
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING AND APPLIED SCIENCE

School of Electronics and Computer Science

DDLS: Extending Open Hypermedia Systems into Peer-to-Peer

Environments

by

Jing Zhou

Thesis for the degree of Doctor of Philosophy

September 2004

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:jz00r@ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

DDLS: EXTENDING OPEN HYPERMEDIA SYSTEMS INTO PEER-TO-PEER

ENVIRONMENTS

by Jing Zhou

Peer-to-peer (P2P) computing is primarily characterised by decentralisation, scalability,

anonymity, self-organisation and ad hoc connectivity. It attracted considerable attention

in open hypermedia research due to its potential for supporting collaboration among

a community of people sharing similar knowledge background. The aim of this re-

search is to investigate the feasibility and potential benefits of incorporating the P2P

paradigm in open hypermedia systems to support resource sharing-based collaboration.

This is accomplished by utilising a distributed dynamic link service (DDLS) as a test

bed, addressing issues that arise from implementing the paradigm, and demonstrating

the efficiency of proposed techniques through simulation.

This research begins with the development of a prototype DDLS using the open

hypermedia paradigm for storing and presenting resources and a centralised P2P model

which adopts a central service directory for publishing and discovering resources in

a well-arranged environment. This is enhanced by an operational analysis and feature

comparison between prototypes based on the traditional client-server and the centralised

P2P models. Various P2P models are analysed to identify the key characteristics of

and requirements for the DDLS using an unstructured P2P model which empowers

collaboration in an ad hoc environment.

The second phase of this research concentrates on overcoming the challenges of

resource description, publishing and discovery posed by the unstructured P2P DDLS:

using RDF to encode information about resources, developing a clustering technique to

group resources and form the information space; and creating a semantic search mecha-

nism to discover resources; respectively. Finally, this research proposes re-organisation

techniques based on the exponential decay function and the naive estimator to enhance

the performance of resource discovery in resource sharing-based collaboration.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:jz00r@ecs.soton.ac.uk

Contents

1 Introduction 1
1.1 The Origins of Open Hypermedia and the Web 1
1.2 Motivation: When Open Hypermedia Meets P2P Computing 3
1.3 Objectives and Scope . 6
1.4 Contribution . 8
1.5 Thesis Structure . 9
1.6 Declaration . 10

2 Open Hypermedia Systems 11
2.1 Introduction . 11
2.2 Concept and Features . 11
2.3 The Flag Taxonomy . 14
2.4 Link Server Systems . 15

2.4.1 Intermedia . 16
2.4.2 Sun’s Link Service . 17
2.4.3 Microcosm . 19
2.4.4 Chimera . 22
2.4.5 Hyper-G . 23

2.5 Open Hypermedia Systems and the Semantic Web 25
2.6 Summary . 27

3 Distributed Hypermedia Systems 28
3.1 Introduction . 28
3.2 Models of Distributed Computing . 28

3.2.1 Client-Server Architecture . 29
3.2.2 Three-tier/Multi-tier Architecture 29
3.2.3 Peer-to-Peer Architecture . 30
3.2.4 Component-based Architecture 31
3.2.5 Service-based Architecture . 31

3.3 Development Traces . 33
3.3.1 The World Wide Web (client-server) 33
3.3.2 DeVise Hypermedia/Webvise (client-server/three-tier) 35
3.3.3 Microcosm TNG (peer-to-peer) 38
3.3.4 HOSS (component-based) . 40
3.3.5 HyperDisco (component-based) 42

ii

CONTENTS iii

3.3.6 Construct (component-based) 44
3.3.7 Callimachus (component-based) 46

3.4 Distributed Link Service (DLS) . 48
3.5 Summary . 50

4 Requirements Analysis and Design of the DDLS 51
4.1 Introduction . 51
4.2 Overview . 51
4.3 Requirements Analysis . 53
4.4 Design . 54

4.4.1 Resource Description, Organisation and Operations 54
4.4.2 User Interface and System Functionality 56
4.4.3 Architecture . 59
4.4.4 Prototypes . 59

4.5 Evaluation . 64
4.5.1 Operational Analysis . 65
4.5.2 Feature Comparison between the DDLSs with Different Archi-

tectures . 67
4.6 Summary . 69

5 Rethinking the P2P Paradigm 71
5.1 Introduction . 71
5.2 P2P Computing . 71

5.2.1 Categories of P2P Systems . 72
5.2.2 Features of P2P Systems . 73

5.3 A Taxonomy of P2P Systems . 75
5.3.1 Centralised P2P . 76
5.3.2 Unstructured P2P . 77
5.3.3 Structured P2P . 80

5.4 A Web-based P2P Open Hypermedia System - the Unstructured P2P
DDLS . 84
5.4.1 Characteristics and Requirements 84
5.4.2 Limitations of Existing Approaches 86

5.5 Summary . 89

6 Evolution of the DDLS into an Unstructured P2P System 90
6.1 Introduction . 90
6.2 DDLS Peer Network . 90

6.2.1 Peer Relationship . 91
6.2.2 Supporting the ‘Published Topic List’ Data Structure 91
6.2.3 Construction of Peer Network 92
6.2.4 Peer Departure . 93

6.3 Resource Description . 96
6.3.1 Resource Description Framework (RDF) 97
6.3.2 DDLS Resource Description 98

CONTENTS iv

6.4 Resource Discovery . 99
6.4.1 DDLS Semantic Search . 100
6.4.2 Major Assumptions of the Semantic Search Algorithm 100
6.4.3 Query Mechanism: Topic Query and Associated Operations . . 101
6.4.4 Distance-based Semantic Search Algorithm 102

6.5 Simulation . 102
6.5.1 Overview of the Simulator . 103
6.5.2 Topic Distribution . 104
6.5.3 Metrics and Issues . 105
6.5.4 Single Topic Search . 106
6.5.5 Multiple Topic Search . 110

6.6 Understanding the Semantic Search through Simulation 115
6.7 Summary . 116

7 Re-organising the DDLS Peer Network 117
7.1 Introduction . 117
7.2 Concept and Forms . 118
7.3 Supporting the ‘Query History’ Data Structure 119
7.4 Criteria and Metric . 120
7.5 Enabling Techniques . 122

7.5.1 Exponential Decay Function-based Usefulness Decision 123
7.5.2 Simulation on Exponential Decay Function Supported

Re-organisation (EDFSR) . 124
7.5.3 Naive Estimator-based Usefulness Decision 128
7.5.4 Simulation on Naive Estimator Supported Re-organisation

(NESR) . 130
7.5.5 Re-organisation with Virtual Overlap 132
7.5.6 Comparison between EDFSR and NESR 137

7.6 Understanding the Utility of Re-organisation 140
7.7 Consistency Maintenance of Associated Data Structure 142
7.8 Review of Re-organisation . 144
7.9 Summary . 146

8 Conclusions and Future Work 147
8.1 Conclusions . 147
8.2 Future Work . 149

8.2.1 System Enhancements . 149
8.2.2 Research Directions . 151

A Related Work on Semantic Search 154
A.1 Latent Semantic Indexing . 154
A.2 Simple HTML Ontology Extensions 155
A.3 ASCS Semantic Search . 156
A.4 W3C Semantic Search . 156

CONTENTS v

B Definitions of Terms and Variables Used in Simulation 158

Bibliography 159

List of Figures

2.1 The Flag of Hypermedia Systems . 14
2.2 Intermedia Architecture . 16
2.3 Sun’s Link Service Architecture . 18
2.4 Microcosm Architecture . 20
2.5 Chimera 2.0 Architecture . 22
2.6 Hyper-G Architecture . 24

3.1 Service-based Architecture . 32
3.2 Web Architecture . 34
3.3 DHM Architecture . 36
3.4 Microcosm TNG Architecture . 38
3.5 HOSS Architecture . 41
3.6 HyperDisco Architecture . 43
3.7 Construct Architecture . 45
3.8 Callimachus Architecture . 46

4.1 An Example of Using the XML model and Syntax to Represent the
DDLS Linkbase . 55

4.2 Screenshot of the DDLS User Interface - the ‘Link Service’ Tab 57
4.3 Screenshot of the DDLS User Interface - the ‘Linkbase Config’ Tab . . 58
4.4 Centralised P2P Model for the DDLS 60
4.5 Client-Server Model for the DDLS . 62
4.6 Component Interaction in the Client-Server DDLS 63
4.7 Component Interaction in the Centralised P2P DDLS 64
4.8 Composition of Task Time for a Link Retrieval Request 65

5.1 Topics Following Zipf’s Distribution 88
5.2 An Example of Using Chord to Model the DDLS Search Space 88

6.1 Construction of the Semantic Overlay 93
6.2 A Peerpnew Joins the Semantic Overlay 94
6.3 Contact with Peers Lost due to a Leaving Peer 94
6.4 Leaving Peerpd Notifies Contacts of its Neighbours 95
6.5 Algorithm for Leaving Peerpi Notifies Contacts of its Neighbours . . . 96
6.6 Peer Departure . 96
6.7 An Example of Using the RDF Model to Represent the DDLS Linkbase 99
6.8 The Typical Specification of DDLS Topic Queries 101

vi

LIST OF FIGURES vii

6.9 Algorithm for Query Processing atpi 103
6.10 Average Recall Level at Progressive Hop Counts in Single Topic Search

(Zipf’s Distribution) . 108
6.11 Average Recall Level at Progressive Hop Counts in Single Topic Search

(Uniform Distribution) . 108
6.12 Average Recall Level at Progressive Hop Counts in Multiple Topic Search

(Zipf’s Distribution) . 112
6.13 Average Recall Level at Progressive Hop Counts in Multiple Topic Search

(Uniform Distribution) . 113

7.1 Query History ofpi at an Instant of Time 120
7.2 Usefulness of Candidates for Neighbours ofpi 122
7.3 Average Reduction in Hops to Achieve the Maximum Recall with EDFSR,

u.r. = 5% . 125
7.4 Average Number of Hops to Achieve the Maximum Recall with EDFSR,

f(m) = e−
m
500 . 126

7.5 Average Reduction in Hops to Achieve the Maximum Recall with EDFSR,
f(m) = e−

m
500 . 126

7.6 Average Maximum Recall and Average Broadcast Rate with EDFSR,
f(m) = e−

m
500 . 127

7.7 Computation of̂fi,h(t) based on Query History ofpi 129
7.8 Average Number of Hops to Achieve the Maximum Recall with NESR . 130
7.9 Average Reduction in Hops to Achieve the Maximum Recall with NESR 131
7.10 Average Maximum Recall and Average Broadcast Rate with NESR . . 131
7.11 Semantic Search without Virtual Overlap 132
7.12 Average Maximum Recall with EDFSR,h = 50, f(m) = e−

m
500 133

7.13 Average Number of Hops to Achieve the Maximum Recall with EDFSR,
h = 50, f(m) = e−

m
500 . 134

7.14 Average Broadcast Rate with EDFSR,h = 50, f(m) = e−
m
500 135

7.15 Re-organisation Leads to the Same Clustering but Distinct Topologies . 136
7.16 Average Maximum Recall with NESR,h = 50 137
7.17 Average Number of Hops to Achieve the Maximum Recall with NESR,

h = 50 . 138
7.18 Average Broadcast Rate with NESR,h = 50 139
7.19 pi Maintains the Published Topic List Up-to-date 143

List of Tables

4.1 Feature Comparison between the Client-Server and the Centralised P2P
DDLSs . 67

6.1 A Published Topic List in the Cache of Peerpi 91
6.2 Relationship between the Cache Rate and the Average Number of Hops

(Zipf’s Distribution) . 107
6.3 Relationship between the Cache Rate and the Average Number of Hops

(Uniform Distribution) . 107
6.4 Average Number of Hops to Achieve the Maximum Recall (Zipf’s Dis-

tribution) . 110
6.5 Average Number of Hops to Achieve the Maximum Recall (Uniform

Distribution) . 110
6.6 Multiple Topic Search based on Two Topics with Distinct Popularities

in Zipf’s Distribution . 111
6.7 Multiple Topic Search based on Two Topics with Distinct Popularities

in Zipf’s Distribution (Continued) . 112
6.8 Multiple Topic Search based on Two Topics with Distinct Probabilities

from Uniform Distributions . 114

7.1 Comparison between EDFSR and NESR 139

8.1 Technologies from Multiple Disciplines Supporting the DDLS 147

viii

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Wendy Hall, for her

time in revising reports, papers and thesis, for her support in attending workshops and

conferences, and for her efforts in helping me overcome difficulties throughout my PhD.

