became part of an extensible and loosely coupled frontend
interface to the hypertext system. Applications registered their availability and capa-
bility with the Link Service so that they could be called to handle objects upon users’
requests.

The manager of the object data provided an interface and application specific func-
tionality for users to manipulate objects. Similarly, the Link Service offered an interface
and functions for users to create and modify links between data objects. By separating
the user interface for linking from that for editing, the Link Service introduced as min-
imal impact as possible on the appearance of integrated applications and the burden on
the cognition of users.

The Link Service addressed the link maintenance issue by means of two mecha-

Chapter 2 Open Hypermedia Systems 19

nisms: implicit and explicit. When a user attempted to traverse from the valid end of
a link to an invalid node, the Link Service informed the user of the dangling link and
suggested deletion of the link. Or, the Link Service utilised a link garbage collection
mechanism to check the validity of links by querying their managing applications. The
Link Service left the versioning of data objects to individual applications and main-
tained the consistency of link objects to a limited degree. This is because the versioning
of data objects was implemented by integrated applications and the Link Service was
unable to establish any connection between the versioning of the link objects and data
objects.

Although some issues required further investigation, such as the granularity of an
identifiable object in structureless documents and the extension of link types available
between objects, Sun’s Link Service made an initial attempt at integrating linking func-
tionality into existing applications and the accompanying protocol was crucial for an
extensible and loosely coupled open hypertext system.

2.4.3 Microcosm

The development of Microcosm (Fountain et al. 1990), which was one of the first OHSs,
predates the Web. The initial motivation for Microcosm arose from constructing fully
cross-referenced versions of very large electronic archives and information repositories
(Lowe and Hall 1999). While building resource-based applications using hyperme-
dia systems, the Microcosm team found that the main issues for hypermedia designers
and authors were the heavy load from working with a large number of documents and
links, and the increasingly highly multimedia nature of electronic information. Besides,
different users would access different parts of the information repositories and try to
understand them from different perspectives. Surrounded by collections of unstruc-
tured information, it was hard, even impossible sometimes, to find the beginning or
end. For users who came across applications for the first time, no assumptions could be
made about their preferences, knowledge, beliefs or information seeking goals, based
on which some kind of assistance could be provided to support their interaction with
the systems.

Microcosm was best thought of as a number of autonomous processes that com-
municated with each other by a message passing mechanism, see Figure 2.4. The Seg-
regated Communication Model (SCM) employed in the original Microcosm supported
both viewer processes and filter processes. The Document Control System (DCS) main-
tained a record of each viewer and coordinated message routing between viewers and

Chapter 2 Open Hypermedia Systems 20

Viewer 1 Viewer 2 Viewer 3 Application
e.g. Microcosm e.g. Auto CAD e.g. Microsoft Layer
Bitmap Viewer Word

Filter 1

e.g. Linker
Microcosm [Microcosm {}
Document Filter FllFef 2 .- Link Service
Control Management e.g. Linkbase : Layer
System (DCS) —1 System (FMS) 4; |
I
I
Filter 3 !
e.g. Computed :
Linker |
I
Document Management System 4 E :
(DMS) Filter 4 :
Available Links :
| | | | | | | | |
I
‘ ‘ | Hyperbase/
|::| | Storage Layer
Mimic . |:| |:i|
. History

Trail Info. Linkbases

Info. Text Indices
Documents for Computing Links

FIGURE 2.4: Microcosm Architecture
(Lowe and Hall 1999)

the rest of the system. Viewers were identified by means of an identifier allocated by
the DCS. The Filter Management System (FMS) coordinated the serial chain of filters.
Filters in Microcosm were among those independent processes which were connected
in a chain topology and might be dynamically installed, removed or even reordered. The
hypermedia link service was embodied within filferé/hen an action was initiated by

a user, a message that contained the details of relevant information would be sent to the
filter manager which arranged the message to be passed through all registered filters.
Filters declared their interests in handling specific messages from users’ actions and
they might block, ignore, alter messages or create new ones (Hall et al. 1996).

The sequence of some filters was fixed. For instance, the linker filter, a process
which primarily dealt with the start link and end link messages, was usually positioned
in the first place along the filter chain. Following it was the linkbase filter that was
responsible for creating, following and resolving links. The available links filter was

3Very little of the functionality that users see was ‘hard coded’ in the core of Microcosm, which was
one of the flaws in the architecture.

Chapter 2 Open Hypermedia Systems 21

typically positioned at the end of the filter chain to present the result of a link traversal

or search action. This filter could not precede the linkbase filter since there would

be no links for it to display before the linkbase filter processed a message and gave
the references to destination documents. For the linker filter and the linkbase filter,

the exchange of their positions in the sequence would not incur such a problem and
therefore was permissible.

The bottleneck between the DCS and the FMS was one of the limitations on the
performance and scalability of Microcosm. In addition, the serial and uni-directional
filter chain yielded major communication overhead because all messages are propa-
gated to every filter in the chain. Such limitations were resolved in the design of filters
in Microcosm TNG (see Section 3.3.3) and linkbases in the DLS (see Section 3.4) in
which no chain topology was used in organising filters and linkbases. In both systems,
individual filters and linkbases could be dynamically added or removed from the pro-
cess of link resolution and retrieval, and consequently different views of link data were
presented upon different user requests.

The Microcosm model allowed users to create three primitive link types: specific
links, local links and generic links. A specific link may be followed from the source
selection at a specific location in a specific document. A local link may be followed
when the source selection occurs at any place in a specific document. A generic link
may be followed from wherever the source selection occurs. The Microcosm team
identified two distinct link integrity problems - thediting problemand thedangling
link problem- that might occur in Microcosm and explored their solutions. Hall et al.
(1996) provided more details.

In applications such as the delivery of teaching materials, Microcosm required that
all shared resources, such as documents, linkbases and the Document Management Sys-
tem (DMS), should be made read-only so as to solve the concurrency problem. How-
ever, for other applications involving a small number of changes to shared resources,
Microcosm could adopt a crude user controlled locking and notification scheme which
allowed locks on each document and linkbase (but not the DMS), so that only one single
user might edit shared documents or links at a time, and the edit would be notified to
other users before they carried out any further update. In order to support Microcosm
working in a large scale cooperative environment, it was envisioned that using a client-
server architecture which had only one database to host all linkbases and DMSs might
produce the ease of concurrency control.

Chapter 2 Open Hypermedia Systems 22

2.4.4 Chimera

Chimera (Anderson 1997) was an open hypermedia system developed at the University
of California, Irvine. It primarily aimed to provide hypertext services in heterogeneous
software development environment (SDE).

User space Chimera-enhanced websites
Client CGI scripts =
€
b Applets
Web HWM
Client Browser Hyperwebs

HWS
Client cs /E\

WS: Web Server

HWM: Hyperweb Manager
HWS: Hyperweb Server
CS: Client Server

D

FIGURE 2.5: Chimera 2.0 Architecture
(Anderson 1997)

The Chimera architecture adopted a client-server approach (see Figure 2.5) and
was separated into two environments: a user space and Chimera-enhanced websites. A
user space consisted of Chimera clients, a client server and a Java-enabled Web browser,
while a Chimera-enhanced website contained a Web server, a hyperweb manager, a
hyperweb server, a set of hyperwebs and a set of client servers.

Chimera clients were applications that provided end users with hypermedia ser-
vices. They interacted with the local client server which connected to the hyperweb
server to provide its clients with access to hyperwebs. Java applets could also be
Chimera clients in support of Chimera’s integration with the Web. However, such clients
would face obstacles that normal clients did not have to. This is because Java imposes
security restrictions on applets, and the Web server, the hyperweb manager and the
client server must all execute on the same machine in order that applets could commu-
nicate with them. A CGl script was used to append HTML code to include an applet
at the end of a Web page. The Java applet was downloaded by the Web browser in the
user space and it provided pervasive access to Chimera’s services to the Web page a
user was visiting. Therefore, Chimera users were free to manipulate links or hyperwebs
and initiate link traversal from within an applet’s interface.

4Common Gateway Interface

Chapter 2 Open Hypermedia Systems 23

In Chimera, a hyperweb that was manipulated by the hyperweb manager referred
to a database file containing groupings of related hypermedia concepts. The hyperweb
manager was responsible for the creation and deletion of hyperwebs. Besides, it pro-
vided connection information of Chimera related servers. For instance, the hyperweb
manager could reveal the contact information of the hyperweb server on the Chimera
site of interest to the client server in the user space. The hyperwebs of a Chimera site
were stored and managed by the hyperweb server.

In addition to hyperwebs, Chimera had a set of hypermedia concepts, including
viewers, objects, views, anchors and links along with their attributes. Objects were
named, persistent entities in Chimera and were displayed, created and edited by viewers.
A view associated an object with the viewer that displayed it. Anchors were created and
managed by a viewer with respect to the particular view of the object being displayed,
rather than the object itself, while a link consisted of a set of anchors. Each instance of
a Chimera hypermedia concept could be described by an arbitrary number of attribute-
value pairs specifying run-time semantics or behaviour. These concepts enabled the
hypermedia needs of an application to be easily modelled and implemented by means
of invoking appropriate calls to Chimera’s APto create persistent instances of the
concepts. Therefore, the integration of an application with Chimera was facilitated.

Chimera could not be completely modelled in the Dexter model since the former
could handle the presence of links with zero or one anchor (dangling links) (Anderson
et al. 1994). In this case, Chimera was similar to DHM, see Section 3.3.2. Moreover,
the concept of a view in Chimera could not be modelled by a composite component
in Dexter, because a view contained information about the object being displayed and
the view that displayed the object, but a composite component included references to
atomic components which contained only data. Finally, a Chimera viewer would be
able to define anchors on the view of an object which exists only at run-time. However,
Dexter was unable to specify the same type of anchors.

2.4.5 Hyper-G

Hyper-G (Andrews et al. 1995), a multi-user, multi-protocol, structured and distributed
hypermedia information system, was the product of a group of researchers and devel-
opers at Graz University of Technology, Austria. It integrated all the functionality of
the Web with a set of facilities, resulting in much additional functionality, and therefore
was seen as an extension of the Web (Maurer 1996).

SApplication Program Interface

Chapter 2 Open Hypermedia Systems 24

Like most information management systems, Hyper-G was client-server based (see
Figure 2.6). The Hyper-G server consisted of a number of modules implemented as
concurrent Unix processes. The document server maintained local documents of the
Hyper-G server as well as cached documents from remote servers. The full text server
was responsible for storing an inverted index of all text documents for searching. The
link server, which was later renamed the object server, primarily stored a database of ob-
jects and the relationship between objects. Every Hyper-G object, including documents,
anchors and collections (defined later), could be searched for. Hyper-G objects were
typically described by a set of attributes and the search on attributes was supported. In
particular, documents and collections in a Hyper-G server were automatically indexed
upon the insertion into the database and could be subsequently accessed by a full-text
search.

i

Hyper-G Server

Hyper-G

)
]
-

() o>

FIGURE 2.6: Hyper-G Architecture
(Andrews et al. 1995)

Users could access Hyper-G using a standard WWW browser, a naive Hyper-G
client, or a Gopher client. A WWW gateway program was developed and installed with
every Hyper-G server so as to provide the user of a WWW client with an interface to
the Hyper-G functionality. When accessing the Web with Hyper-G clients, a Hyper-G
server was typically used as a gateway. Hyper-G was also designed to be fully inter-
operable with Gopher. Hyper-G servers could present themselves to Gopher clients by
means of the Gopher gateway. When accessing Gopher servers with Hyper-G, a Hyper-
G server, which cached Gopher directories and documents, acted as a proxy.

The concept ofcollectionsin Hyper-G implemented a hierarchical structuring
mechanism. A collection contained documents or other collections. This definition
led to the generation ofeollection hierarchy While every document or collection (ex-
cept the Hyper-G server’s root collection) must be a member of at least one collection

Chapter 2 Open Hypermedia Systems 25

(its parent collection), the collection hierarchy must be cycle-free. The collection hier-
archy could be used for a number of occasions. For instance, the logical structure of
the information was made explicit to users by means of the collection hierarchy, which
facilitated users’ navigation through the information space. Also, documents and col-
lections might have multiple parent collections in a collection hierarchy, and therefore
users could have multiple views of the same available information. The collection hi-
erarchy could be attached with access permissions which supported multiple users to
simultaneously use a single Hyper-G server. Finally, Hyper-G allowed the use of the
collection hierarchy to define the search scope.

Hyper-G implemented links as objects containing attributes. Links could be as-
signed keywords for searching and permissions for access restrictions. A link in Hyper-
G connected a source anchor within one document and a destination anchor within
another document, an entire document, or groups of documents. Links were not stored
within documents but in separate link databases. Hence, Hyper-G supported bidirec-
tional linking and link consistency within servers and across server boundaries were
guaranteed.

2.5 Open Hypermedia Systems and the Semantic Web

The Semantic Web, the next generation Web infrastructure as envisioned by its inven-
tor Tim Berners-Lee, is designed to provide information in the Web in a more machine
understandable manner. Recent initiatives at the World Wide Web Consortium (W3C)
have produced multiple specifications, such as that of XMRDF and OWL (Smith

et al. 2004). While XML defines customised tagging schemes and RDF enables a flexi-
ble approach to representing information, OWL provides more vocabulary for formally
describing the meaning of terms in a Web document and the relationship between those
terms. They form part of the growing stack of the W3C recommendations related to the
Semantic Web.

The need of the Semantic Web to capture and represent the semantic relation-
ship between resources on the Web, invalidates the embedded linking model as used
in the Web. Moreover, downloading bulky semantic annotations together with Web
documents deteriorates the performance of hypermedia applications, especially when
annotations are even not required. A potential approach to these issues involves exter-
nally encoding information about resources and the semantic relationship between the

6eXtensible Markup Language
"Web Ontology Language

Chapter 2 Open Hypermedia Systems 26

resources, and employing dedicated servers to maintain and manipulate these seman-
tics (van Ossenbruggen et al. 2002). OHSs inherently possess the capability to deal
with similar problems. The most significant feature that empowers OHSs to facilitate,
and also enjoy, the emergent Semantic Web technologies is that links are stored and
managed separately from the documents they describe. Capturing the semantic content
(concepts) of documents, modelling it as metadata, and authoring links between related
concepts to construct hypertext, are therefore feasible. This is also applicable to anno-
tations - the ability to annotate documents of others has been an important feature in
many hypertext/hypermedia systems. Storing annotations externally to the documents
that are annotated and accessing them over some protocol, can produce an OHS-like
annotation service. Example systems include COHSE (Carr et al. 2001) and Annotea
(Kahan et al. 2001).

The main objective of the COHSE (Conceptual Open Hypermedia Services Envi-
ronment) project is to produce an ontological reasoning service which provides a con-
ceptual model for describing document terms and the relationship between the terms,
and a Web-based open hypermedia link service to deliver link-providing facilities in
a scalable and non-intrusive manner. The conceptual information of Web documents
is represented as metadatdletadata can be reasoned over to classify documents by
using a predefined ontology in COHSE - a thesaurus consisting of concepts related by
different relations. Documents are considered to be similar in some way if they share
metadata. The COHSE link service authors links between associated concepts, and
therefore corresponding documents are also linked for navigation.

The Annotea project, part of the Semantic Web efforts, aims to enhance collabo-
ration via sharing metadata-based annotations, bookmarks and their variants. Annotea
is a Web-based annotation system built on top of an open RDF infrastructure through
combining RDF with XPointer, XLink and HTTP. Annotations are modelled as a class
of metadata. They are described with an RDF schema and are stored inside generic RDF
databases hosted by annotation servers. XPointer and XLink associate metadata with
part of the document that is annotated. By interacting with an annotation server over
HTTP, users can perform different operations on annotations, such as retrieval, addition,
modification and deletion.

Both practices of COHSE and Annotea reveal that the concepts and philosophies
of OHSs can be utilised to satisfy the requirements of the Semantic Web. On the other

8This is an idea borrowed by this work on resource description presented in Section 6.3.2. Although
both COHSE and the DDLS employ metadata to describe the concepts that documents are associated
with, the former intends to construct hypertexts and build links for navigation, while the latter aims to
assist resource discovery.

Chapter 2 Open Hypermedia Systems 27

hand, it is also demonstrated that the Semantic Web can, and definitely will, augment
open hypermedia research and enrich its potential area of application by providing state-
of-the-art and standardised technologies.

2.6 Summary

This chapter examined the core concepts and features of OHSs and described the Flag
taxonomy which divides OHSs into two categories: link server systems (LSSs) and
open hyperbase management systems (HBMSs). In particular, a selection of represen-
tative link server systems was chosen and studied. Examining contemporary research
on OHSs and its close relationship with the Semantic Web identified that both parties
are mutually beneficial - the Semantic Web provided advanced technologies to augment
open hypermedia research, and meanwhile, open hypermedia presented many years of
experience and lessons to facilitate research on the Semantic Web.

The next chapter will present the field of distributed hypermedia systems. Follow-
ing a review of distributed computing paradigms, it will document a variety of closed
and open hypermedia systems which adopt distinct distributed models.

Chapter 3

Distributed Hypermedia Systems

3.1 Introduction

This chapter presents a review of distributed computing in terms of the software archi-
tecture, ranging from the client-server to the contemporary service-based model. The
review aims to provide a prerequisite knowledge for understanding the concepts and
backgrounds in the following presentation of selected distributed hypertext and hyper-
media systems along the path of development.

3.2 Models of Distributed Computing

Bass et al. (2003) define the software architecture of a program or computing system
as ‘the structure or structures of the system, which comprise software elements, the ex-
ternally visible properties of those elements, and the relationships among them’. The
definition implies that software architecture is concerned with the encompassing ele-
ments that interact with one another. The behaviour of each element is also part of the
architecture.

Distributed computing is one of the software architectures in which processing oc-
curs among teams of collaborative computers over a network. The architecture allows
geographically distributed computers to work together with responsibility being parti-
tioned among multiple parties. Distributing the computational load among appropriate
computers can improve the system performance.

28

Chapter 3 Distributed Hypermedia Systems 29

3.2.1 Client-Server Architecture

Client-server, a term first used in the 1980s, is a distributed computing model in which
client applications request services from server processes. A client application is a
process or program that sends messages to the server and requests the latter to perform
specific tasks. The server process or program listens to the client requests, receives mes-
sages and performs corresponding actions. A single machine can be both a client and a
server depending on software configuration. However, clients and servers typically run
on differently machines interconnected by a computer network.

The central server runs on powerful personal computers, workstations or main-
frame computers which host the majority of computing resources, for example, files,
devices and processing power. Clients are separate and subordinate to the server. They
log into the server and make a search request on the server that will immediately return
the search result. The subsequent requests to the server for services will also be tracked.

The client-server model gained its wide acceptance in the 1990s. The reason is
simple because it adheres to software modularity and usability requirements very well.
The model simplifies the administration and management tasks by monitoring user ac-
cess at the central control point (the server). Also, it enables systems to be easily ex-
tended by adding new services in the form of new servers.

One of the main drawbacks of the client-server model is its heavy dependence on
the central server, which results in a system being vulnerable to server failure and being
plagued by the dramatic and exponential growth of online service requests. Therefore,
the expenditure in the maintenance of distributed components and others is increased.

3.2.2 Three-tier/Multi-tier Architecture

The client-server architecture (also referred to as the two-tier architecture) assumes that
clients access servers that run on the same operating system or use the same database
engine. Otherwise, clients must be equipped with matching drivers for such configura-
tions. Any update to an application needs to be deployed for all users of the application.
Also, it is shown that beyond 100 users, the performance of the two-tier design is ex-
ceeded. The three-tier architecture, which emerged in the 1990s, addresses the problem
by introducing a middle tier between the front-end client environment and the back-end
server environment to support application logic and common services.

Systems based on the three-tier model can be split into three logic tiers: the user

Chapter 3 Distributed Hypermedia Systems 30

interface tier, the business logic tier and the database access tier. The user interface
tier is responsible for accepting user requests and forwarding them to the business logic
tier. The business logic tier acts as both a client and a server because it processes re-
guests from the user interface tier and sends them further to the database access tier
which provides database management functionality. According to the user request, the
connectivity between components of these tiers can be dynamically changed and es-
tablished. In some cases, the middle tier consists of two or more units with different
functions. Therefore, the three-tier model is also referred to as the multi-tier model.

The three-tier model addresses the issues that the two-tier model is incapable of
dealing with while hiding the complex distributed processing from users. It can accom-
modate more than 100 users. By centralising process logic at the business logic tier, the
model promises improved performance, flexibility, reliability and scalability.

3.2.3 Peer-to-Peer Architecture

The peer-to-peer model (Clark 2001) refers to a class of systems and applications that
employ resources in a distributed environment to perform a critical function without
central servers. Each node, or peer, plays the role of both a client and a server. Exam-
ples include instant messaging systems and document sharing applications, which have
exploded in popularity and transformed the way users interact with one another over the
network. P2P networks allow a group of online users with the same networking pro-
gram to connect with one another and directly access files from others’ physical storage.
In the P2P model, each peer has equivalent capabilities and responsibilities.

Peers are autonomous, free from the control of any other party. Therefore, a net-
work administrator is unnecessary in the P2P model, which cuts down the cost of ad-
ministration and maintenance by spreading control and expenditure across all peers.
Moreover, the absence of a centralised control authority yields a robust system against
the single point of failure. Search results, as a consequence of the direct contact with
information providers, keep fresh when they are requested.

However, spreading the overall control complicates many issues. First, there is
no accurate view of the entire system since each peer holds a partial picture. Also,
it becomes difficult to know the state of a component or to locate specified resources
of a component through interrogating any single component. The query and search
mechanisms need to rely on techniques specifically designed for P2P computing, which
should involve as few as possible of peers to avoid the heavy use of bandwidth and low
search efficiency.

Chapter 3 Distributed Hypermedia Systems 31

3.2.4 Component-based Architecture

A component-based architecture comprises an architecture and a set of APIs which
define modular and reusable software components that can be deployed and assembled
into larger systems. A software component is a piece of code that encapsulates certain
functionality and publishes the operations to access the functionality at the interface
between components. Each component conforms to a prescribed behaviour common to
all the other components in the same architecture. Large software systems can be built
by assembling and integrating the existing software components.

The assumption underlying the use of component-based architecture is that certain
parts of a large system are used regularly. Rather than being written many times, the
code which encapsulates the common parts into components should only be written
once. The component-based model provides system designers with a mechanism to
develop applications by composing existing software components through their well-
defined interfaces without developing new components or changing the existing ones.

The component-based model reduces software development and maintenance costs,
and increases the flexibility of the system. As the software units of change, components
are easy to evolve and upgrade. New requirements from the changing environment can
be satisfied by developing compatible components and plugging them into the system.
Furthermore, components can be easily tested independently of the larger system.

3.2.5 Service-based Architecture

A service-based architectuiris essentially a collection of loosely coupled services that
involve various means of connection for communication between one another. A ser-
vice is a location transparent and network addressable unit of software logic offered by
service providers to achieve the intended functionality. Compared to components, ser-
vices are coarser grained software elements that satisfy a particular requirement. They
are well-defined and self-contained, independent of the context or state of other ser-
vices. Services have published interfaces that define operations with generic semantics
encoded at the interfaces. They communicate via standard protocols and data formats.

Figure 3.1 demonstrates a basic service-based architecture which embraces three
parties: a service provider, a service broker and a service requestor. To be accessible,
a service provider describes its services and publishes the specification to a service

1A service-based architecture is also known as a service-oriented architecture (SOA).

Chapter 3 Distributed Hypermedia Systems 32

Service
Broker

Invokes

Service
Requestor

Service
Provider

FIGURE 3.1: Service-based Architecture

broker which is an intermediary between the service provider and the service requestor.
The service requestor locates a service of interest and determines how to communicate
with the service by issuing queries to the service broker. The service broker looks
up for the compatible service and sends the published interface description back to
the requestor. Upon the receipt of the information of the service required, the service
requestor formulates a request according to the specification and poses it to the service
provider. Subsequently, the service provider offers the expected response to the service
requestor.

Employing a service-based architecture in software development brings many ben-
efits. The facilities of dynamic discovery and binding to a service enable the service
providers to run their services at the location they prefer according to the infrastructure
and technical support. Multiple service components allow developers to specialise in the
task they are experienced in. The independent development realises better parallelism,
resulting in rapid delivery of the product. Effecting services as smaller pieces of logic
simplifies the location of errors and defects, as well as the modification to accommodate
new commands and requirements.

Web services are an example of implementing a service-based architecture. They
are at the heart of the service-based architecture because they are built on top of many
well-known and platform independent protocols, such as XML, WSMEOAP and
UDDI#, which fulfill the requirements of the service-based architecture. XML provides
a cross-platform approach to data encoding and formatting. WSDL supplies a model
and an XML format for describing Web services. SOAP, built on top of XML, de-
fines a way to package XML-based information for exchanging structured and typed

2Web Service Description Language
3Simple Object Access Protocol
4Universal Description, Discovery and Integration

Chapter 3 Distributed Hypermedia Systems 33

information across system boundaries. RP€&s be encapsulated in SOAP messages,
through the SOAP HTTP binding, and dispatched across systems to invoke the target
services. UDDI specifies how to publish and discover information about Web services
via distributed Web-based information registries.

3.3 Development Traces

This section will document and analyse a cross-section of hypermedia systems that
adopt the models illustrated in the previous section, with the exception of systems hav-
ing a service-based architecture. This is because service-based hypermedia systems
have yet to be implemented. As the most popular distributed hypermedia system, the
World Wide Web will be presented in the first place. In the following subsections, dis-
tributed examples selected from the open hypermedia community are presented which
demonstrate how the open hypermedia community has made efforts to overcome the
limitations existing in closed hypermedia systems, such as the World Wide Web.

3.3.1 The World Wide Web (client-server)

The World Wide Web (also known as WWW, W3 and the Web) was defined by Berners-
Lee (1996) as the universe of global network accessible information. As of today, it
has become the most widely used and successful distributed heterogeneous hypermedia
system. The Web was developed in 1989 at CERN (European Laboratory for Particle
Physics) as a project led by Tim Berners-Lee and was intended to serve as a hypertext
system for international cooperation between physicists. Although hypertext systems
had been a reality for many years, there were no global systems to facilitate the desired
cooperation. In particular, the variety of network information retrieval protocols and
workstations with varying display capabilities hindered researchers in achieving the
goal.

The Web aimed to manage a widely distributed set of computers running differ-
ent applications that employed different data formats. To this end, the Web provides
a common naming scheme, the Uniform Resource Identifiers (URIS), to point to any
document of any kind available via a number of different Internet protocols. For in-
stance, a core network access protocol, the HyperText Transfer Protocol (HTTP), has
been developed to support references between information in a hypertext system. The

5Remote Procedure Calls

Chapter 3 Distributed Hypermedia Systems 34

Web also comprises an important document format, the HyperText Markup Language
(HTML), which enables the creation of documents that are portable from one platform
to another. These three important specifications laid the foundation for the success of
the Web.

dumb PC Mac X NeXT

=TT ST STy

Addressing Scheme + Common protocol + Format negotiation

\
@@

g] Network data
N — news

Gateways

Existing

FIGURE 3.2: Web Architecture
(Berners-Lee et al. 1992)

The Web, like many other applications with a global scale, employs a client-server
model, see Figure 3.2. The clients, primarily in the form of Web browsers for interactive
use, are responsible for collecting requests for documents from users and sending them
to Web servers. The servers, upon the receipt of requests, retrieve documents and send
back the answers that may be in any other format. During each transaction, the server
establishes a connection between the client and itself. The connection can be terminated
by either the client or the server, or both.

From the point of view of OHSs, the Web is a closed hypermedia system. In the
first place, a link on the Web is bound to a particular object in a source document in the
form of mark-up within the content data, and its destination is described through the aid
of a URL (Uniform Resource Locatérpr a scripf. The embedded link model makes
the movement of data and the editing of links a very convenient procedure. However, it
is difficult to maintain the referential integrity of links if the movement of data breaks

6A URL is an example of the URI that identifies a resource by means of a representation of its primary
access mechanism.

’In the context of the Web, script languages are often written to handle forms of input or other services
for a website and are processed by either the Web server or the Web browser.

Chapter 3 Distributed Hypermedia Systems 35

the binding of the links to their associated objects, raising the dangling link problem
(Davis 1998). Secondly, data are restricted to be imported into a proprietary format,
for example the HTML format. Links on the Web may be created in document formats
other than HTML or image formats. The traversal of such links in a document will reach
dead ends with no links to follow if the application that displays the document has not
been enabled to support hypermedia linking. Moreover, links on the Web can not be
applied to data stored in other applications since they are embedded within the content
data and belong exclusively to the owner of the document. Finally, as a universe of
electronic information, the Web has no full-text search facilities of its own and relies on
external search engines. These search engines index much of the Web document’s con-
tent but lack mechanisms for providing either user’s context or the document’s context
to aid in comprehension.

3.3.2 DeVise Hypermedia/Webvise (client-server/three-tier)

The DeVise Hypermedia (DHM) framework, developed as part of the DeVise project
at Aarhus University, Denmark, was an object-oriented environment for developing ad-
vanced hypermedia systems (Grgnbaek et al. 1993, Grgnbaek and Trigg 1994). The
designers took the Dexter hypertext reference model (Halasz and Schwartz 1994) as the
starting point and turned it into an object-oriented design and prototype implementation.

DHM was based on the client-server architecture, see Figure 3.3. The application
layer, which corresponded to the within-component layer in the Dexter model, repre-
sented the diverse space of applications and viewers that could be integrated with DHM.
The data objects were stored in the hypermedia database (the physical storage layer),
or otherwise maintained by the applications and viewers. The communication, runtime
and storage layers captured the DHM class hierarchies. The communication layer pro-
vided a uniform interface to the applications and viewers in the application layer. The
hypermedia services runtime classes defined the generic behaviour of hypermedia sys-
tems. The storage classes represented the conceptual schema for data objects in the
object-oriented database. The object-oriented database primarily served as a perma-
nent storage for hypermedia data objects. The object distribution mechanisms aimed to
facilitate linking between hypermedia data objects stored by different object-oriented
databases.

DHM supported bidirectional links with multiple endpoints. Links were stored in
a central link database. In contrast to the Dexter model, DHM alladeadyling links

Chapter 3 Distributed Hypermedia Systems 36

Application A Application B
Application Layer
Browser (Within-Component
'Y Layer)
Communication
Protocol
Communication

Application
Interface Layer

Hypermedia
Services
Runtime classes

Runtime
Layer

Storage Storage Layer

A

Object Distribution
Mechanisms

4

hysical
Hypermedia (physical)

database
(server)

FIGURE 3.3;: DHM Architecture
(Grgnbeek et al. 1997)

to exist when componeritsvere deleted. Options as to dealing with the dangling links
when link following occurred, were provided to users. The users might choose to either
delete the link or the endpoint, or enable re-linking to another destination. Furthermore,
DHM motivated the awareness of link directionality. The designers considered three
kinds of directionality of links. Semantic direction revolved around the semantic rela-
tionship between components connected by links. Creation direction emphasised the
sequence of the creation of link endpoints, whereas traversal direction specified the way
a link should be traversed. DHM supported selection of both creation direction and
traversal direction by means of an attribute mechanism that recorded direction values.
Support for semantic direction implicitly relied on the same attribute mechanism.

DHM tackled two integration related problems which the Dexter model did not
address. First, Dexter does not distinguish between components whose contents are
managed by the hypermedia and those whose contents are managed by third-party ap-
plications. DHM addressed this issue by introducing a component ‘wrapper’ for appli-
cations and their data objects. If stored by the hypermedia system, data objects became
part of the content of an atomic comporienOtherwise, they would be separately
stored and referenced by the content of the component. Therefore, DHM was able to

8In the context of the Dexter model, a component is the fundamental entity and basic unit of address-
ability in the storage layer.
9Atomic components are the primitive in the storage layer.

Chapter 3 Distributed Hypermedia Systems 37

link to documents that were created by third-party applications. Second, Dexter only
proposes the use of composite componértts model application documents having
internal structure, while leaving how to utilise the composite component’s structure to
model the internal structure of an application document unspecified. DHM allowed
composites to directly refer to data objects. Meanwhile, the internal structure of a data
object could be modelled by its encapsulating data objects. Therefore, a composite and
its nested components could refer to both the enclosing object and its internal structure.

Implicit and asynchronous collaboration modes were supported by the object-
oriented database at the physical storage layer which provided transactions, locking
and event notification facilities. A transaction in DHM could be of arbitrary length, as
called for by Halasz (1988). For concurrency control, read and write locks were avail-
able to clients from the object-oriented database server, and a flexible read/write locking
protocol which specified a set of rules followed by all transactions when requesting and
releasing these locks was also developed. Clients could subscribe to a variety of events
on shared hypertext. If any changes to the shared hypertext occurred, a notification
would be sent from the object-oriented database server to all clients who had opened
the hypertext with read permission and subscribed to notifications about changes.

DHM was extended to Webvise, an open hypermedia service which augmented the
Web by providing hypermedia structures such as links, contexts, annotations and guided
tours!. Hypermedia structures were stored in a hypermedia database and manipulated
via Java applets and a proxy server. The Webvise proxy server checked the Webvise
server for every document being viewed in the browser and tried to find potential ex-
ternal structures to be compiled into the document (Grgnbaek et al. 1999). Microsoft
Internet Explorer, Microsoft Word and Microsoft Excel were extended with menus or
toolbar extensions to support the integration with Webvise clients via the ‘€@
terface. For each application augmented with hypermedia services, the Webvise client
designed and implemented an application wrapper responsible for communicating with
the integrated application. In addition to linking to/from HTML Web pages, Webvise
also supported open hypermedia linking of multimedia contents.

1010 contrast to atomic components, composite components are those constructed out of other compo-
nents.

webvise could be accessed via an ordinary URL.

12Component Object Model

Chapter 3 Distributed Hypermedia Systems 38

3.3.3 Microcosm TNG (peer-to-peer)

Microcosm TNG (The Next Generation) was a framework for an open and extensible
distributed hypermedia system. It aimed to facilitate distributed information sharing
and organisation and provide extensible distributed services (Goose 1997). Microcosm
TNG inherited the core philosophies of Microcosm, whereas its design demonstrated
a significant departure from the original Microcosm architecture (see Figure 2.4). Fig-
ure 3.4 depicts the architecture of Microcosm TNG which exposed a centralised P2P
(see Section 5.3.1) nature. Peers appeared in the form of user sessions in Microcosm
TNG. A user session discovered services of interest by interrogating the message router
that kept a record of registered service providers both inside and outside (by exchanging
registration information between message routers) the domain.