My PhD experience would be significantly less memorable without her.

I would like to thank Professor David De Roure for his technical support in my

research, his feedback on papers and thesis, and his confidence in my capability. I am

also grateful to Vijay Dialani for the numerous thought provoking conversations that

kept me on the right research path.

My sincere appreciation also goes to Muan Hong Ng, whose friendly smile helped

me settle down in the Intelligence, Agents, Multimedia Group when I first arrived;

Zhuoan Jiao and her family who have always been concerned about me and made my

life more enjoyable; Christopher Bailey for proof-reading my thesis and supplying me

with very helpful comments; Norliza Mohamad Zaini for her time and patience to fami-

larise me with SoFAR; Danius Michaelides for his thoughts and experience on mobile

link services; Mark Thompson for his academic papers which were impossible to obtain

online!; and Georgia Roidouli and Nor Aniza Abdullah for their good company.

ix

This thesis is dedicated to my parents, sister and husband
Lean Zhou, Jiana Huang, Jian Zhou and Wei Deng

x

Abbreviations Used

API Application Program Interface

ASCS Agent Semantic Communication Service

ASM Association Set Manager

CAN Content Addressable Network

CB-OHS Component-Based Open Hypermedia System

CGI Common Gateway Interface

CNS Context Name Service

COHSE Conceptual Open Hypermedia Services Environment

COM Component Object Model

CPU Central Processing Unit

CRI Compound Routing Index

CSCW Computer-Supported Cooperative Work

DAML DARPA Agent Markup Language

DBMS Database Management System

DCS Document Control System

DDLS Distributed Dynamic Link Service

DHT Distributed Hash Table

DLS Distributed Link Service

DMS Document Management System

EDFSR Exponential Decay Function Supported Re-organisation

FIFO First In First Out

FMS Filter Management System

FTP File Transfer Protocol

HBMS HyperBase Management System

HCM Heterogenous Communication Model

HCMT HOSS Communications Model Toolkit

HPMT HOSS Process Model Toolkit

HR Hierarchy of Resemblance

HTML HyperText Markup Language

xi

ABBREVIATIONS USED xii

HTTP HyperText Transfer Protocol

IR Information Retrieval

IRIS Institute for Research in Information and Scholarship

JVM Java Virtual Machine

LAN Local Area Network

LFU Least Frequently Used

LRU Least Recently Used

LSI Latent Semantic Indexing

LSS Link Server System

Microcosm TNG Microcosm: The Next Generation

NESR Naive Estimator Supported Re-organisation

NLS oNLine System

NNTP Network News Transfer Protocol

OHS Open Hypermedia System

OHSWG Open Hypermedia Systems Working Group

OWL Web Ontology Language

P2P Peer-to-Peer

RDF Resource Description Framework

RI Routing Indices

RMI Remote Method Invocation

RPC Remote Procedure Call

SCM Segregated Communication Model

SDE Software Development Environment

SHOE Simple HTML Ontology Extensions

SM Storage Manager

SMTP Simple Mail Transfer Protocol

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SoFAR Southampton Framework for Agent Research

SSA Semantic Search Agent

STA Semantic Translation Service

TCP/IP Transmission Control Protocol/Internet Protocol

TTL Time-To-Live

UDDI Universal Description, Discovery and Integration

URI Uniform Resource Identifier

URL Uniform Resource Locator

UUID Universally Unique Identifier

VOM Versioned Object Manager

ABBREVIATIONS USED xiii

WSDL Web Service Description Language

WWW World Wide Web

W3C World Wide Web Consortium

XML eXtensible Markup Language

Chapter 1

Introduction

1.1 The Origins of Open Hypermedia and the Web

Information is the extraction and interpretation of raw data, with the ultimate goal of be-

ing further analysed and utilised. When receiving information from the external world,

human memory associates different pieces of information and establishes complex in-

formation structures that reflect such relationships to facilitate comprehension and re-

view. These structures, because of the way human memory works, are therefore rarely

linear.

This essential feature of human memory was captured in the ‘Memex’, a device

for individual use conceived by Vannevar Bush, President Roosevelt’s science advi-

sor during the Second World War. He depicted the system in his article, ‘As We May

Think’ (Bush 1945), that supported rapid and natural non-linear access to information

by means of associative indexing. Bush also envisioned the concept of trails in the

Memex, which associated related information under specific themes that could be re-

trieved subsequently for a review.

Ted Nelson embodied his enthusiasm for Bush’s original ideas and coined the term

hypertextin 1965 when describing his Xanadu system. He stated in his book ‘Dream

Machine’ that hypertext meant ‘non-sequential writing’ (Nelson 1987) and ascribed the

non-sequential nature of hypertext to the non-sequential structure of ideas. As a model,

Xanadu was intended to incorporate a universal repository for all information and lit-

erature ever published with all versions of the documents coexisting. Relationships

between information were allowed to be instantiated as hyperlinks, or links, which not

only connected chunks of information, but also provided a structuring mechanism to be

1

Chapter 1 Introduction 2

utilised to navigate through the vast information space. Xanadu employed transclusions

as the fundamental mechanism to realise the virtual presence of the same material in

distinct contexts through embedded shared instancing (Nelson 1995), therefore effec-

tively managing information reuse and other issues. However, the implementation of

Xanadu has yet to be a reality.

The vision of the Memex as ‘an enlarged intimate supplement’ to human memory

was profoundly shared by Douglas Engelbart who endeavoured to augment ‘the human

intellect’ in view of mankind’s inability of coping with the ever increasing complexity

and urgency of challenges in human situation (Englebart 1986). Engelbart gave a public

debut of the oNLine System (NLS) at the Fall Joint Computer Conference in San Fran-

cisco in December 1968. The 90 minute presentation successfully demonstrated, among

others, innovative hypertext features which included cross-references and hyperlinking,

and illustrated the use of NLS in collaborative group work.

The concepts and philosophy initiated by Bush, Nelson and Engelbart led the way

for the hypertext system research and development that followed. The first working hy-

pertext system, named the Hypertext Editing System running on an IBM 360/50 main-

frame computer, was built at Brown University by Andries van Dam, Ted Nelson and

several Brown graduate students in 1967 with most of interface being text-based (Car-

mody et al. 1969). The first working hypermedia system appeared on the horizon when

Aspen Movie Map was developed at the Massachusetts Institute of Technology by An-

drew Lippman in 1978 (Nielsen 1990). The termhypermedia, also coined by Nelson,

extends the notion of hyperlinks to include links among any set of multimedia objects,

including the area of a picture, sound, motion video sequences and virtual reality.

The advent of the World Wide Web (also known as WWW, W3 and the Web)

(Berners-Lee et al. 1992), the most widely used and successful hypermedia system

to date, is considered an important milestone that has demonstrated the possibility of

effecting hypermedia across the Internet. The Web is nothing more (or less) than a

universe of network accessible information connected by an enormous number of hy-

perlinks. It achieves universal readership by using a number of essential concepts in-

cluding that of hypertext, and uses data formats (e.g. HTML1) and Internet protocols

(e.g. FTP2, NNTP3 and HTTP4) that make it open, extensible and standard.

The Web is open in the sense that information from a variety of sources can be

incorporated in the Web and can be accessed with a Web browser running on computer

1HyperText Markup Language
2File Transfer Protocol
3Network News Transfer Protocol
4HyperText Transfer Protocol

Chapter 1 Introduction 3

platforms supported by heterogeneous hardware and software. However, the way in

which the Web is open differs significantly from the concept of ‘open hypermedia’ as

defined by the hypermedia community. The Web can not be thought of as anopenhy-

permedia system because it is unable to support an open set of clients that can enjoy the

services provided by the Web and to support an open set of data model formats. The

concept of an open hypermedia system (OHS) predates the Web and dates back to the

mid 1980s when Sun’s Link Service (Pearl 1989) was shipped with Sun’s programming

in the Network Software Environment. The Link Service advocated a loose coupling

between the management of data and the management of links with links stored sepa-

rately from data. Such an external link model is in contrast to the embedded link model

(Davis 1998) that the Web employs in which links are stored in documents. The idea

of separating hypermedia link facilities from data storage and display functionality is

characteristic and crucial in achieving the objectives of open hypermedia research and

development.

The external link model has been recognised and encapsulated into a wide range

of OHSs, for example Microcosm (Fountain et al. 1990), DHM (Grønbæk et al. 1993,

Grønbæk and Trigg 1994), Chimera (Anderson et al. 1994), Hyper-G (Andrews et al.

1995) and HyperDisco (Wiil and Leggett 1997). The link service5, the term of which

was foremost used by Pearl (1989), acts as a middleware component of the client’s

computing environment. By accessing and manipulating hyperlinks separately from

the document, the link service allows hypermedia link facilities to be accessed by an

open set of applications, thereby enhancing their performance with hypermedia linking

functionality without a rewrite of the applications themselves.

1.2 Motivation: When Open Hypermedia Meets P2P

Computing

OHSs have employed distributed architectures since the late 1980s because access to

computer networks potentially became commonplace and empowered both a variety of

distributed online information to be utilised and groups of distributed teams to collab-

orate. The prevalent model is that of client-server and three-tier (see Section 3.2). The

client-server model has been adopted by a number of OHSs and the three-tier model

is more commonly observed in the integration of these systems and the Web. By inte-

5The link service belongs to one of the OHS categories in the Flag taxonomy (Østerbye and Wiil
1996), whereas every OHS requires a link service of one form or another to support the hypermedia
linking functionality of the system.

Chapter 1 Introduction 4

grating with the Web, OHSs allow collaboration on a global scale. Example systems

include Chimera, Hyper-G, DHM and HyperDisco in which users can appreciate the

benefits from both systems.

The client-server and three-tier architectures assume explicit logical separation be-

tween the roles of a server and that of a client, and neglect the circumstances in which

both the functionality of a server and a client is desirable possession of a single program.

For instance, users of a distributed hypermedia system may anticipate to exchange in-

formation. Under such a circumstance, an information requestor (client) may also be an

information provider (server). The distinction between the server and the client blurs

as multiple roles are required of a program. The enabling technologies, such as peer-

to-peer (P2P) computing6 (Clark 2001), is a promise that can be used to support such a

system.

Suppose there is a research community in which people sharing similar knowledge

background maintain network accessible resources, or documents, for resource sharing-

based collaboration within the community. Upon the insertion of documents into their

storage, people capitalise on their knowledge to analyse, categorise and annotate the

documents. The associated intellectual products, such as categorisation and annotation

information, are intended to be used by people in the community to discover and acquire

documents of interest from other peers. Semantically related documents are organised

and described by a concept hierarchy: the most abstract concept (as well as the doc-

uments it is used to annotate) sits at the top of the hierarchy while the most concrete

concepts (as well as the documents they are used to annotate) reside at the bottom. The

hierarchy bears a tree structure7. Because people may have different viewpoints on the

same document, sharing resources, including documents, categorisation and annotation

information, enables people to understand other peers’ opinions on the same concept

a document conveys by means of the way the document is categorised and annotated.

For instance, if a person anticipates obtaining documents with a topic on the history

of hypermedia, he/she can submit a query to other peers. A recipient peer compares

the query against the annotation information about the documents he/she maintains and

returns the matches if possible. Some of the documents in the result set may be directly

related to the history of hypermedia, while others may be associated with the enabling

technologies closely involved in the evolution of hypermedia. Nonetheless, the result

reflects the different opinions of peers on the same topic, and due to the similar knowl-

edge background peers possess, the query result may be of help for understanding a

6Although the term P2P computing is new, the basic P2P technology can date back to at least 1979
when USENET was originally implemented.

7In each concept hierarchy, there is a single root concept and each concept (except the root concept) in
the hierarchy must be a child of (at least) one parent concept. Moreover, the hierarchy must be cycle-free.

Chapter 1 Introduction 5

topic from different perspectives.