/ N N
Domain 1 Domain 2
7 , N
Ptainintaiut N Local Session A Remote SessionB ~ ,—————~ N
/
| | . I !
"' Docuverse | | Linker Avgllable I'| Docuverse | !
: : Links | :
|
I Application ™! Daemon Application !
I | I
I X I I Y !
I I [| I
: Linkbase : » Router | Linkbase :
l] N I
N ~ /

: Process Process
Viewer Manager Manager
\- /
-
~
Remote Session C »—————~ N
/ |
: Docuverse :
| |
Application :
|z
> ['
| Router | Linkbase :
" I
! /
______ -
Process
Manager
- J
\- J

FIGURE 3.4: Microcosm TNG Architecture
(Goose 1997)

When Microcosm executing on a single machine was applied to large scale com-
mercial applications, it yielded a slow performance. The observation therefore entails
the distribution of processing load since spreading workload across a number of ma-

Chapter 3 Distributed Hypermedia Systems 39

chines may lead to a reliable, efficient and flexible system. To divide and distribute

the responsibilities of Microcosm involved adapting its two central modules: the Filter

Management System (FMS) and the Document Control System (DCS). The FMS was
adapted to enable communication with remote instances of Microcosm over the Inter-
net via TCP/IP® sockets, thus messages being routed directly to the specific published
filters. The DCS was extended to facilitate document retrieval from a remote host by
adopting a URL-like format of document identifiers that were uniquely associated with

every document under control.

Filters in Microcosm TNG discarded the chain architecture of the ordered and se-
rial nature in the original Microcosm. Each process registered with a message router to
gain conversation capability with any other registered process in the system. Messages
would not have to encounter all processes in the filter chain but only get involved with
those of interest.

A new Heterogenous Communication Model (HCM), utilised as a communication
layer, was designed to support the system to function effectively when employed in a
heterogeneous and distributed environment. An HCM was characterised by the adoption
of a customisable process addressing scheme which covered the user session identifier
to which this process belonged, the hypermedia application name to which this process
belonged, the name of the Microcosm TNG process, the identifier of the Microcosm
TNG process, the document upon which this process operated and the service offered
by this process. Message passing between processes on different machines could take
place on the basis of a user session, an application, a process, a document, a service or
combinations of all.

The message router within a user session was a logical container for all processes
registered with the same message router. It served as a mechanism for processes to
dynamically advertise and withdraw their services. Moreover, the message router was
responsible for coordinating communication between processes that wished to send out-
going messages to other registered service providers. When inter-session communica-
tion occurred, a local message router needed to forward all messages to the remote
message router in another session in case any process in that session might have interest
in them.

Each user session was also accompanied by a process manager which supported
distributed process management. The distributed invocation of processes on remote
machines was realised through the remote shell (rsh) in Unix.

BTransmission Control Protocol/Internet Protocol

Chapter 3 Distributed Hypermedia Systems 40

A domain denotes a logical set of machines in which the process manager can
spawn processes. A domain daemon process was introduced to provide a single point
of contact within each domain. Beside, the domain daemon offered a single point of
contact to users from other domains. Each message router within a domain is required
to register their network address with the domain daemon. Therefore, message routers
were freed from pre-defined port numbers for communicating with service providers.
Rather, they could dynamically allocate network connections. The HCM enabled pro-
cesses to act as both a server and a client depending upon the roles they played.

Information regarding hypermedia applications available across different domains
was listed by an optional utility called tteppbrowser. Once a user selected desirable
domains, theapp browser would contact the chosen domain daemons. The latter, in
turn, asked the registered message routers to reply the request by listing all hypermedia
applications published from them. The retrieved information would then be presented
to the user by thappbrowser.

Although Microcosm TNG exhibits a flexible P2P nature, it is not clear in Micro-
cosm TNG how the remote domain daemons could be located, which is the key element
for efficient search in a P2P environment. The design did not address issues such as ser-
vice (or resource) description and discovery arising in more unexpected and dynamic
environments characterised by an ad hoc nature.

3.3.4 HOSS (component-based)

As hypermedia structuring principles had been applied to a broad variety of domains,
the hypermedia community realised the necessity of opening the set of structural ab-
stractions supported by an OHS. This gave rise to the component-based open hyperme-
dia system (CB-OHS). A CB-OHS comprises an open set of middleware components
with well-defined APIs. Its architecture typically defines three layers: the application
layer, the structure model layer and the storage layer. The storage layer (back-end)
stores the fundamental structural abstractions and provides them to the structure model
layer. The structure model layer (middleware) tailors them to domain specific structural
abstractions. The application layer (front-end) consists of various hypermedia enabled
applications that edit and display contents and structure from the structural model layer.

Wiil and Nurnberg (1999) divided the evolutionary history of CB-OHSs into two
phases: the first generation CB-OHSs and the second generation CB-OHSs. The dis-
tinction lies in the component framework they adopt. As one of the first generation CB-

Chapter 3 Distributed Hypermedia Systems 41

OHSs, HOSS provided its proprietary component frame#foldOSS was a structure
aware hypermedia operating system prototype developed at the Texas A&M University
(Nurnberg et al. 1996). It was advocated in HOSS that the basic structural abstractions
of different domains be incorporated into the operating system and therefore issues such
as integrity, consistency and semantics locality could be in reach by a structure aware
operating system.

There were three basic entities in HOSS: data, structure and behaviour. Data was
defined as information associated with the hypermedia system, while structure identified
the interrelationship between data. Behaviour was introduced to implement the seman-
tics of structure. HOSS emphasised the separation of these factors, which resulted in
more usefulness and flexibility than those of other systems.

Hsh Applications

Metadata Managers

Structural Paradigm Manager Sprocs ‘ Behaviours

Versioned Object Manager HBprocs Association Set Manager

OSproc(s) HCMT
HPMT
SunOS 5.4

FIGURE 3.5;: HOSS Architecture
(NUrnberg et al. 1996)

The architecture of HOSS is shown in Figure 3.5. HOSS provided some toolkits
(for example, HCMT and HPMT®) for supporting appropriate communication and

Yas will be mentioned in Section 3.3.6, the second generation CB-OHSs typically adopt existing
component technologies and frameworks.

HOSS Communications Model Toolkit

®HOSS Process Model Toolkit

Chapter 3 Distributed Hypermedia Systems 42

process models. These toolkits were constructed on top of SunOS 5.4, thereby utilising
facilities provided by the operating system. The HOSS HBprocs comprised the Ver-
sioned Object Manager (VOM) and the Association Set Manager (ASM) which imple-
mented data objects and structural services respectively. The VOM was implemented
on top of some Storage Manager (SM) outside the hyperbase. The ASM was imple-
mented as a client of the VOM and therefore inherited the VOM'’s versioning support
for its abstract data types. Sprocs (also called structure processors) were clients of the
ASM and dealt with different kinds of structure. Metadata Managers provided abstrac-
tions to other system processes by resorting to a location services scheme to publish
their abstractions and ports. The Hsh (HOSS shell) acted as a command interpreter
system which allowed users to manipulate structure from the outside of an application.
Applications could take advantage of HOSS once necessary modifications had been
made. This typically involved at least an open linking protocol so that the data of the
applications could be linked by data from other applications through the Link Services
Managet’. By replacing the file system in a conventional operating system with a hy-
perbase, HOSS was enhanced with both data and structure management capabilities and
applications could manipulate objects through the hyperbase.

HOSS exhibited some characteristics that could not be found in other operating
systems. To begin with, the pre-fetching scheme was modified to rely on the semantic
locality, which was based on the awareness of structure rather than that of distance in the
logical memory. Furthermore, by threading behaviours in a structure-caching process,
communication only occurred inside a process, yielding a gain in efficiency.

3.3.5 HyperDisco (component-based)

HyperDisco (Wiil and Leggett 1997) was a project built on a decade of research on the
hypermedia infrastructure at Aalborg University in Denmark started in the late 1990s.
Its mission was to work towards innovative hypermedia infrastructures for flexible in-
tegration and extension of tools and to use the lessons learnt to serve the future infras-
tructure for the Internet.

The HyperDisco infrastructure comprised distributed workspaces, tool integrators
and participating third-party tools (see Figure 3.6), and was based on a hyperbase man-
agement system (HBMS) (see Section 2.3). Tool integrators enabled distributed het-
erogenous tools (or applications) to participate in hypermedia services, and controlled

The Link Services Manager was one of the Sprocs responsible for structure caching, behaviour
loading and inter-application linking.

Chapter 3 Distributed Hypermedia Systems 43

‘ Tool ‘ ‘ Tool ‘ ‘ Tool ‘ ‘ Tool ‘ ‘ Tool ‘
Tool Integrator Tool Integrator
[[\
Workspace Workspace Workspace

FIGURE 3.6: HyperDisco Architecture
(Wiil and Leggett 1997)

access and operations on workspaces. A workspace was an autonomous HBMS which
stored and manipulated a set of multimedia files in addition to providing a wide range
of hypermedia services to participating tools. Workspaces could be private, public or
belong to a group. A legal user was allowed to create links between documents in differ-
ent open workspaces and collaborative users could share workspaces. Tool integrators
and workspaces respectively implemented two layers of hypermedia functionality in
HyperDisco: the integration model layer that supported integration and the data model
layer that offered hypermedia storage services for hypermedia objects. The integra-
tion model encapsulated tool dependent link services and relied on the data model for
essential operations on hypermedia objects.

The data model in HyperDisco was object-oriented and it supported a set of hyper-
media object types: anchors, nodes, links and composites (Wiil and Leggett 1996). The
Node class, Link class and Composite class were subclasses of the Component class
which inherited facilities from its superclasses, such as the Concurrency Control, the
Notification Control, the Version Control, the Access Control and the Query & Search
classes. The Anchor class was an immediate subclass of the Query & Search class
and new subtypes of the Anchor class could be tailored by creating subclasses which
inherited related superclasses. Anchors and links were stored separately from docu-
ments and would be superimposed on the documents by tools. A link in HyperDisco
maintained a number of endpoints with each described by a triple (workspace name,
node identifier, anchor identifier). The tool integrator maintained the integrity of a link
involving multiple workspaces by ensuring that all workspaces connected by the link
were reachable before any operation (creation or deletion) done to it and, in response to
the consequence, making a decision about the operation. If the operation involved link
following, all workspaces containing the link endpoints would be queried against and
as many endpoints as possible would be opened.

Chapter 3 Distributed Hypermedia Systems 44

HyperDisco differed from Chimerain (at least) the following aspects. Although the
concept of workspaces in HyperDisco was analogous to that of hyperwebs in Chimera,
workspaces contained not only hypermedia abstractions such as anchors, links and con-
tent nodes, but also support for Internet distribution, access control, collaboration and
version control. Moreover, HyperDisco used its own haming scheme to allow tool in-
tegrators to locate workspaces and dispatch application requests to them, whereas the
Chimera’s client server contacted the hyperweb manager to retrieve the contact infor-
mation of the hyperweb server and then directed the end user’s request to the hyperweb
server for manipulating the hyperweb of interest, thereby avoiding the need for a name
service.

3.3.6 Construct (component-based)

Construct, developed at Aalborg University Esbjerg and Aarhus University, was an in-
stantiation of a public domain CB-OHS compliant with OHSW@le facto) standards,
reference models and reference architectures (Wiil aimchberg 1999). In contrast to

the first generation CB-OHSs which developed its proprietary component framework
(e.g. HOSS and HyperDisco), Construct adopted existing component technologies and
frameworks and was viewed as one of the second generation CB-OHSs. The three-
layered architecture of Construct as depicted in Figure 3.7 comprised an open set of
applications, an open set of structure services and an open set of hyperstores.

The hyperstore, which was effected on top of a DBMS, offered persistent stor-
age services. The generic hypermedia service and collaboration services implemented
by the hyperstore core were provided to structure services through hyperstore inter-
faces. Different domains were supported by structure servers which tailored and ex-
tended the generic facilities from the hyperstore to domain specific services. In turn,
these services were offered to applications through structure server interfaces. Commu-
nication between components occurred in many different ways. According to Wiil and
Nurnberg (1999), as of November 1998 Construct supported communication via Java
RMI'®, TCP/IP and HTTP.

The generic structure in the hyperstore was the basic structural building block. It
was tailored to represent all different kinds of domain specific abstractions provided by
structure servers, thereby allowing the use of structure across domains. Services pro-

B0Open Hypermedia Systems Working Group
®Remote Method Invocation, which is Java’s implementation of RPC for java-object-to-java-object
distributed communication.

Chapter 3 Distributed Hypermedia Systems 45

Application

Java RMI, CORBA, TCP/IP, HTTP

Structure Service API
Construct
Structure Structure Service Core
Service Hyperstore Client Library
Java RMI, CORBA, TCP/IP, HTTP
Hyperstore API

Construct
Hyperstore Hyperstore Core

Database Client Library

JDBC

‘ Database Management System ‘

FIGURE 3.7: Construct Architecture
(Wiil and Nurnberg 1999)

vided by the hyperstore were independent of the generic structure abstractions stored,
which enabled the hyperstore to provide services with the stored abstractions unaltered.

Construct exhibited enormous extensibility and tailorability. The development and
introduction of a new hypermedia domain simply meant defining and implementing a
new middleware component to support for abstractions in the new domain. Moreover,
by adopting existing component technologies and frameworks, such as Java RMI, in-
teroperability between compliant hypermedia systems was supported, and considerable
time and efforts could be saved in both development and maintenance of Construct.

To provide both hypermedia structuring and collaboration facilities, Construct was
further developed into a structural computing environment. Structural computing shared
its main features with OHSs: separating data and structure, and providing linking func-
tionality to existing desktop applications. In particular, the primacy of structure over
data was asserted in structural computin@riiberg et al. 1997). Moreover, structural
computing aimed to develop environments that support multiple hypermedia domains
within a single environment. Wiil et al. (2003) proposed the use of the computer-
supported cooperative work (CSCW) technology to augment Construct with collabora-
tion facilities. The hyperstore implemented in the early Construct was extended to a
foundation services layer which included structure storage services, concurrency con-
trol services, notification control services, access control services and version control
services. The Construct structure service shown in Figure 3.7 evolved into the structure
services layer which provided a set of structural abstractions for different hypermedia

Chapter 3 Distributed Hypermedia Systems 46

domains. The infrastructure services layer, including naming and location services, was
introduced to enable other services to collaborate in the environment. Furthermore,
Construct designers stressed the implications of the awareness service, the session ser-
vice and the Construct naming service in support of asynchronous and informal collab-
oration in a conceived application scenario, and implemented these services and related
tools to demonstrate their approach.

3.3.7 Callimachus (component-based)

Callimachus was an open distributed hypermedia system with a component-based archi-
tecture as shown in Figure 3.8. The objective of the Callimachus system was to provide
a framework in which multiple hypermedia domains (e.g. navigational, taxonomic and
spatial) co-exist and structure servers of new domains can be developed.

Client Client
A A
Services Structure Services Structure
cache cache
Internal Internal
. Structure . Structure
operations operations
template template
Behaviour Behaviour
Structure Server 1 Structure Server 2
Store Naming Notification Template repository

Infrastructure

FIGURE 3.8: Callimachus Architecture
(Tzagarakis et al. 2002)

The infrastructure in Callimachus included the fundamental functionality, such as
persistent storage, naming and notification. The template repository stored the structure
template that defined the structure model upon which structure servers operated. The
middle layer comprised an open set of structure servers that delivered domain specific
abstractions and services to clients. Each structure server contained a structure template,
a structure cache and a set of behaviours which modelled the computational aspect of
a domain, a sub-domain or an application. Behaviours were divided into services and
internal operations. Services could be accessed by clients using a specific APl and pro-

Chapter 3 Distributed Hypermedia Systems 47

tocol, while internal operations were primarily used by structure servers for consistency
purposes. The structure cache was a store for domain specific abstractions of struc-
ture servers. Abstractions should be loaded into the structure cache before behaviours
performed any operation on them.

The aggregate of the middle layer and the infrastructure originated from the con-
texts in the early Callimachus (Tzagarakis et al. 1999) which only consisted of dis-
tributed contexts and applications requesting hypermedia services. Each context was
an HBMS that stored hypermedia abstractions and provided hypermedia services. Con-
texts provided a data model that described hypermedia objects, such as documents,
nodes, links and anchors. Applications obtained hypermedia services from a context
by connecting to the context and communicating with it via a common application pro-
tocol. To locate hypermedia anchors and services in distributed contexts, Callimachus
utilised the Context Name Service (CNS) which generated and managed names of an-
chors and services.

Each context possessed a CNS that managed the database of bindings between
names to attribute values of anchors or services. A CNS name consisted of a handle
and a remainder separated by a delimiter. The handle identified the CNS in which the
remainder should be resolved. When an application requested operations on an anchor,
it needed to provide the anchor name which would be subsequently sent to the CNS
of the context to which the application was connected. The anchor name was split
into a handle and a remainder by the leftmost delimiter. Looking up the database of
bindings of the current CNS identified a new context indicated by the handle. The
remainder was sent to the CNS of the derived context to be resolved. This process
repeated until the name could not be split further. The remaining name revealed the
context in which the anchor of interest was created. The attributes of the anchor were
sent back from the target context to the application that requested the information. CNS
names were independent of the underlying physical configuration of contexts. Anchor
names remained valid even if the related context sétweas reconfigured, and only
the CNS database of bindings in the context in which reconfiguration occurred required
an update.

20The context server was a process which handled client (application) connections and requests as well
as provided hypermedia services.

Chapter 3 Distributed Hypermedia Systems 48

3.4 Distributed Link Service (DLS)??

The first implementation of the Microcosm philosophy on the Web was the DLS (Carr
et al. 1995). This was later extended so that link resolution was also distributed around
the Web (De Roure et al. 1996). The DLS technology has demonstrated that it is
possible to embody the Microcosm philosophy of open linking in the Web to get extra
functionality for publishers, authors and readers.

The DLS was a hypermedia service that clients could use to make inquiries against
sets of linkbases. It comprised client-side interface tools and the server-side link service
CGil scripts. There was a main linkbase for the link server which provided server facil-
ities of the DLS. Additional linkbases existed which allowed the server to offer a range
of different sets of links, known as contexts. A personal linkbase in which users might
wish to maintain links for their own use was allocated to each user. As described in
Section 2.4.3, Microcosm allowed messages to be passed and processed along its filter
chain in a sequential way, which was not a satisfactory solution in distributed environ-
ments. The DLS abandoned the chain topology of the filters. Multiple messages in the
DLS that contained multiple requests to the link service could be processed in parallel,
resulting in much more efficiency.

Moving away from its Microcosm roots, the DLS evolved into a proxy server im-
plementation in which the link server was in the form of a link server proxy between
the browser and the HTTP server. The reasons are explained as follows. First, users
of the original DLS had to learn many new concepts along with the link service. With
the proxy server approach, the link service was embedded in the document transport
system and links were compiled and inserted into documents when they were delivered
to the browser through an adapted Web proxy server. Thus there was no need for an
extra client interface for users except a normal Web browser (Carr et al. 1998b). The
DLS client might be configured to indicate user preferences for using the link service.
A control panel was supplied in the form of an HTML form and the results are sent back
to the link server. However, the documents into which links were inserted had to be in
a well-understood format, which made the system less open.

Another reason for adopting the proxy server approach lied in the fact that the
original DLS had to work with different and constantly changing Web browsers. Fur-
thermore, clients needed to find information such as the current selection and the cur-
rent document from different applications. The information could be encapsulated as

21The DDLS inherits its core concept from the DLS and therefore this section is dedicated to presenting
the DLS in its entirety.

Chapter 3 Distributed Hypermedia Systems 49

an HTTP request and communicated to the Web browser. As Web browsers and inter-
application communication evolved, it was difficult to extract such information using
the ‘standard’ software solution. Meanwhile, revisions in operating system implemen-
tations also had an impact on the consistent way in which the DLS client worked with
the Web environment. The interfaceless proxy server approach required no extra client
software for users and thereby able to address the issues.

The simple proxy DLS also brought problems that needed to be tackled. For in-
stance, the generation and processing of acommon HTTP request for a document should
be as follows. The Web browser built an HTTP request and sent it to the HTTP server.
When the document which was returned by the HTTP server passed the link server
proxy, related links would be superimposed on the document. The document was then
delivered to the Web browser for viewing. During the procedure, link processing and
document delivery had to be synchronised with each other before the requested doc-
ument with newly-inserted links was returned to the user. If link processing cost too
much time, the delivery of the requested document to the user’s browser would be de-
layed. Moreover, the newly-inserted links might be viewed as infringing the original
document content. These links might also connect to other material, which could be
against the author’s will. Therefore, the proxy DLS had to solve the problems inher-
ently in its architecture before serving links better.

A possible solution to the above issues could be separating link processing and
document delivery and allowing them to take place asynchronously. An HTTP proxy
took the place of the link server proxy. The link server was attached to the HTTP proxy
with all its components, such as linkbases and link resol%erBhe new flow of the
HTTP request which was transmitted from the browser to the HTTP server remained
the same as before. However, on its return, a copy of the retrieved document would
be sent to the link server when it passed the HTTP proxy. As opposed to the previous
approach, the links which were relevant to the document would be returned indepen-
dently of document delivery and displayed in a separate window for recommendation
purposes, which made the DLS appear as an advisory service to the user (Carr et al.
1998b).

To be precise, the DLS is more like a dynamic link service than a truly distributed
link service. This is because linkbases are maintained on a single server, and the link
resolver component is located within the same server. Essentially, linkbase data was
regarded just as another document type, so it could be processed and maintained like
any other document. Most research on distributed aspects of the DLS initially looked

22The link resolver is a component that wraps the function to resolve to links, and is implemented by
means of CGlI scripts.

Chapter 3 Distributed Hypermedia Systems 50

for solutions to dealing with decentralised linkbases. For instance, the proxy DLS (Carr
et al. 1998a) proposed a DLS network model in which linkbases were scattered around
on different servers and more than one link server was introduced. Agents embodied
in the proxy enabled queries to be sent from one link server to another. However, no
algorithm for query routing was offered, and the details on the way a proxy DLS deals
with a query involving linkbases on more than one link server were not clearly defined.
In a later paper, De Roure et al. (2000) discussed query processing in a distributed
context and investigated off-the-shelf services, such as HTTP, LDAP and Whois++, as
candidate technologies for distributed linkbases. It was demonstrated in their study that
directory services could be very useful within link service infrastructures.

3.5 Summary

The main objective of this chapter is to serve as an introduction to distributed hyper-
media systems, a field that embraces fundamental notions and philosophies in terms
of architecture by which this work is inspired. To this end, this chapter described the
major models of distributed computing and detailed their architectural features. A cross-
section of systems were cited and examined to help understand the various choices of
software architecture made in the design of distributed hypermedia systems. In contrast
to others, distributed hypermedia systems that adopt a service-based architecture have
yet to be implemented.

Studying the distributed hypermedia systems presented in this chapter shows that
resources or services can be located in these systems by either posing a query to a
central authority, or typing a URL, which is known through other means, pointing to
the resource or service. However, none of these systems has provided an approach
to resource or service discovery in a more dynamic and ad hoc environment without a
central authority. This work aims to enrich research on resource discovery in distributed
hypermedia systems by addressing the issue in the unstructured P2P DDLS in which the
central control is absent, see Chapter 6.

The next chapter will present the requirements analysis and design of a centralised
P2P DDLS which draws on the ideas from both the open hypermedia and P2P comput-
ing research areas.

Chapter 4

Requirements Analysis and Design of
the DDLS

4.1 Introduction

This chapter begins with an overview of extending the original DLS into a uligy
tributed dynamic link service - the DDLS (Distributed Dynamic Link Service). It then
centers around the work conducted in the design of the DDLS which is based on a
centralised P2P model that encapsulates a central service directory. Several aspects
of software engineering have been involved, ranging from analysis, design and proto-
typing, to evaluation, with the design of the software architecture being the primary
concern. For explanatory purposes, this chapter presents two prototypes that adopt a
client-server architecture - a common architecture shared by many OHSs (see Chapter 2
and Chapter 3), and a centralised P2P architecture, respectively. Finally, an evaluation
which consists of an operational analysis and feature comparison of both prototypes is
presented in detail.

4.2 QOverview

It was identified in Section 3.4 that the original DLS was a dynamic link service rather
than a truly distributed link service. Linkbases, specified by users as a context for link
resolution and retrieval purposes, could be dynamically added or removed from the pro-
cess of link resolution and retrieval. All linkbases were maintained on a single server,
and the link resolver which provided hypermedia link services was located within the

51

Chapter 4 Requirements Analysis and Design of the DDLS 52

same server. The original DLS did not exhibit any distributed feature in terms of either
linkbases or link services.

Decentralising linkbases and link services is driven by the phenomenon that the
distinction between the role of a link service provider (a server) and that of a link service
requestor (a client) increasingly blurs. In a collaborative environment for example, a
single program may be required to act as either a server, or a client, or both. This
requirement cannot be fully satisfied by a client-server link service which may use a
central link server to manipulate linkbases distributed across the system, or use a central
repository to maintain linkbases while deploying link servers across multiple hosts.

Decentralising linkbases and link services is enabled by P2P computing (see Sec-
tion 5.2). Distributed systems based on the P2P paradigm are characterised by the
equal capability of participating nodes and the decentralisation of control, and such a
paradigm can be used to support a distributed OHS for collaboration in various settings.
A P2P system, in terms of the software architecture, falls into one of the following
main categories: the centralised P2P, the unstructured P2P and the structured P2P. The
main feature that makes the centralised P2P system different from the rest is its use
of a central service directory for resource publishing and discovery. In structured P2P
systems, the network topology and the placement of data objects are precisely deter-
mined, whereas in unstructured P2P systems they are not. More details can be found in
Chapter 5.

The centralised P2P model is closest to the traditional client-server model in the
sense that both maintain some form of centralisatidiis centralisation is crucial in
reducing the complexity of designing and implementing a P2P system. For instance, ina
centralised P2P system service/resource discovery involves posing a query to the central
authority for locating service/resource providers, whereas in a structured or unstructured
P2P system, carrying out the same task requires more complex search mechanisms.
More importantly, if the collaborative environment is well-arranged, for instance the
presence of a central service directory is allowed, the centralised P2P model will suffice
for supporting collaboration. This work therefore starts from designing and exploring
the centralised P2P DDLS. For explanatory purposes, two DDLS prototypes based on a
client-server architecture and a centralised P2P architecture respectively are described
later in this chapter.

The overall aim of this work, as stated in Section 1.3, is to investigate how the open
hypermedia approach can be enhanced by P2P technologies to support collaboration in

However, the former requires that the functionality of both a provider and a requestor should be
implemented in a single program, while the latter assigns them to different programs.

Chapter 4 Requirements Analysis and Design of the DDLS 53

distributed environments. Such an aim implies that this work also needs to address is-
sues that would arise from environments of an ad hoc nature. An ad hoc environment
typically excludes the presence of any central service directory, and together with the
specific requirements for the DDLS applicable to such an environment, it invalidates
the use of a structured P2P model (see Section 5.4.2.3). Adopting an unstructured P2P
architecture poses new challenges to this work, with resource discovery being the most
crucial and complex issue to tackle. This work will later investigate the approach to
implement the unstructured P2P DDLS and develop mechanisms to enhance its perfor-
mance of supporting collaboration in ad hoc environments (see Chapter 6 and Chapter 7
for details).

4.3 Requirements Analysis

The DDLS aims to facilitate resource sharing-based collaboration between a community
of people with similar knowledge background. It is a tool that empowers any of its
users to take advantage of knowledge of peers to assist his/her own activities. This is
achieved by discovering related documents from peers and providing them to the user
who requests the assistance of peers’ knowledge. The peers’ knowledge is implicitly
conveyed by the way documents are categorised and the information about documents
is annotated.

The intended users of the DDLS are professionals in an organisation who rely on
computers to deal with their daily work. The DDLS users should be able to use the link
service, after suitable training, to store, organise and manipulate links referring to the
documents of interest.

The primary requirements for the DDLS are summarised as follows:
e The DDLS shall support users to store links that refer to documents of interest
and to maintain them in linkbases.

e Links shall be either manually populated during users’ browsing activities, or
automatically harvested from other sources.

e The DDLS shall have no restrictions on the content of the documents that are
involved in the linkbases - documents can be related to either a specific domain
or very diverse domains.

Chapter 4 Requirements Analysis and Design of the DDLS 54

e Users shall be in complete control of their linkbases. For instance, they can either
organise and manipulate their own linkbases at will, or place access restrictions
on the linkbases.

e When a user decides to obtain documents of interest from peers, all linkbases that
have been declared as public across the system shall be visible and accessible to
the user.

e The DDLS users shall not be aware of the operational difference between access
to public linkbases and access to their own linkbases, with the exception of that
caused by the delay of inter-network transmission.

e Every user shall have access to the public linkbases of others if permitted. The
operations he/she can conduct on the linkbases, however, include read and search
only.

e The DDLS search mechanism shall support document discovery among multiple
sources which are decentralised. A search shall be conducted based on various
criteria.

4.4 Design

The analysis in the previous section has established an understanding of the require-
ments for the DDLS from all perspectives. These requirements are to be satisfied by
tackling three main issues identified in this section: resource description, organisation
and operations, user interface and system functionality, and architecture.

4.4.1 Resource Description, Organisation and Operations

Linkbases are the repositories in which links are stored, organised and manipulated.
They are the most essential resources of the DDLS, as they are in the DLS, since the
main objective of a link service is to serve links rather than anything else. For each user,
different ‘context’ linkbases should be available for them to select from. By choosing
different contextual linkbases, users can specify the link set for their current information
needs. Linkbases should be represented in a manner that facilitates associated organi-
sation and operations. To this end, the XML model and syntax were chosen to express
linkbases in the DDLS.

Chapter 4 Requirements Analysis and Design of the DDLS 55

More than just a mark-up language such as HTML, XML is a meta-language that
can be used for defining new mark-up languages. Instead of replacing HTML, XML is
designed to complement it. HTML is currently only used for formatting and displaying
data, whereas XML is employed to represent the contextual meaning of the data. XML
has a number of advantages over HTML. Firstly, it separates content from presentation
of the document. If the content is updated, the document can still be consistently pre-
sented. HTML is unable to provide this reusability. Although the export of a document
in HTML can be done automatically, it is vulnerable to the change of the data content
of the document. Secondly, by specifying different presentation styles, with XML one
can give a document a different look upon requests when displaying the content, while
HTML usually gives one view of the data. Furthermore, HTML is not extensible so
application developers can not create their own tags for specific circumstances, whereas
in XML this is easily achieved since application-specific tags can be customised to meet
new requirements. Finally, for the description of data in a portable format, XML ensures
platform independence and interoperability between hosts.

For instance, in a DDLS linkbase, a link for a particular user as will be men-
tioned later in this section has the format as in Figure 4.1. Each link is described as a
triple (description, source and destination endpoints) and both the source and destina-
tion endpoints are further described through a fietthta> that contains a fielecurl>
indicating the source and destination anchors of the link.

<linkbase>
<link id="001">
<description-acamedic-related.researciiescription-
<endpoint direction="source?
<data>
<url>http://www.rg.cs.university.ac.uk/projectdurl >
</data>
</endpoint>
<endpoint direction="destination*
<datg>
<url>http://www.cs.university.ac.uk/projects/GIANT/url>
</data>
</endpoint>
</link>
</linkbase>

FIGURE 4.1: An Example of Using the XML model and Syntax to Represent the
DDLS Linkbase

Each link entry in the linkbase may potentially have more than one source or desti-
nation anchor, which provides flexibility in dealing with all kinds of links. This feature
essentially provides a useful manipulation of generic links (see Section 2.4.3). Links

Chapter 4 Requirements Analysis and Design of the DDLS 56

can be searched by their link id (identity), description, source anchor or destination
anchor.

Linkbases are usually structured in a hierarchical way to facilitate the organisation
of information into categories. A tool that enables users to organise linkbases hierar-
chically in response to their primary content, is provided in the DDLS. In the hierarchy,
the intermediate nodes are analogous to directory listings in the conventional file sys-
tem and leaf nodes represent the real linkbases which contain links and the associated
information about the links. For example, if a user is a member of academic staff at
a university, a linkbase can be specified for his/her academic related material and an-
other linkbase for hobbies. In the academic related context, the user may have different
linkbases for research, teaching and publication, respectively, similarly for the hobby
linkbase.

The DDLS currently support three primitive linkbase types:

e Private linkbaseslinkbases that belong to their owners (as well as their creators)
and are inaccessible to others.

¢ Public linkbaseslinkbases that belong to their owners who grant permissions to
all the other users for accessing these linkbases.

e Personal linkbasesan aggregation of both private and public linkbases of the
same owner.

Users have all permissible rights over their personal linkbases, such as creation,
deletion and update of links in linkbases, and they grant access permissions for opera-
tions on their linkbases to other users upon request. These operations typically include
only search or retrieval of a specific or set of links. To increase the interoperability of
linkbases among different users, all linkbases in the DDLS may need to conform to the
same specification of organisation.

4.4.2 User Interface and System Functionality

Figure 4.2 and Figure 4.3 show the graphical user interface of the DDLS, through which
the primary hypermedia functionality available in the DDLS can be accessed and the
system can be configured. Two tabs, ‘Link Service’ and ‘Linkbase Config’, were de-
signed to serve the purposes, respectively.