The scenario above exhibits the following notable properties: equal capability and

dispersed autonomy of individuals, and a collaborative relationship implied among in-

dividuals. People in the research community can simultaneously be resource requestors

and providers. Each of them is independent in making decisions and performing ac-

tions, whereas collaboration based on resource sharing becomes crucial when peers’

knowledge can assist in accommodating information needs or broadening individual’s

view. To turn the preceding scenario into reality, several key issues should be taken

into account which include how resources can be discovered among multiple providers

under certain circumstances, for instance in one well-arranged environment and in an-

other with ad hoc properties, how resources should be organised and manipulated to

potentially facilitate their presentation to requestors, and how resource discovery can be

expedited.

The use of P2P technologies is to effect and enhance collaboration among people

in the research community. The primary functionality of the technologies in the scenario

lies in their support for efficient resource discovery and acquisition. A centralised P2P

(Lv et al. 2002) approach would typically establish a central directory for resource pub-

lishing and discovery, and allow the subsequent resource acquisition to occur directly

between peers. In contrast, an unstructured P2P solution would preclude the existence

of any form of central authority and realise resource discovery through some search

mechanism and routing protocol that needs to be investigated.

Meanwhile, the responsibility of organising, manipulating and presenting resources

falls back upon some other orthogonal technologies, one of which that attracts the at-

tention of this work is the DLS. The DLS (see Section 3.4) is a Web-based OHS which

satisfies a user’s information needs by providing hyperlinks that refer to the documents

of interest. The paradigm of information provision, acquisition and presentation exhib-

ited by the DLS fits in with the scenario of resource sharing-based collaboration within

a research community.

The concept of grounding an OHS on a P2P architecture is not new. Microcosm

(Fountain et al. 1990) and Microcosm TNG (Goose 1997) maintained some form of

central repository to facilitate resource discovery in the systems. Microcosm was de-

ployed across a set of workstations and peers could share their resources with others

of interest. This enabled all available resources to be extensively utilised by the user

community. However, Microcosm was never developed into a P2P system.

It is recognised by this work that the use of a centralised P2P model in which com-

Chapter 1 Introduction 6

munication and management of computing tasks rely on central servers is no longer

feasible for an environment with an ad hoc nature (see Section 5.4.1). This work there-

fore attempts to identify the requirements for a Web-based OHS, more specifically an

open link service, based on an unstructured P2P model which serves to enable resource

sharing-based collaboration in ad hoc settings. Other efforts this work makes are to

discover a solution that supports the realisation of such an open link service and to

explore techniques that can enhance the performance of resource discovery for better

collaboration.

1.3 Objectives and Scope

The ultimate objective of this work is to explore how the open hypermedia approach can

be augmented by P2P technologies to continuously function in a collaborative environ-

ment in which a dispersed resource (in the form of links and linkbases8) repository is

available for sharing. The primary enabling technologies upon which this work is built

are open hypermedia and P2P computing. They complement the mission of each other’s

in fulfilling the goal of this work - open hypermedia deals with storage, manipulation

and presentation of resources while P2P technologies provide solutions to publishing,

discovery and acquisition of resources for sharing in distributed environments. There

are some critical issues that neither is able to address, for instance, the mechanisms

for resource description and clustering that facilitate efficient resource discovery. This

calls for other technologies to be involved. As will be described, the Semantic Web

(Berners-Lee et al. 2001) and Information Retrieval (IR) (Belkin and Croft 1992) pro-

vide promising technologies that satisfy the requirements of this work.

The Semantic Web is an extension to the current Web in which information is

made understandable for machine consumption, and is based on the Resource Descrip-

tion Framework (RDF) standards (Lassila and Swick 1999) and other standards to be

defined. The RDF provides a simple graph-based model for representing information

about resources on the Web. The mechanism for defining groups of related resources

and the relationship between these resources is missing in the RDF and is instead pro-

vided by RDF’s vocabulary description language, RDF Schema (RDF-S). The RDF and

RDF-S layer in the Semantic Web infrastructure effects support for some basic querying

and reasoning. van Ossenbruggen et al. (2002) envisioned the potential of RDF-enabled

search mechanisms to yield a significant improvement over the traditional keyword-

based search mechanisms. This bears much implication for open hypermedia research

8A linkbase is a collection of links.

Chapter 1 Introduction 7

because of the following reasons. Firstly, the hypermedia community has long recog-

nised the need for good query and search mechanisms (Halasz 1988). Moreover, the ex-

ternal link model adopted by OHSs is inherently able to make the RDF-enabled query

and search mechanism possible. Semantic relationships between links and linkbases

could be encoded and stored externally by link servers, thus allowing a search for links

to be conducted at both link and linkbase levels. This work primarily explores the way

that resources (links and linkbases) should be expressed and maintained at link servers

to facilitate querying and searching in environments with varying degrees of decentral-

isation of control.

To realise resource discovery in ad hoc environments, an overlay network which

comprises all peers running the open link service should be established. Ideally, the way

that the overlay network is constructed should take into account certain relationships

between peers or resources that peers maintain to assist discovery. Related work on the

overlay network can be seen in CAN (Ratnasamy et al. 2001), Chord (Stoica et al. 2001)

and Pastry (Rowstron and Druschel 2001). Because of the exclusive requirements for

the open link service (see Section 5.4.1) this work investigates, the clustering techniques

(Theodoridis and Koutroumbas 1999) which have been extensively studied in IR will be

employed to organise the overlay network in a way that facilitates resource discovery

by grouping peers on the basis of similarity of certain features of their resources.

This work will begin with extending the original DLS into a centralised P2P link

service which encapsulates a central service directory for resource discovery in a well-

arranged distributed environment. For explanatory and comparison purposes, another

link service prototype that adopts a client-server architecture - the common architecture

shared by many OHSs, will also be developed. This work will then identify the unique

characteristics of and requirements for an unstructured P2P link service that supports

resource sharing-based collaboration in an ad hoc environment. The absence of a central

service directory in the unstructured P2P link service entails improvements on the the

centralised P2P link service. Firstly, this work will need to devise mechanisms for

describing, maintaining and manipulating resources which aim to facilitate resource

discovery. Secondly, a search algorithm should be available for resource discovery in

an ad hoc environment. Finally, techniques that expedite resource discovery should

also be explored. Because these techniques are particularly intended to enhance the

discovery performance of the link service, this work will conduct an evaluation of gains

in the discovery performance that consists of an analysis and a series of simulation to

demonstrate the proposed techniques.

To distinguish it from the original DLS, the extended version will be referred to as

Chapter 1 Introduction 8

the DDLS (Distributed Dynamic Link Service) throughout this thesis.

1.4 Contribution

This work differs from others in the sense that it presents a collective effort which

primarily takes advantage of technologies of both open hypermedia and P2P computing

to support resource sharing-based collaboration within a community in which people

share similar knowledge background. The main contribution of this work attributes to

its awareness of a fact that has not attracted sufficient attention before, i.e. the inability

of current P2P technologies to help address the problems that an OHS, as required by

the scenario mentioned earlier, faces. To circumvent the arising challenges, this work

• devises a way of modelling the information (about resources) space and of estab-

lishing the overlay network.

• develops a search algorithm which utilises the semantic relationship between (re-

sources of) peers to discover the resources of interest on the overlay network.

• investigates the application of enabling techniques to enhance discovery for im-

proved collaboration by re-organising the peer network.

Although a number of OHSs, e.g. DHM, HyperDisco and Construct (Wiil and

Nürnberg 1999), provide support for different modes of collaboration by means of

mechanisms such as the awareness service, event notification, concurrency control and

access control, their solutions are centralised and therefore incapable of supporting col-

laboration in an ad hoc context. This work focuses on how to support collaboration with

the absence of a centralised service directory in a distributed environment. The DDLS

approach explored by this work leaves issues such as which collaboration services are

necessary in a specific OHS and how to implement the services untouched. Instead, it

revolves around mechanisms that describe, publish and discover resources to make col-

laboration in an ad hoc setting a reality. In essence, the DDLS approach is not limited to

facilitating only resource sharing-based collaboration as described in Section 1.2. Any

OHS that needs collaboration support (Reich et al. 1999) in an ad hoc environment will

benefit from utilising the methodology that this work has explored. As a consequence,

this work can be regarded as a supplement to research on collaboration support in the

open hypermedia community.

Chapter 1 Introduction 9

Moreover, this work is one of the few practices that implement open hypermedia

services, or likewise, based on the Semantic Web infrastructure. By using RDF to en-

code information about resources and a semantic search mechanism to support resource

discovery, this work provides a manifestation of the potential of the Semantic Web to

promote open hypermedia research.

Finally, this work proposes the adoption of the unstructured P2P model in the

DDLS to support collaboration in ad hoc settings, and investigates all the related is-

sues that collectively enable the realisation of the DDLS. This enriches the research on

unstructured P2P systems as described in Section 5.3.2 by providing experience of im-

plementing the unstructured P2P paradigm in a different application domain - the OHS

which, due to its characteristics, poses specific challenges to the DDLS approach (see

Section 5.4.1).

1.5 Thesis Structure

The remainder of the thesis is structured as follows:

Chapter 2, Open Hypermedia Systems, provides an in-depth look into the field

of open hypermedia systems, describes the core concepts and philosophies in detail,

and documents the research themes in the area by providing a selection of influential

systems.

Chapter 3, Distributed Hypermedia Systems, presents a review of distributed com-

puting models and examines their development and evolution from the author’s perspec-

tive. Moreover, a selection of distributed hypermedia systems with various software

architectures are described.

Chapter 4, Requirements Analysis and Design of the DDLS, presents the moti-

vation and design of extending the original DLS into a truly distributed dynamic link

service. In particular, several aspects of software engineering are involved. Two pro-

totypes that adopt a client-server architecture and a centralised P2P architecture are

described, respectively. An analysis and comparison between the architectures of both

are performed.

Chapter 5, Rethinking the P2P Paradigm, presents an overall review of contempo-

rary P2P solutions from the architectural perspective. Also, the characteristics of and

requirements for the DDLS are examined in detail, which explains why the existing

approaches do not fit the conceived scenario for this work (see Section 1.2).

Chapter 1 Introduction 10

Chapter 6, Evolution of the DDLS into an Unstructured P2P System, explores the

extension of a centralised P2P DDLS (see Chapter 4) to an unstructured P2P system.

The approach to resource description at the linkbase level is proposed and a distance-

based semantic search algorithm is presented. Simulation is conducted which helps

understand the behaviour and performance of the algorithm, with varying distributions

of potential resources and different query profiles involved.

Chapter 7, Re-organising the DDLS Peer Network, introduces the concept of re-

organisation and its supporting data structure, query history, upon which re-organisation

of the peer network primarily depends. The exponential decay function and naive es-

timator are proposed to support re-organisation, and their different effectiveness and

applicability are demonstrated by a series of simulation.

Chapter 8, Conclusions and Future Work, summarises this work and presents pos-

sible future directions of the research.

1.6 Declaration

This thesis represents the author’s personal view of the field. It is all the author’s inde-

pendent work, with the exception of that described in Section 6.4 which was conducted

in conjunction with Vijay Dialani.

Chapter 2

Open Hypermedia Systems

2.1 Introduction

This chapter presents open hypermedia systems (OHSs), a field that offers significant

concepts, philosophies, experience and lessons potentially benefiting the entire hyper-

media community. A selection of influential OHSs, chosen on the basis of the Flag

taxonomy (Østerbye and Wiil 1996), are described to present the core concepts and

philosophies, and to document the research development in the area. This is followed

by a description of the close relationship between open hypermedia research and that of

the emergent Semantic Web.

2.2 Concept and Features

An important consideration in the field of hypermedia systems is the distinction between

structure and content. A hypermedia system that imposes a data model (structure and

data formats) on its hypermedia enabled applications is considered to be closed, since

applications have to be custom-made to participate in the hypermedia environment. An

OHS, however, only imposes a structure format on its hypermedia enabled applications

and allows content to be stored outside the system. The applications can store content in

different formats, which encourages the integration and use of third-party applications.

An OHS is typically a middleware component in the computing environment of-

fering hypermedia functionality to applications independent of its storage and display

functionality. It enables the client applications to create, edit, delete and activate links

11

Chapter 2 Open Hypermedia Systems 12

which are maintained and manipulated separately in linkbases. Hypermedia services

can also be used by other third-party applications, programs and services in the com-

puting environment (Wiil 1997).

The termopenmeans that OHSs allow an open set of clients (applications) of the

hypermedia services provided by the systems and support an open set of data model

formats. In contrast to closed hypermedia systems, such as the Web, OHSs exhibit a

variety of advantages and circumvent the limitations of closed hypermedia systems due

to the inherent weaknesses in their architecture, data model, protocol and enabling tech-

nologies. The advantageous properties that OHSs possess are highlighted as follows.

1. Separation of links from documents

The open hypermedia model enables the maintenance and manipulation of hyper-

media links separately from the documents they describe, which fundamentally

differs from the model of closed hypermedia systems. The separation of links

from documents enables links to be applied to documents in any format (Carr

et al. 1998a).

2. No imposition of mark-up on data

OHSs allow more types of data model formats which are not limited to either

HTML or image formats. New data model formats can be supported in OHSs by

enabling the applications capable of handling the required data model formats.

Applications are extended to make hypermedia functionality available in the hy-

permedia environment with minimum efforts while the data content remains un-

altered.

3. Integration with third-party applications

Unlike the closed hypermedia system, an OHS provides a linking protocol be-

tween applications and the OHS that allows any application to participate in the

hypermedia service. Through the linking protocol, applications are loosely inte-

grated into the hypermedia environment with various levels of hypermedia aware-

ness.

4. Context-specific query

The task-specific query context can be specified by a user, or inferred by a user

interface agent. Therefore, link following is affected not only by the selection

of the link source but also the user’s dynamic context that indicates the kind of

resources they would like to follow up.

5. Easy to add new functionality

A component-based approach was suggested by Wiil and Nürnberg (1999) for the

Chapter 2 Open Hypermedia Systems 13

design of OHSs. The component technology empowers the specification of the

services of a component in an implementation independent manner. Each com-

ponent provides descriptions of services in a separate interface serving a domain

model, concealing the concrete implementation. The approach enables an exten-

sible architecture in which a new hypertext domain can be added with ease by

defining an interface for the description of services presented in that domain.

6. Distributable hypermedia structure processing

OHSs adopt different software architectures, spanning from traditional centralised

client-server systems with a central storage server running on a LAN1 to multi-

layer systems with multiple storage servers operating within different Internet

domains. The decentralisation of storage relieves the burden on a single server

and enables hypermedia structures to reside in the vicinity of where they may be

requested.

Links are first-class entities in an OHS. The central feature of an OHS is that it

can make use of link specifications stored in linkbases and manage the links separately

from documents. By allowing links to be manipulated separately, an OHS decreases

document maintenance efforts as there is no need for a document to be revised in order

to change its links. An open link service allows the performance of any application to

be enhanced with hypermedia functionality without a rewrite of the application (Carr

et al. 1995), which is also a minimal requirement for an OHS.

Hall et al. (1996), based on their experience gained from the design and develop-

ment of Microcosm (see Section 2.4.3), summarised the essential properties in defining

a truly open hypermedia system as follows.

1. Size: no limitations, with regard to either the size of objects or the maximum

number of such objects, should be imposed by the hypermedia system.

2. Data formats: the system should allow import and use of data in any format,

including temporal media.

3. Applications: the hypermedia system should provide facilities for any applica-

tion to access the hypermedia service in order to participate in the hypermedia

environment.

4. Data models: the system should be configurable and extensible to allow new

hypermedia data models to be incorporated. Furthermore, interoperability is an

important property that the system should possess.

1Local Area Network

Chapter 2 Open Hypermedia Systems 14

5. Platforms: it should be possible to implement the system across a variety of plat-

forms.

6. Users: the system should support multiple users and allow the users to maintain

their private views of the objects in the system.

To fully satisfy such a definition there is still a long way to go in OHS research.

Examining the OHSs documented later in this chapter demonstrates that the efforts from

the OHS community have only achieved part of the entire specification. However, the

definition of openness as described will serve as a signpost, showing future directions

for open hypermedia research.

2.3 The Flag Taxonomy

The Flag taxonomy (Østerbye and Wiil 1996) was built on the terminology of the Dexter

hypertext reference model (Halasz and Schwartz 1994) which was a popular model

covering ideas and experience from advanced hypermedia research at that time. The

taxonomy aimed to serve as a framework to describe, classify and compare different

hypermedia systems in a system independent way.

�������

��	����

��������

��	����

������

������	

��	����

�������

�
��
��
�
�

��	��	�

�
��
��
	
��
��
�
	

������� ��	����

��	��	��

���������

FIGURE 2.1: The Flag of Hypermedia Systems
(Østerbye and Wiil 1996)

Figure 2.1 reveals that the taxonomy does not represent hypermedia systems by a

layered architecture as that in the Dexter model. Rather, it distinguishes between the

storage aspect and the runtime aspect on the one hand, and structure and contents on

the other, leading to four functional modules (illustrated by the white rectangles) and

Chapter 2 Open Hypermedia Systems 15

four protocols (illustrated by the grey rectangles). The Storage Manager corresponds

to the within-component layer in the Dexter model, and the Data Model Manager re-

sponsible for storing the structure of a hypertext maps to the storage layer in the Dexter

model. The taxonomy divides the Dexter runtime layer into the Viewer module and

the Session Manager module, which bridge the Dexter within-component layer and the

runtime layer to reflect the exclusive property of the OHS that contents can be stored by

applications outside the hypermedia system.

Each functional module provides functionality to neighbouring modules by means

of available protocols. The Storage protocol encapsulates the Storage Manager from

both the Viewer and the Data Model Manager because the Flag taxonomy divides stor-

age into contents and structure aspects. The Linking protocol provides necessary op-

erations which bind the Viewer and Session Manager functionality together. The Pre-

sentation protocol defines the operations in the Data Model Manager and the Session

Manager available to each other.

The taxonomy emphasises the distinction between structure and contents as the

major criterion to identify an OHS, and excludes any approach to OHSs that imposes a

data model on their hypermedia enabled applications. The categories of OHSs, accord-

ing to the Flag taxonomy, include two fairly independent domains: link server systems

(LSSs) and open hyperbase management systems (HBMSs) (Wiil and Leggett 1997).

LSSs (e.g. Microcosm and Chimera) revolve around the development of middleware

components that allow existing tools to use hypermedia linking functionality, whereas

open HBMSs (e.g. DHM and HyperDisco) focus on the development of middleware

components that not only provide linking but also storage functionality to be utilised.

This thesis is only considering LSSs.

2.4 Link Server Systems

The link service, a term first used by Pearl (1989), allows hypertext (or hypermedia)

facilities to be accessed by an open set of applications, thereby acting as a middleware

component of the user’s computing environment in which links are allowed to connect

objects in any media without any restrictions on the data format. Link server systems

prefer an external link and reference model in which a link service stores links and con-

tent references while leaving the original document intact since no mark-up or anchor

tables are embedded in the document. With all the information about links being kept in

a separate linkbase, links to and from a document can be traced by querying against the

linkbase. As links become independent objects in terms of management, the revision

Chapter 2 Open Hypermedia Systems 16

of links in a changed document is unnecessary. Besides, links may be applied to serve

other legacy systems with data on read-only media.

2.4.1 Intermedia

Intermedia (Meyrowitz 1986, Yankelovich et al. 1988), developed at Brown Univer-

sity’s Institute for Research in Information and Scholarship (IRIS) from 1985 to 1990,

was the first advocate for an open hypermedia philosophy. It was a multi-application

hypermedia system designed to support teaching and research in educational settings.

Intermedia was intended to model how hypermedia functionality should be handled at

the system level to provide linking capabilities integrated into the desktop environment.

���������	

��
����

����

���������	��������

�	����

�����

����

�����

�	�

�����

�	�

�����

�����

�����

��	�

�����

����

������
������

�����

��	�������
������

�����

���������	��	��� ����� ����� ������ �����!��"��

 ������
	�	#	��

�����!��"����������

����

	�	#	��

FIGURE 2.2: Intermedia Architecture
(Haan et al. 1992)

The overall architecture of Intermedia, based on the client-server model (Sec-

tion 3.2.1), is shown in Figure 2.2. From the operating system’s perspective, the In-

termedia system appeared as two distinct processes, the Intermedia process and the

link server process that communicated via sockets. The first bottom layer of the Inter-

media process consisted of applications sharing functionality defined in its immediate

upper layer. The word and graphics building blocks in the second layer were imple-

mented for encapsulating important end-user functionality and providing a consistent

user interface. The Intermedia layer, providing classes for implementing the core link-

Chapter 2 Open Hypermedia Systems 17

ing functionality, extended MacApp’s classes and added the functionality necessary to

specific applications. The link client was a library bound with the Intermedia layer.

The link server was also implemented as a library associated with a database manage-

ment system (DBMS) running as a separate process. Intermedia was only implemented

for Apple’s version of the UNIX operating system. It presented to users customised

integrated applications operating on their own document types that conformed to user

interface standards for consistency purposes. Thus, users would encounter quite identi-

cal implementations of features seen elsewhere across multiple applications.

Intermedia allowed users to create bidirectional links between specific locations

in documents (created by its dedicated applications shown in Figure 2.2) of different

types. This was a distinctive property unseen in other systems, such as HyperCard (Ap-

ple Computer Inc. 1989), NLS (Englebart 1986) and Notecards (Halasz et al. 1986).

Intermedia named these specific locations ‘anchors’. Information about anchors and

links between the anchors were stored separately from documents they described. Col-

lections of anchors and links were partitioned into webs. Users could alter their working

context by switching from one web to another, and therefore a different set of anchors

and links in the web were superimposed on the documents that users were browsing.

To maintain data consistency, the deletion of an Intermedia document would lead to the

deletion of all the anchors and links within and to the document throughout the Link

Database. Concurrency control was implemented in Intermedia to help manage mul-

tiple users sharing a network of hypermedia material. Intermedia supported multiple

users with granted access rights to read and annotate (anchors and links of) a single

document simultaneously, but only one user to write a document at a time.

Intermedia was a pioneering hypermedia system2 that achieved academic success

and aroused great research interest. However, due to the failure of convincing other

people to adopt its protocol and the lack of funding to upgrade to a new operating

system, Intermedia fell into disuse in the early 1990s.

2.4.2 Sun’s Link Service

Sun’s Link Service (Pearl 1989) was not a hypertext system in its own right but provided

a protocol and linking functionality for integrating linking mechanisms into existing ap-

plications in a distributed workstation world. The link data and object data were stored

2Intermedia was considered a monolithic hypermedia system because its architecture tightly con-
trolled data, hypermedia structures and the user interface of the system. Also, Intermedia allowed only
dedicated applications to access its hypermedia services and therefore it might be best described as a
partially open hypermedia system.

Chapter 2 Open Hypermedia Systems 18

and managed separately. Manipulating and storing objects were undertaken by indepen-

dent editing applications. A linking protocol was designed to facilitate communication

between the Link Service and the integrated applications.

������

���	
���

�

��������

������������

������

���	
���

�

��������

������������

������������

������������

����

��������

FIGURE 2.3: Sun’s Link Service Architecture
(Pearl 1989)

The Link Service (see Figure 2.3) comprised the protocol specification, a link

server program, a library that defined the protocol for integrating with the Link Ser-

vice and utilities for managing the link databases (i.e. linkbases). Integrating with

the Link Service required little change of applications. Each integrated application in-

cluded a link library which was part of the link server process to communicate with the

link server, and therefore became part of an extensible and loosely coupled frontend

interface to the hypertext system. Applications registered their availability and capa-

bility with the Link Service so that they could be called to handle objects upon users’

requests.

The manager of the object data provided an interface and application specific func-

tionality for users to manipulate objects. Similarly, the Link Service offered an interface

and functions for users to create and modify links between data objects. By separating

the user interface for linking from that for editing, the Link Service introduced as min-

imal impact as possible on the appearance of integrated applications and the burden on

the cognition of users.

The Link Service addressed the link maintenance issue by means of two mecha-

Chapter 2 Open Hypermedia Systems 19

nisms: implicit and explicit. When a user attempted to traverse from the valid end of

a link to an invalid node, the Link Service informed the user of the dangling link and

suggested deletion of the link. Or, the Link Service utilised a link garbage collection

mechanism to check the validity of links by querying their managing applications. The

Link Service left the versioning of data objects to individual applications and main-

tained the consistency of link objects to a limited degree. This is because the versioning

of data objects was implemented by integrated applications and the Link Service was

unable to establish any connection between the versioning of the link objects and data

objects.