Chapter 4 Requirements Analysis and Design of the DDLS 57

£ Distributed Dynamic Link Service =] 3}
(| Link Service | Linkhase Config |
Linkbase selection

e aarts o T

entertainment bookslors
entettainment.cinema
nmz00r-=academic.research
nrnz0or-»entertainment magazin g

enterzinment magazine
nirizl0r-=entertainment cinema
e vowl -=academic teaching

(44

[Vl External public linkbases included

Search for links

Description : [

Source anchor : |

Destination anchaor : |
fvailable links
Linkbase | Descﬂpﬁo..] Source anchor | Destination anchor |
entertainment:m... ab httpeiaasnsecwrutsim edu,en | hitp dhecy. ecs.solon.ac.,
enterfainment:m... Hello! hitpifsesrserhiecomocn | hitp s cotecom
enfertzinment:m... hie htp:ifeesrwe sichuan.com | hitp dhevesw ads co.uk

entertalnment:m.. dithsidih.. hitpiwes beling com hitp ey adsdil coldr
entertainment:m. testnode hifpdvavecweneuecityc.. (hitp i sina com.cn
enterainmentm... acadermic hitpwassowho edocn hitp Sy Sina. corm.ch
entertainment:m... hi hittpifsasee bl oo Uk hittp s brifishermba... |5
enterfainment:m... teaching |hiipdhweneecs soton.ac.. hitp thwew.ecs.solon.ac.. |0
enteftainment;m.., enterain,., hitpiwneodeon couk |hitpibesw, 2020shops..., |
enterdainment:m... difjsldkf] httpcifvnersckeeyn.edu.com |hitp fineeeee.dfld. de
enterfzinment:m... music hitpifmusic.163.com hitpifecards 263.com
entertainment;m.., SOFAR Fr.., hitpis.sofarecs sot, | hitp e sofar ecs sot,
yvzwlir-»academ.. tesi node 1 hiipfwwerwtesinoded e |hitpfiverstesinodet ac ..

nmz0or-=enterai... sbe hitpifwncwuism.edu.cn |hitp Shvarw.ecs.solonac.. | |
nrmzlor-=antartai.. Hello! hitpeitsesesewhiecomocn | hitp e ot com -
| Add || Delete |[Exit

FIGURE 4.2: Screenshot of the DDLS User Interface - the ‘Link Service’ Tab

Both navigational facilities (link traversal) and authoring facilities (link creation,
update and deletion) are provided through the ‘Link Service’ tab of the user interface,
see Figure 4.2. Retrieving documents of interest is transformed into retrieving the links
that refer to the documents. In order to search for links, a user first selects from the
‘Linkbase selection’ list the linkbases that will be involved. Ticking the check box
titled ‘External public linkbases included’ indicates the search will be carried out in an
extended scope. The DDLS responds to such an action by locating all the available
public linkbases and presenting their description in the list for the user to choose from.
Other attributes that can be specified in the search criteria include the deséription
source anchor or destination anchor of target links. The ‘Search for links’ facility will
formulate a query for the search request. The query expression is typically represented

2The description of a link refers to an abstraction of the primary content of the document the link
refers to, and is not limited to the user’s selection based on which the link service will typically initiate
an action such as link following.

Chapter 4 Requirements Analysis and Design of the DDLS 58

by conjunctive operations on terms specified in the search cfitégkimempty attribute
indicates that any link matches the search criteria in terms of the attribute. After a query
is formulated, it is submitted to the associated link server. The latter, in turn, retrieves
links from related linkbases and displays the result in the ‘Available links’ table. Users
may follow any link in the result and the DDLS will dispatch the related document and
display it in a browser.

£ pistributed Dynamic Link Service | =10]

Link Service | Linkbase Config

Personal Linkbases

ij linkhase

@ [acadernic
Oy conference
[research |
[teaching Add |

@ [entertainment
[bookstore
[cinema
[y manazine

Linkbase Configuration

Private linkbases: Public linkbases:

entertainment.cinema | academic

academic.research

academic feaching

< entarizinment.booksiore
entartainmeant magazine

ig

FIGURE 4.3: Screenshot of the DDLS User Interface - the ‘Linkbase Config’ Tab

A dialogue box is presented for adding new links to personal linkbases. When
prompted, a user provides information about the textual description, the source anchor
and the destination anchor of the link being added. The user can store the new link in
any existing linkbase according to the textual description of the link, or even create a
new linkbase for it. As in the DLS, the DDLS can automatically create a linkbase from
scratch by extracting sets of keywords from documents and turning them into generic
links so as to provide hypermedia functionality with minimal effort. Users can update
and remove links only from their personal linkbases.

DDLS users can configure the system, for instance, attaching or detaching personal
linkbases in response to their link service requirements, see the ‘Linkbase Config’ tab
in Figure 4.3. Linkbases are created with specified titles which capture the primary

3Support for disjunctive queries and others could also be implemented.

Chapter 4 Requirements Analysis and Design of the DDLS 59

content of documents their encompassing links refer to and inserted to certain points of
the hierarchy in the ‘Personal Linkbases’ pane, according to users’ personal views. The
removal of a linkbase will also lead to all links it maintains being discarded.

The accessibility of personal linkbases, which indicates whether the linkbases are
public or private, can also be configured by using the ‘Linkbase Configuration’ facility
the DDLS provides. Once a linkbase becomes public, it will be visible and accessible to
all users. Users are then able to select specific linkbases of interest from the ‘Linkbase
selection’ list on the ‘Link Service’ tab to personalise their query context.

4.4.3 Architecture

The centralised P2P architecture of the DDLS is illustrated in Figure 4.4. Each client,
or peer, has an associated link server, called LinkServerAgent. The LinkServerAgent
registers with the RegistryAgent, a central service directory not shown in Figure 4.4,
and expresses its capability for handling specfic messages. The main responsiblity of
the LinkServerAgent is to serve link service requests from peers. The Usef/Aggnt

tures a link service request, wraps it in an HTTP request, and forwards it to the peer’s
LinkServerAgent. The LinkServerAgent queries against peer’s personal linkbases and
also forwards queries involving public linkbases of others to related LinkServerAgents.
A peer locates the LinkServerAgents belonging to others through the RegistryAgent.
Furthermore, a link following request will be forwarded by the LinkServerAgent to an
HTTP proxy which is responsible for sending the request to an HTTP server to fetch
the document of interest.

4.4.4 Prototypes

The two DDLS prototypes described in this chapter are based on the client-server and
the centralised P2P architectures (see Figure 4.5 and Figure 4.4). Both were imple-
mented using SoFAR(Moreau et al. 2000), a framework enabling rapid prototyping.
Prior to proceeding further, an overview of SOFAR is given below.

4The UserAgent is a component that simulates the functionality and presence of users. Itis responsible
for interacting with and configuring the system.
SSouthampton Framework for Agent Research

Chapter 4 Requirements Analysis and Design of the DDLS 60

HTTP Server

Document ! HTTP
y | Reduest HTTP

Regquest

HTTPProxy [

Linkbases of
Client A

T

|

|

|

! HTTP

| Request

e UserAgent LinkServerAgent |/ Related
r of ClientA j# — — = — — of Client A Links >
: Related
|

|

|

|

-

Document

Links v ﬁelgedT Link
| Links vReques Linkbases of

K ClientB
o UserAgent LinkServerAgent
of Client B —__d_| ofciets '\%
|

Linkbases of
o UserAgent " LinkServerAgent | Client C
of ClientC /g — — — —. — of Client C . - %

P

FIGURE 4.4: Centralised P2P Model for the DDLS

4.4.4.1 The Enabling Framework

SOoFAR is a Java-based generic tool developed to investigate distributed information
management techniques. One of the major characteristics of Java which make it distinct
from other programming languages is that applications written using class libraries are
guaranteed to be portable across different platforms.

AgentsThe prime entities in SOFAR are referred to as agents (Jennings et al. 1998)
acting on behalf of other entity (or entities). Agents are hosted by platforms. The plat-
form is a Java Virtual Machine (JVM) and it can run a RMI registry listening on a spec-
ified port. The responsibility of a platform includes starting up agents and conducting
security check on agents’ permission to run on the intended location. Agents advertise
their services to a built-in matchmaker agent, the RegistryAgent, and express their ca-
pabilities for handling specific messages. By matching an agent’s need for services with
other agents’ ability to offer these services, the RegistryAgent can recommend a Ssuit-
able service provider to the agent requesting the service. The RegistryAgent registers
itself with the RMI registry under a well-known URL, which makes it convenient for
other agents to locate the RegistryAgent by communicating with the RMI registry.

Chapter 4 Requirements Analysis and Design of the DDLS 61

Communication Communication in SOFAR is based on performatives. The mes-
sage intent is expressed using one of nine performatives defined in SOFAR and its con-
tent is in the form of an ontology By exchanging messages, agents are able to commu-
nicate information about their perception of the surrounding environment with regard
to the problem domain. Agent communication is carried out over a virtual link defined
by a startpoint and an endpoint. The startpoint is one end of the communication link
where the messages are sent from and the endpoint is the other end that extracts the mes-
sages from the communication link and forwards them onto the agent. SoFAR offers
synchronous and multicast communication via RMI.

4.4.4.2 Prototype Systems

Client-server DDLS The client-server DDLS, see Figure 4.5, possesses only a single
LinkServerAgent to serve all clients in the system. All personal linkbases are stored
and maintained locally by the LinkServerAgent. A link service request is wrapped in
an HTTP request and subsequently sent from a UserAgent to the LinkServerAgent. The
LinkServerAgent queries against the linkbases specified in the request and returns the
result, if any, to the UserAgent. If the request is regarding link following, it will be
further directed to an HTTP proxy which, in turn, forwards the request to an HTTP
server from which the requested document is fetched.

Centralised P2P DDLSThe centralised P2P DDLS is shown in Figure 4.4 and
the related description can be referred to in Section 4.4.3.

4.4.4.3 Component Interaction

From the perspective of the framework, agents in SOFAR are regarded as communica-
tion objects interacting with one another by means of a set of predefined communication
acts, or performatives. All performatives are implemented by binary methods and these
methods are wrapped in messages passed between agents when inter-agent communi-
cation occurs. The explanations for performatives that will appear in Figure 4.6 and
Figure 4.7 are outlined as follows.

e Queryref: a synchronous exhaustive search for all terms that match the predicate
being passed as an argument.

6An ontology is a formal specification that helps promote interoperability between agents. It consists
of a domain specific vocabulary and a set of assumptions about the intended meaning of words. Asser-
tions, queries and requests against the specific domain are composed by the vocabulary and exchanged
among agents.

Chapter 4 Requirements Analysis and Design of the DDLS 62

Linkbases of
Client A
HTTP Server Linkbases of
% Client B
i Related! %
Document ! Links ! , .
+ Request HTTP v ‘,/ L|r(1:II<i;baste(s:of
Reguest
HTTP Proxy [« LinkServerAgent fe~._ _ %
T
I
Related | HTTP
Document Links | Request

|
L UserAgent
of Client A <« - -
|
|
|
|
. UserAgent]
of Client B R

I

FIGURE 4.5: Client-Server Model for the DDLS

e Request a performative used by an agent to request other agents to carry out
some tasks on its behalf.

Below is an example of the usage@utiery.ref andRequest

a = this.findAgentTermsForQueryRef (new privateOrPublic ());
privateOrPublic pob = new privateOrPublic ();
pob.initNameOfLinkbase (nameOfCheckedLinkbase);

results = a[0].startpoint ().quemef (pob, null);

b = this.findAgentTermsForRequest (new createlLinkbase ());
createLinkbase cl = new createLinkbase ();
cl.initNameOfLinkbase (nameOfLinkbase);

b[0].startpoint ().request (cl, null).

In the example above, an agent initially queries the RegistryAgent using findAgent-
TermsForQueryRef (new privateOrPublic ()) to find the AgentTerms of all agents that
are able to handle the predicate ‘privateOrPublic’. An AgentTerm is a term representing

Chapter 4 Requirements Analysis and Design of the DDLS 63

an agent The agent then asks one of the agents located (the first one in this case) to
check whether the linkbase denoted by ‘nameOfCheckedLinkbase’ is private or pub-
lic. Similarly, if an agent anticipates creating a new linkbase with a name indicated by
‘nameOfLinkbase’, it needs to query the RegistryAgent using findAgentTermsForRe-
guest (new createLinkbase ()) to discover the AgentTerms of all agents that are able
to handle the predicate ‘createLinkbase’. If there is at least one agent satisfying the
requirement, the agent can request any of the located agents to create the new linkbase.

Client-Server DDLS Figure 4.6 depicts the component interaction in the client-
server DDLS in which each clientis accompanied by a UserAgent. The single LinkServer-
Agent provides all the functionality that a link service should offer, for example, adding
and deleting links from a specified linkbaseequesgt searching for links according to
some criteriaQueryref), etc. The LinkServerAgent fulfils its tasks on its own without
help from any other agent.

UserAgent of Client A Linkbase of

Client A

UserAgent of Client B QR REQ » LinkServerAgent

Linkbase of
Client B

UserAgent of Client C

Linkbase of
ClientC

it) ML

Performatives:

QR Query_ref visibility of linkbases, public
links, or private links

ib Request adding or deleting links

FIGURE 4.6: Component Interaction in the Client-Server DDLS

Centralised P2P DDLSThe interaction between components in the centralised
P2P DDLS is shown in Figure 4.7. In the centralised P2P DDLS, a pair of agents
consisting of the UserAgent and the LinkServerAgent are supplied to each client. The
pair reside on a single host and provide the same link service functionality as those on
any other host in the system. Unlike in the client-server DDLS, a user who requests
links from the linkbases of others in the centralised P2P DDLS needs to inform his/her
UserAgent of the request which will in turn queries the associated LinkServerAgents.
The UserAgent acquires information about all the other available LinkServerAgents

An AgentTerm comprises the following fields: object ID and runtime information about the agent
that further embodies fields such as the user of the agent, the host on which the agent is running, the type
of the agent and the time the agent is started.

Chapter 4 Requirements Analysis and Design of the DDLS 64

REQ
T T T T T T T T T T T T 1
i v
. QR | LinkServerAgent
UserAgent of Client A ~ ; of Client A Linkbase of
\ p\ < % Client A
N
\\'9 /\/\/

\
/ AN
// \\ /
) 4 X QR | LinkServerAgent
r-= UserAgent of Client B NI > of Client B Linkbase of
\>/ \ P A ClientB
AN \ -~ |
/ Sk A |
/ _- - \‘ |
) -~ LinkServerAgent
UserAgent of Client C > of ClientC Linkbase of
T 7y | Client C
|

L

<
\
Le]
py)
A

| REQ !
___________ hEQ_______.____J
Performatives:
L Query_ref private links

—————— » Query_ref visibility of linkbases or public links

__REQ_

Request adding or deleting links

FIGURE 4.7: Component Interaction in the Centralised P2P DDLS

by submitting a queryQueryref) to the RegistryAgent. The latter queries all regis-
tered capabilities, gets the information about target LinkServerAgents, and imports the
description of public linkbases from those LinkServerAgents. All LinkServerAgents
cooperate within this scenario.

4.5 Evaluation

It was declared in Section 4.2 that the centralised P2P DDLS aimed at supporting re-
source sharing-based collaboration among a community of people in a well-arranged
environment, together with several requirements for the DDLS identified in Section 4.3.
The design of the DDLS was therefore undertaken based on such an understanding. The
prototype developed can demonstrate, to some extent, that the DDLS which adopts a
centralised P2P architecture has satisfied all the requirements. This section continues to
reveal what happens behind the scene that gives the centralised P2P DDLS its strengths
and weaknesses. This is achieved by abstracting the operations that the client-server
DDLS and the centralised P2P DDLS share in common, and conducting an analysis
and comparison of the architecture of both.

Chapter 4 Requirements Analysis and Design of the DDLS 65

4.5.1 Operational Analysis

UA — RA —% UA -~ LSA ¥ UA -~ » LS4 - Y R » Ud
1 2 3 4 5
AgentTerm One-way One-way
Location Time Check Time Communication Time Query Time | Communication Time
Task Time

UA: UserAgent
RA: RegistryAgent
LSA: LinkServerAgent

FIGURE 4.8: Composition of Task Time for a Link Retrieval Request

To facilitate understanding the typical operational procedure in the DDLS, a re-

qguest for link retrieval is examined. In response to the operations that need to be con-
ducted to satisfy the request, the task time, the AgentTerm location time, the check time,
the query time and the one-way communication time are defined as follows.

e The task time is the time recorded at a link service requestor (or a UserAgent) to
send the request for links in specified linkbases, and receive either one message
with all the links meeting the specified requirement or another indicating no links
has been found.

The AgentTerm location time is recorded from the point at which a query regard-
ing link service providers is sent from a UserAgent to the RegistryAgent until the
time a reply is received by the UserAgent which contains either a list of available
link service providers or an empty list indicating the unavailability of any link
service provider.

The time spent in checking the accessibility of specified linkbases is called the
check time, and is calculated from the point at which the link service requestor
sends the check request, until the time it receives the result from the related
LinkServerAgent.

For each incoming query, a LinkServerAgent searches its linkbases and retrieves
links. The elapsed time, measured on the node where the LinkServerAgent re-
sides, is the query time.

Chapter 4 Requirements Analysis and Design of the DDLS 66

e The one-way communication time refers to the period between a link retrieval re-
guest travelling from a UserAgent to a LinkServerAgent that satisfies the request,
or vice versa.

Figure 4.8 shows the composition of the task time for a link retrieval request. The
agents involved in the time fragments are sequentially labelled in italics.

The client-server DDLS and the centralised P2P DDLS may incur different Agent-
Term location time, see phase 1 in Figure 4.8, since they lead to a different number of
agents being registered at the RegistryAgent. With a linear search mechanism, the time
to locate an AgentTerm i8(n), givenn is the number of all AgentTerms that are being
searched. However, this difference in the AgentTerm location time would vanish if the
search mechanism supports the location of any entity to be completed within the time
that is independent of the number of the entities being searched. For instance, a search
based on the hash table may lead to the AgentTerm location time scaligl asn
both DDLSs.

The check time is specifically defined for all link service requests regarding pub-
lic linkbases, whereas requests involving private linkbases have no such needs. The
associated phase (2) relates to a request sent from a UserAgent to a LinkServerAgent
which carries out the accessibility check and returns the result back to the UserAgent.
The check time can be the same in both the client-server DDLS and the centralised P2P
DDLS with respect to the same link service request, unless both the UserAgent and the
LinkServerAgent reside on the same node in the client-server BDLS

The one-way communication time is the primary metric which demonstrates the
difference between the client-server and the centralised P2P DDLSs due to their inher-
ent architectures. The difference can be illustrated by a link service request regarding
retrieval of links in private linkbases. In the client-server DDLS, the retrieval of pri-
vate links involves a UserAgent interrogating a LinkServerAgent on a different node,
whereas the same task occurring in the centralised P2P DDLS relates to the UserA-
gent querying the LinkServerAgent residing locally. The one-way communication time
in the client-server DDLS is subject to the latency in inter-network communication,
because agents reside on multiple nodes and their communication over the network un-
avoidably suffers from the latency that exists in the network.

8In the client-server DDLS, the LinkServerAgent can be practically hosted by any node. Therefore,
a node hosting a LinkServerAgent can also be hosting a UserAgent, which may lead to the accessi-
bility check occurring locally. However, the same check in the centralised P2P DDLS always involves a
LinkServerAgent and a UserAgent on different nodes. Specifying that the UserAgent and the LinkServer-
Agent reside on different nodes in the client-server DDLS is to assure that the comparison between both
DDLSs is carried out under the identical circumstance.

Chapter 4 Requirements Analysis and Design of the DDLS 67

The client-server and the centralised P2P DDLSs lead to the same query time,
provided in both cases the nodes on which the LinkServerAgents reside possess the
same computing power.

4.5.2 Feature Comparison between the DDLSs with Different Ar-
chitectures

Though prototypes were implemented based on two different underlying models, an
effort was made to keep them functionally equal in order to achieve a fair comparison.
Table 4.1 summarises the comparison in which the advantages of the centralised P2P
DDLS over the client-server DDLS are labelled wigh

Feature Client-Server | Centralised P2P
DDLS DDLS

Linkbase organisatiogy fixed flexible

Conditions of link service delivery lenient stringent

Degree of information freshnegs low high

Overhead of link service delivery little much

User’s dependence on a single link seryér much little

Removal of the single point of failurg/ no yes

Scalability,/ low high

TABLE 4.1: Feature Comparison between the Client-Server and the Centralised P2P
DDLSs

e Linkbase organisation The central LinkServerAgent in the client-server DDLS
requires the same organisational structure for all personal linkbases of different
owners, or a schema that depicts individual structures should be available and
accessible to the link server (i.e. the LinkServerAgent) otherwise. In contrast, the
centralised P2P DDLS allows each link server to organise its local linkbases in
whatever way it prefers because the link server is the only party that maintains
and manipulates a peer’s personal linkbases directly.

e Conditions of link service delivery The client-server DDLS does not require
all registered users to be online when serving link requests, because all public
linkbases are maintained on a single node and access to the linkbases does not
necessarily entail the presence of their owners. This is an advantage over the
centralised P2P DDLS in which the public linkbases are available provided their
owners are online.

Chapter 4 Requirements Analysis and Design of the DDLS 68

e Information freshness for real-time searchUsers may not be able to publish
the latest update of linkbase information to other users in a timely manner in the
client-server DDLS. This may be a consequence of the disconnection of users
from the link server. However, the centralised P2P DDLS enables modification to
be reflected immediately once a peer updates the information about its linkbases.
For example, if a peer changes the accessibility property of its linkbases, any
subsequent search associated with the linkbases will be conducted in response to
the update.

e Overhead of link service deliveryThe centralised P2P DDLS brings some extra
operations for the link service request compared to the client-server DDLS. For
example, a search for links from public linkbases in the centralised P2P DDLS
involves a UserAgent interrogating the associated LinkServerAgents to obtain in-
formation about all public linkbases and to search for links in the linkbases. The
same process occurring in the client-server DDLS typically relates to a UserA-
gent querying against a single LinkServerAgent, which yields less operations and
messages. Moreover, the centralised P2P DDLS entails more agents in operation.
Let u be the number of users;(u) and C(u) represent the number of agents
registered at the RegistryAgent in the centralised P2P DDLS and the client-server
DDLS, respectively. The following functions

Pu)=2u+1, C(u) =u+1

reveal that the number of agents in the centralised P2P DDLS increases two times
as fast as that in the client-server DDLS as the number of users increases. Al-
though the difference in location time can be eliminated through certain search
mechanisms, the cost and resource consumption of extra agents introduced by the
centralised P2P DDLS remain.

e Users’ dependence on a single link servagsers in the client-server DDLS rely
more on the link server than those in the centralised P2P DDLS. Without the
link server, the client-server DDLS can not enable users to access their own pri-
vate linkbases since all the functionality of link services can only be accessed
through the link server. In contrast, the centralised P2P DDLS alleviates users’
dependence on a single link server by allowing each user to have his/her own link
service provider. Therefore, users always have access to their own linkbases as
well as to the public linkbases whose owners are online.

e Single point of failure The centralised P2P DDLS decreases the possibility of the
single point of failure through distributing linkbases and link services across the

Chapter 4 Requirements Analysis and Design of the DDLS 69

system and directly transferring required links from the provider to the requestor,
whereas the client-server DDLS does not.

¢ Scalability® Scalability has been partially achieved in the centralised P2P DDLS
through decentralising both linkbases and link services across the system. Peers
directly obtain links from providers, and a single link service request can be pro-
cessed by multiple service providers at one time. The net effect of a decreased
number of centralised operations and that of parallelism enable the DDLS scale to
a certain degree, although the location of linkbases is still very much centralised.

4.6 Summary

This chapter discussed several design issues for the DDLS, including resource descrip-
tion, organisation and operations, user interface and system functionality, and architec-
ture. In particular, the choice of the software architecture was of primary concern. To
accommodate the requirements for the DDLS applicable to a well-arranged environ-
ment, a centralised P2P architecture was proposed and a prototype based on the archi-
tecture was developed. To facilitate the explanation and comparison, another DDLS
prototype adopting the client-server model was also developed.

The centralised P2P DDLS has demonstrated, through an analysis and comparison,
its superiority to the client-server DDLS in the sense that the former incurs less commu-
nication across multiple nodes when a link service request regarding private linkbases
is involved, thus yielding a more rapid delivery of link services. Also, the decentralised
aspect of the centralised P2P paradigm increases the autonomy of each peer and the de-
gree of information freshness, reduces users’ dependence on a single link server, elimi-
nates the single point of failure and enhances the scalability of the DDLS. It should be
recognised, however, that the centralised P2P DDLS achieves its advantages at a cost of
potentially more overhead for delivering link services, more stringent conditions of the
service delivery, etc (see Table 4.1 for details).

So far, the objective of this work is partially achieved by a centralised P2P DDLS.
To be fully capable of supporting collaboration in an ad hoc environment, the DDLS
will need to adopt an unstructured P2P model. The next chapter will identify the fea-
tures of and requirements for the unstructured P2P DDLS and explains why the existing

9The wordscalability has long been used in software development to describe the capability of a
system to function well as it is changed in order to handle increasing demand or load that it would be
placed on.

Chapter 4 Requirements Analysis and Design of the DDLS 70

approaches to different P2P systems are not sufficient to achieve the eventual objective
of this work.

Chapter 5

Rethinking the P2P Paradigm

5.1 Introduction

Initial effort to extend the traditional hypermedia link service adopting a client-server
architecture to P2P environments was described in Chapter 4. The consequence is a
centralised P2P DDLS in which resource discovery resorts to a central directory and
resource fetching is inherently based on P2P. Circumstances with ad hoc properties
preclude the existence of such a centralised directory and a delicately designed indexing
scheme and search algorithm are therefore crucial to such systems.

This chapter discusses in more detail P2P computing, an area with major concepts
and technologies adopted by the DDLS. The definition of P2P is followed by the cat-
egorisation of P2P systems based on domains to which they have been applied. This
chapter also presents a taxonomy of contemporary P2P systems based on architecture,
examines their solutions to indexing and searching resources, compares their strengths
and weaknesses, and identifies the essential properties that an indexing scheme and
search algorithm for the unstructured P2P DDLS should possess.

5.2 P2P Computing

P2P (Clark 2001) can be described as an overlay network in which a group of peers
communicate using the same networking program. Each peer possesses the same capa-
bilities and can be autonomous, i.e. taking actions independently of one another. P2P
computing is not a new technology in nature. Early distributed applications such as

71

Chapter 5 Rethinking the P2P Paradigm 72

email systems and telephone services exhibit similarity to P2P. Email systems built on
SMTP rely on local servers to establish connections to other peer servers for mail de-
livery, and telephone services work by setting up channels between switching offices to
support simultaneous telephone calls.

Nonetheless, the novelty of P2P technologies developed over the last few years is
that they enable Internet-connected personal computers to play more important roles
than those played by client-server or master-slave systems. Although without continu-
ous connections to a network, decentralised personal computers can establish periodic
connections to one another. Sending and receiving messages and transferring files occur
directly between these computers. In addition, splitting a computational problem into
small independent parts enables each computer to process a different part and send the
result back to a central server for collection. The P2P network aims to provide services
and resources even in environments with unstable connectivity.

5.2.1 Categories of P2P Systems

P2P systems have typically been seen in the following domains: distributed computing,
file sharing, collaborative systems and P2P platforms, according to the classification by
Milojicic et al. (2002).

¢ Distributed computing Distributed computing is more recently, in the late 1990s,
used to refer to harnessing the collaboration of Internet-connected personal com-
puters. By pulling together the processing power of a network of personal com-
puters, distributed computing enables large computations. Whether a distributed
computing system is also a P2P system depends on the amount of computational
tasks each computer executes and the extent of autonomy that each computer
bears. Although distributed computing utilises spare computing resources of de-
centralised computers, Internet latencies are the principal obstacles to performing
critical communications and computational tasks. This leads to a limited scope of
distributed computing domains.

e File sharing File sharing must be one of the most popular and successful P2P
application areas. Aggregating storage from distributed participants, file sharing
systems achieve a potentially unlimited area for the exchange and sharing of files
and music clips. The file reference may be the only knowledge required for file
retrieval. P2P file sharing systems enforce duplication and replication policies to

1 Simple Mail Transfer Protocol

Chapter 5 Rethinking the P2P Paradigm 73

offer availability, reliability and faster retrieval. Moreover, by building anonymity
into systems using related algorithms, information about individual peers can not
be identified (Clarke et al. 2001). Efficient location and search capabilities are
the focus of research on P2P file sharing systems.

e Collaborative systemsCollaboration at the application level can be established
among peers. Examples can be found in online games and instant messaging sys-
tems. Peers carry out the given task in collaboration with others within the same
group. An event occurring at one peer will be notified to others for corresponding
action. Collaborative systems need to provide fault tolerant schemes for event
delivery. As requested by distributed computing, capabilities to circumvent real-
time constraints are also necessary features required of P2P collaborative systems.

e Platforms P2P platforms support a wide range of P2P applications by offering
basic core functionality and high level services. Objectives of P2P platforms
include an infrastructure for network programming and computing (e.g. JXTA)
and access to Web services on the Internet from any available devices (e.g. .NET
My Services).

5.2.2 Features of P2P Systems

This section provides an overview of the features exhibited by existing P2P systems.
They help explain the mechanisms utilised by P2P systems, the advantages they offer
and the challenges designers of P2P systems face.

e Decentralisation The definition of P2P conveys two meanings: resource decen-
tralisation and processing decentralisation. Computational resources, such as
CPUW cycles, data and computers, could be widespread, while processing might
involve distributed data and algorithms. Compared to traditional client-server
systems, P2P systems enable resources to be stored locally and accessed without
the intervention of a central server. Therefore, individual peers gain more control
over their own resources. Furthermore, decentralisation reduces the risk of the
single point of failure commonly found in client-server systems.

e Autonomy Peers form a virtual network in which each of them can act as a server,
a client, or both on top of the physical infrastructure. They store data and perform
tasks on their own behalf instead of relying on a dedicated server. The auton-
omy is introduced by the independence of peers from the restrictions imposed by

2Central Processing Unit

Chapter 5 Rethinking the P2P Paradigm 74

infrastructure protocols and services, and it gives rise to increased complexity of
service (or resource) location. The increased autonomy also brings increased con-
cerns regarding security because policies and restrictions may need to be applied
to peers’ behaviour.

e Ad hoc behaviour The temporary presence of participants results in the ad hoc
nature of a P2P system. They may join and withdraw from the network at any
time. This may not be a significant problem for P2P file sharing systems. How-
ever, in a collaborative P2P system, the absence of a particular peer may lead to
the failure of the collaboration, although the situation could be ameliorated by
supporting transparent delay of communication to the disconnected peer. P2P
systems should consider the dynamics of their peer network and provide solu-
tions to accommodate changes of peers to maintain consistency and stability, and
increase robustness.

e Anonymity Users and machines on a network can be uniquely identified by their
IP address. It is not desirable because users may be concerned with the ramifica-
tions of their actions, publishers may be worried about being deprived of rights to
speak freely, and storage systems may need to resist attempts by external systems
to detect and spoil data. Support for anonymity is also seen as a defense against
the censorship of digital content. Research on anonymous routing protocols aims
to disassociate a user’s IP address from the traffic that results from message rout-
ing. This primarily involves initiator anonymity, responder anonymity and mutual
anonymity between a pair of communicating parties.

e Scalability Decentralisation yields improved scalability in P2P systems in which
operations and computation are carried out in a decentralised manner and so are
data storing and exchanging. Moreover, scalability is accomplished by the paral-
lelism seen in both the programming model and the communication model. For
instance, Napster (Napster 2001) achieves good scalability by introducing a P2P
communication model which allows peers to directly download files from others
that have the required documents. Good scalability should not be accomplished
at the cost of other desirable features. Recent P2P systems which employ dis-
tributed hash table (DHT) techniques, such as CAN (Ratnasamy et al. 2001),
Chord (Stoica et al. 2001) and Pastry (Rowstron and Druschel 2001), trade flexi-
ble network topology and data placement for satisfactory scalability by modelling
the identifier space for efficient lookup.

e Self-organisation The absence of a central authority for control in some of the
P2P systems partially accounts for the dynamism they exhibit. Peers join and

Chapter 5 Rethinking the P2P Paradigm 75

leave from the peer network frequently and the system relies on its own mecha-
nism to recover from the inconsistent state and become stable. However, as the
system scales, it is very difficult to predict the scale of the future number of peers
and workload. Therefore, the probability of failure is potentially on the increase.
P2P systems should possess the self-organisation capability to function even in
the face of an enormous increase in the number of peers without the need for
re-configuration or human intervention.

e Security The direct interaction between peers results in more security concerns in
P2P systems than their alternatives, such as client-server and centralised systems.
Apart from the security requirements shared with distributed systems, P2P sys-
tems confront new challenges in dealing with security issues. For instance, direct
transferring files between peers in file sharing systems may lead to false infor-
mation from an unreliable peer. Even worse cases include the execution of code
from a malicious peer. Therefore, trust between peers is an important property
that a peer can utilise to build its evaluation of others’ reputation. P2P file sharing
systems attract many public concerns about security. In particular, the ease of file
copying raises worries about protection of intellectual property, and this is one of
the reasons that the future of Napster-like file sharing systems is always tangled
with copyright law.

e Interoperability P2P systems are highly dependent on the network topology and
supporting applications, based on which distinct protocols are developed that de-
fine the way peers communicate over the network. Interoperability facilitates
shared conversation and cooperation among peers from different systems. These
peers are therefore allowed to exchange requests and resources. The principal
reason for pursuing interoperability between different P2P systems is to avoid re-
dundant development of services already provided by other systems and to focus
on only the services that are exclusively offered by individual P2P systems. Ef-
forts towards the realisation of improved interoperability between P2P systems
include developing standards and specifications, achieving mutual understanding
between system developers, and devising an infrastructure that offers services to
accommodate various needs of ported P2P systems.

5.3 A Taxonomy of P2P Systems

Unlike the classification presented in Section 5.2.1, this section utilises a taxonomy to
classify the P2P systems into groups by architectures. This is because the architecture

Chapter 5 Rethinking the P2P Paradigm 76

aspect of P2P systems draws more interest of this work. Some of the contemporary P2P
systems and applications in each of the groups are examined.

5.3.1 Centralised P2P

A centralised P2P system typically has a central repository to maintain the information
about resources that peers in the network possess. Resource discovery in such a system
involves querying against the central repository and identifying the best peer (depending
on users’ needs) that matches the request. The address of the best peer is returned to
the query originator and the subsequent file exchange occurs directly between the two
associated peers. The centralised P2P systems require that a central peer or a group of
dedicated peers coordinate update to the information held in the repository, which may
be difficult and expensive.

5.3.1.1 Napster

Napster (Napster 2001) promoted the centralised P2P model. It was introduced in 1999
as a file sharing software to exchange MP3 files on the Web. A centralised directory (ac-
tually several) which describes how files are distributed in Napster is maintained. Nodes
register with the directory when they join the Napster network. Users run the Napster
program in order to participate in the file sharing process. If an Internet connection
is detected on a user’s computer, the Napster software will help establish another con-
nection between the computer and one of the Napster’s Central Servers. The Napster
Central Server keeps a directory of all client computers connected to it and stores infor-
mation about them. A user’s file request will be placed to the Napster Central Server
that the user’s computer connects. The Server then looks up its directory to check any
match for the request. If there is any, the Napster Central Server will return a list of
all the matches and related information about them, such as the IP address and the file
size, to the requestor. The user decides which file he/she wants to download and tries
to establish a direct connection between his/her own computer and the computer with
the desired file (also referred to as the client computer) by sending a message that con-
tains the IP address of his/her computer to the client computer. Once the connection is
established, the client computer will directly transfer the file to the file requestor. The
connection is terminated by the client computer when downloading is finished.