Although some issues required further investigation, such as the granularity of an

identifiable object in structureless documents and the extension of link types available

between objects, Sun’s Link Service made an initial attempt at integrating linking func-

tionality into existing applications and the accompanying protocol was crucial for an

extensible and loosely coupled open hypertext system.

2.4.3 Microcosm

The development of Microcosm (Fountain et al. 1990), which was one of the first OHSs,

predates the Web. The initial motivation for Microcosm arose from constructing fully

cross-referenced versions of very large electronic archives and information repositories

(Lowe and Hall 1999). While building resource-based applications using hyperme-

dia systems, the Microcosm team found that the main issues for hypermedia designers

and authors were the heavy load from working with a large number of documents and

links, and the increasingly highly multimedia nature of electronic information. Besides,

different users would access different parts of the information repositories and try to

understand them from different perspectives. Surrounded by collections of unstruc-

tured information, it was hard, even impossible sometimes, to find the beginning or

end. For users who came across applications for the first time, no assumptions could be

made about their preferences, knowledge, beliefs or information seeking goals, based

on which some kind of assistance could be provided to support their interaction with

the systems.

Microcosm was best thought of as a number of autonomous processes that com-

municated with each other by a message passing mechanism, see Figure 2.4. The Seg-

regated Communication Model (SCM) employed in the original Microcosm supported

both viewer processes and filter processes. The Document Control System (DCS) main-

tained a record of each viewer and coordinated message routing between viewers and

Chapter 2 Open Hypermedia Systems 20

��������

��	��
������
�

�������������

��������

��	����������

��������

��	��
����
���

����

��������

��	����������

��� ��

��������

��	����� !�
�

��������

��	����� ��

������
�

��������

�������

"#
����$��"%

������
�

������

���	�����

"#
����$�
"%

���������
���	������"#
���

$�
"% �������&

�'����!������

��� �"��'���

��#��

(#���!�
�)

"����	����#��

�����������

��#��

����

*����

+����
��������

*�,��+�����

������������	����

(�
���#

+���� ��� !�
�

FIGURE 2.4: Microcosm Architecture
(Lowe and Hall 1999)

the rest of the system. Viewers were identified by means of an identifier allocated by

the DCS. The Filter Management System (FMS) coordinated the serial chain of filters.

Filters in Microcosm were among those independent processes which were connected

in a chain topology and might be dynamically installed, removed or even reordered. The

hypermedia link service was embodied within filters3. When an action was initiated by

a user, a message that contained the details of relevant information would be sent to the

filter manager which arranged the message to be passed through all registered filters.

Filters declared their interests in handling specific messages from users’ actions and

they might block, ignore, alter messages or create new ones (Hall et al. 1996).

The sequence of some filters was fixed. For instance, the linker filter, a process

which primarily dealt with the start link and end link messages, was usually positioned

in the first place along the filter chain. Following it was the linkbase filter that was

responsible for creating, following and resolving links. The available links filter was

3Very little of the functionality that users see was ‘hard coded’ in the core of Microcosm, which was
one of the flaws in the architecture.

Chapter 2 Open Hypermedia Systems 21

typically positioned at the end of the filter chain to present the result of a link traversal

or search action. This filter could not precede the linkbase filter since there would

be no links for it to display before the linkbase filter processed a message and gave

the references to destination documents. For the linker filter and the linkbase filter,

the exchange of their positions in the sequence would not incur such a problem and

therefore was permissible.

The bottleneck between the DCS and the FMS was one of the limitations on the

performance and scalability of Microcosm. In addition, the serial and uni-directional

filter chain yielded major communication overhead because all messages are propa-

gated to every filter in the chain. Such limitations were resolved in the design of filters

in Microcosm TNG (see Section 3.3.3) and linkbases in the DLS (see Section 3.4) in

which no chain topology was used in organising filters and linkbases. In both systems,

individual filters and linkbases could be dynamically added or removed from the pro-

cess of link resolution and retrieval, and consequently different views of link data were

presented upon different user requests.

The Microcosm model allowed users to create three primitive link types: specific

links, local links and generic links. A specific link may be followed from the source

selection at a specific location in a specific document. A local link may be followed

when the source selection occurs at any place in a specific document. A generic link

may be followed from wherever the source selection occurs. The Microcosm team

identified two distinct link integrity problems - theediting problemand thedangling

link problem- that might occur in Microcosm and explored their solutions. Hall et al.

(1996) provided more details.

In applications such as the delivery of teaching materials, Microcosm required that

all shared resources, such as documents, linkbases and the Document Management Sys-

tem (DMS), should be made read-only so as to solve the concurrency problem. How-

ever, for other applications involving a small number of changes to shared resources,

Microcosm could adopt a crude user controlled locking and notification scheme which

allowed locks on each document and linkbase (but not the DMS), so that only one single

user might edit shared documents or links at a time, and the edit would be notified to

other users before they carried out any further update. In order to support Microcosm

working in a large scale cooperative environment, it was envisioned that using a client-

server architecture which had only one database to host all linkbases and DMSs might

produce the ease of concurrency control.

Chapter 2 Open Hypermedia Systems 22

2.4.4 Chimera

Chimera (Anderson 1997) was an open hypermedia system developed at the University

of California, Irvine. It primarily aimed to provide hypertext services in heterogeneous

software development environment (SDE).

������

� ��

	
��
�

������

������

������

��

��

���

���

��

����
�
���

������

����
���

�
�
�
���� �����
��������������
���

����������
��

���������
�������� �

���������
������
��

�������������
��

FIGURE 2.5: Chimera 2.0 Architecture
(Anderson 1997)

The Chimera architecture adopted a client-server approach (see Figure 2.5) and

was separated into two environments: a user space and Chimera-enhanced websites. A

user space consisted of Chimera clients, a client server and a Java-enabled Web browser,

while a Chimera-enhanced website contained a Web server, a hyperweb manager, a

hyperweb server, a set of hyperwebs and a set of client servers.

Chimera clients were applications that provided end users with hypermedia ser-

vices. They interacted with the local client server which connected to the hyperweb

server to provide its clients with access to hyperwebs. Java applets could also be

Chimera clients in support of Chimera’s integration with the Web. However, such clients

would face obstacles that normal clients did not have to. This is because Java imposes

security restrictions on applets, and the Web server, the hyperweb manager and the

client server must all execute on the same machine in order that applets could commu-

nicate with them. A CGI4 script was used to append HTML code to include an applet

at the end of a Web page. The Java applet was downloaded by the Web browser in the

user space and it provided pervasive access to Chimera’s services to the Web page a

user was visiting. Therefore, Chimera users were free to manipulate links or hyperwebs

and initiate link traversal from within an applet’s interface.

4Common Gateway Interface

Chapter 2 Open Hypermedia Systems 23

In Chimera, a hyperweb that was manipulated by the hyperweb manager referred

to a database file containing groupings of related hypermedia concepts. The hyperweb

manager was responsible for the creation and deletion of hyperwebs. Besides, it pro-

vided connection information of Chimera related servers. For instance, the hyperweb

manager could reveal the contact information of the hyperweb server on the Chimera

site of interest to the client server in the user space. The hyperwebs of a Chimera site

were stored and managed by the hyperweb server.

In addition to hyperwebs, Chimera had a set of hypermedia concepts, including

viewers, objects, views, anchors and links along with their attributes. Objects were

named, persistent entities in Chimera and were displayed, created and edited by viewers.

A view associated an object with the viewer that displayed it. Anchors were created and

managed by a viewer with respect to the particular view of the object being displayed,

rather than the object itself, while a link consisted of a set of anchors. Each instance of

a Chimera hypermedia concept could be described by an arbitrary number of attribute-

value pairs specifying run-time semantics or behaviour. These concepts enabled the

hypermedia needs of an application to be easily modelled and implemented by means

of invoking appropriate calls to Chimera’s API5 to create persistent instances of the

concepts. Therefore, the integration of an application with Chimera was facilitated.

Chimera could not be completely modelled in the Dexter model since the former

could handle the presence of links with zero or one anchor (dangling links) (Anderson

et al. 1994). In this case, Chimera was similar to DHM, see Section 3.3.2. Moreover,

the concept of a view in Chimera could not be modelled by a composite component

in Dexter, because a view contained information about the object being displayed and

the view that displayed the object, but a composite component included references to

atomic components which contained only data. Finally, a Chimera viewer would be

able to define anchors on the view of an object which exists only at run-time. However,

Dexter was unable to specify the same type of anchors.

2.4.5 Hyper-G

Hyper-G (Andrews et al. 1995), a multi-user, multi-protocol, structured and distributed

hypermedia information system, was the product of a group of researchers and devel-

opers at Graz University of Technology, Austria. It integrated all the functionality of

the Web with a set of facilities, resulting in much additional functionality, and therefore

was seen as an extension of the Web (Maurer 1996).

5Application Program Interface

Chapter 2 Open Hypermedia Systems 24

Like most information management systems, Hyper-G was client-server based (see

Figure 2.6). The Hyper-G server consisted of a number of modules implemented as

concurrent Unix processes. The document server maintained local documents of the

Hyper-G server as well as cached documents from remote servers. The full text server

was responsible for storing an inverted index of all text documents for searching. The

link server, which was later renamed the object server, primarily stored a database of ob-

jects and the relationship between objects. Every Hyper-G object, including documents,

anchors and collections (defined later), could be searched for. Hyper-G objects were

typically described by a set of attributes and the search on attributes was supported. In

particular, documents and collections in a Hyper-G server were automatically indexed

upon the insertion into the database and could be subsequently accessed by a full-text

search.

�������

���

�	�
��

�����������
��

�	������

���
��

����

���
��

���������

���
��

�������

�	�
��

���

������ ���
��

FIGURE 2.6: Hyper-G Architecture
(Andrews et al. 1995)

Users could access Hyper-G using a standard WWW browser, a naive Hyper-G

client, or a Gopher client. A WWW gateway program was developed and installed with

every Hyper-G server so as to provide the user of a WWW client with an interface to

the Hyper-G functionality. When accessing the Web with Hyper-G clients, a Hyper-G

server was typically used as a gateway. Hyper-G was also designed to be fully inter-

operable with Gopher. Hyper-G servers could present themselves to Gopher clients by

means of the Gopher gateway. When accessing Gopher servers with Hyper-G, a Hyper-

G server, which cached Gopher directories and documents, acted as a proxy.

The concept ofcollections in Hyper-G implemented a hierarchical structuring

mechanism. A collection contained documents or other collections. This definition

led to the generation of acollection hierarchy. While every document or collection (ex-

cept the Hyper-G server’s root collection) must be a member of at least one collection

Chapter 2 Open Hypermedia Systems 25

(its parent collection), the collection hierarchy must be cycle-free. The collection hier-

archy could be used for a number of occasions. For instance, the logical structure of

the information was made explicit to users by means of the collection hierarchy, which

facilitated users’ navigation through the information space. Also, documents and col-

lections might have multiple parent collections in a collection hierarchy, and therefore

users could have multiple views of the same available information. The collection hi-

erarchy could be attached with access permissions which supported multiple users to

simultaneously use a single Hyper-G server. Finally, Hyper-G allowed the use of the

collection hierarchy to define the search scope.

Hyper-G implemented links as objects containing attributes. Links could be as-

signed keywords for searching and permissions for access restrictions. A link in Hyper-

G connected a source anchor within one document and a destination anchor within

another document, an entire document, or groups of documents. Links were not stored

within documents but in separate link databases. Hence, Hyper-G supported bidirec-

tional linking and link consistency within servers and across server boundaries were

guaranteed.

2.5 Open Hypermedia Systems and the Semantic Web

The Semantic Web, the next generation Web infrastructure as envisioned by its inven-

tor Tim Berners-Lee, is designed to provide information in the Web in a more machine

understandable manner. Recent initiatives at the World Wide Web Consortium (W3C)

have produced multiple specifications, such as that of XML6, RDF and OWL7 (Smith

et al. 2004). While XML defines customised tagging schemes and RDF enables a flexi-

ble approach to representing information, OWL provides more vocabulary for formally

describing the meaning of terms in a Web document and the relationship between those

terms. They form part of the growing stack of the W3C recommendations related to the

Semantic Web.