Chapter 5 Rethinking the P2P Paradigm 77

5.3.2 Unstructured P2P

Unstructured P2P systems include Gnutella (Gnutella 2001) and Routing Indices (Cre-
spo and Garcia-Molina 2002a). The overlay topologies of both systems have ad hoc
properties and the placement of their data objects is unrelated with the overlay topology.
Freenet (Clarke et al. 2001) is also unstructured since in Freenet the overlay topology
is loosely controlled and the file placement is based on thints

5.3.2.1 Gnutella

Gnutella (Gnutella 2001) is a P2P file sharing protocol. Applications that implement
the Gnutella protocol allow users to search for and download files from other users on
Internet accessible hosts. To join the system, a peer initially connects to one of the
several peers already available known by out-of-band mechanisms, hence forming an
application level overlay on top of the physical network. Once attached to the network,
peers interact with one another by means of messages. When a user wishes to search
for a file, a query is issued and broadcast to all attached nodes. The recipients may
not respond with results if they do not have any desired data object. Nonetheless, they
will further forward the query to their attached nodes. Gnutella uses limited flooding
to distribute queries by attaching a TTL (Time-To-Live) tag which specifies the maxi-
mum number of hops a query can be relayed. Replies are routed back to the peer that
originally generates the query.

The advantage of such an unstructured system is that it models the real world better
than a structured P2P system (see Section 5.3.3) with the placement of data objects
being not subject to any knowledge of the network topology. However, it is hard to
locate the desired information without flooding queries to most parts of the overlay
network. Broadcasting on every query is not scalable. As more nodes join, more queries
may be generated and transmitted. In addition, flooding needs to be curtailed at some
point, which leads to some peers with desired data objects missing from the overall
result.

Research centered around the scalability of Gnutella makes up the majority of the
work. To seek more scalable search methods, Lv et al. (2002) study alternative search
methods in a Gnutella network with several overlay topologies, including a power-law
random graph, a normal random graph, a Gnutella graph and a two-dimensional Grid.

3However, Freenet is sometimes regarded as a structured P2P system because its search algorithm
resembles those used in DHTs-based structured P2P systems (see Section 5.3.3).

Chapter 5 Rethinking the P2P Paradigm 78

They propose a search mechanism based on multiple random walks to substitute the
flooding of queries in Gnutella, and reveal through simulation that, with a fixed number
of random walkers, the multiple random walk algorithm can help locate the desired data
object almost as quickly as Gnutella’s flooding while reducing the network traffic by
two orders of magnitude in many cases at the expense of a slight increase in the number
of hops. As demonstrated by the study, scalable searches in unstructured networks are
mainly attributed to the following principles: adaptive termination of query forwarding,
reduced message duplication, and small granularity of the coverage of visited nodes.

However, Ritter (2001) argues that Gnutella is never an ideal distributed and fully
capable network and proves that Gnutella is mathematically and technologically unable
to scale to a network of any reasonably large size. It is identified that the fundamental
flaws of Gnutella lie in its major architecture and cannot be mitigated effectively without
a re-design at the most basic level.

5.3.2.2 Freenet

Freenet (Clarke et al. 2001) is a cooperative distributed information storage and retrieval
system designed to offer privacy protection and information availability. By pooling
spare disk space across hundreds of thousands of collaborative computers into a self-
organising virtual file system, Freenet allows individuals to insert, store and retrieve
files anonymously without compromising any of its principle design goals.

The basic unit of storage in Freenet is a file. Nodes in Freenet query one another
to store and retrieve files which are named by location independent keys. The keys are
typically generated by using the hash function on the text description of files provided
by users when storing files in the network. Because a key can be computed from the de-
scription of a file, the file description (rather than the key) is commonly made available
to users of Freenet by mechanisms such as websites. To optimise the search, Freenet
clusters files with similar keys on a single node and maintains the information of suc-
cessful searches in a local routing table. Simulation performed by Clarke et al. (2001)
shows that the request path length of Freenet scales approximately logarithmically with
respect to the network size.

The operations supported in Freenet include insertion of and search for files, with
both working in a similar way. Each request is given a pseudo-random identifier and a
hops-to-live limit, the latter of which is analogous to the TTL employed by Gnutella.
If a search message is received by a node with the desired file, the entire file will be
returned as a successful result and the file’s key will be inserted into the local routing

Chapter 5 Rethinking the P2P Paradigm 79

table. This is carried out recursively until the file is returned to the initial requestor
with the file replicated at each node along the search path. Otherwise, the message
is forwarded to another node with the most similar key in the local routing table. An
insertion operation starts with a search operation. If a file with the specified key is found,
a collision notification will be sent to the insertion originator. If no file is discovered,
the new file will be placed on a node with files sharing similar keys. New nodes should
contact at least one node that already exists in the network to bootstrap themselves into
the system and perform a search request for announcing their presence.

5.3.2.3 Routing Indices

Crespo and Garcia-Molina (2002a) propose a distributed search in unstructured P2P
systems which builds Routing Indices (RIs) to facilitate query forwarding. RIs do not
maintain any dedicated node as the repository for indices of resources in the network.
They utilise the topic information of documents to create related groups. Each peer has
a local RI to maintain information on different topics along each path to its neighbours
which, in turn, collect topic information along each path to their neighbours using the
same mechanism. The way information is utilised and stored makes it expensive to
create and update RIs. Therefore, updates are suggested to be processed in batches if
doing so will not yield significant difference. RIs assist peers to forward queries to
good neighbours. The goodness of a neighbour is based on the number of documents
on specified topics. RIs deliver a good search result in a domain in which the category
of documents can be easily identified. However, as the number of categories increases,
RIs will consume a large amount of space for the maintenance of indices. Moreover,
the close interrelationship between RIs of related peers entails the accuracy of each
RI. RIs consist of three schemes: the compound, the hop-count and the exponentially
aggregated RIs.

The Compound Routing Indx (CRI) is a data structure that summarises both the
number of documents along each path and the number of documents on individual top-
ics. Given the index, the goodness of a neighbour can be computed using a simplified
model. The value of the goodness indicates the sequence of query forwarding and a
query is first sent to the best neighbour. The CRIs do not reflect the difference in hops
(or cost) that queries should travel to obtain the documents of interest, and therefore
they do not produce satisfactory results.

Alternative Rls are presented which include hop-count RIs and exponentially ag-
gregated RIs. The core part of a hop-count RI is a variant index of a CRI. The hop-

Chapter 5 Rethinking the P2P Paradigm 80

count RIs group documents based on hops. Therefore, the goodness of neighbours can
be computed based on a model that takes into account the cost of document fetching
because of the presence of hop information. Also, the number of messages required to
get documents can be obtained by using a cost model called the regular-tree cost model.
The model assumes that document results across the network are uniformly distributed
and the network itself is a regular tree. The disadvantage of hop-count RIs is that they
incur much higher storage and transmission cost than the CRIs. This problem can be
addressed by the exponentially aggregated RIs at the cost of some potential loss in ac-
curacy. An exponentially aggregated RI stores the result of applying the regular-tree
cost formula to a hop-count RI. Simulation demonstrates that the exponentially aggre-
gated RIs outperform the hop-count RIs in most cases. However, the assumption of the
regular-tree model may not always hold in many settings.

5.3.3 Structured P2P

Structured P2P systems feature the use of DHTs which assume that the network topol-
ogy is tightly controlled and the placement of files (or other data objects) is precisely
determined in such systems. Examples include CAN (Ratnasamy et al. 2001), Chord
(Stoica et al. 2001) and Pastry (Rowstron and Druschel 2001). Typical DHTs resolve
a keyword to a location where the contents are located or from where queries about the
contents can be further routed. The inherent self-organisation is attributed to the distri-
bution of keys in a uniform space in which node and object identifiers share the same
key space. Adopting DHTSs requires unique hash techniques that transform the search
criterion into a unique key.

5.3.3.1 Chord

Chord (Stoica et al. 2001) is a scalable distributed lookup protocol that efficiently lo-
cates the specific node that stores a particular data item. The only operation that Chord
supports is to map a key onto a node. Applications of Chord, such as data location, can
be implemented by associating a key with each data item and storing the key/data item
pair at the node that the key is mapped to.

Chord uses consistent hashing to allocate each key and nodéd@ndentifier. A
key’s identifier is generated by hashing the key, while a node’s identifier is produced by
hashing its IP address. The hash function assigns keys to nodes and enables each node to
receive roughly the same number of keys. Identifiers are ordered in a circle métulo 2

Chapter 5 Rethinking the P2P Paradigm 81

Key k is assigned to the first node whose identifier is equal to or follows the identifier
of k in the identifier space. The node is referred to assihecessor nodef key k.

In Chord, each node need only be aware of its successor node on the identifier circle.
Queries for a given identifier can be passed around the circle via these successors until
a node whose identifier succeeds the desired identifier is encountered. The node is the
one that the query should be mapped to. Consistent hashing is also designed to achieve
minimal disruption in Chord during node arrival and departure. When angalas the
network, certain keys maintained bys successor are assignedtoMeanwhile, when

noden leaves the network, all of its keys will be reassigned to its successor. Therefore,
transferring keys due to node arrival and departure only affects the immediate neighbour
of a joining or a leaving node.

The base Chord protocol may lead to all nodes being traversed during query map-
ping. To implement scalable and rapid key location, each Chord node maintains ad-
ditional information in its routing table. A routing table, referred to dmger table
in Chord, has (at most): entries. In addition to the keys that the current node stores,
each entry maintains a key identifier, an interval of key identifiers starting from the key
identifier, and a successor node which is responsible for the key identifier. Arnode
which is searching for the successor node of keyill first refer to its finger table to
find an interval that contains. The corresponding successor node is the next one that
n should visit in order to locate the successor nodé.oBy repeating the process,
learns nodes whose identifiers are closer and closer to and prec&tle successor of
the node which most closely precedess the successor df.

Chord deals with node failure by allowing each node to maintain a list of multiple
nearest successors on the Chord identifier circle. A node replaces its information about
a failed successor with the next live one on the list. In a dynamic environment, the capa-
bility of preserving the correctness of locating every key is desirable. Chord has a sta-
bilisation scheme to maintain correct routing information with gracefully degraded per-
formance even in the face of concurrent joins, and lost and reordered messages. Chord
can achieve the scalability that P2P systems with widespread use of broadcast lack.
Given anN-node network, each Chord node maintains routing information about only
©(log N) other nodes. The cost of a Chord lookup scale®@dsg N) and, with high
probability any node joining or leaving a Chord network uses no more@haug N?)
messages.

Chapter 5 Rethinking the P2P Paradigm 82

5.3.3.2 Content Addressable Network

The termContent Addressable Netwo{®AN) refers to a scalable indexing mechanism
which maps file names to their locations in the system (Ratnasamy et al. 2001). CAN is
able to provide not only P2P systems but also large scale storage management systems
hash table-like functionality on a very large scale, such as the Internet.

As a distributed infrastructure, CAN uses a virtdadimensional coordinate space
to store (key, value) pairs as follows. Ké&yn a pair ¢, v) is deterministically mapped
onto a pointP in the coordinate space by means of a uniform hash function. Baiy 6
then stored in a zone which contains pathtThe entire coordinate space is partitioned
among all nodes in the system so that each node owns its individual, distinct zone. To
obtain a zone from the overall coordinate space, a new CAN node first discovers the
IP address of a bootstrap node already in the system. The bootstrap node supplies the
IP addresses of several randomly chosen nodes in the system. The new node randomly
chooses a point in the space and sends a JOIN request to the node whose zone the
chosen point is in. It obtains a zone from the current occupant node and learns the IP
addresses of its coordinate neighbours from the previous occupant. A request, such as
insert, lookup or delete, for a particular key is routed in CAN by following the straight
line through the Cartesian space from the source to the destination coordinate. CAN
always forwards a request towards the neighbour that is the closest to the destination
CAN node whose zone contains the key.

Each CAN node maintains a routing table witl{id) entries which refer to its
neighbours in thel-dimensional space. If the coordinate space is partitionedrinto
equal zones, the average routing path lengtidig)(n'/?), which indicates that, unlike
Chord, CAN's routing table does not grow with the network size. To reduce the routing
path length and path latency, CAN can either increase the dimension of its coordinate
space, or maintain multiple independent coordinate spaces (called ‘reality’ in CAN) and
assign each node in the system a zone in each of the coordinate spaces. The high per-
node neighbour state and maintenance traffic are offset by improved data availability
and fault-tolerance. As opposed to increasing dimensions, increasing realities yields
shorter path length but improved data availability and fault-tolerance. Other measures
to improve data availability include using multiple hash functions. CAN achieves its
robustness by using a takeover algorithm which ensures one of the failed node’s neigh-
bours to take over responsibility. The designers present some initial results on the con-
struction of CAN topologies that are consistent with the underlying IP topology to avoid
unnecessary message routing via distant nodes. Furthermore, CAN employs caching

Chapter 5 Rethinking the P2P Paradigm 83

and replication technigues to deal with ‘hot spatianagement.

5.3.3.3 Pastry

Pastry (Rowstron and Druschel 2001) was designed to be a general substrate for the
construction of a variety of P2P applications, such as data storage and sharing, group
communication and naming systems. It is a scalable P2P content location and rout-
ing scheme at the application level, based on a self-organising overlay network which
consists of nodes connected to the Internet.

Each node in Pastry is randomly assigned a 128-bit unique identifier (nodeld)
which indicates the location of the node in a circular nodeld space rangingofttom
2128 _ 1. The nodelds are so generated, typically by computing a cryptographic hash of
nodes’ public keys or their IP addresses, that the resulting set is uniformly distributed in
the 128-bit nodeld space. Nodelds and keys are both thought of as a sequence of digits
with base2’. Each node maintainslaafsetand a routing table for routing. The leafset
consists of the.® clockwise and counter-clockwise neighbours of the current node in
the circular nodeld space. A node’s routing table is organised/ingg, V| rows with
each comprising® — 1 entries, givenV the number of Pastry nodes in the network. At
row n of the routing table, th&® — 1 entries refer to nodes whose nodelds share the
first n digits with the current node’s nodeld, but whose 1)th digit has one of the
2> — 1 possible values other than the-{ 1)th digit of the current node’s nodeld. When
a node joins the system, it can initialise its leafset and routing table and maintain the
consistency of all system invariants by exchand#dpg N) messages.

Keys can be generated in different manners, such as computing the hash of the
file’s name and owner, or the topic name. A (key, value) pair is inserted in the circular
space by using Pastry to route the pair to the node whose nodeld is numerically closest
to the given key. Routing in Pastry is carried out as follows. In each routing step, a node
forwards a message to another node whose nodeld shares with the key a prefix that is at
least one digit longer than the prefix that the key shares with the current node’s nodeld.
If there is no such a node, the message is forwarded to a node whose nodeld shares with
the key a prefix as long as the current node but is numerically closer to the key than the

4In hypermedia terminology, hot spots are also referred to as persistent selections which represent
selections within components (information managed by applications) that persist between application
sessions and can be accessed later (D’Arlach and Leggett 1994). A hot spot typically takes the form of a
specifically defined area that contains a hyperlink. However, in this work ‘hot spot’ is used to denote the
phenomenon that in a query pattern a certain key is requested extremely often and the node holding that
key becomes overloaded.

5| L| is a configuration parameter with a typical value of 16 or 32.

Chapter 5 Rethinking the P2P Paradigm 84

current node’s nodeld. With normal operations, the expected number of routing steps is
©(log N) and each node maintains a routing table wtfiog V') entries.

Pastry takes into account locality properties so as to enhance routing performance.
An application is assumed to provide functionality helping a Pastry node to determine
the ‘distance’ of another node to itself by means of network proximity. Network prox-
imity is based on a scalar proximity metric, such as the number of IP routing hops and
the geographic distance. For instance, Pastry can determigentties whose nodelds
are numerically nearest to the specified key. Based on its estimation of the density of
nodelds exhibited by local information, Pastry adopts a heuristic to ensure that a mes-
sage is likely to be forwarded to first reach a node with the numerically nearest address
among thosé nodes.

5.4 A Web-based P2P Open Hypermedia System - the
Unstructured P2P DDLS

The essential characteristics of an unstructured P2P DDLS are initially identified in this
section, together with certain associated requirements to be satisfied. This section sub-
sequently explains why the existing approaches are not applicable to the unstructured
P2P DDLS with respect to the requirements.

5.4.1 Characteristics and Requirements

As a product of both the DLS technology and P2P computing, the unstructured P2P
DDLS exhibits the properties that can be seen in both fields and it faces, in the mean-
while, challenges that neither of them has ever encountered.

¢ Ad hoc properties The unstructured P2P DDLS aims to serve in an ad hoc col-
laborative environment in which peers are at distributed locations and resources
available at any particular time is unknown and unpredictable. Both services and
resources from a particular peer are more probabilistic than deterministic.

e Without centralised control A central authority indicates the possibility of reg-
istering available resources at one place. As a consequence, peers that require
particular resources can make use of the information advertised at the same place.

Chapter 5 Rethinking the P2P Paradigm 85

It is the scheme that a centralised P2P system adopts. The challenge for the un-
structured P2P DDLS is how to conveniently publish resource information and ef-
ficiently discover resources without any central authority in ad hoc settings which
can be pervasively identified nowadays.

e Resource descriptionThe collaborative participants provide links, which are
stored and manipulated in linkbases, to one another. For ease of management
and link discovery, the convention requires that links referring to related docu-
ments should be grouped and stored together (Carr et al. 1995). Therefore, the
primary content of documents that links in a linkbase refer to can be represented
by keywords which may be used as the indices when link discovery occurs. Be-
cause participants may store the representation of linkbases using various data
models and syntax, the incompatibility issue needs to be resolved. A data model
and syntax, which convey the precise representation of linkbases and exclude the
unambiguity when converting linkbase representations from their adopted data
models, are required to facilitate interoperability.

e Resource publishingThe difficulty arising in resource publishing is a conse-
guence of unavailability of a centralised mechanism, such as a centralised direc-
tory in which resource providers can advertise their resources and indicate from
where these resources can be obtained. A potential way to publish available re-
sources in the system is to express the characteristic information about the re-
sources in a local document and offer it upon other peers’ request. Although it
leads to the advertised information being accessible to a narrower scope of peers,
the approach does not necessarily exclude the reachability of that information
through indirect interaction.

e Resource discoverNo hints are employed to guide the Gnutella search and such
a ‘blind’ search results in a large number of unnecessary messages. To avoid this,
DDLS resource discovery may take advantage of the feature of linkbases that the
primary concepts related to a peer’s linkbases can be represented by a vector of
keywords which may act as indices for resource discovery. If the topology of
the DDLS peer network takes into account the conceptual relationship between
linkbases of peers, the search for linkbases may potentially be more efficient.
However, this search cannot be fully supported by the standard keyword-based
match and therefore a semantic search is required. Furthermore, a semantic search
is required because the DDLS aims to facilitate the search of users whose infor-
mation needs are usually expressed by a limited number of search terms. Related
work on semantic search can be referred to in Appendix A.

Chapter 5 Rethinking the P2P Paradigm 86

e System re-organisationThe topology of the DDLS peer network is not im-
mutable because of the arrival and departure of peers. Changes may also result
from the update of peer resources. Through re-organising the peer network, peers
can select neighbours which will accommodate their future needs with high prob-
ability. Therefore, the performance of resource discovery in the DDLS can be
enhanced.

5.4.2 Limitations of Existing Approaches
5.4.2.1 Centralised P2P Solution

The centralised P2P typically requires a constantly updated directory which maintains
an index of available resources hosted at different locations. The resources of interest
are located by querying the central directory server. Centralised systems are vulnerable
to attacks and make it difficult and expensive to update indices. Also, the scalability
issue remains as a tough task to achieve.

5.4.2.2 Unstructured P2P Solution

Gnutella may be the most appealing and controversial unstructured P2P system as of
today. Without an index of documents, Gnutella propagates queries from nodes to nodes
until either matching documents are found or the termination conditions are satisfied.
Flooding the network with queries incurs an enormous amount of messages and network
traffic which are not desirable and affordable in ad hoc settings in which communication
may be subject to available bandwidth.

Other solutions, such as RIs, make assumptions about the grouping of documents
by topics. It may be applicable to a system maintaining documents regarding a specific
domain since the number of categories can be predicted or estimated. However, when
applied to a system hosting documents across a large number of domains, RIs will
consume a large amount of space for maintaining indices of nodes in response to the
various categories the documents belong to. The accuracy of the Rl hosted by individual
nodes governs nearly all operations in the system. For instance, when creation and
update operations are carried out along a chain of nodes, any participating node which
refuses to cooperate will result in a system functioning improperly.

Chapter 5 Rethinking the P2P Paradigm 87

5.4.2.3 Structured P2P Solution

In recent years, the P2P community has extensively researched into the DHTSs for un-
structured P2P systems. The adoption of DHTs assumes a highly structured system in
which the network topology is tightly controlled and the placement of files (or other data
objects) is precisely determined. A structured P2P system indexes the search space and
provides a mapping between hashed keys of file identifiers and locations for efficient
guery routing to the node with desired files. This is practical because peers in struc-
tured P2P systems are primarily intended to store resources, whereas the DDLS focuses
on resource sharing and peers in the DDLS are owners, other than storage providers,
of the resources they maintain. Therefore, it is infeasible to apply techniques such as
DHTs that assign nodes, which may not necessarily be the owners, to host resources.

DHTs offer a very scalable solution to matching queries since the mapping between
a file identifier and a location is deterministic. They heavily rely on the uniqueness of
hashed keys and only files whose identifiers exactly match the requirement specified in
the query are returned. In contrast, the DDLS aims to provide more than that. The search
algorithm in the DDLS is to enable a mechanism that extends the discovered resources
from those with exactly matched keywords to resources carrying related concepts. This
can be potentially achieved by examining the semantics of resources peers maintain.

Typical DHTSs resolve a keyword to a location where the contents are located or
from where queries about the contents can be further routed. Hence, it supports the
search on a single hash expression once at a time. However, the query of a typical
semantic search may consist of a random combination of terms and the relationship
among them. Carrying out the search by using DHTs involves searching for targets
that match at least one of the terms at a time and performing conjunctive or disjunctive
operations on the result with the assistance of filter structures, such as Bloom filters
(Mullin 1990). The relationship among terms is thoroughly omitted during the search
and it is clear that the result may not reveal all targets that should have been located.

The distribution of resources and requests across peers is one of the components
that affect the reachability of resources in a P2P system (Ledlie et al. 2002). If, for
example, the popularity of potential resources in the working scenario of the DDLS
follows a Zipf’s distribution (see Section 6.5.2), the formation of ‘hot spots’ will very
likely occur if DHTs are employed (Ganesan et al. 2003). Suppose there are 100 peers
in the DDLS and they share 100 topics representing the primary content of resources.
The popularity of the topics follows a Zipf’s distribution (see Figure 5.1). Tobis the
most popular topic in the system with 100 instantiations. While tépithe 15th most

Chapter 5 Rethinking the P2P Paradigm

88

100
90
80
70
60
50

Peers

30
20
10

o

1 most popular
topic with 100
instantiations
(Topic A)

15" most popular
topic with 5
instantiations
(Topic B)

+ o+
o+
+ 4+

+
1 R S

6 8 10

12

14 16 18

FIGURE 5.1: Topics Following Zipf’s Distribution

20

popular topic, possesses 5 instantiations. Also, suppose that Chord is used to model the
search space in the DDLS as shown in Figure 5.2. Node O stores all the keys aBtopic
and node 5 maintains those for 100 instantiations of tapidhe phenomenon of ‘hot

spot’ occurs at node 5 because it is heavily burdened with all the instantiations of topic
A. Although load balancing techniques could be utilised to ameliorate the situation, a
joint query involving multiple topics would lead to a more complicated search. It is not
known whether the benefit resulting from the adoption of load balancing techniques can
compensate for the overhead caused by carrying out a joint query.

Keysfor Topic A
and dl its

instantiations are
stored here (100
in total)

total)

Keysfor Topic B
and dl its
instantiations are
stored here (5in

FIGURE 5.2: An Example of Using Chord to Model the DDLS Search Space

Chapter 5 Rethinking the P2P Paradigm 89

5.5 Summary

This chapter presented a more detailed background for P2P computing, examining the
definition, categories and features of P2P systems. A taxonomic review of the ap-
proaches employed in various contemporary P2P systems was also given.

DHTs are promising in many application areas and are extensively researched
among others. However, by analysing the characteristics of and requirements for the
DDLS, one would realise that the widespread applicability of DHTs cannot help solve
problems arising from the particular context of the unstructured P2P DDLS because
of the inherent nature of the way that DHTs work. For instance, the semantic search
required by the unstructured P2P DDLS calls for a different mechanism to discover
the resources of interest, which cannot be achieved by DHTs as demonstrated by the
analysis carried out in Section 5.4.2.3.

In the next chapter, the DDLS will shift to an unstructured P2P system in which
the issues centering around resource discovery based on semantics are the main focus
of attention.

Chapter 6

Evolution of the DDLS into an
Unstructured P2P System

6.1 Introduction

This chapter presents the work of evolving the centralised P2P DDLS demonstrated in
Chapter 4 into an unstructured P2P system. It begins with an introduction to the peer
network in the unstructured P2P DDLS, involving the relationship between peers and
how peers relate to the peer network due to their arrival and departure. The details of
how resources should be described in the given context are provided and this is followed
by the description of a distance-based semantic search algorithm adopted by resource
discovery. Finally, this chapter presents simulation that investigates the search algorithm
with varying distributions of potential resources and different query profiles involved.

6.2 DDLS Peer Network

In contrast to the peer network in the centralised P2P DDLS, the one in the unstructured
P2P DDLS is characterised by decentralisation of control - with the absence of a cen-
tral service directory. In the centralised P2P DDLS, peers rely heavily on the central
service directory to locate link service providers and linkbases (or links), whereas the
decentralised nature of the unstructured P2P DDLS entails collaboration between peers
to fulfill most of the tasks. Peer arrival, update and departure entailing notification sent
to related peers demonstrates such a close relationship among peers in the unstructured

90

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 91

P2P DDLS. The following subsections discuss the relationship between peers and that
between peers and the peer network.

6.2.1 Peer Relationship

In the DDLS, the relationship between peers includes neighbours, contacts and dis-
connected peers. A peer obtaining the published topic information, which is the
representation of the abstract concepts a peer’s linkbases are associated with (see Sec-
tion 6.3.2), fromp, indicates that:

1. p; has a neighbouy;;

2. p,; has a contaqt;.

If p; has never acquired information frgm and vice versap; andp,, are referred to as
disconnected peers.

6.2.2 Supporting the ‘Published Topic List’ Data Structure

peerlD %t topics

j 0

k 2 D, E

m 5 GHIJ K

TABLE 6.1: A Published Topic List in the Cache of Peer

It will be mentioned in Section 6.2.3 that upon its arrival at the DDLS, each peer
randomly selects a set of neighbours. The peer caches a list of published topics which
reflect the semantic relationship between its resources and those of all its neighbours.
The size of the cache is determined by a specified value or 128, whichever is smaller.
In the list, each entry comprises three fields. The first field indicates all the neighbours
which sharex?** (shown by the second field) related topics with the current peer. The
contents of these topics are listed in the third field. Table 6.1 gives an example published
topic list in the cache of pees,. It indicates thap, shares no relevant topics with.

The neighbours that have semantically related topics wyittrep, andp,,,, which have
2 and 5 relevant topics, respectively.

1The term ‘the DDLS'’ refers to the unstructured P2P DDLS in the rest of this chapter unless specified
otherwise.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 92

6.2.3 Construction of Peer Network

The peer network can be modelled by a gr&apm which the vertices represent peers

and the edges denote the semantic relationship between the resources possessed by
peers. Each of the peers publishes a list of topics which represent the primary content of
the documents links in its linkbases refer to. The topic lists can be asynchronously up-
dated by individual peers. The topology of the peer network takes shape in accordance
with the semantic properties of peers’ resoufcéherefore, the DDLS peer network

is also known as the semantic overlay. The construction of the semantic overlay is
explained by giving a description of peer arrival as follows.

Initially, when a peep,..,, joins networkG, it contacts a set of randomly selected
peers$ represented by’edm p . informs each of the randomly selected peers in

new

prandem of jts topic listT},.... It is assumed that the environment provides each peer with
a capability to identify the semantic relationship between entities (see Section 6.4.2).
All neighbours return related topics Q... prew Will Subsequently take advantage of
this information to construct its published topic list as well as form part of the semantic

overlay.

Figure 6.1 describes the algorithm for individual processing of the published topic
lists from neighbours at peers which accompanies the construction of the semantic over-
lay. The processing procedure is carried out in parallel at each of the peéf&imr
and leads to the creation of an overlay with clustered information. Peers in the ran-
domly connected network represent the semantic relationship between their resources
and those of others via®*!, However, not every peer may have an overlap in the se-
mantic description of resources with others. In such a case, the associated information
is stored in the published topic list witkf'st = 0.

Figure 6.2 demonstrates what occurs when a pgegrjoins the DDLS peer net-
work consisting ofp;, px, pi, pm aNdp,. pre randomly selects a set of peers that
includep,, andp,, and notifies both of its topic list. Through the same process, another
peerp, obtains information fronp,,..,. The arrows in the figure show the direction that
collected information flows.

2In essence, the peer network is randomly established at the construction stage and the formation of its
topology in response to the semantic relationship between resources of pairs of peers only occurs during
re-organisation. The reason for this will be given in Section 7.8.

3These peers are randomly chosen from the identifier space or obtained via multicast.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 93

Notations:

Peer network: G

Set of peer identifiers: P

Set of topics: T

A peer instance in G including a peer

identifier and its topicq; (defined latey: (p;,T;), with p; € P

Topics ofp; : T,={tte T, t xt C T}
Set of identifiers of the randomly

chosen neighbours gf: prandom

Capacity of the cached topic lig;

(defined later) op;: et

Cardinality of intersection between topics

of p; and those of its neighbour: adist

Set of semantically related topics between
p; and the same neighbour mentioned abci{)i%mm‘m ={tmltm € Tty X t,, CT}
Set of identifiers of neighbours sharing

Tegmmon with p: id" = {pm|pm € P}

Entry of the cached topic lisE; of p;: Ef = {(afist, Tegmmon idli)]0 < k < ef"**}
Cached topic list of;: E; = {EF|0 < k < enar}

Calculating the intersection between

topics ofp; and those op;: o(pi,pj)

Adding the identifier of the new

neighbourpy, to idﬁf}er: idgier.addElement(pk)

Inserting an entryE? into E;: E;.insertElement(EY)

Initial settings:

Online = true;
Allow_queries = false.

Algorithm for processing of the published topic lists from neighhours atp;:

For u = 1 to [pjandom|
adist _ ‘Q(pi7p;'andom[u])‘7 with 0 < v < ‘pgandom‘;

LU
common random [u]) .
3 9

Ty = o(pi, P}
idy, " .addElement (prandom y]);
E;.insertElement(E}).

FIGURE 6.1: Construction of the Semantic Overlay

6.2.4 Peer Departure
6.2.4.1 Notifying Contacts of Leaving Peers

The departure of a peer results in a notification sent to its contacts. Each contact then
updates its cached published topic list by searching for the entries that involve the leav-

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 94

FIGURE 6.2: A Peep,., Joins the Semantic Overlay

ing peer and removing them.

=)
(=

FIGURE 6.3: Contact with Peers Lost due to a Leaving Peer

A peer departure can potentially lead to network partition. The issue is more criti-
cal when the partition involves a large number of peers, which entails efficient recovery
of information about the lost community. For instance, the consequence of the depar-
ture ofp,, see Figure 6.3, is that the peers on the left side;dbse contact with those
on the right side. To have a robust system, measures are introduced to overcome such

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 95

FIGURE 6.4: Leaving Peep, Notifies Contacts of its Neighbours

a loss. In addition to informing the contacts of its departure, a peer should also include

information about its neighbours. Therefore, its contacts gain the knowledge of others

which are two hops away. Upon the receipt of a departure notification, the contacts of

a leaving peer decide which neighbours of the leaving one can be chosen as their new
neighbours, thus preventing those neighbours from being isolated. The neighbours of a
leaving peer become isolated if they are not qualified as the neighbours of any contact of
the leaving peer. Figure 6.4 illustrates that a leaving pg@otifies its contactp, and

p. that it has two neighbours. andp,. By analysing the usefulness (see Section 7.4)

of p. andp,, contactp, decides to incorporate both into its published topic list, whereas

p. Selects only, as its new neighbour.

Figure 6.5 presents the detailed algorithm. A leaving peeakes the initiative
to inform each of the contacts of its neighbours before its departure from the peer net-
work. Each contacp, selects the neighbours pf to be their new neighbours on the
basis of their usefulness. If a neighbourpefis more useful than at least one @fs
current neighbourg,,, for example, it will be incorporated into the cachepgfthrough
pu-addNeighbour (py, Ty).

6.2.4.2 Merging Published Topic Lists from Leaving Peers

A departure notification is also dispatched to the neighbours of a leaving peer if the peer
is prepared to share its entire published topic list with neighbours. Sharing this infor-
mation allows neighbours of the leaving peer to choose others as their new neighbours
based on a usefulness analysis.

Suppose peey;, in Figure 6.6, is going to disconnect from the peer network. It
has two neighboup; andp,. Based on a usefulness analysiggfp, discovers thap;

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 96

Notations:

Same as in Figure 6.1. In addition,

Neighbours of;: By, = {(p, T))|i # j,p; € id}y,",0 < h < e"**}
Contacts of;: Cp, ={(p;, T))|i # j,pi € z’dfeher,o < h < e}
p; notifying contacip,, of its

neighbourp,,: pi-noti fy(pu; (Pw, Tw))
Computing the usefulnessof

with respect tg;: Lij

Adding a new neighbouy; to p;: pi.addN eighbour(p;, T})

Algorithm for a leaving peer p; to notify contacts of its neighbours:

For (pu, Tu) S Cpi
For (pw, Tw) € By,
pinotify(pu, (Pw, Tw));
Fork =1toel
If p, € z’dfj,jr AND ¢y > Ly, then
pu-addNeighbour (py, Tyy)-

FIGURE 6.5: Algorithm for Leaving Peep; Notifies Contacts of its Neighbours

possesses much more relevant resources than some of its current neighbours. Hence, it
contactsp; and requests its published topic information. It should be stressed that the
usefulness analysis carried out lsycan only take advantage of the topic information
aboutp; held byp; which is however partial due to the way the published topic list is
constructed (see Section 6.2.2).

FIGURE 6.6: Peer Departure

6.3 Resource Description

Linkbases are one of the most essential resources in the DDLS. The accurate description
of such resources facilitates satisfying the link service request, for instance a request for
link retrieval. Section 4.4.1 proposed the description of linkbases in a centralised P2P
system through encoding the metadata of links in the XML model and syntax, and re-

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 97

source discovery is carried out based on the metadata of links. This section advocates
that, not only the links in a linkbase, but also the linkbase itself could be depicted
in a certain manner for ease of meeting link service requests. Resource discovery is
therefore performed based on the metadata of linkbases instead of that of links. This
approach leads to coarser granularity of resource representation in the DDLS but im-
proved scalability. This is feasible because the requirement for a semantic search mech-
anism (see Section 5.4.1) does not impose fine granularity upon the unstructured P2P
DDLS.

The XML model and syntax are demonstrated, see Section 6.3.2, less suitable for
describing linkbases in an unstructured P2P DDLS. Resource description will instead
utilise RDF which appears very promising for accomplishing resource description in a
link service with decentralisation of control. RDF is presented and its use in describing
the DDLS linkbases is explored in the following subsections.

6.3.1 Resource Description Framework (RDF)

The Semantic Web (see Section 1.3) is an extension to the current Web and based on
RDF standards and other standards yet to be defined. As a foundation for modelling
and interchanging metadata about the resources on the Web, RDF aims to provide in-
teroperability between applications that exchange machine understandable information.
The characteristic accords with the design objective of the DDLS to describe linkbases
as resources and facilitate resource sharing among various linkbase owners dispersed
globally.

The basic RDF model is designed to represent named properties and property val-
ues. Itis a syntax neutral way of representing RDF expressions and currently RDF relies
on the support of XML. There are three kinds of objects in the basic data model: re-
sources, properties and statements. Resources are identified by a URI reference plus op-
tional fragment identifiers. The description of resources is partly represented by proper-
ties which are thought of as attributes of resources and convey the relationship between
resources. Statements are assertions about resources with named properties and values.
Resources, properties and values in a statement are called subject, predicate and object,
respectively.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 98

6.3.2 DDLS Resource Description

The XML model and syntax were chosen in Section 4.4.1 to present metadata of links
in the centralised P2P DDLS. Elements, suchdascription endpointand url, were
employed to convey the primary content of the document a link in the linkbase connects,
anchors of a link, etc. However, the XML model is less advanced than the RDF model
in the following aspects (in decreasing order of importance to resource description in
the DDLS):

¢ No associated semanticsXML centers on being a data format standard, whereas
RDF attempts to bring meaning, or semantics, to the data represented and can also
represent relationship.

e Complex query: The representation of a fact in XML can be done in a large
number of ways, which makes querying the XML logical tree difficult since all
sets of possible representations of the fact should be converted into one statement.
However, RDF does not bear this drawback since it specifies a standard way of
representing facts by statements. Without any unambiguity, many representations
of a fact in XML always lead to the same RDF tree, thereby querying RDF is
much easier.

e Dependability on schema:The modification made to the schema, for instance,
adding or removing an element, may invalidate a query that is based on the struc-
ture of the document.

¢ Inability to enable computers to infer or deduce: XML alone has no facilities
to describe a vocabulary. However, when using a RDF model to represent data,
one can either use existing vocabularies or creating his/her own ontologies. The
combination of a RDF model and associated ontologies enables computers to
discover the semantics of data and to infer or deduce facts.

¢ Reliance on a common syntax for two applications to communicateXML
alone requires that two parties to agree on a common syntax for communication.
In contrast, using the RDF model allows two parties to communicate with differ-
ent syntax through the concept of equivalence.

e Less meaningful element nameA meaningful element name is a crucial hint
for human readers. Without a reference to the schema, nothing except the doc-
ument structure can be deduced from an XML document, whereas in RDF, the
elementdescriptionand its attributeaboutpoint out where the identification of
the resources being described can be located.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 99

The DDLS is aropen link servicevhich serves hyperlinks by retrieving them from
linkbases on demand. Each linkbase maintains a list of hyperlinks related to abstract
concepts. This allows characterising a peer’s linkbases on the basis of concepts in terms
of a topic vector. The RDF model is employed to represent the DDLS linkbase. The
RDF description of a linkbase can be augmented with related information, such as lo-
cation and type, and this information is encoded in sets of triples.

<?xml version="1.0" encoding="UTF-8"2
<rdf:RDF xmins:rdf=http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
xmins:Ib="http://www.semanticweb.com/rdf/linkbase-ns#"
<rdf:Description about="http://www.semanticweb.com/linkbase/research/linkbasezxml”
<rdf:type resource="http://www.semanticweb.com/rdf/linkbase-ns#Linkbase” /
<Ib:topic>theory/Ib:topic>
</rdf:Description>
</rdf:RDF>

FIGURE 6.7: An Example of Using the RDF Model to Represent the DDLS Linkbase

An example DDLS linkbase represented by the RDF model is demonstrated in
Figure 6.7. It indicates that the resource being describbttps/www.semantic
web.com/linkbase/research/linkbase.xiiie type of the resource is defined as another
resourcehttp://www.semanticweb.com/rdf/linkbase-ns#Linkbalee primary content
of this resource isheory.

Each peer in the DDLS holds an incomplete view of all the resource information
available in the system. To enable resource sharing among peers, the DDLS needs
a resource discovery mechanism which takes advantage of resource description that
individual peers publish. In the following section, this issue will be investigated.

6.4 Resource Discovery

Resource discovery in the DDLS revolves around the location of desired linkbases. The
centralised P2P DDLS in Section 4.4.4 employs a service directory to effect resource

discovery. However, such a centralised mechanism is not applicable to an unstructured
P2P DDLS which is characterised by decentralisation of control and aims to discover

resources with matching semantics. In this section, the concept of the DDLS semantic
search is introduced, which is followed by a distance-based semantic search algorithm
devised for resource discovery in the unstructured P2P DDLS (Zhou et al. 2003).

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 100

6.4.1 DDLS Semantic Search

Resource discovery in the DDLS context locates linkbases that satisfy queries posed by
users. The simplest case for the resource discovery mechanism performs a keyword-
based search. The keyword-based search is carried out by comparing the query ex-
pression against the description of available linkbases. The search returns all linkbases
whose descriptions match the query expression on a syntactic basis. As already men-
tioned in Section 6.3.2, each linkbase is associated with abstract concepts and a keyword-
based search will restrict the search result to linkbases with matching topics rather than
those with matching concepts. This limitation can be overcome by a semantic search.
The semantic search discovers not only linkbases which are explicitly specified by the
topics in a query, but also those which are conceptually related. The enabling tech-
niques, such as ontologies and inference logic, provide a way to identify the match on
which the semantic search relies. Related work on semantic search can be found in
Appendix A.

6.4.2 Major Assumptions of the Semantic Search Algorithm

The semantic search algorithm to be presented is based on several assumptions as fol-
lows.

1. Moderate number of participants
The typical scenario that the DDLS applies to involves a small number (hundreds)
of associated participants (peers).

2. Capability to identify semantic relationships
The environment provides each peer with a capability to identify the semantic
relationship between topics representing the primary content of resources, such as
‘being semantically related’. The semantic similarity can be described in different
ways and the existence of such a mechanism is assumed. It may exist in the form
of a controlled vocabulary or may be based on inference logic, or otherwise.

3. Statically defined relationship among topics
The algorithm assumes that the semantic relationship among topics is statically
defined and does not cater for environments in which the semantic relationship
can be constantly redefined.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 101

6.4.3 Query Mechanism: Topic Query and Associated Operations

The DDLS supports queries with conjunctive and disjunctive operations on query pred-
icates — in this work topics are used to define query predicates. A query expression is
represented by conjunctive/disjunctive operations on groupings of topics. Figure 6.8
presents an example RDF topic query. The extensibility of RDF is utilised to define a
tag <rdfsq: equab that represents the state of being semantically related. Tags, such
as<rdf:Integer- and <rdf:String>, can be employed to identify primitive data types.
The query result needs to return all the linkbases which are semantically related to both
‘Topic A and ‘Topic B’ or ‘Topic C'.

1: <rdfg:rdfquery>

2. <rdfg:From eachResource="http://www.ddIs.com/
3: linkbases/collaborativenvironmentx/peetlinkbase™
4: <rdfq:SELECT>

5 <rdfg:Conditiorn>

6: <rdfg:and>

7 <rdfsq:equal>

8 <rdfqg:Property name="Ib:topic"/>
9: <rdf:String>Topic A</rdf:String>
10: </rdfsg:equal>

11: <rdfsq:equal>

12: <rdfg:Property name="lb:topic”/>
13: <rdf:String>Topic B</rdf.String>
14: </rdfsg:equal>

15: </rdfq:and>

16: <rdfg:or>

17: <rdfsq:equat

18: <rdfg:Property name="Ib:topic"/>
19: <rdf:String>Topic C</rdf:String>
20: </rdfsq:equal>

21: </rdfg:or>

22: </rdfg:Conditiorn>

23: </rdfq:SELECT>

24: </rdfg:Front>

25</rdfg:rdfquery>

FIGURE 6.8: The Typical Specification of DDLS Topic Queries

All topics in a conjunctive predicate need to be satisfied by the description of
linkbases simultaneously, whereas those in a disjunctive predicate can be evaluated
against the description of linkbases respectively. The result of a disjunctive query in
the DDLS is typically generated by merging the results of conjunctive sub-queries. For
instance, in Figure 6.8, the query is initially split into two sub-queries, each of which
contains a conjunct, wrapped in two separate messages. One sub-query is constructed

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 102

by statements from line 7 to 14 with italics typeface and the other from line 17 to
20. Both the query and its sub-queries are assigned with Universally Unique ldenti-
fiers (UUIDs) (The Open Group 1997). Suppose that the query identififacd 234-
31f8-11b4-a222-002035b2909&hich is inherited by both of its sub-queries. The first
sub-query with sub-query identifi&8f202ac-22cf-11d1-b12d-002035b290@2urns

all the linkbases having related topics with both ‘Topic A" and ‘Topic B’. The second
one with sub-query identificza389ad2-22dd-11d1-aa77-002035b290&2hes all the
linkbases possessing related topics with “Topic C’. Results of sub-queries returned to the
query originator will be merged given the same query identiffac1234-31f8-11b4-
a222-002035b29092

6.4.4 Distance-based Semantic Search Algorithm

The search algorithm uses the distan¢&! as shown in Table 6.1 that represents the
proximity of resources of a pair of neighbours. Based on the proximity, a peer further
propagates queries to either some or all of its neighbours. The details of the algorithm
are explained as follows. Any participating peer can initiate a semantic search query.
The query is evaluated against the initiator’s cached information to determine the dis-
tance between the query expression and the cached information about the neighbours.
If the query evaluator finds a match, it routes the query to the associated peers. A match
means there is an overlap between the query topics and the topics in an entry of the
published topic list of the query evaluator. In case no match has been found, the query
is propagated to all neighbours of the current query evaluator. Subsequently, the query
will be successively evaluated by each of the recipient peers. The number of hops for
guery propagation is limited by the life time of the query, expressed by a TTL tag as
used in Gnutella. Query matches are directly routed back to the query initiator. The
algorithm for processing queriesatis presented in Figure 6.9.

6.5 Simulation

The aim of this section is to present a series of experiments which simulate resource
discovery in the DDLS to investigate the behaviour and measure the performance of the
search algorithm that resource discovery relies on. After giving a brief introduction to
the simulator which was employed by all experiments in this work, this section presents
a factor that is closely associated with simulation: topic distribution. This is followed
by the description of the metrics in performance measurement and all major issues

Chapter 6 Evolution of the DDLS into an Unstructured P2P System

103

Notations:

Same as in Figure 6.1. In addition,

Set of query identifiers: Q
An incoming topic query instance pf
including a query identifier and its topics

(defined later): (g™, T, with ¢/ € Q
Topics of a topic query instance pf. T = {tlt e T\t x t C T}
Forwarding an incoming query

(g™, T from p; to p;: pi. forwardQuery(p;, (¢, T"Y))

Initial settings:

Online = true;
Allow_queries = true;
Overlap = false.

Algorithm for query processing at p;:

For u = | E;| downtol
If a%jt > |T1"Y|, then
If Jﬂiquery g Tl_fzmmon’ then
Overlap = true;
For eachp,, € id}" ‘
pi-forwardQuery(pw, (¢, T;*"Y)).
If Overlap = false, then
For u = | E;| downtol
For eachp,, € id}," '
pi-forwardQuery(pw, (¢, T{“"Y)).

FIGURE 6.9: Algorithm for Query Processing at

regarding the search algorithm that needs to be explored through simulation. Finally,

all the experiments are presented.

6.5.1 Overview of the Simulator

A simulator, which was designed to provide the operational conditions of the DDLS for
testing and evaluation purposes, is provided and utilised in all the simulation described
in this work. One of the many basic requirements for the simulator is to set up the
entire experimental environment with each node/peer bearing equal capability in terms

of computing power.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 104

The simulator is implemented in Java and deployed on a single machine. Each peer
is effected as an object and communicates with one another through message passing.
A single message queue is provided which hosts the incoming and outgoing messages
of all peers to be processed. Realising the single message queue through a thread for all
the peers instead of allowing each peer to have a message queue, alleviates the heavy
use of the CPU caused by multiple executions of all threads. In a time-sliced system, as
used in the DDLS simulation, the CPU is divided into time slots and each of the equal-
and-highest priority threads is iteratively given a time slot in which to run. The Java
scheduler chooses the following thread to execute in a round robin fashion. This does
not guarantee that the requirement for equal capability of peers is enforced. The sim-
ulator is therefore so implemented that peers process the same amount of messages in
each allocated time slot in turn. This is one of the methods that enforce equal capability
shared by all peers.

6.5.2 Topic Distribution

The DDLS search mechanism locates semantically related resources. Therefore, the
distribution of individual topics which represent the primary content of resources is not
of interest. Instead, topics are grouped by semantics and the distribution of such topic
groups are what should be utilised to study the DDLS search. From now on, topic
popularity (or probability) defined later refers to the popularity (or probability) of topic
groups each of which has distinct semantics unless indicated otherwise.

First, the Zipf's distribution of topics is investigated. Zipf's law (Zipf 1949) is
named after the Harvard linguistic professor George Kingsley Zipf (1902-1950). It
states that the frequency of occurrence of some ev@éhptds a function of the rank
(?) that is determined by the frequency of occurrence, is a power-law fur;@-timiia
with « close to unity. It has been shown that Zipf’s distribution characterises the use of
words in a natural language, for instance English.

The term ‘topic popularity’ used in simulation represents how popular a topic/-
topics is/are in terms of the number of peers holding it/them.tLbé the topic popu-
larity of the i'th topic in a Zipf’s distribution.

ti X —
ZO{
wherea = 1. The Zipf’s distribution of topics in a system of 100 peers that share 100
various topics is demonstrated in Figure 5.1.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 105

To compare against the Zipf’s distribution, the uniform distribution of topics is
chosen in which each peer is shared by the same number of peers. The term ‘topic
probability’ used in simulation denotes the percentage of peers that possess the topic(s)
compared to all peers in the system. Ikgbe the topic probability of any topic in a
uniform distribution.

t;=C

where C is a constant.

6.5.3 Metrics and Issues

Algorithm performance is a complex aspect that could be measured by various indices,
for instance search speed and accuracy, the number of messages sent, system load and
resource consumption. In the context of the DDLS, performance issues are primarily
measured by the following metrics:

e Hops: delay in finding all answers as measured in the number of hops, also known
as path length;

¢ Recall: the percentage of matches that can be found;

¢ Broadcast rate the time of broadcast carried out by all peers to propagate queries

over a period of time.

Elements which may have an effect on hops, recall and broadcast rate will be
investigated. It is conjectured that exploring answers to the following questions would
be helpful in understanding the search algorithm.

1. What is the behaviour of the semantic search when single or multiple topics are
involved?

2. What is the relationship between the amount of information a peer should cache
about its neighbours and the search performance?

3. Does the resource (or topic) distribution have an impact on the search perfor-
mance?

4This metric can be used to estimate the consumption of network resources during resource discovery,
for instance, the number of potential messages generated with each query.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 106

4. Should the peer network remain unchanged or be re-organised to improve the
search performance? If so, what techniques should be utilised to guide the re-
organisation process?

6.5.4 Single Topic Search

The simulation on single topic search among topics following a Zipf’s distribution and
uniform distributions was conducted, respectively. The experimental settings and dis-
cussion are presented in this section.

Experiment 1

Experimental settingShe first experiment examined the relationship between the
cache rate and the number of hops required to achieve the maximum recall. The cache
rate represents the percentage of peers whose topic information is in the cache com-
pared to all peers in the system. This experiment was performed with 100 peers in a
controlled environment, where the distribution of topics was kept constant throughout
the experiment and the number of peers in the system was restricted. Each peer could
cache the topic information of a specified percentage of all peers and randomly choose
a list of topics from a global list of 100 entities, ensuring that the topics of all peers fol-
lowed a Zipf's distribution and uniform distributions, respectively. The cache rate was
varied from 1%, 2% to 90%. The fifteenth most popular topic, shared by 5 peers (out
of 100) in the system, was chosen as the query topic for the experiment with a Zipf’s
distribution. A topic with the topic probability of 5%, i.e. shared by 5 peers out of 100,
was randomly chosen from the global list to formulate a query for the experiment with
a uniform distribution. In both experiments, a topic shared by the same number of peers
(5) was chosen to formulate a single topic search. This was meant to contrast the be-
haviour and performance of the search involving one distribution with those involving
the other.

DiscussionThe results in Table 6.2 and Table 6.3 show that, regardless of the dis-
tribution the topic in a query is associated with, the cache rate is inversely proportional
to the average number of hops that are needed to achieve the maximum recall. It is
observed that except the cases in which the cache rate equals 1% or 2%, i.e. each peer
only caches the topic information from one or two of its neighbours, the resource dis-
covery mechanism in the DDLS can lead to a satisfactory recall (at least 98%) within
the experimental settings. The cache rate being 1% and greater only guarantees that
each peer is aware of at least another peer (a neighbour), whereas it is not assured that
each peer is known by at least another peer (a contact). Therefore, the maximum recall

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 107

cannot always reach 100%. The data collected in Table 6.2 and Table 6.3 is the average
result from multiple executions (20) of the experiment in which different topologies of
the peer network were generated.

Cache rate 1% 2% 3% 4% 5%
Average number of hops 0.01 | 7.36 | 5.85 | 5.09 | 441
Maximum recall 1% | 80% | 100% | 100% | 100%
Cache rate 10% | 20% | 30% | 40% | 50%
Average number of hops 2.83 | 2.05 | 2.00 | 2.01 | 1.98
Maximum recall 100% | 99% | 98% | 99% | 100%
Cache rate 60% | 70% | 80% | 90%
Average number of hops 1.92 | 1.84 | 1.63 | 1.40
Maximum recall 100% | 100% | 100% | 100%

TABLE 6.2: Relationship between the Cache Rate and the Average Number of Hops
(Zipf’s Distribution)

Cache rate 1% 2% 3% 4% 5%
Average number of hops 2.47 | 8.86 | 6.14 | 491 | 4.13
Maximum recall 9% | 80% | 100% | 100% | 100%
Cache rate 10% | 20% | 30% | 40% | 50%
Average number of hops 3.09 | 2.06 | 1.98 | 2.00 | 1.96
Maximum recall 100% | 100% | 98% | 99% | 100%
Cache rate 60% | 70% | 80% | 90%
Average number of hops 1.98 | 1.87 | 1.66 | 1.46
Maximum recall 100% | 100% | 100% | 100%

TABLE 6.3: Relationship between the Cache Rate and the Average Number of Hops
(Uniform Distribution)

Experiment 2

Experimental setting¥he second experiment aimed to explore the properties of
the semantic search algorithm of the DDLS in which topics follow a Zipf’s distribution.
It was carried out over the first nineteen most popular topics. In a peer network con-
sisting of 100 peers, a Zipf’s distribution of 100 topics yields 19 bands, see Figure 5.1,
each of which is occupied by topics that are shared by the same number of peers. The
cache rate was kept at 5% throughout the experiment and all the other experimental
settings were retained as in Experiment 1. To ensure each peer has at least one neigh-
bour, the cache rate should be 1% or greater. However, it is shown that a very low level
of the cache rate results in unacceptable recall, for instance 1% in a Zipf’s distribution
and 9% in uniform distributions, which does not demonstrate the typical behaviour and
performance of the semantic search but represents the extreme case. Therefore, this ex-
periment and all those presented later use 5% as the cache rate because such a relatively
low cache rate is more realistic for a peer network which allows for a wide range of the
number of peers.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System

108

Average recall

Average recall

100% -~

80% -

60% -

40% A

2

<
>
1

0%

H 10th hop
M 9th hop
O 8th hop
H 7th hop
O 6th hop
B 5th hop
O 4th hop

O 3rd hop
B 2nd hop
O 1st hop

1 23 456 7 8 9 10111213 14 15 16 17 18 19

Decreasing topic popularity

FIGURE 6.10: Average Recall Level at Progressive Hop Counts in Single Topic Search

100%

80% H

60% - AHHHHHHHHH HHHHH

40%

20% A

0%

(Zipf’s Distribution)

iiiir[

T T T T T T T T T T T T T T T T T T

90% 80% 70% 60% 50% 40% 30% 20% 10% 1%

Decreasing topic distribution

M 10th hop
B 9th hop
O 8th hop
B 7th hop
O 6th hop
B 5th hop
O 4th hop
0O 3rd hop
B 2nd hop

O 1st hop

FIGURE6.11: Average Recall Level at Progressive Hop Counts in Single Topic Search

(Uniform Distribution)

DiscussionThe recall level gained as the hop count increases in search of topics
with different popularities in a Zipf’s distribution is plotted in Figure 6.10. It is shown

that the second most popular topic which is shared by 50% of all peers in the system
is accompanied by the lowest recall level at almost every hop. The discovery indicates
that a search for that topic will lead to the greater average number of hops to achieve

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 109

a certain level of recall, compared to a search for any other topic. Table 6.4 further
demonstrates this with the maximum average number of hops produced by a search for
the second most popular topic. Thereafter, the average number of hops that are needed
to reach the maximum recall is in proportion to topic popularity, with the least popular
topic resulting in the least average number of hops to achieve the maximum recall. This
phenomenon can be explained as follows. The number of hops needed to achieve the
maximum recall is subject to the probability of the query topic. On the one hand, the
discovery of a certain number of instantiations of a topic with little probability results in
more hops. On the other hand, according to the search algorithm (see Section 6.4.4), lit-
tle probability of the query topic yields little probability of overlap between peers, thus
triggering a higher broadcast rate which implies less hops to locate the same number of
instantiations. Let be the probability of a query topic anfdx) be the number of hops

to achieve the maximum recalf(z) = d(z) * b(x). d(x) andb(z) are associated with

the two aspects as analysed above with) being a decreasing function ab@:) being

an increasing function af over [0, 1]. Becaus¢(x) is continuous over [0, 1] anfi(0)

= f(1) = 0, there must be at least a single pairdt which f (z) has its maximum.

Experiment 3

Experimental setting§he third experiment was set up to investigate the properties
of the semantic search algorithm of the DDLS in which topics follow uniform distri-
butions. It was performed with the topic probability ranging from 1%, 5%, 10% to
90%. Again, the cache rate was kept at 5% throughout the experiment and all the other
experimental settings were kept as in Experiment 1.

DiscussionFigure 6.11 shows that the recall level increases at progressive hop
counts in search of topics with different probabilities in uniform distributions. Within
the first 10 hops, a search for topics with a probability of 45% yields the lowest recall
level at almost every hop. This phenomenon is analogous to the discovery in Figure 6.10
that the search for the second most popular topic (shared by 50 peers out of 100) results
in the lowest recall level at approximately every hop. Table 6.5 reveals that the topic
probability of 55% is related to the maximum average number of hops to obtain the max-
imum recall. The average number of hops increases before the topic probability reaches
55% and decreases thereafter. In contrast to the experiment with topics from a Zipf's
distribution (see Experiment 2) in which 50% is the turning point for all observations,
this experiment (with topics from uniform distributions) shows that the turning point
exists in the range of [45%, 55%. It is speculated that both results should be consistent
with each other and the inconsistency in the results is due to the limited experimental
conditions.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 110

Topic popularity 1 2 3 4 5
Average number of hops 5.47 | 8.10 | 6.33 | 5.84 | 5.20
Maximum recall 99% | 99% | 94% | 100% | 97%
Topic popularity 6 7 8 9 10
Average number of hops 5.01 | 5.00 | 4.74 | 4.71 | 4.85
Maximum recall 96% | 100% | 99% | 100% | 99%
Topic popularity 11 12 13 14 15
Average number of hops 4.75 | 4.60 | 4.70 | 4.44 | 4.22
Maximum recall 100% | 98% | 100% | 100% | 100%
Topic popularity 16 17 18 19
Average number of hops 4.01 | 3.96 | 3.77 | 3.06
Maximum recall 100% | 100% | 100% | 100%

TABLE 6.4: Average Number of Hops to Achieve the Maximum Recall (Zipf’s Distri-
bution)

Topic probability 90% | 85% | 80% | 75% | 70%
Average number of hops5.51 | 6.04 | 6.04 | 6.32 | 6.81
Maximum recall 99% | 99% | 99% | 99% | 98%
Topic probability 65% | 60% | 55% | 50% | 45%
Average number of hops 7.59| 7.66 | 8.28 | 7.72 | 7.83
Maximum recall 97% | 99% | 98% | 99% | 97%
Topic probability 40% | 35% | 30% | 25% | 20%
Average number of hops6.98 | 6.60 | 6.16 | 5.79 | 5.44
] Maximumrecall [99% | 99% | 97% | 99% | 99% |
Topic probability 15% | 10% | 5% 1%
Average number of hops 5.00| 4.88 | 4.03 | 3.08
Maximum recall 99% | 100% | 100% | 100%

TABLE 6.5: Average Number of Hops to Achieve the Maximum Recall (Uniform Dis-
tribution)

6.5.5 Multiple Topic Search

The simulation on multiple topic search was performed to explore the search perfor-
mance under the circumstances in which topics with distinct popularities are involved
in a single semantic search.

Experiment 1

Experimental setting¥he settings were kept as in Experiment 2 of single topic
search. However, a multiple topic query involves two topics with different popularities
in a Zipf’s distribution. Each multiple topic search is based on the second most popular
topic and another less popular 8n€or instance, the first multiple topic search relates

5The most popular topic is not used because it is shared by all peers in the network and using it with
another less popular topic in a multiple topic search resembles a single topic search for the less popular
topic.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System

111

Topic Average Average Average Average
Popularity | Maximum Recall| Number of Hops| Matches| Broadcast Rate

2 99% 8.10 50.00
3 94% 6.30 33.00

(2,3) 99% 5.30 18.40 87.30
2 99% 8.10 50.00
4 100% 5.84 25.00

(2,4) 100% 4.88 11.40 93.01
2 99% 8.10 50.00
5 97% 5.20 20.00

(2,5) 100% 4.88 10.6 95.60
2 99% 8.10 50.00
6 96% 5.01 17.00

(2,6) 100% 4.62 9.00 96.61
2 99% 8.10 50.00
7 100% 5.00 14.00

2,7 100% 4.37 6.40 97.60
2 99% 8.10 50.00
8 99% 4.74 13.00

(2,8) 100% 4.46 5.40 97.81
2 99% 8.10 50.00
9 100% 4.71 11.00

(2,9) 100% 4.23 6.40 98.21
2 99% 8.10 50.00
10 99% 4.85 10.00

(2,10) 100% 4.00 5.00 98.61
2 99% 8.10 50.00
11 100% 4.75 9.00

(2,11) 100% 4.25 5.40 98.00
2 99% 8.10 50.00
12 98% 4.60 8.00

(2,12) 100% 3.89 3.60 99.20
2 99% 8.10 50.00
13 100% 4.70 7.00

(2,13) 100% 3.88 3.00 99.01
2 99% 8.10 50.00
14 100% 4.44 6.00

(2,14) 100% 3.68 2.40 99.21
2 99% 8.10 50.00
15 100% 4.22 5.00

(2,15) 80% 2.97 1.80 99.41

D

TABLE 6.6: Multiple Topic Search based on Two Topics with Distinct Popularities in
Zipf's Distribution

112

Chapter 6 Evolution of the DDLS into an Unstructured P2P System
Topic Average Average Average Average
Popularity | Maximum Recall| Number of Hops| Matches| Broadcast Rate

2 99% 8.10 50.00
16 100% 4.01 4.00

(2, 16) 80% 2.80 2.00 99.80
2 99% 8.10 50.00
17 100% 3.96 3.00

(2,17) 100% 3.26 1.20 99.41
2 99% 8.10 50.00
18 100% 3.77 2.00

(2,18) 20% 0.56 0.20 99.60
2 99% 8.10 50.00
19 100% 3.06 1.00

(2, 19) 60% 1.74 0.60 99.41

Y

TABLE 6.7: Multiple Topic Search based on Two Topics with Distinct Popularities in
Zipf's Distribution (Continued)

to the second and the third most popular topics, and the last multiple topic search in-
volves the second and the nineteenth most popular topics. The cache rate was set as 5%.
The network topologies generated in single topic search for individual topics (with the
same experimental settings) were employed.

2<p<=15
1 T T)Ié»_/:fmg_,f =
R
08 - o -
S oefF -
S
S 04} i
5: ; popularity = 2nd -
02 ¢ popularity = pth -
popularity = (2nd,pth)-*
0 ’ I ! 1 1 1 1 I |
1 2 3 4 5 6 7 8 9 10
Hops

FIGURE 6.12: Average Recall Level at Progressive Hop Counts in Multiple Topic
Search (Zipf's Distribution)

DiscussionTable 6.6 and Table 6.7 present the result of the experiment with mul-
tiple topic search involving topics from a Zipf's distribution. It is observed that the
average number of hops to achieve the average maximum recall decrease as the proba-
bility (or popularity) of the component topics (see the column titled ‘Average Matches’)
reduces. This is analogous to the pattern that exists in the simulation on single topic
search, see Table 6.4. However, the probability of the component topics chosen for

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 113

each multiple topic search is less than $0%this experiment. Therefore, only the
situation in which the average number of hops that are needed to achieve the maximum
recall is in proportion to the probability of the component topics, can be observed. The
average broadcast rate is inversely proportional to the probability (or popularity) of the
component topics, because less popular query topics yield less probability of overlap
between peers, thus triggering a higher broadcast rate to locate all the instantiations.
The recall level obtained at progressive hop counts is plotted in Figuré @.4& result

of all multiple topic searches carried out shows that the average recall level at each hop
is inversely proportional to the topic probability (or popularity). Table 6.6 and Table 6.7
reveal that the behaviour of multiple topic search exhibits similarity to that of single
topic search, see Figure 6.10.

Experiment 2

Experimental setting¥he settings were kept as in Experiment 3 of single topic
search, except that each multiple topic query involves two topics from a uniform dis-
tribution. Again, the network topologies generated in single topic search for individual
topics (with the same experimental settings) were employed.

0<d<70

1 —— > 1
08| - — 08
S o6} 4 ¢ o6f
S ; S
5 04t /) 4 & o04rf
> >
< 4 . < .

02/ probability = p% —+ 02 probability = p% —+
probability = (p%,p%o)-<- probability = (p%,p%o)-<-
O 1 | | | | | | | | 0 1 | | | | | | | |
1 23 456 7 8 910 1 23 456 7 8 910
Hops Hops

FIGURE 6.13: Average Recall Level at Progressive Hop Counts in Multiple Topic
Search (Uniform Distribution)

DiscussiornTable 6.8 demonstrates the result of the experiment with multiple topic
search involving topics from uniform distributions. It can be observed that the average
number of hops to achieve the average maximum recall increases before the probabil-

6The maximum probability of the component topics is 18.40%.
This figure is a schematic of a series of figures sharing the similar trend of each curve and the same
relative relationship among the curves. Simulation results with 15 are not shown because they are

not typical due to the little probability of the component topics, e.g. 2.00%, 1.20%, 0.20% and 0.60% in
Table 6.7.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 114

Topic Average Average Average Average

Probability | Maximum Recall| Number of Hops| Matches| Broadcast Rate
90% 99% 5.51 90.00

(90%, 90%) 98% 5.95 80.40 0.72
80% 99% 6.04 80.00

(80%, 80%) 98% 7.05 63.80 12.73
70% 98% 6.81 70.00

(70%, 70%) 96% 7.61 50.60 35.28
60% 99% 7.66 60.00

(60%, 60%) 99% 6.90 34.20 65.84
50% 99% 7.72 50.00

(50%, 50%) 99% 5.53 24.20 81.95
40% 99% 6.98 40.00

(40%, 40%) 100% 5.24 16.20 89.40
30% 97% 6.16 30.00

(30%, 30%) 99% 4.76 10.20 94.43
20% 99% 5.44 20.00

(20%, 20%) 100% 3.75 4.00 99.00
10% 100% 4.88 10.00

(10%, 10%) 98% 2.68 1.00 99.40
1% 100% 3.08 1.00

(1%, 1%) 0% 0.00 0.00 99.21

TABLE 6.8: Multiple Topic Search based on Two Topics with Distinct Probabilities
from Uniform Distributions

ity of the component topics drops below 50.60% and decreases thereafter, as the topic
probability of the component topics (see the column titled ‘Average Matches’) reduces.
The pattern is the same as can be seen in the simulation on single topic search, see Ta-
ble 6.5. Again, the average broadcast rate is inversely proportional to the probability of
the component topics. The explanation, which was given in the previous experiment for
the relationship between the average broadcast rate and the popularity of the component
topics in a multiple topic search for topics from a Zipf’s distribution, is also applicable
herein.

The recall level at progressive hop counts is plotted in Figure®6.t3s shown
that the average recall level at each hop is proportional to the topic probability when the
probability of each component topic is greater than 7@¥d is inversely proportional
to the topic probability when the probability of each component topic is less than 70%.
This phenomenon is in accordance with the one observed in single topic search, see

8This figure is a schematic of a series of figures possessing the similar trend of each curve and the
same relative relationship among the curves.