The need of the Semantic Web to capture and represent the semantic relation-

ship between resources on the Web, invalidates the embedded linking model as used

in the Web. Moreover, downloading bulky semantic annotations together with Web

documents deteriorates the performance of hypermedia applications, especially when

annotations are even not required. A potential approach to these issues involves exter-

nally encoding information about resources and the semantic relationship between the

6eXtensible Markup Language
7Web Ontology Language

Chapter 2 Open Hypermedia Systems 26

resources, and employing dedicated servers to maintain and manipulate these seman-

tics (van Ossenbruggen et al. 2002). OHSs inherently possess the capability to deal

with similar problems. The most significant feature that empowers OHSs to facilitate,

and also enjoy, the emergent Semantic Web technologies is that links are stored and

managed separately from the documents they describe. Capturing the semantic content

(concepts) of documents, modelling it as metadata, and authoring links between related

concepts to construct hypertext, are therefore feasible. This is also applicable to anno-

tations - the ability to annotate documents of others has been an important feature in

many hypertext/hypermedia systems. Storing annotations externally to the documents

that are annotated and accessing them over some protocol, can produce an OHS-like

annotation service. Example systems include COHSE (Carr et al. 2001) and Annotea

(Kahan et al. 2001).

The main objective of the COHSE (Conceptual Open Hypermedia Services Envi-

ronment) project is to produce an ontological reasoning service which provides a con-

ceptual model for describing document terms and the relationship between the terms,

and a Web-based open hypermedia link service to deliver link-providing facilities in

a scalable and non-intrusive manner. The conceptual information of Web documents

is represented as metadata8. Metadata can be reasoned over to classify documents by

using a predefined ontology in COHSE - a thesaurus consisting of concepts related by

different relations. Documents are considered to be similar in some way if they share

metadata. The COHSE link service authors links between associated concepts, and

therefore corresponding documents are also linked for navigation.

The Annotea project, part of the Semantic Web efforts, aims to enhance collabo-

ration via sharing metadata-based annotations, bookmarks and their variants. Annotea

is a Web-based annotation system built on top of an open RDF infrastructure through

combining RDF with XPointer, XLink and HTTP. Annotations are modelled as a class

of metadata. They are described with an RDF schema and are stored inside generic RDF

databases hosted by annotation servers. XPointer and XLink associate metadata with

part of the document that is annotated. By interacting with an annotation server over

HTTP, users can perform different operations on annotations, such as retrieval, addition,

modification and deletion.

Both practices of COHSE and Annotea reveal that the concepts and philosophies

of OHSs can be utilised to satisfy the requirements of the Semantic Web. On the other

8This is an idea borrowed by this work on resource description presented in Section 6.3.2. Although
both COHSE and the DDLS employ metadata to describe the concepts that documents are associated
with, the former intends to construct hypertexts and build links for navigation, while the latter aims to
assist resource discovery.

Chapter 2 Open Hypermedia Systems 27

hand, it is also demonstrated that the Semantic Web can, and definitely will, augment

open hypermedia research and enrich its potential area of application by providing state-

of-the-art and standardised technologies.

2.6 Summary

This chapter examined the core concepts and features of OHSs and described the Flag

taxonomy which divides OHSs into two categories: link server systems (LSSs) and

open hyperbase management systems (HBMSs). In particular, a selection of represen-

tative link server systems was chosen and studied. Examining contemporary research

on OHSs and its close relationship with the Semantic Web identified that both parties

are mutually beneficial - the Semantic Web provided advanced technologies to augment

open hypermedia research, and meanwhile, open hypermedia presented many years of

experience and lessons to facilitate research on the Semantic Web.

The next chapter will present the field of distributed hypermedia systems. Follow-

ing a review of distributed computing paradigms, it will document a variety of closed

and open hypermedia systems which adopt distinct distributed models.

Chapter 3

Distributed Hypermedia Systems

3.1 Introduction

This chapter presents a review of distributed computing in terms of the software archi-

tecture, ranging from the client-server to the contemporary service-based model. The

review aims to provide a prerequisite knowledge for understanding the concepts and

backgrounds in the following presentation of selected distributed hypertext and hyper-

media systems along the path of development.

3.2 Models of Distributed Computing

Bass et al. (2003) define the software architecture of a program or computing system

as ‘the structure or structures of the system, which comprise software elements, the ex-

ternally visible properties of those elements, and the relationships among them’. The

definition implies that software architecture is concerned with the encompassing ele-

ments that interact with one another. The behaviour of each element is also part of the

architecture.

Distributed computing is one of the software architectures in which processing oc-

curs among teams of collaborative computers over a network. The architecture allows

geographically distributed computers to work together with responsibility being parti-

tioned among multiple parties. Distributing the computational load among appropriate

computers can improve the system performance.

28

Chapter 3 Distributed Hypermedia Systems 29

3.2.1 Client-Server Architecture

Client-server, a term first used in the 1980s, is a distributed computing model in which

client applications request services from server processes. A client application is a

process or program that sends messages to the server and requests the latter to perform

specific tasks. The server process or program listens to the client requests, receives mes-

sages and performs corresponding actions. A single machine can be both a client and a

server depending on software configuration. However, clients and servers typically run

on differently machines interconnected by a computer network.

The central server runs on powerful personal computers, workstations or main-

frame computers which host the majority of computing resources, for example, files,

devices and processing power. Clients are separate and subordinate to the server. They

log into the server and make a search request on the server that will immediately return

the search result. The subsequent requests to the server for services will also be tracked.

The client-server model gained its wide acceptance in the 1990s. The reason is

simple because it adheres to software modularity and usability requirements very well.

The model simplifies the administration and management tasks by monitoring user ac-

cess at the central control point (the server). Also, it enables systems to be easily ex-

tended by adding new services in the form of new servers.

One of the main drawbacks of the client-server model is its heavy dependence on

the central server, which results in a system being vulnerable to server failure and being

plagued by the dramatic and exponential growth of online service requests. Therefore,

the expenditure in the maintenance of distributed components and others is increased.

3.2.2 Three-tier/Multi-tier Architecture

The client-server architecture (also referred to as the two-tier architecture) assumes that

clients access servers that run on the same operating system or use the same database

engine. Otherwise, clients must be equipped with matching drivers for such configura-

tions. Any update to an application needs to be deployed for all users of the application.

Also, it is shown that beyond 100 users, the performance of the two-tier design is ex-

ceeded. The three-tier architecture, which emerged in the 1990s, addresses the problem

by introducing a middle tier between the front-end client environment and the back-end

server environment to support application logic and common services.

Systems based on the three-tier model can be split into three logic tiers: the user

Chapter 3 Distributed Hypermedia Systems 30

interface tier, the business logic tier and the database access tier. The user interface

tier is responsible for accepting user requests and forwarding them to the business logic

tier. The business logic tier acts as both a client and a server because it processes re-

quests from the user interface tier and sends them further to the database access tier

which provides database management functionality. According to the user request, the

connectivity between components of these tiers can be dynamically changed and es-

tablished. In some cases, the middle tier consists of two or more units with different

functions. Therefore, the three-tier model is also referred to as the multi-tier model.

The three-tier model addresses the issues that the two-tier model is incapable of

dealing with while hiding the complex distributed processing from users. It can accom-

modate more than 100 users. By centralising process logic at the business logic tier, the

model promises improved performance, flexibility, reliability and scalability.

3.2.3 Peer-to-Peer Architecture

The peer-to-peer model (Clark 2001) refers to a class of systems and applications that

employ resources in a distributed environment to perform a critical function without

central servers. Each node, or peer, plays the role of both a client and a server. Exam-

ples include instant messaging systems and document sharing applications, which have

exploded in popularity and transformed the way users interact with one another over the

network. P2P networks allow a group of online users with the same networking pro-

gram to connect with one another and directly access files from others’ physical storage.

In the P2P model, each peer has equivalent capabilities and responsibilities.

Peers are autonomous, free from the control of any other party. Therefore, a net-

work administrator is unnecessary in the P2P model, which cuts down the cost of ad-

ministration and maintenance by spreading control and expenditure across all peers.

Moreover, the absence of a centralised control authority yields a robust system against

the single point of failure. Search results, as a consequence of the direct contact with

information providers, keep fresh when they are requested.

However, spreading the overall control complicates many issues. First, there is

no accurate view of the entire system since each peer holds a partial picture. Also,

it becomes difficult to know the state of a component or to locate specified resources

of a component through interrogating any single component. The query and search

mechanisms need to rely on techniques specifically designed for P2P computing, which

should involve as few as possible of peers to avoid the heavy use of bandwidth and low

search efficiency.

Chapter 3 Distributed Hypermedia Systems 31

3.2.4 Component-based Architecture

A component-based architecture comprises an architecture and a set of APIs which

define modular and reusable software components that can be deployed and assembled

into larger systems. A software component is a piece of code that encapsulates certain

functionality and publishes the operations to access the functionality at the interface

between components. Each component conforms to a prescribed behaviour common to

all the other components in the same architecture. Large software systems can be built

by assembling and integrating the existing software components.

The assumption underlying the use of component-based architecture is that certain

parts of a large system are used regularly. Rather than being written many times, the

code which encapsulates the common parts into components should only be written

once. The component-based model provides system designers with a mechanism to

develop applications by composing existing software components through their well-

defined interfaces without developing new components or changing the existing ones.

The component-based model reduces software development and maintenance costs,

and increases the flexibility of the system. As the software units of change, components

are easy to evolve and upgrade. New requirements from the changing environment can

be satisfied by developing compatible components and plugging them into the system.

Furthermore, components can be easily tested independently of the larger system.

3.2.5 Service-based Architecture

A service-based architecture1 is essentially a collection of loosely coupled services that

involve various means of connection for communication between one another. A ser-

vice is a location transparent and network addressable unit of software logic offered by

service providers to achieve the intended functionality. Compared to components, ser-

vices are coarser grained software elements that satisfy a particular requirement. They

are well-defined and self-contained, independent of the context or state of other ser-

vices. Services have published interfaces that define operations with generic semantics

encoded at the interfaces. They communicate via standard protocols and data formats.

Figure 3.1 demonstrates a basic service-based architecture which embraces three

parties: a service provider, a service broker and a service requestor. To be accessible,

a service provider describes its services and publishes the specification to a service

1A service-based architecture is also known as a service-oriented architecture (SOA).

Chapter 3 Distributed Hypermedia Systems 32

�������

���	��

�������

����
���
�������

��������

�
��
��
�

�����
��

����	�

FIGURE 3.1: Service-based Architecture

broker which is an intermediary between the service provider and the service requestor.

The service requestor locates a service of interest and determines how to communicate

with the service by issuing queries to the service broker. The service broker looks

up for the compatible service and sends the published interface description back to

the requestor. Upon the receipt of the information of the service required, the service

requestor formulates a request according to the specification and poses it to the service

provider. Subsequently, the service provider offers the expected response to the service

requestor.

Employing a service-based architecture in software development brings many ben-

efits. The facilities of dynamic discovery and binding to a service enable the service

providers to run their services at the location they prefer according to the infrastructure

and technical support. Multiple service components allow developers to specialise in the

task they are experienced in. The independent development realises better parallelism,

resulting in rapid delivery of the product. Effecting services as smaller pieces of logic

simplifies the location of errors and defects, as well as the modification to accommodate

new commands and requirements.

Web services are an example of implementing a service-based architecture. They

are at the heart of the service-based architecture because they are built on top of many

well-known and platform independent protocols, such as XML, WSDL2, SOAP3 and

UDDI4, which fulfill the requirements of the service-based architecture. XML provides

a cross-platform approach to data encoding and formatting. WSDL supplies a model

and an XML format for describing Web services. SOAP, built on top of XML, de-

fines a way to package XML-based information for exchanging structured and typed

2Web Service Description Language
3Simple Object Access Protocol
4Universal Description, Discovery and Integration

Chapter 3 Distributed Hypermedia Systems 33

information across system boundaries. RPCs5 can be encapsulated in SOAP messages,

through the SOAP HTTP binding, and dispatched across systems to invoke the target

services. UDDI specifies how to publish and discover information about Web services

via distributed Web-based information registries.

3.3 Development Traces

This section will document and analyse a cross-section of hypermedia systems that

adopt the models illustrated in the previous section, with the exception of systems hav-

ing a service-based architecture. This is because service-based hypermedia systems

have yet to be implemented. As the most popular distributed hypermedia system, the

World Wide Web will be presented in the first place. In the following subsections, dis-

tributed examples selected from the open hypermedia community are presented which

demonstrate how the open hypermedia community has made efforts to overcome the

limitations existing in closed hypermedia systems, such as the World Wide Web.

3.3.1 The World Wide Web (client-server)

The World Wide Web (also known as WWW, W3 and the Web) was defined by Berners-

Lee (1996) as the universe of global network accessible information. As of today, it

has become the most widely used and successful distributed heterogeneous hypermedia

system. The Web was developed in 1989 at CERN (European Laboratory for Particle

Physics) as a project led by Tim Berners-Lee and was intended to serve as a hypertext

system for international cooperation between physicists. Although hypertext systems

had been a reality for many years, there were no global systems to facilitate the desired

cooperation. In particular, the variety of network information retrieval protocols and

workstations with varying display capabilities hindered researchers in achieving the

goal.

The Web aimed to manage a widely distributed set of computers running differ-

ent applications that employed different data formats. To this end, the Web provides

a common naming scheme, the Uniform Resource Identifiers (URIs), to point to any

document of any kind available via a number of different Internet protocols. For in-

stance, a core network access protocol, the HyperText Transfer Protocol (HTTP), has

been developed to support references between information in a hypertext system. The

5Remote Procedure Calls

Chapter 3 Distributed Hypermedia Systems 34

Web also comprises an important document format, the HyperText Markup Language

(HTML), which enables the creation of documents that are portable from one platform

to another. These three important specifications laid the foundation for the success of

the Web.

����������	
���
�		�	��

��	��������		�	���
��	�����������

����
� ��� � ����

�����

�����

�������

����

 �����!�

"#������

����

FIGURE 3.2: Web Architecture
(Berners-Lee et al. 1992)

The Web, like many other applications with a global scale, employs a client-server

model, see Figure 3.2. The clients, primarily in the form of Web browsers for interactive

use, are responsible for collecting requests for documents from users and sending them

to Web servers. The servers, upon the receipt of requests, retrieve documents and send

back the answers that may be in any other format. During each transaction, the server

establishes a connection between the client and itself. The connection can be terminated

by either the client or the server, or both.

From the point of view of OHSs, the Web is a closed hypermedia system. In the

first place, a link on the Web is bound to a particular object in a source document in the

form of mark-up within the content data, and its destination is described through the aid

of a URL (Uniform Resource Locator)6 or a script7. The embedded link model makes

the movement of data and the editing of links a very convenient procedure. However, it

is difficult to maintain the referential integrity of links if the movement of data breaks

6A URL is an example of the URI that identifies a resource by means of a representation of its primary
access mechanism.

7In the context of the Web, script languages are often written to handle forms of input or other services
for a website and are processed by either the Web server or the Web browser.

Chapter 3 Distributed Hypermedia Systems 35

the binding of the links to their associated objects, raising the dangling link problem

(Davis 1998). Secondly, data are restricted to be imported into a proprietary format,

for example the HTML format. Links on the Web may be created in document formats

other than HTML or image formats. The traversal of such links in a document will reach

dead ends with no links to follow if the application that displays the document has not

been enabled to support hypermedia linking. Moreover, links on the Web can not be

applied to data stored in other applications since they are embedded within the content

data and belong exclusively to the owner of the document. Finally, as a universe of

electronic information, the Web has no full-text search facilities of its own and relies on

external search engines. These search engines index much of the Web document’s con-

tent but lack mechanisms for providing either user’s context or the document’s context

to aid in comprehension.

3.3.2 DeVise Hypermedia/Webvise (client-server/three-tier)

The DeVise Hypermedia (DHM) framework, developed as part of the DeVise project

at Aarhus University, Denmark, was an object-oriented environment for developing ad-

vanced hypermedia systems (Grønbæk et al. 1993, Grønbæk and Trigg 1994). The

designers took the Dexter hypertext reference model (Halasz and Schwartz 1994) as the

starting point and turned it into an object-oriented design and prototype implementation.

DHM was based on the client-server architecture, see Figure 3.3. The application

layer, which corresponded to the within-component layer in the Dexter model, repre-

sented the diverse space of applications and viewers that could be integrated with DHM.

The data objects were stored in the hypermedia database (the physical storage layer),

or otherwise maintained by the applications and viewers. The communication, runtime

and storage layers captured the DHM class hierarchies. The communication layer pro-

vided a uniform interface to the applications and viewers in the application layer. The

hypermedia services runtime classes defined the generic behaviour of hypermedia sys-

tems. The storage classes represented the conceptual schema for data objects in the

object-oriented database. The object-oriented database primarily served as a perma-

nent storage for hypermedia data objects. The object distribution mechanisms aimed to

facilitate linking between hypermedia data objects stored by different object-oriented

databases.

DHM supported bidirectional links with multiple endpoints. Links were stored in

a central link database. In contrast to the Dexter model, DHM alloweddangling links

Chapter 3 Distributed Hypermedia Systems 36

����������	

	���
���

����������

��������

��	������������

�������

�������

����������	�� ����������	��

�������

����������

��������

��������

�����	������	

��������

 �!����"����������	

#��$�	����

����������	�%����

�& ��$�	'�����	�	�

%�����

�����	������	

%����

��	����

%����

��������%����

���	��������

��$�������

FIGURE 3.3: DHM Architecture
(Grønbæk et al. 1997)

to exist when components8 were deleted. Options as to dealing with the dangling links

when link following occurred, were provided to users. The users might choose to either

delete the link or the endpoint, or enable re-linking to another destination. Furthermore,

DHM motivated the awareness of link directionality. The designers considered three

kinds of directionality of links. Semantic direction revolved around the semantic rela-

tionship between components connected by links. Creation direction emphasised the

sequence of the creation of link endpoints, whereas traversal direction specified the way

a link should be traversed. DHM supported selection of both creation direction and

traversal direction by means of an attribute mechanism that recorded direction values.

Support for semantic direction implicitly relied on the same attribute mechanism.

DHM tackled two integration related problems which the Dexter model did not

address. First, Dexter does not distinguish between components whose contents are

managed by the hypermedia and those whose contents are managed by third-party ap-

plications. DHM addressed this issue by introducing a component ‘wrapper’ for appli-

cations and their data objects. If stored by the hypermedia system, data objects became

part of the content of an atomic component9. Otherwise, they would be separately

stored and referenced by the content of the component. Therefore, DHM was able to

8In the context of the Dexter model, a component is the fundamental entity and basic unit of address-
ability in the storage layer.

9Atomic components are the primitive in the storage layer.

Chapter 3 Distributed Hypermedia Systems 37

link to documents that were created by third-party applications. Second, Dexter only

proposes the use of composite components10 to model application documents having

internal structure, while leaving how to utilise the composite component’s structure to

model the internal structure of an application document unspecified. DHM allowed

composites to directly refer to data objects. Meanwhile, the internal structure of a data

object could be modelled by its encapsulating data objects. Therefore, a composite and

its nested components could refer to both the enclosing object and its internal structure.

Implicit and asynchronous collaboration modes were supported by the object-

oriented database at the physical storage layer which provided transactions, locking

and event notification facilities. A transaction in DHM could be of arbitrary length, as

called for by Halasz (1988). For concurrency control, read and write locks were avail-

able to clients from the object-oriented database server, and a flexible read/write locking

protocol which specified a set of rules followed by all transactions when requesting and

releasing these locks was also developed. Clients could subscribe to a variety of events

on shared hypertext. If any changes to the shared hypertext occurred, a notification

would be sent from the object-oriented database server to all clients who had opened

the hypertext with read permission and subscribed to notifications about changes.

DHM was extended to Webvise, an open hypermedia service which augmented the

Web by providing hypermedia structures such as links, contexts, annotations and guided

tours11. Hypermedia structures were stored in a hypermedia database and manipulated

via Java applets and a proxy server. The Webvise proxy server checked the Webvise

server for every document being viewed in the browser and tried to find potential ex-

ternal structures to be compiled into the document (Grønbæk et al. 1999). Microsoft

Internet Explorer, Microsoft Word and Microsoft Excel were extended with menus or

toolbar extensions to support the integration with Webvise clients via the COM12 in-

terface. For each application augmented with hypermedia services, the Webvise client

designed and implemented an application wrapper responsible for communicating with

the integrated application. In addition to linking to/from HTML Web pages, Webvise

also supported open hypermedia linking of multimedia contents.

10In contrast to atomic components, composite components are those constructed out of other compo-
nents.

11Webvise could be accessed via an ordinary URL.
12Component Object Model

Chapter 3 Distributed Hypermedia Systems 38

3.3.3 Microcosm TNG (peer-to-peer)

Microcosm TNG (The Next Generation) was a framework for an open and extensible

distributed hypermedia system. It aimed to facilitate distributed information sharing

and organisation and provide extensible distributed services (Goose 1997). Microcosm

TNG inherited the core philosophies of Microcosm, whereas its design demonstrated

a significant departure from the original Microcosm architecture (see Figure 2.4). Fig-

ure 3.4 depicts the architecture of Microcosm TNG which exposed a centralised P2P

(see Section 5.3.1) nature. Peers appeared in the form of user sessions in Microcosm

TNG. A user session discovered services of interest by interrogating the message router

that kept a record of registered service providers both inside and outside (by exchanging

registration information between message routers) the domain.

��������	
��
�

���������

��	

�����

��	����

�������
� ��	
��

������ �����	

������ ��	
��
�

�����

��	����

�������
�

�����	

�������� �������	

�����
�������� �������
��������

�����������

�

�����������

�

������ ��	
��
�

�����

��	����

�������
�

�������
��������

�����������

�

FIGURE 3.4: Microcosm TNG Architecture
(Goose 1997)

When Microcosm executing on a single machine was applied to large scale com-

mercial applications, it yielded a slow performance. The observation therefore entails

the distribution of processing load since spreading workload across a number of ma-

Chapter 3 Distributed Hypermedia Systems 39

chines may lead to a reliable, efficient and flexible system. To divide and distribute

the responsibilities of Microcosm involved adapting its two central modules: the Filter

Management System (FMS) and the Document Control System (DCS). The FMS was

adapted to enable communication with remote instances of Microcosm over the Inter-

net via TCP/IP13 sockets, thus messages being routed directly to the specific published

filters. The DCS was extended to facilitate document retrieval from a remote host by

adopting a URL-like format of document identifiers that were uniquely associated with

every document under control.

Filters in Microcosm TNG discarded the chain architecture of the ordered and se-

rial nature in the original Microcosm. Each process registered with a message router to

gain conversation capability with any other registered process in the system. Messages

would not have to encounter all processes in the filter chain but only get involved with

those of interest.

A new Heterogenous Communication Model (HCM), utilised as a communication

layer, was designed to support the system to function effectively when employed in a

heterogeneous and distributed environment. An HCM was characterised by the adoption

of a customisable process addressing scheme which covered the user session identifier

to which this process belonged, the hypermedia application name to which this process

belonged, the name of the Microcosm TNG process, the identifier of the Microcosm

TNG process, the document upon which this process operated and the service offered

by this process. Message passing between processes on different machines could take

place on the basis of a user session, an application, a process, a document, a service or

combinations of all.

The message router within a user session was a logical container for all processes

registered with the same message router. It served as a mechanism for processes to

dynamically advertise and withdraw their services. Moreover, the message router was

responsible for coordinating communication between processes that wished to send out-

going messages to other registered service providers. When inter-session communica-

tion occurred, a local message router needed to forward all messages to the remote

message router in another session in case any process in that session might have interest

in them.

Each user session was also accompanied by a process manager which supported

distributed process management. The distributed invocation of processes on remote

machines was realised through the remote shell (rsh) in Unix.