9Table 6.8 shows that the row with the topic probability in single topic search equal to 70% is a turning
point.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 115

Figure 6.11.

6.6 Understanding the Semantic Search through Simu-
lation

Simulation, which covers 5 distinct but interrelated experiments, has been conducted on
single topic search and multiple topic search so as to explore the behaviour and perfor-
mance of the distance-based semantic search algorithm. The experiments investigated
the Zipf's distribution and the uniform distribution of topics - the two most potential
distributions if topics are sorted by popularity. The main metrics in performance evalua-
tion include hops, recall and broadcast rate which are employed to describe the principal
findings outlined as follows.

1. In a single topic search, the cache rate (except the extreme cases, such as 1% in
the simulation) is inversely proportional to the average number of hops that are
needed to achieve the maximum recall.

2. The search for a topic with a probability less than 50% yields the average num-
ber of hops needed to achieve the maximum recall inversely proportional to topic
probability (or popularity). In contrast, the search for a topic with a probability
more than 50% results in the average number of hops needed to achieve the max-
imum recall proportional to topic probability (or popularity). This phenomenon
was observed in simulation with both Zipf’s distribution and uniform distribution
of topics.

3. If the single topic in a search is replaced with multiple topics, 2 topics for exam-
ple, the observations mentioned above remain unchanged.

4. The average broadcast rate is inversely proportional to topic probability (or pop-
ularity).

While simulation on single topic search revealed the essential behaviour and per-
formance of the semantic search algorithm, extending the simulation to multiple topic
search was intended to confirm the universality of such properties. Examining both
finding 2 and 3 described above, one would discover that:

1. Because topics with distinct semantics are considered independent of one another,
the joint popularity (or the joint probability) of component topics should be used

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 116

in multiple topic search as the topic popularity (or probability) used in single topic
search, when predicating the behaviour and search performance of the semantic
search.

2. Topic popularity (or probability) of topics is what should be taken into account,
other than the distribution of all topics, when discussing the behaviour and per-
formance of the semantic search.

6.7 Summary

According to the requirements for an unstructured P2P DDLS as identified in Chap-
ter 5, this chapter revised the resource description mechanism by adopting the RDF
model and presented the formal representation of a distance-based semantic search al-
gorithm. The meaning conveyed Bgmantic searcin the context of the DDLS was
highlighted. It is clear that the approaches of related work documented in Appendix A
can be complement, instead of alternatives, to the DDLS semantic search. This is be-
cause the DDLS assumes the ability of identifying semantically related terms that all
related work possesses, and focuses on an underlying mechanism that supports the se-
mantic search in a P2P context that none of them is able to tackle. Simulation which
involved different topic distributions and query profiles has been carried out to investi-
gate the behaviour and performance of the semantic search algorithm. Many similarities
have been observed from the simulation with a Zipf’s distribution and uniform distri-
butions of topics. The simulation result has given an answer to the first three questions
raised in Section 6.5.3 that of the anticipated behaviour of the semantic search, the im-
pact of the cache rate and resource (or topic) distribution on the search performance.
The last question which relates to re-organisation of the peer network is left to be ex-
plored by the next chapter.

Chapter 7

Re-organising the DDLS Peer Network

7.1 Introduction

The DDLS peer network was constructed with a goal to facilitate resource sharing-based
collaboration. In Chapter 6, essential understanding of the extent to which this goal
can be accomplished with the help of devised mechanisms, has been obtained through
simulation. This chapter investigates the way of further boosting the performance of
resource discovery through re-organisation, an action that may occur throughout the
lifetime of the peer network.

The aim of this chapter is to present the concept of re-organisation in the context
of the DDLS peer network and describe the techniques that can be utilised for imple-
menting re-organisation. This chapter introduces a data structure referredjuerss
history upon which re-organisation heavily relies. The exponential decay function and
the naive estimator are proposed as re-organisation techniques and simulation that ver-
ifies the effectiveness of both techniques is described. This chapter discusses a further
move, using the virtual overlap which helps reinforce the principle of the semantic
search algorithm, to facilitate re-organisation. A utility equation is proposed to evaluate
the gains in the search performance resulting from re-organisation. Finally, a review of
re-organisation is presented which looks back at the origin, features and techniques of
re-organisation, summarises the principle findings of simulation on re-organisation, and
gives a complementary explanation for some phenomena observed in simulation.

117

Chapter 7 Re-organising the DDLS Peer Network 118

7.2 Concept and Forms

Re-organisation of the peer network in the context of the DDLS is defineoh &t

of altering the virtual neighbourhood of any peer in the network to optimise resource
discovery It is typically triggered by the state change of any peer in the network which
includes the (dis)appearance of a peer, resource update to a peer and update of neigh-
bours of a peer.

Re-organisation (not including that results from peer arrival and departure) is not
a subject that has been researched extensively by the P2P community. This is because
the inherent organisational structure of P2P systems differs from one another. For in-
stance, centralised P2P systems would not benefit from re-organisation because resource
discovery in such systems relies heavily on a centralised directory and altering the net-
work topology does not facilitate the location and retrieval of resources of interest. For
structured P2P systems that adopt DHTSs to index the search space for efficient lookup,
re-organisation bears no significance either. Unstructured P2P systems are perhaps the
most promising systems that would benefit from employing re-organisation, because
they do not depend on a central directory and neither do they have a tight control over
the network topology and the placement of resources. Little work which relates to
re-organisation in unstructured P2P systems has been carried out and reported. This
work aims to explore the way of improving the performance of resource discovery by
proposing re-organisation in the DDLS peer network, and evaluate the approach through
simulation (see Section 7.5.2 and Section 7.5.4).

The major forms of re-organisation in the DDLS peer network comprise the fol-
lowing classes, mainly differing from one another in terms of origin.

1. Passive re-organisation: Re-organisation results from either the arrival, departure
or update of peers is referred to as passive re-organisation. In this form of re-
organisation, peers take an inactive part in altering the network topology, because
they are committed to the peer network which regulates that the topology of the
peer network should reflect the up-to-date relationship between peers. Peer ar-
rival and departure related re-organisation has been described in Section 6.2.3
and Section 6.2.4. Update related passive re-organisation is the focus of the work
presented later in this chapter.

2. Proactive re-organisation: Peers may take the initiative to perceive and predict
the potential information needs through some mechanism. They can therefore
re-organise the network topology to enable those needs to be satisfied in the fu-

Chapter 7 Re-organising the DDLS Peer Network 119

ture with high probability. This type of re-organisation is named proactive re-
organisation and can benefit from the techniques for update related passive re-
organisation.

3. Autonomous re-organisation: The fullest extent of autonomy is observed in this
kind of re-organisation. It typically involves peers which adjust their resources in
response to information needs. Thus, the relationship between the updating peers
and their neighbours may no longer hold, which gives rise to a variation of the
network topology.

When re-organisation is triggered, regardless of the form, involved peers will
utilise the techniques proposed later in this chapter (see Section 7.5.1 and Section 7.5.3)
to discover a set of neighbours which are most qualified to help achieve the objectives
of re-organisation, and replace the current neighbours with the new ones.

Though the origin of re-organisation can be as diverse as shown above, the objec-
tives of such re-organisation are always straightforward, i.e. to reflect the up-to-date
relationship between peers and to deliver an improved performance in resource discov-
ery through the alteration of the network topology.

In the DDLS, the knowledge of resources owned by each peer is restricted to its
neighbours. Peers view a limited scope of the global information about resources in the
system. There are two ways for information (about resources) sharing in such a net-
work - sharing the topic information with neighbours as in Section 6.2.3, and utilising
the query routing information. The routing information of queries that have been prop-
agated from other peers, is maintained in a data structure cpliEg history The next
section introduces the data structure and related operations.

7.3 Supporting the ‘Query History’ Data Structure

Query history is a collection of all queries a peer has encountered over a period of time.
Peers may be able to predict the future information needs of others by analysing query
history, which is subsequently accompanied by rational re-organisation.

Query history is realised as a FIFO (First In First Out) queue, see Figure 7.1.
History information is discarded when the queue overflows.TLdenote the set of all
the topics. Each entry of query history includes three fields: the query identifer, query
topics and the arrival time of the query. The set of query identifiefl ithe capacity of

Chapter 7 Re-organising the DDLS Peer Network 120

1 1 1
Rear qi > hi > ai
q¢ h? a?
1 1 2 1
q_ hP al
=) i i i
o
s 4t g4
15}
a
?':) qi s i i
[
an
.8
>
s
v
pomaxy pmax pm
Front q' h ah
1 1 2 1

FIGURE 7.1: Query History op; at an Instant of Time

query history of peep; is h*** and the set of arrival time of queriesds Query history
of p; can be represented By, = {(¢", hi",a")|¢/* € Q,h[* € T, h* x h* C T, al" €
A0 <m < AT},

7.4 Criteria and Metric

One of the objectives of re-organisation is to optimise resource discovery. This entails
the knowledge of resource supply and demand in the DDLS peer network. An analy-
sis of the resource supply and demand yields two criteria which can be used to guide
rational re-organisation.

1. Peers that share related topics should be incorporated into thecheste.
2. Peers should be situated in the vicinity of those that would accommodate potential

information needs with high probability.

The reason is explained as follows. Having neighbours with related topics allows a peer
to identify others that accommodate similar information needs conveyed by queries.
The peer can therefore propagate subsequent related queries and avoid costly broadcast.

1The termclusteris derived from the unsupervised clustering method which groups entities into clus-
ters by the similarity of their features without any prior knowledge about the number of the clusters,
which fits in with the DDLS clustering problem. However, because the resources of each peer are repre-
sented by a set of characteristic topics, a peer being incorporated into more than one cluster would occur
frequently.

Chapter 7 Re-organising the DDLS Peer Network 121

Key to the reduction of local broadcast is the local knowledgsugplyavailable at
neighbours. Meanwhile, a peer can identify the potential information needs of others
from its query history and make peers with desired topics its neighbours through re-
organisation. In the proposed techniques (see Section 7.5.1 and Section 7.5.3), a peer
analyses the potentidemandof others based on their previous information needs ex-
hibited in query history and chooses appropriate peers that fulfill the requirement as
neighbours.

The termusefulnesss employed to represent the relative extent to which a peer
should be considered as a neighbour of another peer during re-organisation. Assume
that a candidate neighbopy (with respect t;) publishes a topic list;. Lete,; ; be a
metric which represents the information needs exhibited in query history Different
techniques will be utilised to estimate the value=pf in the following sections. Also,
let n; ; denote the extent to whighy would match the queries that can satisfy:

. _ImNT)
" e

Let.; ; represent the usefulnessygfwith respect tg;

Lij = \/(’ﬁgz‘,j)Q + (Raniz)? (7.1)

whererx; andk, are constant coefficients associated with query history and the cached
topic information, respectively. The quantitative relationship of the significance be-
tweene,; ; andn; ; can be adjusted by assigning specific values;tandx..

Within the capacity of its cache; only keeps peers with the greatest value a$
its new neighbours during re-organisation, and discards the rest.

For ease of comprehension, it is necessary to interpret the physical significance
of Equation 7.1. Figure 7.2 geometrically demonstrates the usefulness of candidate
neighbourg, andp,. with respect tg;. The usefulness of candidates is quantitatively
represented by the radius of a series of coaxial circles. The longer the radius is, the
more useful a candidate is. Equation 7.1 can reflect such a relationship even without
the coefficients:; andx,. However, in some cases, a unit of change ofhay yield
a different alteration in the usefulness metricompared to that caused by a unit of
change ofi). A unit of change of a variable refers to the difference between a pair of
its consecutive permissible values. For instance, the (non-)existence of a topic in the
overlap or in query history yields a unit of changenadr <. It is implied that in useful-
ness decision the significance of a topic in the overlap may be rated differently relative
to that of a topic in query history. To discard such a constraingndx, are used to

Chapter 7 Re-organising the DDLS Peer Network 122

KoM

0
Ki€ik

FIGURE 7.2: Usefulness of Candidates for Neighbourg,of

leverage the contribution from both aspects. The performance of resource discovery
affected by various relationships betweenand «, will be explored in Section 7.5.2
and Section 7.5.4.

7.5 Enabling Technigues

The standard LRU/LFU (least recently/frequently used) algorithm (Silberschatz and
Galvin 1994) has gained wide acceptance in such domains as the caching strategies
in Web proxies and the page replacement policy in operating systems. By keeping track
of the time/number that each object or page is referenced, the LRU/LFU decides which
object or page to be replaced with a new one, when the cache reaches its capacity or a
page not resident in the main memory is needed by an active process. Such algorithms
are of particular interest to re-organisation in the DDLS. The issue in re-organisation
is to decide which queries should be taken into account to compute the usefulness of
neighbours while ignoring the others, which is similar to that in both caching strategies
and the page replacement policy, i.e. using some technigue to measure the superiority
(or suitability) of some entities over the others.

The fundamental assumption behind the LRU/LFU algorithm is that the recent past
will approximate the immediate future. Therefore, the caching strategies for example,
can deduce the likelihood of future references to the cached entities based on the ob-
servations of either their size, recency or frequency. The re-organisation techniques

Chapter 7 Re-organising the DDLS Peer Network 123

presented in the following subsections make the same assumption and employ different
strategies to support the usefulness decision, however.

The exponential decay function is used to vary the significance of queries in query
history based on both the time (recency) and the number of occurrence (frequency),
whereas the naive estimator diversifies the significance of queries in query history in
terms of the probability of query topics (analogous to frequency). The former strategy
subsumes both the LRU and the LFU while the latter is a variant of the LFU.

7.5.1 Exponential Decay Function-based Usefulness Decision

A straightforward approach to distinguish the instances of query topics with various
times of occurrence is to allocate various weights to these instances. An exponential
decay functioni¥’(S(¢q)) can satisfy the requirement}’(S(q)) is a weight function

of S(¢) which is in turn a sequence function of an incoming queryThe following
phenomena can be observed in query history to which an exponential decay function is
applied:

e More recent query topic instances are always awarded higher weights for their
occurrences;

e More significant difference between two query topic instances occurring more
recently can be observed than that between two topic instances, with the same
distance in sequence, occurring less recently.

Let »["** be the capacity of query histo#y, of p;. The exponential decay function
takes the following form:
W(S(q)) = e 5.

For sequence functiofi(¢), the following equations hold.

max
hi

S(g}) =1,5(¢) =2,...,8(qg")= h""

max

where ¢}, ¢Z, ..., qfi are a sequence of incoming queries ordered by the arrival
time with ¢} being the most recent incoming query.

Suppose; is going to decide how useful a candidate neighbguis. Given an
interval I, the metrice; ; which represents the information needs exhibited in query

Chapter 7 Re-organising the DDLS Peer Network 124

history of p; takes into account all query instances in query history; afhose topics
are semantically subsumed pys topics. Therefore,

WIS e
where0 < m < b anda) — I < a" < a;.

Again, letn; ; be the extent to which that; would match the queries thaf can
satisfy and, ; represent the usefulnessygfwith regard top;.

g = (1 Y e 4 (a2 (7.2)

7.5.2 Simulation on Exponential Decay Function Supported
Re-organisation (EDFSR)

This section presents the simulation that investigates the behaviour of re-organisation
of the peer network based on the exponential decay function. In addition, the simu-
lation explores the relationship between query history and the overlap information in

usefulness decision, and examines their individual significance for re-organisation.

Experimental settingsThe simulator introduced in Section 6.5.1 was employed
to simulate a peer network consisting of 100 peers. Each peer randomly chose a list
of topics from a global list of 100 entities, ensuring that the topics followed a Zipf’s
distribution. The cache rate was kept at 5%. A set of query topics which followed a
Zipf's distributior? was constructed and each query (482 instantiations in total derived
from the global list of 100 entities) chose a single topic from this set. The capacity of
qguery history was. The experimental procedure is described as follows.

1. Over atime interval, ¢ (3 > h) queries are issued. A snapshot of query history
of each peer and the topology of the peer network is maintained.

2. Anotherq queries are issued ovein the peer network with the same topology as
that maintained in Step 1. The snapshot of the queries and the query initiators is
kept.

3. Based upon the query history and the topology maintained in step 1, the peer
network is re-organised since a certain percentage, known as the updating rate

2Studies show the presence of Zipf’s law in Gnutella and Web queries (Breslau et al. 1999, Sripanid-
kulchai).

Chapter 7 Re-organising the DDLS Peer Network 125

u.r., of all peers launch an update to their resources (which also results in an
update to the topic information about the resources). For the sake of simplicity,
these peers do not practically update topics in simulation but only choose their
new neighbours in terms of usefulness € 0 andx, = 1). The query initiators

kept in step 2 issue the same queries as in step 2lover

4. Repeat step 3 with pairs of values fgrandx,: (0.01,1), (0.1,1), (1,1), (10,1),-
(100, 1) and(1, 0) respectively.

Based on the query history generated in step 1, step 2, 3 and 4 were set up to exam-
ine the average reduction in hops to achieve the maximum recall in various environ-
ments, including that without re-organisation (step 2) and those with usefulness-based
re-organisation (step 3 and 4).

h=50 h =250
025 T T T T T 025 T T T T T
T e
@ 02t Sxi0 o 1 g o2} Sww0 .
o) € 50) € 50
= o T P X < ey D
= | X / S . | s < | X R
Z 015 e xS *,,;// = 015 e o x - 4
2 & YR B | S &, A Qe
B g e)i B gX i
g 0ir s 1§ %1 o i
%’ 005 | * R % 005 - g -
o : EI/ o : A e P
> oeEy - > P = *+
< =X S - < e @ g IR S
Op 0 e
o .
-0.05 1 I I I I I -0.05 I I I I I I
©0) (0:1) (00L1) (0L1) (L1) (10:1) (100:0) (L0) ©0) (01) (00L1) (0L1) (L1) (10:1) (100:0) (LO)
KKy KiKz

FIGURE 7.3: Average Reduction in Hops to Achieve the Maximum Recall with
EDFSR,u.r. = 5%

DiscussionFigure 7.3 shows the average reduction in hops to achieve the max-
imum recall when the exponent in the exponential decay function is associated with
various values. The greater the absolute value of the exponent is, the steeper the slope
of the curve that represents the function would be. This feature of the exponential de-
cay function indicates that, among others used in the experinient, = ¢~ would
result in the greatest difference between the weights allocated to a pair of query history
entries. The simulation result reveals thfdin) = e 3o yields the greatest average
reduction in hops to achieve the maximum recall in most cases. However, the curve
associated withf(m) = e~ in the figure indicates that merely increasing the ex-
ponent does not necessarily lead to a greater average reduction in hops. This is also
supported by the result of the simulation conducted with the capacity of the query his-
tory equal to 250. The objective of conducting the simulation with a different history
capacity is to explore the frequency of which queries should be captured to facilitate

Chapter 7 Re-organising the DDLS Peer Network

126

re-organisation. Figure 7.3 demonstrates that, with the specified experimental settings

and increased query history capacity (250), the greatest average reduction in hops to
achieve the maximum recall is accomplished by EDFSR associated with= ¢~ 500

in most cases.

h=50

54 T T T T T T
o u.r=5% —+—
3 ur.=10%
g 5f Ur=20% %
oR ur=30% o
o 8 u.r.=40%
Se a6l u.r.=50% i
£5 ur.=60% -
GE .. 2
T% -)
o842t . N e E
€ E -
S o R J q
o= g B &
& 38—y O
o - e e x

S TS
< 34 1 1 1 1 1 1
(0:0) (©1) (00L1) (0.1:1) (L) (10:1) (100:0)
KqiKy

u.r.: updating rate

(1:0)

Average number of hops to achieve
the maximum recall

h =250
54 T T T T T T
ur=5% ——
u.r.=10%
5L ur=20% ---x--- |
ur.=30% &
u.r.=40%
L u.r.=50% 4
46 ur=60% - -
a2t % i
¢ R -]
3.8 & Ry -
kil P R S M S S
34 1 1 1 1 1 1
(00 (0:1) (00L1) (0.11) (L1 (10:1) (100:0) (L:0)

K1:Kp

FIGURE 7.4: Average Number of Hops to Achieve the Maximum Recall with EDFSR,

f(m) = e~

Figure 7.4 captures the impact that the updating rate has on the average number
of hops to achieve the maximum recall. It can be seen that peers updating resources

deteriorates the search performance in terms of the average number of hops to achieve
the maximum recall. The more peers that carry out an update, the greater average
number of hops are need to discover all the targets. With a greater capacity of query
history, a similar pattern can be observed as in the right sub-figure of Figure 7.4.

h=50
03 T T T T —L - 4:;
o 01 A N
% e B S Sk
2 o1l % 5 N
e 0l 5 B I
c - ~ -
S 03} 4 > 1
g 03 o ‘\
[-
@ .05 F ur=5% ——
% u.r.=10%
| ur=20% % |
g 07 Ur=30% &
< u.r.=40%
09 u.r.=50% b
u.r.=60% ----e---
1.1 1 1 1 1 1 1
(0:0) (0:1) (0.0L:1) (0.1:1) (L:1) (10:1) (100:0) (1:0)

u.r.; updating rate

K1:Kp

Average reduction in hops

h=250
0.3 T T T T T T
- x|
01 e e
S
01 PR 3
oo .
03 © B @
: - 59
05 | L ur=5% —— |
. u.r.=10%
| ur=20% ---%-- |
-07 ur=30% o
u.r.=40%
09 - ur.=50% b
1 1 1 1 u'riZGO% ,,I,,.,,,

11
(0:0) (0:) (0.0L1) (0.L:1) (L)

KiiKp

(10:1) (100:0) (1:0)

FIGURE 7.5: Average Reduction in Hops to Achieve the Maximum Recall with
EDFSR,f(m) = e~ 300

The average reduction in hops to achieve the maximum recall with EDFSR is
demonstrated in Figure 7.5. Only a relatively low updating rate, 5% and 10% for ex-

ample, leads to a positive average reduction in hops to achieve the maximum recall.

Chapter 7 Re-organising the DDLS Peer Network 127

If the updating rate exceeds 20%, EDFSR does not necessarily deliver a better search
performance in terms of the average reduction in hops to achieve the maximum recall.

h=50 h =250
S ——— — — - Y

,,,,, ey i E - I S S, & 8 5 8 i |

= .- I .- E = . -@
8 095 . 4 8095 ® - g
£ £
=} =}
£ E
g 09 4 & 09 —
IS ur=5% —+— £ ur=5% —+—"
] u.r.=10% 2] u.r.=10% o
g Ur.=20% % g Ur=20% ok
> 085 ur=30% o 4 9 oss ur=30% o g i
< u.r.=40% < u.r.=40% . :
u.r.=50% u.r.=50% o
u.r.=60% ----e-- u.r.=60% ----e--
0.8 1 1 1 1 1 1 0.8 1 1 1 1 1 1
(0:0) (01) (0.0L:1) (O.1:1) (L:1) (10:1) (100:0) (L0) (0:0) (01) (0.0L1) (0.1:1) (L:1) (10:1) (100:0) (10)
K1Kp KKz
h=50 h =250
50 T T T T T T 240 T T T T T T
[} (E— S -]

e T R e P SSEEEEE 230 1
¢ 8 X & e 1 o S T——— L ek
® B 200 | s T g
é B e ee . . g 20 e .

.
S 44 4 2200} .
- ur=5% —+— g ur=5% —=;
Q u.r.=10% | 819 | ur=10% -
T2 ur=20% - 15 ur=20% -
Z ur=30% o Z 180 | ur=30% - LN E
40 | ur=40% _ u.r.=40% L
u.r.=50% 170 u.r.=50% -
Ur=60% - - - Ur=60% - e - .
38 1 1 1 1 1 1 60 1 1 1 1 1 1
(0:0) (0:1) (00L1) (O.L:1) (L1) (10:) (100:0) (1.0) (0:0) (0:1) (00L:1) (0.1:1) (L1) (10:1) (100:0) (1:0)
K1iKyp K1Ka

u.r.: updating rate

FIGURE 7.6: Average Maximum Recall and Average Broadcast Rate with EDFSR,
f(m) = "5

The average maximum recall and the average broadcast rate with EDFSR can be
referred to in Figure 7.6. The curve associated with the updating rate of 60% is under
all the rest in both sub-figures, which indicates that one peer network with a higher
updating rate (such as 60%) incurs a lower average maximum recall level as well as
a lower average broadcast rate than another with a lower updating rate (such as 5%,
10% and 30%). Moreover, an obvious phenomenon in the figure is that the average
maximum recall is primarily proportional to the average broadcast rate. In combination
with Figure 7.4, one would discover that the relationship among the average maximum
recall (), the average number of hops to achieve the maximum recaltie average
broadcast rateh] and the updating rate:] across different combinations ef andx,,
can be simply depicted by

r+«u=Cp, bxu=Cy hju=Cs (7.3)

whereC', C5 andC'; are constants related ta{ : -).

Chapter 7 Re-organising the DDLS Peer Network 128

7.5.3 Naive Estimator-based Usefulness Decision

The foundation of the naive estimator (Rosenblatt 1956) is that for any giardn
independent observations,, X5, ..., X,, from the random variablé&’, the probability
P(z—h < X < z+h) can be approximated by the proportion of the samples falling in
the interval(z — h, = + h). Thus the naive estimatgf, () for the estimation of density
value f(z) at pointx is defined as

fulz) = ﬁ[no. of X; falling in (x — h,x + h)]

n

A more transparent form of the naive estimator can be procured by defining a
weight function
if 2] <1
w(x) :
0 otherwise

N |

The naive estimator is therefore also written as

with 2 being a small number.

The naive estimator is a nonparametric approach (Silverman 1986) in that less rigid
assumptions, for example the density function underlying the data, are made about the
distribution of the observations. It is the observed data that is crucial in deciding the
estimate off (e). This feature indicates that the distribution of query topics in the DDLS
can be estimated based on the overall views of peers, while the probability of query
topics at a single peer can be approximated by the peer’s local view (Zhou et al. 2004).

The purpose of introducing query history is to perform an informal investigation
into the properties of queries, and guide re-organisation of the peer network using the
properties of queries revealed. In the DDLS, the probability of query topics is an im-
portant property that needs to be explored for predicting the future information needs.
The naive estimator can take advantage of query history maintained by individual peers
to approximate the future information needs they would encounter.

Suppose the probability of topics in query history of pgecan be depicted by
function f; 5 (¢) of a discrete random variable wheret denotes the least index of the
same set of related topics in history entries. For examplg, #nd7;, denote the topics
of the 1st and 5th entries in query history and both share the same set of related topics.

Chapter 7 Re-organising the DDLS Peer Network 129

[N

C{ACH 2| t=1

2 {A,B,C},2°

P (A Q) @Y =1

4 {B,C,D},a’

{A,B,C}, 2}

@ik N

J{DEFR,a]| t=6

 {ER, a]| t=7 |

o o o 9o ol o0

—o |-~ | || -

, {ER, a7 =7 (A.C} {A,B,C} (B.C,D} (D.ER {ER

FIGURE 7.7: Computation oﬁ,h(t) based on Query History o

The observations affor both entries will be 1 instead of 5. Using the naive estimator,
the estimate of probability of topics ats

t— T
)

"1
el
k=1

A 1

in(t) = —
fin(t) =
with 4 = 0.5. It should be stressed tryé,g(t) takes into account all query history entries

of p; no matter when they arrived. This is contrary to what occurs in exponential decay
function-based usefulness decision.

Assume that a candidate neighbaurof p; publishes its topic lisT;. Lete,; ; be
the estimate of the probability of topics) in future queries encountered py

g = fin(t)

ei; considers the estimate at allvhere the topics of history entries are semantically
subsumed by topics iffi;. Figure 7.7 explains how to compufgh(t) based on query
history of p;. If the topics in7; comprise{A, C, E, F}, ¢;; should take into account
botht = 1 andt = 7 at which topics of history entries are semantically subsumed by
those inT};. Therefore,

As in Section 7.5.1, let; ; represent the usefulnessygfwith regard top; and; ;
be the extent to which that would match the queries that can satisfy.

g =\ 51 D Fin()2 + ()2 (7.4)

Chapter 7 Re-organising the DDLS Peer Network 130

7.5.4 Simulation on Naive Estimator Supported Re-organisation
(NESR)

The simulation in this section aims to explore the properties of re-organisation of the
peer network based on the naive estimator. It also helps understand the quantitative re-
lationship between query history and the overlap information in the usefulness decision
during re-organisation.

Experimental settings The experimental settings remain the same as those de-
scribed in Section 7.5.2 except that the usefulness decision is enabled by the naive
estimator.

h=50 h=250
54 T T T T T T 54 T T T T T T
g ur=5% —+— g ur=5% —+—
= u.r.=10% = u.r.=10%
[5 ur=20% ---*-- 4 g 5| ur=20% ---*---
oR ur=30% o 2% ur=30% o
35 u.r.=40% ﬁ u.r.=40%
S = L u.r.=50% 4 eo¢ L u.r.=50% i
2€E 46 = 2€ 46 =
5 2 . ur.—GO% ° 5 2 . ur=60% ---e--
55 e e 23 .
gE4.2- hd . 3 EE4.2- . -
2o , 1 2o SN o
o= % a “ o= M S
R R | & L i WS e
g 38l T Pt S NS R R e
2 e —~ % =]
1 1 1 1 1 1 1 1 1 1 1 1

3.4 3.4
(0:0) (0:1) (0.0L:1) (0.1:1) (1) (10:1) (100:0) (1:0) (0:00 (0:1) (0.01:1) (0.1:1) (L1) (10:1) (100:0) (1:0)
Kq:Ky KiKo
u.r.; updating rate

FIGURE 7.8: Average Number of Hops to Achieve the Maximum Recall with NESR

DiscussionWith NESR, the average number of hops to achieve the maximum
recall varies with the updating rate, see Figure 7.8. Similar to the pattern observed in
Figure 7.4, the more peers that conduct an update, the more average number of hops are
needed in search of all targets.

It is observed in Figure 7.9 that the impact from query history is predominant in
reducing the average number of hops to achieve the maximum recall when the updating
rate is relatively low, for instance 5% and 10% in the experiment. However, as the
updating rate increases, see the curves associated with the updating rate equal to 40%,
the overlap information becomes more influential on the the average reduction in hops
than query history.

This experiment also reveals that, compared to EDFSR, NESR is applicable to a
more dynamic peer network, i.e. a peer network with a higher updating rate, in terms of
the average reduction in hops to achieve the maximum recall. It is shown in Figure 7.5

Chapter 7 Re-organising the DDLS Peer Network 131
h=50 h=250
03 T T T T T T 03 T T T T T T
h LK e
L S ..] L 4
12 01 ot i B ~1 8 01 7“,,,,/ijiiﬁf-@:ffif,,,};_—2 ,,,,,,, o) & T
E KOs — g e i
E OLF - 1 0L F .]
S S . s e
g 031 LR 1 g 03 o .
B osl ur=5% —— . -~ B o5l ur=5% —+— U
R . ur=10% . i : u.r.=10% .
@ Ur=20% - < Ur.=20% ---%---
z 07 ur=30% o 1 & 07 . ur=30% &
Z ur.=40% Z u.r.=40%
-09 u.r.=50% B -09 - u.r.=50% B
Ur.=60% o - Ur.=60% - -
11 1 1 1 1 1 1 11 1 1 1 1 1 1
(00) (01 (00L1) (0.L1) (L1) (10:1) (100:0) (L:0) (00) (@) (00L1) (0.L1) (L1) (10:1) (100:0) (L0)
KKy KKy

u.r.; updating rate

FIGURE 7.9: Average Reduction in Hops to Achieve the Maximum Recall with NESR

that a peer network with an updating rate greater than 20% suffers from a negative aver-
age reduction in hops to achieve the maximum recall with EDFSR. However, Figure 7.9
demonstrates that NESR can boost the threshold up td.40%

h=50 h=250
11— —— — — le0em——— 37— ——
< x = e — %*ﬁ[i—ﬁ =& ? R e
—_ 9-- e e —_ -
§oost 8 oot . —
€ S
> =
E E
g 09 4 & 09} 4
£ ur=5% —+— ‘ £ ur=5% —+—
] u.r.=10%] u.r.=10%
g Ur=200 ---%-- \ g =200 ---%--
> 085 F uwr=30% & e 4 > 08 ur=30% & L —
< u.r.=40% Te.. < u.r.=40% o
u.r.=50% : u.r.=50%
u.r.=60% ----e - u.r.=60% ----e -
O. 1 1 1 1 1 1 08 1 1 1 1 1 1
(00) (01) (0.0L:1) (O.1:1) (L:1) (10:1) (100:0) (LO) (0:0) (01) (0.0L1) (0.1:1) (L:1) (10:1) (100:0) (10)
KKy Kq1iKy
h=50 h =250
50 T T T T T T 240 T T T T T T
T e e e b ! a
] S S — NI S S % S
8 - = = 1 8 220 e e
gar R 1 Boaof * e . 1
g S -
44+ 4 2 200 . B
° Ur=5% —+— < ur=5% —+—
2 u.r.=10% 2190 | ur=10% B
52 ur=20% ---x-- 1 5 ur.=20% ---%---
z ur.=30% - Z 180 | ur=30% 9 -
40 | ur=40% : e i u.r.=40% St
u.r.=50% o - 170 u.r.=50% . =
u.r.=60% ----e--- u.r.=60% ----e---
38 1 1 1 1 1 1 1 1 1 1 1 1
(0:0) (0:1) (001L1) (0.1:1) (L1) (10:1) (100:0) (L0) (0:0) (0:1) (0.0L:1) (0.1:1) (L1) (10:1) (100:0) (L:0)
K1:Ko KKy

u.r.: updating rate

FIGURE 7.10: Average Maximum Recall and Average Broadcast Rate with NESR

Figure 7.10 illustrates the average maximum recall and the average broadcast rate

3The average change of all metrics introduced by different re-organisation techniques is of particular
concern. Hence, using different network topologies in simulation on EDFSR and NESR is allowed.

Chapter 7 Re-organising the DDLS Peer Network 132

with NESR. A greater level of the average maximum recall is always accompanied by
a higher average broadcast rate, which indicates that the ratio of the average maximum
recall to the average broadcast rate is nearly constant. As with EDFSR, Equation 7.3
holds across different combinationsfandxs, with NESR.

7.5.5 Re-organisation with Virtual Overlap

It was identified in Section 7.4 that peers sharing related topics should be incorporated
into the same cluster and peers should also be situated in the vicinity of those that
would accommodate their information needs with high probability. Therefore, the re-
organisation techniques utilise both the overlap information between peers and query
history maintained by individual peers to satisfy such requirements. Recalling the way
a published topic list is constructed and the semantic search algorithm works, one might
be able to realise the need for altering the data structure of the published topic list. The
reason is that, although query history is taken into account in usefulness decision of re-
organisation, the published topic list upon which the search algorithm primarily relies
does not efficiently support and enforce the utilisation of query history. As depicted in
Table 6.1, the last field in the published topic list which embodies all the shared topics
between a pair of peers, guides query routing when a search is carried out. However,
if, for example, peep; is chosen as a neighbour pfonly because the former covers
topics in the history entries of the latter but these two do not share any related topics, no
measures can guarantee that the following queries which are relatedilbbe routed

to p; without using a local broadcast as expected.

{A, B, C}

en(el Towe

FIGURE 7.11: Semantic Search without Virtual Overlap

Figure 7.11 shows that; and p; have no related topics in common, apdis
recently chosen ag;'s neighbour becausg; satisfied queries from;,. p; is another
neighbour ofp;. A query involving topicE will be forwarded byp; to bothp;, andp,
through a local broadcast insteadpgfonly according to the search algorithm (see Sec-

Chapter 7 Re-organising the DDLS Peer Network 133

tion 6.4.4). This makes the introductiongfas a new neighbour @f lack significance
in terms of the reduction in broadcast rate.

updating rate = 10% updating rate = 20%
g 0.95 - — § 0.95 - 1
g g
E 09F 1 E o09f -
g g
o 085 1 g 085 1
g g
S o8 1 % ost .
I without virtual overlap —+— I without virtual overlap —+—
W|th V|rtual overlao S X with virtual overlap ---*---
0 7 1 1 1 075 1 1 1 1 1 1
(0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1)(100:1) (1:0) (0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1)(100:1) (1:0)
KiKy KqKy
updating rate = 30% updating rate = 40%
e o — g —— e — 1
g 0.95 - — § 0.95
g g
g 09 4 €& 09 E
g g
o 085 41 g 085 B
g g
2 o8 1 % o8t i
I without virtual overlap —+— I without virtual overlap —+—
W|th V|rtual overlao S X with virtual overlap ---x---
0 7 1 1 1 075 1 1 1 1 1 1
(0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1)(100:1) (1:0) (0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1)(100:1) (1:0)
KqiKy KqKy
updating rate = 50% updating rate = 60%
l —— \\\| 7__»77;(_77»_ — T - 7_>|< N l
8 oos | e 3 8 oo
£ g
g 09 4 €& 09
£ g
o 085 41 g 085 B
g g
S osf 1 % osf .
I without virtual overlap —+— I without virtual overlap —+—
| | Wlth V|rtual overlap o | | Wlth V|rtual overlap e
0.7 0.7
(0 0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1) (200:1) (1:0) (0 0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1) (100:1) (1:0)
KKz KKz

FIGURE 7.12: Average Maximum Recall with EDFSR = 50, f(m) = e~ 50

One of the approaches to enforce the utilisation of query history in re-organisation
is to re-define the data structure of the published topic list. The field exposing the shared
topics between a pair of peers is currently responsible for hostintual overlap The
virtual overlap consists of both the shared topics between a pair of peers and the topics in
guery history that a neighbour can successfully answer. The addition of history related
information to the publish topic list would enable the following queries to be routed to
p,; Which is chosen as a neighbourgfbecause of its coverage of topics in the history
entries ofp;, without using broadcast.

Chapter 7 Re-organising the DDLS Peer Network 134

updating rate = 10% updating rate = 20%

a
N

T T T T T
without virtual overlap —+—
with virtua overlap ---x---
48 - e

T T T T T
without virtual overlap —+—
with virtual overlap ---x---

the maximum recall
» »
IS o
T T
1 1
the maximum recall
S
N
T
1

N
T
|

36
(0:0) (0:1) (0.0L:1)(0.1:1) (1:1) (10:1)(100:1) (1:0)

Average number of hopsto achieve
Average number of hopsto achieve

36
(0:0) (0:1) (0.0L:1)(0.1:1) (L:1) (10:1)(100:1) (L:0)

K1y K1:Kp

® updating rate = 30% o updating rate = 40%

5 52 T T T T T T 5 52 T T T T T T

= without virtual overlap —+— = without virtual overlap —+—

8_ with virtual overlap ---x--- 8_ with virtual overlap ---x---

o L 1 e L i

.&;g 48 ;g 48

Q. Q.

28 25

“g_g 44 . g,g 44 + .
& &

Es ES

€5 <

2 g

E 3.6 1 1 1 1 1 1 Q 3.6 1 1 1 1 1 1

< (0:0) (0:1) (0.0L:1)(0.1:1) (1:1) (10:1)(100:1) (1:0) < (0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1)(100:1) (1:0)

KqKo Kq:Kgp

© updating rate = 50% ° updating rate = 60%

5] 5.2 T L T T 3 5.2 LI L T T

= without virtual overlap —+— = without virtual overlap —+—

8_ with virtual overlap ---x--- 8_ with virtual overlap ---x---

28 a8 1 2§48t g

g 8=

28 28

BE B E

ol ol

EE tE

22 22

2 5

§ 3.6 1 1 1 1 1 1 Q 3.6 1 1 1 1 1 1

< 0:0) (0:1) (0.0L:1)(0.1:1) (L:1) (10:1) (100:1) (L:0) < (0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1) (100:1) (1:0)

K1iKy KqiKy

FIGURE 7.13: Average Number of Hops to Achieve the Maximum Recall with
EDFSR,h = 50, f(m) = e 500

A series of simulation was carried out to investigate the gains in performance
resulting from applying the virtual overlap to both EDFSR and NESR. Section 6.5.3
presents three metrics: hops, recall and broadcast rate, from which the essential com-
ponents in the utility function defined below to estimate the gains are derived.

utility = Ah — Ar + Ab (7.5)

wherer represents the average maximum rechllthe average number of hops to
achieve the maximum recall,the average broadcast rate ahdlenotes the decrease

Chapter 7 Re-organising the DDLS Peer Network

135

updating rate = 10%

updating rate = 20%

50 T T T T T T 50 __ T T T T T T

b e S S e === k | O S Her=e=m= de==== H===5 k=== 4
[Q
B 45 1 B45 g
4
g 40 . % 40 .
=] [=]
2 35 2 35
© - 41 o L i
g e
o i}
z 30 . . 41 230 . . .
< without virtual overlap —+— < without virtual overlap —+—

. with virtual overlap --x--- . with virtual overlap ---x---

25
0:0) (0:1) (0.0L:1)(0.1:1) (1:1) (10:1) (100:1) (1:0)
KqKo

updating rate = 30%

25
(0:0) (0:1) (0.0L:1)(0.1:1) (L:1) (10:1) (100:1) (1:0)

KKy

updating rate = 40%

50(T T T T T T 50} T T T T T T
— S — T ——— |
g a5 L o= HKe——mm= K== K= m e N A,,,_,_ % s | S ORI RV X -]
g g
g 4O 1 g40r 1
2 o
o3| 1 o3t -
g g
[o
Z 30| , . 41 230} . . .
without virtual overlap —+— without virtual overlap —+—
| \{vith virtlual ovelrlao e | \{vith virtlual ovelrlap e

25
(0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1) (100:1) (L:0)
KqKo

updating rate = 50%

25
(0:0) (0:1) (0.01:1)(0.1:1) (L:1) (10:1) (100:1) (L:0)

KKy

updating rate = 60%

50 | T T T T T T
o) T l o
® 45 [TR O Koo -4 B
g g
g4r 1 8
o o
2 35 2 35
[- 4 o - u
g g
9] o
Z 30 , . 1 Z30F . . e
without virtual overlap —+— without virtual overlap —+—
) with virtual overlap --x--- | with virtual overlap ---x---

25
(0:0) (0:1) (0.01:1)(0.1:1) (L:1) (10:1) (100:1) (1:0)
KKy

25
(0:0) (0:1) (0.01:1)(0.1:1) (L:1) (10:1) (100:1) (1:0)

KKy

FIGURE 7.14: Average Broadcast Rate with EDFSRz 50, f(m) = e 500

of any variable. Because the metrics are different, a normalisation process should be
applied to the variables which maps the value of the variables onto an interval, such as

0, 1].

Figure 7.12 shows the average maximum recall achieved by EDFSR which con-
siders the virtual overlap, and by EDFSR which does not. It is not significant that
re-organisation with the virtual overlap outperforms that without virtual overlap in most
cases. Nonetheless, with : k; = 1 : 0, i.e. considering only the impact of query
history on re-organisation, an increase of the average maximum recall is observed with
various updating rates when EDFSR takes into account the virtual overlap. In addition,

Chapter 7 Re-organising the DDLS Peer Network 136

a significant increase can be seen in the average number of hops to achieve the max-
imum recall by EDFSR that uses the virtual overlap (see Figure 7.13). Though this
increase is not desirable in terms of utility, the latter can be compensated to some extent
by the decrease in the average broadcast rate, see Figure 7.14. This phenomenon is
explained as follows.

@ (b)

FIGURE 7.15: Re-organisation Leads to the Same Clustering but Distinct Topologies

Through clustering peers that share related topics may participate in the same clus-
tert, i.e. they are more similar to each other than they are to others outside the cluster.
However, it is difficult to maintain the shortest distance (in terms of hops) between
peers. For instance, suppgsehas four neighboursp;, p, p; andp,,. Sub-figure (a)
in Figure 7.15 shows the best case in which the minimum average number of hops ((1
+1+1+1)/4=1)is achieved when discovers targets from all of its neighbours.
Sub-figure (b) in the same figure demonstrates the worst case, after re-organisation, in
which it costs a query from; the maximum average number of hops (1 +2+3+4)/4
= 2.5) to locate all targets fromy’s neighboursp,’s neighbours’ neighbours, etc. This
example indicates that, although re-organisation is able to group peers into appropriate
clusters, it does not guarantee the minimum average number of hops to achieve a certain
level of recall. Recalling that Equation 7.5 shows, with a certain level of the variation
of recall, the gains from re-organisation can also be achieved through maximising
This has been accomplished and demonstrated by EDFSR using the virtual overlap, see
Figure 7.14.

“Due to the cardinality of the topics that peers possess, each of them may belong to more than one
cluster at a time.
5Ab denotes the decrease of the average broadcast rate.

Chapter 7 Re-organising the DDLS Peer Network 137

The result of simulation on NESR that adopts the virtual overlap can be referred to
in Figure 7.16, Figure 7.17 and Figure 7.18.

updating rate = 10% updating rate = 20%
1 ¥
g 0.95 - — § 0.95 - B
g £
g 09 4 E 09} —
: :
o 085 41 g 085 —
g g
S osf 1 % osf -
I without virtual overlap —+— z without virtual overlap —+—
with virtual overlap ---x--- with virtual overlap ---x---
075 1 1 1 1 1 075 1 1 1 1 1
(0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1)(100:1) (1:0) (0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1)(100:1) (1:0)
K1iKp KKz
updating rate = 30% updating rate = 40%
1 Sl T ———— R T T
= = T NN
g 0.95 - — g 0.95 - T
g :
g 09 4 €& 09 E
: :
o 085 41 g 085 —
g g
S osf 1 % osf -
I without virtual overlap —+— I without virtual overlap —+—
with virtual overlap ---x--- with virtual overlap ---x---
075 1 1 1 1 1 075 1 1 1 1 1
(0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1) (100:1) (1:0) (0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1) (100:1) (1:0)
K1'Kp KKz
updating rate = 50% updating rate = 60%
1y 1
= =
3 0.95 3 095
: :
g 09 g 09
: :
S 085 4 5 o085
a <
¢ osf . . 1 % osf . . 3
I without virtual overlap —+— I without virtual overlap —+—
with virtual overlap ---x--- with virtual overlap ---x---
0.75 1 1 1 1 1 0.75 1 1 1 1 1
(0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1) (100:1) (1:0) (0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1) (100:1) (1:0)
K1iKo KiKo

FIGURE 7.16: Average Maximum Recall with NESR,= 50

7.5.6 Comparison between EDFSR and NESR

EDFSR and NESR share the same assumption that the recent past will approximate the
immediate future. They both rely on the observation of queries in the past to estimate
the future information needs. If comparing each figure of simulation on EDFSR with
its counterpart of simulation on NESR, one would discover principally similar patterns
from both.

Chapter 7 Re-organising the DDLS Peer Network 138

updating rate = 10% updating rate = 20%

T T T T T
without virtual overlap —+—
with virtua overlap ---x---
48 - e

T T T T T
without virtual overlap —+—
with virtual overlap ---x---
48 - B

the maximum recall
N
N
T
1
the maximum recall
S
N
T
1

36 :
(0:0) (0:1) (0.0L:1)(0.1:1) (L:1) (10:1)(100:1) (L:0)

36
(0:0) (0:1) (0.0L:1)(0.1:1) (1:1) (10:1)(100:1) (1:0)

Average number of hops to achieve
Average number of hops to achieve

K1iKy KKz
updating rate = 30% updating rate = 40%

[) [}
© 5.2 T T L T T o 5.2 T T L T T
= without virtual overlap —+— = without virtual overlap —+—
§_ with virtual overlap ---x--- g_ with virtual overlap ---x---
=0 48 - 4 =0 48 e
23 °3
2t St
“gé 44 . gé

& &
EE cE
> Q =)
c E c E
2 2
g 36 1 1 1 1 1 1 S 36 1 1 1 1 1 1

(0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1)(100:1) (1:0) (0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1)(100:1) (1:0)
K1'Ky KKz
updating rate = 50% updating rate = 60%

() [}
g 52 T T T T 3 52 LI T T
= without virtual overlap —+— = without virtual overlap —+—
q_ with virtual overlap ---x--- 8_ with virtual overlap ---x---
28 a8 1 2848t .
Q = o =
2e £
C £ o E
% ol
€E €€
S Q =]
c E c _E
2 2
9] o
> 1 1 1 1 1 1 > 1 1 1 1 1 1
< <

36 36
(0:0) (0:1) (0.01:1)(0.1:1) (L:1) (10:1) (100:1) (1:0) (0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1)(100:1) (1:0)
KKy K1iKy

FIGURE 7.17: Average Number of Hops to Achieve the Maximum Recall with NESR,
h =50

By changing the updating rate in the simulation with various conditions, it was
found, typically, that the greater the updating rate, the more the performance of resource
discovery (except the average broadcast rate) deteriorates. This situation can be partly
ameliorated by reducing the capacity of query history. Essentially, this translates to
decreasing the time interval during which queries are captured. As a consequence, the
updating rate will potentially be lower.

To reinforce the principle of the semantic search algorithm to achieve a better per-
formance (a lower average broadcast rate in particular), the virtual overlap was intro-
duced in both EDFSR and NESR. When taking into account the virtual overlap, both

Chapter 7 Re-organising the DDLS Peer Network 139

updating rate = 10% updating rate = 20%

50 T T T T T T 50 N T T T T T T
E — SR s
® [a— [e - o e §
® 45 | X mast S
g g
g O 1 g40r —
2 2
° 35| 1 o3t -
g e
o i}
z 30 . . 41 230 . . .
< without virtual overlap —+— < without virtual overlap —+—
withvirtual overlgp --->--- with virtual overlap ---x---
25 1 1 1 1 1 1 25 1 1 1 1 1 1
00 (0:1) (0.0LL)(OL1) (L1) (10:1) (100:1) (LO) (0:0) (0:1) (0.0L:1)(0.L1) (L1) (10:1) (100:1) (L)
KKy KKy
updating rate = 30% updating rate = 40%
50 e 7| T T T T T 50 T T T T T T
o > o [
B 45| S SRR X 1 B4
7 et g SR
g 40 41 g4t RNy .
o o e
35 © 35 o
[- - - .
g e
o] i}
Z 30 . . 41 Z 30 . . .
< without virtual overlap —+— < without virtual overlap —+—
with virtual overlap ---x--- with virtual overlap ---x---
25 1 1 1 1 1 25 1 1 1 1 1
0:0) (0:1) (0.0L:1)(0.11) (L1) (10:1) (100:1) (LO) (0:0) (0:1) (0.0L1)(0.1:1) (L:1) (10:1) (100:1) (1:0)

K1iKyp KKy

updating rate = 50% updating rate = 60%

[} ()

i &

g - B

[&] Q

K| K|

< I

8 . a B i

% 35 e e % 35

) T .

Z 30 . . 1 Z30F . . %o .

without virtual overlap —+— without virtual overlap —+—==»-___
with virtual overlap ---x--- with virtual overlap ---x--- o
25 1 1 1 1 1 25 1 1 1 1 1
(0:0) (0:1) (0.01:1)(0.1:1) (1:1) (10:1) (100:1) (1:0) (0:0) (0:1) (0.01:1)(0.1:1) (L:1) (10:1) (100:1) (1:0)

K1'Ky KKy

FIGURE 7.18: Average Broadcast Rate with NESR= 50
re-organisations see a decrease in the average broadcast rate with almost every combi-

nation ofx; andk, at the cost of an increase in the average number of hops to achieve
the maximum recall.

Measure EDFSR NESR

Foundations

recency and frequency

a variant of frequency

Operational mean

5 Queries with the same
frequency may be allocate
different significance.

The equal frequency of a pair
dof queries in query history
dictates their equal significanc

D

Applicability

updating rate up to 20%

updating rate up to 40%

TABLE 7.1: Comparison between EDFSR and NESR

Chapter 7 Re-organising the DDLS Peer Network 140

EDFSR and NESR also greatly differ from each other in terms of foundations,
operational means and application domains, see Table 7.1.

7.6 Understanding the Utility of Re-organisation

The utility of re-organisation using the virtual overlap was defined in Equation 7.5 as

a combination of the average maximum recall, the average number of hops to achieve
the maximum recall and the average broadcast rate which derive from the three primary
metrics established for evaluating the re-organisation performance at the very start (see
Section 6.5.3). One fact which needs to be emphasised is that, introducing the virtual
overlap is not a deviation from the original principle of the semantic search algorithm,
but a further move that reinforces the principle to achieve a better search performance
(primarily represented by the reduced average broadcast rate) in re-organisation. Equa-
tion 7.5 is not exclusively utilised by evaluating the search performance with the virtual
overlap supported re-organisation. It is essentially universal in measuring any effort
to enhance the performance of resource discovery in the DDLS, because it expresses
the primary objective of re-organisation. This section employs the utility equation to
explain to what extent re-organisation has achieved the objective it aims at.

To understand the relationship between the terms in the equation, a review of the
available information in the DDLS peer network is necessary. The essential information
sources include the published topic list and query history. The information embodied
by the published topic list reflects available resources at neighbours and the semantic
relationship between resources of a pair of peers. Therefore, it acts as an indicator
of how semantically related (the resources of) a pair of peers are. Meanwhile, query
history captures queries in the past, and thus is utilised to estimate information needs in
the immediate future.

The idea of coupling the two sources to guide re-organisation of the peer network,
originates from the analysis of resource supply and demand in the network, see Sec-
tion 7.4. A semantic search, the main activity the performance of which re-organisation
is intended to boost, can be simply viewed as formulating a query with respect to the in-
formation needs (demand) and retrieving targets that match the query from a collection
of available resources (supply). In the DDLS, information exposed by the published
topic list and query history underpins such a process. Because the information is local
to individual peers, the knowledge of resource supply and demand based on it is also
local.

Chapter 7 Re-organising the DDLS Peer Network 141

Applying the local knowledge to re-organisation, a peer acquires new neighbours
that are most capable of sharing related resources with it and potentially satisfying fu-
ture queries it would encounter. Re-organisation correlates a peer with those useful
neighbours, and its primargbjectiveof producing the higher level of the maximum
recall, the less number of hops to achieve the maximum recall and the lower level of
broadcast rate is expressed by the utility equétidbheanwhile, re-organisation is able
to yield, revealed by simulation, the less number of hops to achieve the maximum recall
(only when the updating rate in the peer network is relatively’)aWwough increasing
the overlap between peers and including potential resource providers to satisfy future
queries.

Examining the search performance associated with the relatively low updating
rates in simulation on both EDFSR and NESR (without using the virtual overlap), one
would discover that the variation of the average maximum régaitoughly propor-
tional to that of the average broadcast rate across different combinatieansaat x,.
Assume that the contributions of both variations to the utility of re-organisation neu-
tralise each other. The average reduction in hops to achieve the maximum recall can be
greater than 0. Thus, taking\p - Ar) in Equation 7.5 as 0, the utility of both EDFSR
and NESR is as follows.

utility = Ah — Ar+ Ab= Ah >0 (7.6)

However, the utility of proposed re-organisation (without using the virtual overlap) is
only achieved when the updating rate remains relatively low.

The following is the evaluation of the utility of re-organisation that uses virtual
overlag. For both EDFSR and NESR, the increase in the average maximum recall
is only achieved when the updating rate is not more than 20%, and in the rest cases,
the average maximum recall always decreases with re-organi$atee Figure 7.12
and Figure 7.16. While EDFSR hardly achieves any decrease in the average number

6The desirable utility value should be greater than 0.

"With EDFSR, the updating rate should be not more than 20%, whereas with NESR the threshold
rises to 40%.

8The variation of the average maximum recall resulting from re-organisation can be observed by
comparing the value of the average maximum recadlat o = 0 : 0 with that at another combination
of k1 andky which is used in the re-organisation.

%It is stressed out that Equation 7.5 is initially introduced to evaluate the gains brought by using
thevirtual overlapin re-organisation (compared to without using the virtual overlap in re-organisation).
Whereas, the analysis of the utility of re-organisation here is concerned about the gains brought by con-
ductingre-organisationwith virtual overlap (compared to without using re-organisation at all).

10This can be observed from the curve which is associated with the virtual overlap by comparing the
average maximum recall & : «2 = 0:0 with the average maximum recall at other combinations; of
andks.

Chapter 7 Re-organising the DDLS Peer Network 142

of hops to reach the maximum recall (see Figure 7.13), NESR can deduce the average
number of hops to achieve the maximum recall with an updating rate up to 20% (see
Figure 7.17). Meanwhile, a desired decrease in the average broadcast rate can always
be found in both EDFSR and NESR, see Figure 7.14 and Figure 7.18. The utility of re-
organisation using the virtual overlap can therefore be obtained by replacing the terms
in Equation 7.5 with corresponding data from simulation. Because of different available
computational conditions and requirements for re-organisation, the utility can also be
computed with different weights attached to each term in the equation.

7.7 Consistency Maintenance of Associated Data Struc-
ture

Before proceeding to the conclusion, this section discusses the operations that are cru-
cial to avoid the potential inconsistency of the associated data structure resulting from
re-organisation, and thus to warrant the consistency of the peer network.

The consistency of the associated data structure, such as that of the published topic
list, suffers from re-organisation unless necessary measures are undertaken to maintain
it. The published topic list reflects the relationship between resources of a peer and
its neighbours and it is the major source based on which the knowledge of the local
peer network can be obtained. Activities such as resource discovery have heavy de-
pendencies on local knowledge. Therefore, the inconsistency of such a data structure
may deteriorate the functioning of resource discovery in the peer network. To maintain
the peer network in proper functioning conditions, the published topic list needs timely
update once re-organisation occurs.

With all the operations presented in Section 6.2 that maintain data consistence in
passive re-organisation triggered by peer arrival and departure, this section only de-
scribes those associated with update related passive re-organisation.

The update events that trigger re-organisation consist of addition of new topics and
subtraction and modification of existing topics, with modification being viewed as a
combination of addition and subtraction operations.

If an update involves only the addition of new topics, the published topic list may
be inconsistent since the previous overlap of topics between the updating peer and its
neighbours may not reflect the up-to-date state of their relationship. The inconsistency

Chapter 7 Re-organising the DDLS Peer Network 143

Notations:

Same as in Figure 6.1 and Figure 6.5. In addition,

Updated topics of;: T, ={tite T,t xt CT,T, NT; D 0}
Set of identifiers of the affected

neighbours because of updateppf A;

Adding a set of identifierss]’;”" to A;: Aj.addElement(id}’,")

Removing the/th entry from the

published topic list op;: pi.remove Element At(u)

Algorithm for p; to maintain its published topic list up-to-date:

A =0
If T, c T;,then /* removal of topics */
For u =1 to |E]

If T, C Tegmmen | then
pi.remove Element At(u);
Ai.addElement(idj,").

For eachp;, € A;
pi.addN eighbour(pk, Ty).
Else /* addition and modification of topics */
For u =1 to |E;]
pi.remove Element At(u);
Ai.addElement(idy,).
For eachp, € A;
pi.addN eighbour(py, T};).

FIGURE 7.19: p; Maintains the Published Topic List Up-to-date

could potentially occur to the entire published topic list. As a consequence, the list
needs to be re-constructed.

In most cases, a subtraction operation may not yield an update affecting all entries
in the published topic list. For instance, if subtraction involves topics possessed by the
updating peer but not by its neighbour, the published topic list can remain intact. This
is because the subtraction does not invalidate the overlap information between the pair
of peers. However, if such subtraction relates to shared topics, the published topic list
may become inconsistent. Under such a circumstance, only the affected entries need to
be re-constructed.

Modification of topics exhibits a combined behaviour of both addition and sub-
traction of topics. An updating peer needs to re-create its published topic list in case of
modification.

Chapter 7 Re-organising the DDLS Peer Network 144

In addition to refreshing its published topic list, an updating peer is responsible
for informing each of its contacts of the update, so that the latter is able to modify its
cached topic information accordingly.

Figure 7.19 demonstrates how to bring the published topic list up to date by dis-
carding information that does not reflect the newly-formed relationship between re-
sources of a pair of peers. A pegerlaunches the refreshing process when its topic in-
formation is updated. For subtraction operation, if the updated topics are those shared by
neighbours appearing in an entry witlfs* for example, the entry is discarded from the
published topic list op; by p;.remove Element At(u). p; removes all affected neigh-
bours and then adds them as new neighbours in order to maintain its published topic list
up-to-date. For addition and modification operations, re-construction of the published
topic list is compulsory.

7.8 Review of Re-organisation

An intuition of improving resource discovery in the DDLS is to re-organise the peer
network wherever necessary after it is established. The reason why re-organisation does
not apply to the construction of the peer network will be given later. The criteria for re-
organisation state that peers possessing semantically related resources should cluster
together, and if peers cannot be located in the vicinity of others with related resources,
they should stay closer to peers which can potentially satisfy their future information
needs. The criteria are derived from an analysis of supply and demand in the peer
network (see Section 7.4). Knowledge of supply from neighbours (obtained from the
published topic list) and previous demand (known from query history), enables a peer
to measure to what extent a candidate neighbour would have satisfied its queries in the
past. Supported by a very important assumption that the recent past will predicate the
immediate future, a peer selects those with the high potential (indicated by usefulness)
to fulfil its future information needs as neighbours once re-organisation is triggered.

Measuring to what extent a candidate neighbour would have satisfied the previous
demand based on query history is key for a peer to identify useful neighbours. This
work has explored the use of two techniques - the exponential decay function and the
naive estimator - in determining the usefulness of neighbours. The exponential de-
cay function varies the significance of queries in query history based on both the time
(recency) and the number of occurrence (frequency), whereas the naive estimator diver-
sifies the significance of queries in query history in terms of the probability of query
topics (analogous to frequency).

Chapter 7 Re-organising the DDLS Peer Network 145

The efficiency of both proposed re-organisation techniques (EDFSR and NESR)
has been evaluated and confirmed through a series of simulations in which hops, recall
and broadcast rate were utilised as metrics. The main findings of simulation on both
techniques are similar in pattern, and are summarised together as follows.

1. The more peers that conduct an update, the more hops are needed in search of all
targets.

2. The impact from query history is predominant in reducing the number of hops to
achieve the maximum recall when the updating rate is relatively low (not more
than 20% with EDFSR and 40% with NESR). However, as the updating rate in-
creases (more than 20% with EDFSR and 40% with NESR), the overlap informa-
tion becomes more influential on the reduction in the number of hops than query
history. If excessive peers (more than 20% with EDFSR and 40% with NESR)
carry out updates over a time interval during which queries used by EDFSR or
NESR are captured, re-organisation may not necessarily lead to a better perfor-
mance (except the reduced broadcast rate).

3. One peer network with a higher updating rate (such as 60%) incurs the lower level
of the maximum recall, the greater number of hops to achieve the maximum recall
and the lower level of broadcast rate than another with a lower updating rate (such
as 5%, 10% and 30%).

Simulation has demonstrated, see finding 2, that the exponential decay function,
compared to the naive estimator, is applicable to a relatively less dynamic peer network.
Nonetheless, it should be pointed out that the simulation has adopted a Zipf’s distribu-
tion for query topics, a pattern widely observed in large scale distributed systems such
as the Web and Gnutella. This is typically a generalisation of query distribution over the
course of days or even months. However, it does not capture any time related feature
of queries, such as during which period a certain query has been the most popular one.
This explains why the Zipf’s distribution of query topics favours NESR. The real poten-
tial of EDFSR will only be fully exploited when work has been carried out to examine
the typical pattern of query topics in OHSs in terms of a combination of both recency
and frequency. Moreover, the same finding shows that, due to the unpredictable dynam-
ics of the network at the construction stage, re-organisation techniques should not be
applied. Therefore, it is reasonable for peers to randomly choose neighbours when the
peer network is initially established.

This work also advocates measuring the increase of the resource discovery perfor-
mance resulting from re-organisation through a combination of the metrics defined in

Chapter 7 Re-organising the DDLS Peer Network 146

Section 6.5.3, thus producing a utility equation (see Section 7.5.5). This ensures that the
evaluation of re-organisation is conducted in an overall manner. However, this work has
only presented simulation results captured by single metrics, respectively, and left the
evaluation to be accomplished in response to different available computational condi-
tions and requirements for re-organisation by applying tunable weights to each term in
the utility equation. The utility equation can be extended by incorporating other metrics
wherever necessary as more concerns are involved.

7.9 Summary

This chapter introduced the concept of re-organisation which aims to enhance the per-
formance of resource discovery in the DDLS by altering virtual neighbourhood of
peers. The exponential decay function and naive estimator were proposed to support
re-organisation. Both techniques demonstrate, through simulation, their different capa-
bilities to improve performance with regard to different metrics.

The use of the virtual overlap, which signifies a further move to reinforce the prin-
ciple of the semantic search algorithm and aims at a better search performance brought
by re-organisation, was introduced. To measure the gains in performance, this chapter
provided a utility equation which can be employed with different weights attached to
its terms to take into account potential computation conditions and requirements for
re-organisation.

The following final chapter concludes with a summary of this work and presents
the potential future directions for both extending the DDLS and researching into P2P
OHSs.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

The scenario of collaboration based on resource sharing among a community of people
with similar knowledge background inspired this work. Its requirement for equal ca-
pability and autonomy of individuals, and a cooperative effort of all people to enable
collaboration makes most of the existing approaches less applicable. Meanwhile, a re-
view of the literature reporting on related research clarifies that the realisation of such
a scenario is only possible when associated technologies from multiple disciplines are
involved. Essentially, this work draws on research from open hypermedia, P2P comput-
ing, the Semantic Web and information retrieval, see Table 8.1

Issues Enabling Technologies

resource maintenance open hypermedia

resource management open hypermedia

resource presentation open hypermedia

information (about resources) encodinghe Semantic Web

resource clustering the Semantic Web, information retrieval
resource discovery the Semantic Web, information retrieval, P2P
architecture, topology P2P

re-organisation P2P

TABLE 8.1: Technologies from Multiple Disciplines Supporting the DDLS

As a complementary hypermedia link service with which clients can make en-

1The support of resource clustering and discovery from the Semantic Web can be enabled by its key
technologies, for instance OWL (see Section 2.5) which is intended to be used for defining structured and
Web-based ontologies that describe and represent an area of knowledge. However, this work assumed the
existence of such a capability, and therefore did not focus on it.

147

Chapter 8 Conclusions and Future Work 148

guiries against distributed sets of linkbases, the DLS has demonstrated its support for
supplying links that refer to concrete resources, rather than directly transferring the
resources. This fundamental feature qualifies the DLS for the paradigm of resource
sharing in collaboration, but mechanisms that enable efficient resource publishing and
discovery are still missing to make cooperation in an ad hoc environment a reality. The
main objective of this work was to explore how the DLS approach could be augmented
to continuously function in an environment, as depicted by the scenario, in which dis-
tributed resources were available for sharing. To achieve this goal, a number of issues
were identified in Section 1.3.

One of these issues relates to addressing resource description and maintenance so
as to benefit resource discovery in a distributed environment characterising different
degrees of decentralisation of control. Section 4.4.1 and Section 6.3.2 respectively dis-
cussed the use of the XML model and that of the RDF model to describe resources and to
encode the information about resources at link and linkbase levels. Describing resources
at the link level supports a finer grained search, whereas using associated concepts to
describe resources at the linkbase level has been recognised more feasible because of the
need for a semantic search to locate conceptually related resburbesugh an exam-
ination of the requirements for resource discovery in the DDLS (see Section 5.4.1), the
semantic search was identified as an essential and indispensable mechanism, and a com-
parison between the XML model and the RDF model further revealed the possibility of
realising the semantic search that the RDF model would enable (see Section 6.3.2).

Unlike others in the P2P community, this work urged an approach to resource
discovery in an unstructured P2P system that should take into account the semantic re-
lationship between resources and form an overlay on top of the relationship to facilitate
discovery. The way the semantic overlay in the DDLS is constructed enables peers to
obtain information about related resources hosted by neighbours, thus facilitating query
forwarding. This work on the semantic search in an unstructured P2P system differs
from others in the sense that its applicability is not restricted to a specific domain as in
(Crespo and Garcia-Molina 2002b). The enabling techniques, such as ontologies and
inference logic, can empower the DDLS semantic search to satisfy users by extending
potential targets from resources syntactically the same to those conceptually related.

This work was further driven in pursuit of techniques that can enhance the per-
formance of resource discovery. The potential approach, re-organisation of the peer
network, is considered feasible . This is because the network topology and the loca-
tion of resources should not be precisely determined and correlated with each other in

2Although resource description and resource discovery based on the semantic search can be performed
at the link level, doing so will inevitably deteriorate the scalability of the DDLS.

Chapter 8 Conclusions and Future Work 149

the DDLS as in DHTs-based P2P solutions, which makes altering neighbourhood of
peers possible. An analysis of the network supply and demand in Section 7.4 iden-
tified the available information in the peer network that could be utilised to support
re-organisation.

The proposed re-organisation techniques, the exponential decay function and the
naive estimator, both take advantage of the overlap information between resources of
peers and the history of queries that peers have encountered, but differ in the way that
guery history is utilised in support of re-organisation. Their effectiveness in optimis-
ing resource discovery was demonstrated through simulation, and the enhanced per-
formance was proposed to be measured by a combination of recall, hops and broad-
cast rate. Considering the different computational conditions and requirements for re-
organisation in reality, this work urges a reasonable weighting scheme in evaluating the
enhanced performance resulting from re-organisation.

In conclusion, the DDLS represents the research on extending open hypermedia
systems into P2P environments. In particular, it revolves around issues that arise from
implementing a hypermedia link service with a P2P nature. By using the open hyper-
media paradigm to maintain and present resources, RDF to encode information about
resources, the clustering technique to group resources and form the information space,
a semantic search mechanism to discover resources, this work has demonstrated the in-
dividual functionality of technologies from multiple disciplines in conducting and pro-
moting open hypermedia research, and more importantly, its practice and methodology
can be of benefit to other research in both open hypermedia and P2P communities.

8.2 Future Work

8.2.1 System Enhancements

There are, so far, some issues in the DDLS which require further investigation. The
accomplishment of these tasks will not only enhance the DDLS but also fundamentally
benefit and promote the P2P open hypermedia research. The potential work is outlined
as follows.

Multiple attribute-based search The way that a linkbase typically contains links
that resolve to documents with semantically related content, enables associating linkbases
with abstract concepts and searching for linkbases of interest based on concepts. In the
DDLS, such concepts are referred td@gics Supporting search based on such a single

Chapter 8 Conclusions and Future Work 150

attribute as topic is apparently, however, not sufficient for OHSs other than the DDLS,
because some of the OHSs may need to search for other hypermedia structures than
links, such as anchors, nodes, etc. Whether anchors and nodes can also be represented
usingtopic-like attributes based on which a semantic search can be conducted, remains
unexplored. Moreover, if multiple attributes are utilised to describe various hypermedia
structures in the DDLS, the way that the semantic overlay is constructed is no longer
appropriate, because it only takes into account the overlap information focusing on top-
ics. For the same reason, the semantic search algorithm and re-organisation of the peer
network also require a revision.

Using ontologies to identify semantic relationshipAn ontology is an explicit
specification of how to represent objects, concepts and other entities in some area of
interest and the relationship among them. The importance of ontologies in identify-
ing the semantic relationship between resources in the DDLS, is clear. This work will
need to either utilise, merge or extend existing ontologies, and establish an approach
that enables the use of ontologies in a more rigorous and explicit manner. Carr et al.
(2001) proposed the use of thesaurus-supported ontologies in a Conceptual Open Hy-
permedia Service to empower the retrieval of pertinent information, and a Description
Logic model to guarantee an explicit, rigorous and declarative specification of con-
cepts. Moreover, to support the DDLS semantic search for concepts across domains,
ontology-mapping tools will also need to be developed.

Geography-based efficiencyl his work conducted efficiency measurement of se-
mantic search and re-organisation in terms of hops at the application level. However,
Ratnasamy et al. (2002) argued that the real efficiency of P2P routing algorithms should
be measured in the end-to-end latency of the path, because the application level hops
might involve a path that spanned a continent or merely a LAN, and ignoring the la-
tency of individual hops would result in a path with high latency. A basic approach
in various algorithms is to associate a cost in latency with each hop and take this cost
into account when choosing either the next hop node or neighbours. This method can
apparently be experimented on the DDLS for implementing geography-based efficiency
in both semantic search (choosing the next hop node) and re-organisation (deciding the
usefulness of neighbours).

Knowledge of resource and query distributionThe query distribution of Gnutella
and Web has been investigated and the typical query pattern has been discovered (Sri-
panidkulchai 2001, Breslau et al. 1999), which is crucial to the settings of simulation
which evaluates the search performance in these and similar systems. The same work in
OHSs remains unexplored. Without the knowledge of typical resource and query distri-

Chapter 8 Conclusions and Future Work 151

bution, simulation designers of P2P OHSs, such as that of this work, can only speculate
the potential distribution based on results observed in other large scale distributed sys-
tems.

Scalability Decentralisation enables improved scalability in P2P systems in the
sense that data storage, operations, computation and communication can be carried out
in a decentralised manner. Most structured P2P systems achieve satisfactory scalability
through the use of DHTs which resolve a keyword to a location where the contents are
located or from where queries about the contents can be further routed. However, the
same level of scalability that structured P2P systems have accomplished is a difficult
target for unstructured P2P solutions (including the DDLS) to fulfill, because the latter
does not, and cannot, model the information space for efficient lookup as structured
P2P systems do. This work has taken into account the scalability issue in the design
of the DDLS. For instance, according to the semantic search algorithm, queries are
always intended to reach peers with related resources, thus avoiding a local broadcast.
However, no evaluation of the DDLS scalability has been conducted yet, and therefore
the understanding of the DDLS scalability is not clear and requires an analysis and
simulation.

Security P2P systems, in contrast to centralised and client-server systems, incur
more security threats. For the DDLS which serves as a distributed link service, security
measures should be implemented to protect peer machines from crashing or sensitive
data being leaked, and to prevent malicious peers from providing unreliable informa-
tion. The former issue regarding the protection of peer machines can be addressed
by techniques described in (Milojicic et al. 2002) typically involving enforcing safety
properties and security properties. Kamvar et al. (2003) addressed the latter issue by
taking into account trust between peers and allowing peers to use a global trust value
to choose peers from which they download files. Hence, the system is enabled to effi-
ciently identify malicious peers and isolate them from the network. An approach that
helps identify reputable interacting parties by trust should be developed for the DDLS,
and therefore peers are able to identify trustworthy peers, obtain reliable information
and allow access only from trusted or authenticated counterparts.

8.2.2 Research Directions

The idea of applying the P2P paradigm to open hypermedia has yet to be well re-
searched and realised. This work provided the methodology of implementing such an
idea through constructing a distributed link server system, the DDLS, on top of a P2P

Chapter 8 Conclusions and Future Work 152

model which empowers resource sharing collaboration among a community of people
with similar knowledge background. Unlike any other work in the P2P community, this
research identified the features of the DDLS from the point of view of open hyperme-
dia, and pointed out that the unstructured P2P model was more suitable for the DDLS
than the centralised P2P model in an ad hoc environment. Meanwhile, unlike any other
work in the open hypermedia community, this research developed, in response to an
unstructured P2P paradigm, a series of mechanisms to facilitate resource discovery.

This research has been undertaken in the particular context of P2P link server sys-
tems, and the author believes that the following two aspects will warrant long term
investigation in pursuit of enhancing different kinds of OHSs with the full potential of
the P2P paradigm. The first involves the attitude towards selecting (reusing) or devel-
oping the proper P2P technologies for the OHS in question, while the second advocates
the use of other state-of-the-art technologies from associated disciplines.

Recently, research in the P2P community has advanced technologies to satisfy the
requirements for P2P systems of distinct architectures. Some technologies can be di-
rectly applied to P2P open hypermedia. For instance, Lukka and Fallenstein (2002)
utilised Freenet-like GUIDs for the location and retrieval of blocks of media content
for implementing the Xanadu model. Their approach was successful because DHTs
offer an efficient and scalable solution to keyword-based search queries. Whereas, de-
signers of other systems, the DDLS for example, prefer semantic search queries which
are intended to discover semantically related resources. This makes any existing P2P
approach less applicable. Therefore, this work concentrated on developing new mecha-
nisms to accommodate the requirement. Little other work in this area includes the hier-
archy of resemblance (HR) search (Larsen and Bouvin 2004). The HR search relied on
a hierarchy data structure in which peers were ranked according to the previous search
results. The well-known random walk technique was adopted to facilitate searching
the hierarchy for distributed hypermedia structures. These examples demonstrate that,
although advanced P2P technologies are available for direct use, analysing the features
of and requirements for the target OHS to discover the potential of developing more
applicable, relevant and efficient alternatives, is always of paramount importance. The
author also envisions the combination of distinct P2P technologies in an OHS wherever
necessary.

This research has demonstrated the feasibility and potential of utilising technolo-
gies from multiple disciplines in implementing a P2P OHS. However, it assumed the
existence of some non-trivial mechanisms, such as the one responsible for identifying
the semantic relationship between resources and another that conducts service discov-

Chapter 8 Conclusions and Future Work 153

ery. The former can be accomplished by using ontologies as described in Section 8.2.1,
while the latter may utilise technologies from Grid research in which service discovery

is among the most active research topics. The author believes that successfully address-
ing such issues in the context of OHSs will also enlighten and facilitate P2P research.

Appendix A

Related Work on Semantic Search

Related work on semantic search presented in this appendix shares the same understand-
ing of the DDLS semantic search (see Section 6.4.1) that semantic search is not carried
out on the basis of the terms in a query but the concepts that carry the same meaning.
They offer a domain specific approach to satisfactory semantic search on a static repos-
itory. Some rely on the information collected by a Web crawler and others utilise the
result from traditional Web search, which makes it unable to provide up-to-date infor-
mation. The target platform of the semantic search, in all these search mechanisms, is
limited to systems with either a centralised or a client-server software architecture.

A.1 Latent Semantic Indexing

Latent Semantic Indexing (LSI) (Deerwester et al. 1990) is an information retrieval
technique designed to overcome a fundamental problem of matching terms of queries
with those of documents on the basis of concepts instead of terms. LSI uses a statis-
tical technique called singular-value decomposition to explore the underlying semantic
structure in term-document association data and create a concept space to reflect the
major associative patterns observed in data.

A matrix of terms by documents is generated initially. Each row represents a term
and each column corresponds to a document. Any entry in the matrix represents the
frequency of a term in a document the corresponding row and column denote. The
closely associated terms and documents are positioned near one another. The matrix is
decomposed into the product of three other matricdgran x mmatrix (4), anm x m

154

Appendix A Related Work on Semantic Search 155

matrix (B) and airm x documenmatrix (C), wherem? is the rank of the original matrix

and them x m matrix can be thought of as the concept space. The idea is that one can
use matrixA to search for concepts. Given a concept, related concepts can be retrieved
via matrix B. Subsequently, given all the concepts retrieved, desirable documents can
be retrieved using matrik'.

LSI addresses two classical problems in the information retrieval domain: that of
synonym (different terms with the same meaning) and polysemy (one term having more
than one meaning). In addition, it has been reported to outperform more conventional
vector-based methods with regard to recall and precision. A manifest problem with LSI
is performance. The singular-value decomposition complexi®(i§?m?3) whereN is
the number of terms and documents amds the number of dimensions in the concept
space. Also, determining the value faris inherently another problem encountered by
LSI. The optimal value forn has been observed in addressing various domain specific
problems, which implies that the decision relies on the specific collection of documents
of interest.

A.2 Simple HTML Ontology Extensions

The Simple HTML Ontology Extensions (SHOE) language allows users to define con-
trolled, shareable and extensible vocabularies and associate machine understandable
meaning with them (Heflin and Hendler 2000). The vocabularies are ontologies that
consist of the definition of concepts and categories, and relationship between concepts.
Web pages can embed semantic markup in SHOE to describe their content, with the
relationship between the concepts on Web pages being indicated by SHOE ontologies.
A Web crawler is developed to search for Web pages with SHOE markup, identify cat-
egory and relationship claims on the page, and store them in a knowledge base (KB).

SHOE search provides a general-purpose query tool which requires that users spec-
ify the context of queries by choosing an ontology and associated properties that satisfy
their needs. Complex queries can be constructed automatically in response to the type
of arguments in the queries. SHOE search bears a Web search feature. For Web pages
without SHOE markup, this feature translates a SHOE search query into one that can
be accepted and processed by a number of popular search engines, which enhances the
Web search with SHOE specific functionality.

1The value ofn is relatively small with the range between 50 and 350.

Appendix A Related Work on Semantic Search 156

A.3 ASCS Semantic Search

The DARPA Agent Markup Language (DAML) enables the creation of ontologies for
any domain that support the unambiguous description of Web content (Lassila et al.
2000), and the Agent Semantic Communication Service (ASCS) allows users to make
precise queries for information encoded in DAML/OWL on static repositories (Li et al.
2002). The ASCS consists of two main components: a Semantic Search Agent (SSA)
that helps other agents to find entities on the basis of the ontologies they share, and a
Semantic Translation Service (STS) that is responsible for supporting communication
between agents using different ontologies.

A DAML crawler is used to parse DAML-encoded pages and construct indices for
the content. A SSA accepts a DAML/RDF query and converts it into a Prolog query.
DAML statements are stored as Prolog assertions in a server which, upon the receipt
of a Prolog query from the SSA, examines its repository and returns the result to the
SSA. In order to find more matches in other repositories, the SSA may also send the
guery to an available STS. The STS reformulates the Prolog query according to the
destination ontology and further converts it into DAML/RDF format to be processed by
another SSA known to perform the search on the destination ontology. When the result
is returned by the second SSA, the STS translates it back into the starting ontology. All
responses from different paths of search are merged and presented to the user.

A.4 W3C Semantic Search

The W3C semantic seartfocuses on a search mechanism based on the denotation of
the search query and utilises relevant information aggregated from a web of distributed
machine understandable data created by the Semantic Web and Web services to aug-
ment traditional search results. Semantic search is viewed by Guha et al. (2003) as
an application of the Semantic Web to search problems. It divides the entire search
process into two parts: using a common search engine to provide the traditional text
search result and obtaining relevant data extracted from the Semantic Web to augment
the traditional search result.

W3C semantic search applications are built on top of an infrastructure named TAP
which provides a set of mechanisms for websites to expose data onto the Semantic

?It is so named as to avoid being misunderstood with the general term of semantic search. In reality,
W3C semantic search is one of the applications of the semantic search referred to in the current section.

Appendix A Related Work on Semantic Search 157

Web and for applications to consume this data via a query interface caéédata

For websites without the corresponding machine understandable form of data, HTML
scrapers are written to locate and covert the relevant pages into machine readable data
and make them available via tli&etDatainterface. The TAP knowledge base offers
applications an ontology that defines a number of basic terms across a broad range of
domains. Thus data sources in the form of a number of triples compose a Semantic
Web.

The W3C semantic search employs a simple registry to keep track of which URL
has values for which properties about which classes of resources. Therefore, a query
to the registry can be redirected to the website that contains the answer. The search
terms are mapped to the nodes in the Semantic Web by identifying their denotations.
On the basis of all returned nodes corresponding to search terms, a breadth first search
is conducted in the Semantic Web graph starting from the queried terms to collect the
first NV triples, whereV is a predefined limit. The initial effort of W3C semantic search
revolves around search queries denoting people.

Appendix B

Definitions of Terms and Variables
Used in Simulation

broadcast rate

cache rate

hops

recall

topic popularity

topic probability

updating rate

usefulness

the time of broadcast carried out by all peers to propagate
gueries over a period of time.

the percentage of peers whose topic information is in the cache
compared to all peers in the system.

delay in finding all answers as measured in the number of hops,
also known as path length.

the percentage of matches that can be found.

how popular a topic/topics is/are in terms of the number of peers
holding it/them.

the percentage of peers that possess the topic(s) compared to all
peers in the system.

the percentage of all peers launching an update to their resources
(which also results in an update to the topic information about the
resources) over a period of time.

the relative extent to which a peer should become a neighbour
of another peer during re-organisation.

158

Bibliography

Anderson, Kenneth M. (1997). Integrating open hypermedia systems with the World
Wide Web. InProceedings of the 8th ACM conference on Hypertegtthamp-
ton, UK, pp. 157-166. ACM Press.

Anderson, Kenneth M., Richard N. Taylor, and E. James Whitehead, Jr. (1994).
Chimera: hypertext for heterogeneous software environmentBrdeeedings
of the 1994 ACM European conference on Hypermedia technoldjnburgh,
Scotland, pp. 94-107. ACM Press.

Andrews, Keith, Frank Kappe, and Hermann Maurer (1995). Serving information
to the Web with Hyper-G. IiProceedings of the 3rd International World-Wide
Web Conference on Technology, Tools and Applicati@@mstadt, Germany,
pp. 919-926. Elsevier North-Holland, Inc.

Apple Computer Inc. (1989HyperCard stack design guidelindsoston, MA, USA:
Addison-Wesley Longman Publishing Co.

Bass, Len, Paul Clements, and Rick Kazman (2088jtware Architecture in Prac-
tice (2nd ed.). Addison Wesley Professional.

Belkin, Nicholas J. and W. Bruce Croft (1992). Information filtering and information
retrieval: Two sides of the same coinCommunications of the ACM BR),
29-38.

Berners-Lee, Tim (1996). The World Wide Web - Past, Present and Futumnal
of Digital information X1).

Berners-Lee, Tim, Robert Cailliau, Jean-Francois Groff, and Bernd Pollermann
(1992). World-Wide Web: The Information Universglectronic Networking:
Research, Applications and Policy?2), 74-82.

Berners-Lee, Tim, James Hendler, and Ora Lassila (2001). The SemantiSéeb.
entific American 28%), 34—43.

Breslau, Lee, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker (1999). Web
Caching and Zipf-like Distributions: Evidence and ImplicationsPhoceedings

159

BIBLIOGRAPHY 160

of IEEE INFOCOM’99 New York, NY, USA, pp. 126-134.
Bush, Vannevar (1945). As We May Thinkhe Atlantic Monthly

Carmody, Steven, Walter Gross, Theodor H. Nelson, David Rice, and Andries van
Dam (1969). A Hypertext Editing System for the /360. In M. Faiman and J. Niev-
ergelt (Eds.)Pertinent Concepts in Computer Graphiddrbana, IL, USA, pp.
291-330. University of lllinois Press.

Carr, Leslie, Sean Bechhofer, Carole Goble, and Wendy Hall (2001). Conceptual
Linking: Ontology-based Open Hypermedia.Rroceedings of the 10th interna-
tional conference on World Wide Wdtong Kong, pp. 334-342. ACM Press.

Carr, Leslie, David De Roure, Wendy Hall, and Gary Hill (1995). The Distributed
Link Service: A Tool for Publishers, Authors and ReadersPinceedings of
the 4th International World Wide Web Conference: The Web Revo]@Bmston,
Massachusetts, USA, pp. 647—-656.

Carr, Leslie, David De Roure, Wendy Hall, and Gary Hill (1998a). Implementing
an Open Link Service for the World Wide WeWorld Wide Web Journal(2),
61-71.

Carr, Leslie, Wendy Hall, and Steve Hitchcock (1998b). Link Services or Agent Ser-
vices? InProceedings of the 9th ACM conference on Hypertext and hypermedia
Pittsburgh, Pennsylvania, USA, pp. 113-122. ACM Press.

Clark, David (2001). Face-to-Face with Peer-to-Peer Networkugnputer 341),
18-21.

Clarke, lan, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong (2001).
Freenet: A Distributed Anonymous Information Storage and Retrieval System.
In Proceedings of the ICSI Workshop on Design Issues in Anonymity and Unob-
servability, Berkeley, CA, USA, pp. 311-320.

Crespo, Arturo and Hector Garcia-Molina (2002a). Routing Indices for Peer-to-Peer
Systems. InProceedings of the 22nd International Conference on Distributed
Computing System¥ienna, Austria, pp. 23—-34. IEEE Computer Society.

Crespo, Arturo and Hector Garcia-Molina (2002b). Semantic Overlay Networks for
P2P Systems. Technical report, Computer Science Department, Stanford Univer-
sity.

D’Arlach, Carmen Ximena and John J. Leggett (1994). A Spatial Hypertext Editor.
Technical Report TAMU-HRL-94-005, Hypermedia Research Laboratory, De-
partment of Computer Science, Texas A&M University, College Station, Texas.

BIBLIOGRAPHY 161

Davis, Hugh C. (1998). Referential Integrity of Links in Open Hypermedia Systems.
In Proceedings of the 9th ACM conference on Hypertext and hypereittis:
burgh, Pennsylvania, USA, pp. 207-216. ACM Press.

De Roure, David, Leslie Carr, Wendy Hall, and Gary Hill (1996). A Distributed
Hypermedia Link Service. IRroceedings of the 3rd International Workshop on
Services in Distributed and Networked Environments (SDNE[86)156—161.

De Roure, David C., Nigel G. Walker, and Leslie A. Carr (2000). Investigating Link
Service Infrastructures. IAroceedings of the 11th ACM on Hypertext and hyper-
medig San Antonio, Texas, USA, pp. 67—76. ACM Press.

Deerwester, Scott, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and
Richard Harshman (1990). Indexing by Latent Semantic Analysigtnal of the
American Society of Information Sciencg@)] 391-407.

Englebart, Doug (1986). The augmented knowledge workshdprdceedings of the
ACM Conference on the history of personal workstatjd?elo Alto, CA, USA,
pp. 73—-83. ACM Press.

Fountain, Andrew M., Wendy Hall, lan Heath, and Hugh C. Davis (1990). MICRO-
COSM: An Open Model for Hypermedia with Dynamic Linking. In A. Rizk,
N. Streitz, and J. Andre (EdsBroceedings of the European Conference on Hy-
pertext (ECHT’'90),Paris, France, pp. 298—-311. Cambridge University Press.

Ganesan, Prasanna, Qixiang Sun, and Hector Garcia-Molina (2003). YAPPERS: A
Peer-to-Peer Lookup Service Over Arbitrary TopologyPhoceedings of IEEE
INFOCOM, San Francisco, California, USA, pp. 1250—- 1260.

Gnutella (2001). The gnutella home page. http://www.gnutella.com/.

Goose, Stuart (1997A Framework for Distributed Open Hypermedih. D. thesis,
University of Southampton.

Grgnbeek, Kaj, Niels Olof Bouvin, and Lennert Sloth (1997). Designing Dexter-
based hypermedia services for the World Wide WelPioceedings of the 8th
ACM conference on Hypertexouthampton, United Kingdom, pp. 146-156.
ACM Press.

Grgnbeek, Kaj, Jens A. Hem, Ole L. Madsen, and Lennert Sloth (1993). Designing
Dexter-based cooperative hypermedia system&raceedings of the 5th ACM
conference on Hypertex$eattle, Washington, USA, pp. 25—-38. ACM Press.

Grgnbaek, Kaj, Lennert Sloth, and Peter @rbaek (1999). Webvise: Browser and
Proxy Support for Open Hypermedia Structuring Mechanisms on the WWW.

BIBLIOGRAPHY 162

In Proceedings of the 8th International Conference on World Wide Wgbnto,
Canada, pp. 1331-1345. Elsevier North-Holland, Inc.

Grgnbeek, Kaj and Randall H. Trigg (1994). Design Issues for a Dexter-Based Hy-
permedia SystenCommunications of the ACM &), 40-49.

Guha, R., Rob McCool, and Eric Miller (2003). Semantic Searclroteedings of
the 12th international conference on World Wide WBhdapest, Hungary, pp.
700-709. ACM Press.

Haan, Bernard J., Paul Kahn, Victor A. Riley, James H. Coombs, and Nor-
man K. Meyrowitz (1992). IRIS hypermedia servic€ommunications of the
ACM 351), 36-51.

Halasz, Frank and Mayer Schwartz (1994). The Dexter hypertext reference model.
Communications of the ACM &), 30—39.

Halasz, Frank G. (1988). Reflections on Notecards: Seven Issues for the Next Gen-
eration of Hypermedia SystentSommunications of the ACM 81), 836—-852.

Halasz, Frank G., Thomas P. Moran, and Randall H. Trigg (1986). Notecards in
a nutshell. InProceedings of the SIGCHI/GI conference on Human factors in
computing systems and graphics interfaberonto, Ontario, Canada, pp. 45-52.
ACM Press.

Hall, Wendy, Hugh Davis, and Gerard Hutchings (199ETHINKING HYPER-
MEDIA: The Microcosm ApproactNorwell, MA, USA: Kulwer Academic Pub-
lishers.

Heflin, Jeff and James Hendler (2000). Searching the Web with SHOBAK
Workshop on Atrtificial Intelligence for Web Seardhenlo Park, CA, USA, pp.
35-40. AAAI Press.

Jennings, Nicholas R., Katia Sycara, and Michael Wooldridge (1998). A Roadmap
of Agent Research and Developmeldurnal of Autonomous Agents and Multi-
Agent Systemgq1), 7-38.

Kahan, Jo8, Marja-Ritta Koivunen, Eric Prud’Hommeaux, and Ralph R. Swick
(2001). Annotea: An Open RDF Infrastructure for Shared Web Annotations.
In Proceedings of the 10th international conference on World Wide, Wehg
Kong, pp. 623-632. ACM Press.

Kamvar, Sepandar D., Mario T. Schlosser, and Hector Garcia-Molina (2003). The
Eigentrust Algorithm for Reputation Management in P2P NetworkBrérceed-
ings of the 12th International World Wide Web Confereridedapest, Hungary,
pp. 640-651. ACM Press.

BIBLIOGRAPHY 163

Larsen, Rea Dalsgaard and Niels Olof Bouvin (2004). HyperPeer: Searching for
Resemblance in a P2P Network.Pnoceedings of the 15th ACM conference on
Hypertext and hypermedi&anta Cruz, California, USA, pp. 268-269.

Lassila, Ora and Ralph R. Swick (1999). Resource Description Framework (RDF)
Model and Syntax Specification. W3C Recommendation, World Wide Web Con-
sortium.

Lassila, Ora, Frank van Harmelen, lan Horrocks, James Hendler, and Deborah L.
McGuinness (2000). The semantic Web and its langudg&E Intelligent Sys-
tems 1%6), 67-73.

Ledlie, Jonathan, Jacob M. Taylor, Laura Serban, and Margo Seltzer (2002). Self-
Organization in Peer-to-Peer SystemsPhoceedings of the 10th ACM SIGOPS
European Workshaop

Li, John, Adam Pease, and Christopher Barbee (2002). Experimenting with ASCS
Semantic Search. Project report, Teknowlege Corporation, Palo Alto, CA, USA.

Lowe, David and Wendy Hall (1999Hypermedia & the WehJohn Wiley & Sons,
Inc.

Lukka, Tuomas J. and Benja Fallenstein (2002). Freenet-like GUIDs for Imple-
menting Xanalogical Hypertext. IRroceedings of the 13th ACM conference on
Hypertext and hypermedi&ollege Park, Maryland, USA, pp. 194-195. ACM
Press.

Lv, Qin, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker (2002). Search and Repli-
cation in Unstructured Peer-to-Peer System&rbceedings of the 16th interna-
tional conference on Supercomputingew York, New York, USA, pp. 84-95.
ACM Press.

Maurer, H. (1996)Hyper-G is now HyperWave: The Next Generation Web Solution
Addison-Wesley Publishing Company.

Meyrowitz, Norman (1986). Intermedia: The Architecture and Construction of an
Object-Oriented Hypemedia System and Applications FrameworRrdoeed-
ings of Conference on Object Oriented Programming Systems Languages and
Applications Portland, Oregon, USA, pp. 186-201. ACM Press.

Milojicic, Dejan S., Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne,
Bruno Richard, Sami Rollins, and Zhichen Xu (2002). Peer-to-Peer Computing.
Technical Report HPL-2002-57, HP Laboratories, Palo Alto, CA, USA.

Moreau, Luc, Nick Gibbins, David De Roure, Samhaa El-Beltagy, Wendy Hall,
Gareth Hughes, Dan Joyce, Sanghee Kim, Danius Michaelides, Dave Millard,

BIBLIOGRAPHY 164

Sigi Reich, Robert Tansley, and Mark Weal (2000). SoFAR with DIM Agents: An
Agent Framework for Distributed Information Management. In Jeffrey Bradshaw
and Geoff Arnold (Eds.)Proceedings of the 5th International Conference and
Exhibition on The Practical Application of Intelligent Agents and Multi-Agents
Manchester, UK, pp. 369—388. The Practical Application Company Ltd.

Mullin, James (1990). Optimal Semijoins for Distributed Database SystéiE
Transactions on Software Engineering(3f 558-560.

Napster (2001). The napster home page. http://www.napster.com.

Nelson, Theodore H. (1987Computer Lib/Dream Machines, rev. ededmond,
WA, USA: Microsoft Press.

Nelson, Theodor Holm (1995). The Heart of Connection: Hypermedia Unified by
TransclusionCommunications of the ACM @, 31-33.

Nielsen, Jakob (1990Hypertext & HypermediaSan Diego, CA, USA: Academic
Press Professional, Inc.

NUrnberg, Peter J., John J. Leggett, and Erich R. Schneider (1997). As We
Should Have Thought. IRroceedings of the 8th ACM conference on Hypertext
Southampton, United Kingdom, pp. 96-101. ACM Press.

NuUrnberg, Peter J., John J. Leggett, Erich R. Schneider, and John L. Schnase (1996).
Hypermedia Operating Systems: A New Paradigm for Computing@rdceed-
ings of the Hypertext '96 ConferendBethesda, Maryland, USA, pp. 194-202.
ACM Press.

Dsterbye, Kasper and Uffe Kock Wiil (1996). The Flag Taxonomy of Open Hy-
permedia Systems. IRroceeding of the 7th ACM Conference on Hypertext
Bethesda, Maryland, USA, pp. 129-139. ACM Press.

Pearl, Amy (1989). Sun’s Link Service: A Protocol for Open Linking Proceed-
ings of the 2nd annual ACM conference on HypertBktsburgh, Pennsylvania,
USA, pp. 137-146. ACM Press.

Ratnasamy, Sylvia, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker
(2001). A scalable content-addressable networRrbteedings of the 2001 ACM
SIGCOMM ConferengeSan Diego, California, USA, pp. 161-172. ACM Press.

Ratnasamy, Sylvia, Scott Shenker, and lon. Stoica (2002). Routing Algorithms
for DHTs: Some Open Questions. Reer-to-Peer Systems: 1st International-
Workshop, IPTPS 2002/clume 2429/2002, Cambridge, MA, USA, pp. 45-52.
Springer-Verlag Heidelberg.

BIBLIOGRAPHY 165

Reich, Sigi, Uffe K. Wiil, Peter J. Nrnberg, Hugh C. Davis, Kaj Grgnbaek, Ken-
neth M. Anderson, David E. Millard, andbdy M. Haake (1999). Addressing
Interoperability in Open Hypermedia: The Design of the Open Hypermedia Pro-
tocol. The New Review of Hypermedia and Multimedia (NRHM)(&—-248.

Ritter, Jordan (2001). Why Gnutella Cant Scale. No, Really.
http://lwww.darkridge.com/jpr5/doc/gnutella.html.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density func-
tion. Annals Mathematical Statistics 2832—-837.

Rowstron, Antony and Peter Druschel (2001). Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systenf¥rdeeedings of
the 18th IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware 2001)Heidelberg, Germany.

Silberschatz, Abraham and Peter Baer Galvin (199ferating Systems Concepts
(4 ed.). Reading, MA: Addison-Wesley.

Silverman, B. W. (1986). Density estimation for statistics and data analjsiso-
graphs on Statistics and Applied Probability

Smith, Michael K., Chris Welty, and Deborah L. McGuinness (2004). OWL Web
Ontology Language Guide. W3C Recommendation, World Wide Web Consor-
tium.

Sripanidkulchai, Kunwadee (2001). The popularity of Gnutella queries and its impli-
cations on scalability. Featured on O’Reilly’s www.openp2p.com website.

Stoica, lon, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-
nan (2001). Chord: A Scalable Peer-to-peer Lookup Service for Internet Appli-
cations. InProceedings of the 2001 ACM SIGCOMM Conferersan Diego,
California, USA, pp. 149-160. ACM Press.

The Open Group (1997). DCE 1.1: Remote Procedure Call. Technical Standard
C706, The Open Group.

Theodoridis, Sergios and Konstantinos Koutroumbas (19%8)ern Recognitiorfl
ed.). Academic Press.

Tzagarakis, Manolis, Dimitris Avramidis, Maria Kyriakopouliu, monica schraefel,
Michalis Vaitis, and Dimitris Christodoulakis (2002). Structuring primitives in
the callimachus component-based open hypermedia sydtemmal of Network
and Computer Applications 26), 139-162.

Tzagarakis, Manolis, Michalis Vaitis, Athanasios Papadopoulos, and Dimitris
Christodoulakis (1999). The Callimachus Approach to Distributed Hyperme-

BIBLIOGRAPHY 166

dia. In Proceedings of the 10th ACM Conference on Hypertext and hypermedia
Darmstadt, Germany, pp. 47-48. ACM Press, New York, NY, USA.

van Ossenbruggen, Jacco, Lynda Hardman, and Lloyd Rutledge (2002). Hypermedia
and the Semantic Web: A Research Agerddairnal of Digital information 81).

Wiil, Uffe Kock (1997). Open Hypermedia: Systems, Interoperability and Standards.
Journal of Digital Information 12).

Wiil, Uffe Kock and John J. Leggett (1996). The HyperDisco Approach to Open
Hypermedia Systems. IRroceedings of the 7th ACM conference on Hypeytext
Bethesda, Maryland, USA, pp. 140-148. ACM Press.

Wiil, Uffe Kock and John J. Leggett (1997). Workspaces: The HyperDisco approach
to Internet distribution. IfProceedings of the 8th ACM Conference on Hypeytext
Southampton, UK, pp. 13-23. ACM Press.

Wiil, Uffe Kock and Peter J. Nrnberg (1999). Evolving hypermedia middleware
services: lessons and observationsPtaceedings of the 1999 ACM Symposium
on Applied ComputingSan Antonio, Texas, USA, pp. 427-436. ACM Press.

Wiil, Uffe K., Samir Tata, and David L. Hicks (2003). Cooperation Services in the
Construct Structural Computing Environmeddurnal of Network and Computer
Applications 261), 115-137.

Yankelovich, Nicole, Bernard J. Haan, Norman K. Meyrowitz, and Steven M.
Drucker (1988). Intermedia: The Concept and the Construction of a Seamless
Information EnvironmenttEEE Computer 2(1), 81-96.

Zhou, Jing, Vijay Dialani, David De Roure, and Wendy Hall (2003). A Distance
Based Semantic Search Algorithm for Peer-to-Peer Open Hypermedia Systems.
In Pingzhi Fan and Hong Shen (Ed€)pceedings of the 4th International Con-
ference on Parallel and Distributed Computing, Applications and Technologies
Chengdu, China, pp. 7-11. IEEE Press.

Zhou, Jing, Wendy Hall, and David De Roure (2004). When Open Hypermedia
Meets Peer-to-Peer Computing. Pmoceedings of the 15th ACM conference on
Hypertext and hypermediéanta Cruz, California, USA, pp. 266—-267. ACM
Press.

Zipf, George Kingsley (1949Human Behavior and the Principle of Least Effort
Cambridge, MA: Addison-Wesley.