13Transmission Control Protocol/Internet Protocol

Chapter 3 Distributed Hypermedia Systems 40

A domain denotes a logical set of machines in which the process manager can

spawn processes. A domain daemon process was introduced to provide a single point

of contact within each domain. Beside, the domain daemon offered a single point of

contact to users from other domains. Each message router within a domain is required

to register their network address with the domain daemon. Therefore, message routers

were freed from pre-defined port numbers for communicating with service providers.

Rather, they could dynamically allocate network connections. The HCM enabled pro-

cesses to act as both a server and a client depending upon the roles they played.

Information regarding hypermedia applications available across different domains

was listed by an optional utility called theappbrowser. Once a user selected desirable

domains, theapp browser would contact the chosen domain daemons. The latter, in

turn, asked the registered message routers to reply the request by listing all hypermedia

applications published from them. The retrieved information would then be presented

to the user by theappbrowser.

Although Microcosm TNG exhibits a flexible P2P nature, it is not clear in Micro-

cosm TNG how the remote domain daemons could be located, which is the key element

for efficient search in a P2P environment. The design did not address issues such as ser-

vice (or resource) description and discovery arising in more unexpected and dynamic

environments characterised by an ad hoc nature.

3.3.4 HOSS (component-based)

As hypermedia structuring principles had been applied to a broad variety of domains,

the hypermedia community realised the necessity of opening the set of structural ab-

stractions supported by an OHS. This gave rise to the component-based open hyperme-

dia system (CB-OHS). A CB-OHS comprises an open set of middleware components

with well-defined APIs. Its architecture typically defines three layers: the application

layer, the structure model layer and the storage layer. The storage layer (back-end)

stores the fundamental structural abstractions and provides them to the structure model

layer. The structure model layer (middleware) tailors them to domain specific structural

abstractions. The application layer (front-end) consists of various hypermedia enabled

applications that edit and display contents and structure from the structural model layer.

Wiil and Nürnberg (1999) divided the evolutionary history of CB-OHSs into two

phases: the first generation CB-OHSs and the second generation CB-OHSs. The dis-

tinction lies in the component framework they adopt. As one of the first generation CB-

Chapter 3 Distributed Hypermedia Systems 41

OHSs, HOSS provided its proprietary component framework14. HOSS was a structure

aware hypermedia operating system prototype developed at the Texas A&M University

(Nürnberg et al. 1996). It was advocated in HOSS that the basic structural abstractions

of different domains be incorporated into the operating system and therefore issues such

as integrity, consistency and semantics locality could be in reach by a structure aware

operating system.

There were three basic entities in HOSS: data, structure and behaviour. Data was

defined as information associated with the hypermedia system, while structure identified

the interrelationship between data. Behaviour was introduced to implement the seman-

tics of structure. HOSS emphasised the separation of these factors, which resulted in

more usefulness and flexibility than those of other systems.

��� ������	
����

�
	�	
	�
	�	����

�
���
��	���	�	�����
	�	��� ������ ���	������

���������������
�
	�	��� ������� ������	
������
�
	�	���

	�����
�� ��
�

��
�

������� !

FIGURE 3.5: HOSS Architecture
(Nürnberg et al. 1996)

The architecture of HOSS is shown in Figure 3.5. HOSS provided some toolkits

(for example, HCMT15 and HPMT16) for supporting appropriate communication and

14As will be mentioned in Section 3.3.6, the second generation CB-OHSs typically adopt existing
component technologies and frameworks.

15HOSS Communications Model Toolkit
16HOSS Process Model Toolkit

Chapter 3 Distributed Hypermedia Systems 42

process models. These toolkits were constructed on top of SunOS 5.4, thereby utilising

facilities provided by the operating system. The HOSS HBprocs comprised the Ver-

sioned Object Manager (VOM) and the Association Set Manager (ASM) which imple-

mented data objects and structural services respectively. The VOM was implemented

on top of some Storage Manager (SM) outside the hyperbase. The ASM was imple-

mented as a client of the VOM and therefore inherited the VOM’s versioning support

for its abstract data types. Sprocs (also called structure processors) were clients of the

ASM and dealt with different kinds of structure. Metadata Managers provided abstrac-

tions to other system processes by resorting to a location services scheme to publish

their abstractions and ports. The Hsh (HOSS shell) acted as a command interpreter

system which allowed users to manipulate structure from the outside of an application.

Applications could take advantage of HOSS once necessary modifications had been

made. This typically involved at least an open linking protocol so that the data of the

applications could be linked by data from other applications through the Link Services

Manager17. By replacing the file system in a conventional operating system with a hy-

perbase, HOSS was enhanced with both data and structure management capabilities and

applications could manipulate objects through the hyperbase.

HOSS exhibited some characteristics that could not be found in other operating

systems. To begin with, the pre-fetching scheme was modified to rely on the semantic

locality, which was based on the awareness of structure rather than that of distance in the

logical memory. Furthermore, by threading behaviours in a structure-caching process,

communication only occurred inside a process, yielding a gain in efficiency.

3.3.5 HyperDisco (component-based)

HyperDisco (Wiil and Leggett 1997) was a project built on a decade of research on the

hypermedia infrastructure at Aalborg University in Denmark started in the late 1990s.

Its mission was to work towards innovative hypermedia infrastructures for flexible in-

tegration and extension of tools and to use the lessons learnt to serve the future infras-

tructure for the Internet.

The HyperDisco infrastructure comprised distributed workspaces, tool integrators

and participating third-party tools (see Figure 3.6), and was based on a hyperbase man-

agement system (HBMS) (see Section 2.3). Tool integrators enabled distributed het-

erogenous tools (or applications) to participate in hypermedia services, and controlled

17The Link Services Manager was one of the Sprocs responsible for structure caching, behaviour
loading and inter-application linking.

Chapter 3 Distributed Hypermedia Systems 43

���� ����������������

���������	
���
 ���������	
���

��

����� ��

����� ��

�����

FIGURE 3.6: HyperDisco Architecture
(Wiil and Leggett 1997)

access and operations on workspaces. A workspace was an autonomous HBMS which

stored and manipulated a set of multimedia files in addition to providing a wide range

of hypermedia services to participating tools. Workspaces could be private, public or

belong to a group. A legal user was allowed to create links between documents in differ-

ent open workspaces and collaborative users could share workspaces. Tool integrators

and workspaces respectively implemented two layers of hypermedia functionality in

HyperDisco: the integration model layer that supported integration and the data model

layer that offered hypermedia storage services for hypermedia objects. The integra-

tion model encapsulated tool dependent link services and relied on the data model for

essential operations on hypermedia objects.

The data model in HyperDisco was object-oriented and it supported a set of hyper-

media object types: anchors, nodes, links and composites (Wiil and Leggett 1996). The

Node class, Link class and Composite class were subclasses of the Component class

which inherited facilities from its superclasses, such as the Concurrency Control, the

Notification Control, the Version Control, the Access Control and the Query & Search

classes. The Anchor class was an immediate subclass of the Query & Search class

and new subtypes of the Anchor class could be tailored by creating subclasses which

inherited related superclasses. Anchors and links were stored separately from docu-

ments and would be superimposed on the documents by tools. A link in HyperDisco

maintained a number of endpoints with each described by a triple (workspace name,

node identifier, anchor identifier). The tool integrator maintained the integrity of a link

involving multiple workspaces by ensuring that all workspaces connected by the link

were reachable before any operation (creation or deletion) done to it and, in response to

the consequence, making a decision about the operation. If the operation involved link

following, all workspaces containing the link endpoints would be queried against and

as many endpoints as possible would be opened.

Chapter 3 Distributed Hypermedia Systems 44

HyperDisco differed from Chimera in (at least) the following aspects. Although the

concept of workspaces in HyperDisco was analogous to that of hyperwebs in Chimera,

workspaces contained not only hypermedia abstractions such as anchors, links and con-

tent nodes, but also support for Internet distribution, access control, collaboration and

version control. Moreover, HyperDisco used its own naming scheme to allow tool in-

tegrators to locate workspaces and dispatch application requests to them, whereas the

Chimera’s client server contacted the hyperweb manager to retrieve the contact infor-

mation of the hyperweb server and then directed the end user’s request to the hyperweb

server for manipulating the hyperweb of interest, thereby avoiding the need for a name

service.

3.3.6 Construct (component-based)

Construct, developed at Aalborg University Esbjerg and Aarhus University, was an in-

stantiation of a public domain CB-OHS compliant with OHSWG18 (de facto) standards,

reference models and reference architectures (Wiil and Nürnberg 1999). In contrast to

the first generation CB-OHSs which developed its proprietary component framework

(e.g. HOSS and HyperDisco), Construct adopted existing component technologies and

frameworks and was viewed as one of the second generation CB-OHSs. The three-

layered architecture of Construct as depicted in Figure 3.7 comprised an open set of

applications, an open set of structure services and an open set of hyperstores.

The hyperstore, which was effected on top of a DBMS, offered persistent stor-

age services. The generic hypermedia service and collaboration services implemented

by the hyperstore core were provided to structure services through hyperstore inter-

faces. Different domains were supported by structure servers which tailored and ex-

tended the generic facilities from the hyperstore to domain specific services. In turn,

these services were offered to applications through structure server interfaces. Commu-

nication between components occurred in many different ways. According to Wiil and

Nürnberg (1999), as of November 1998 Construct supported communication via Java

RMI19, TCP/IP and HTTP.

The generic structure in the hyperstore was the basic structural building block. It

was tailored to represent all different kinds of domain specific abstractions provided by

structure servers, thereby allowing the use of structure across domains. Services pro-

18Open Hypermedia Systems Working Group
19Remote Method Invocation, which is Java’s implementation of RPC for java-object-to-java-object

distributed communication.

Chapter 3 Distributed Hypermedia Systems 45

����������	

���
���
������	�����
�
�

��
����
����
�������
�

��
����
����
��������

���
���
����
�

���
���
�����

�������������	�����
�
�

�����������	�����	��������

������������� ���!��"����
!!�

������������� ���!��"����
!!�

�� �

��	��
���

��
����
�

��
����

��	��
���

���
���
�

FIGURE 3.7: Construct Architecture
(Wiil and Nürnberg 1999)

vided by the hyperstore were independent of the generic structure abstractions stored,

which enabled the hyperstore to provide services with the stored abstractions unaltered.

Construct exhibited enormous extensibility and tailorability. The development and

introduction of a new hypermedia domain simply meant defining and implementing a

new middleware component to support for abstractions in the new domain. Moreover,

by adopting existing component technologies and frameworks, such as Java RMI, in-

teroperability between compliant hypermedia systems was supported, and considerable

time and efforts could be saved in both development and maintenance of Construct.

To provide both hypermedia structuring and collaboration facilities, Construct was

further developed into a structural computing environment. Structural computing shared

its main features with OHSs: separating data and structure, and providing linking func-

tionality to existing desktop applications. In particular, the primacy of structure over

data was asserted in structural computing (Nürnberg et al. 1997). Moreover, structural

computing aimed to develop environments that support multiple hypermedia domains

within a single environment. Wiil et al. (2003) proposed the use of the computer-

supported cooperative work (CSCW) technology to augment Construct with collabora-

tion facilities. The hyperstore implemented in the early Construct was extended to a

foundation services layer which included structure storage services, concurrency con-

trol services, notification control services, access control services and version control

services. The Construct structure service shown in Figure 3.7 evolved into the structure

services layer which provided a set of structural abstractions for different hypermedia

Chapter 3 Distributed Hypermedia Systems 46

domains. The infrastructure services layer, including naming and location services, was

introduced to enable other services to collaborate in the environment. Furthermore,

Construct designers stressed the implications of the awareness service, the session ser-

vice and the Construct naming service in support of asynchronous and informal collab-

oration in a conceived application scenario, and implemented these services and related

tools to demonstrate their approach.

3.3.7 Callimachus (component-based)

Callimachus was an open distributed hypermedia system with a component-based archi-

tecture as shown in Figure 3.8. The objective of the Callimachus system was to provide

a framework in which multiple hypermedia domains (e.g. navigational, taxonomic and

spatial) co-exist and structure servers of new domains can be developed.

������

���	�
��

������
�

����
�����

��������	

����
����

��

����
����

�����
��

�	����	�

�	��	
�

������

���	�
��

������
�

����
�����

��������	

����
����

��

����
����

�����
��

�	����	�

�	��	
�

����� �
���� ������

���� �����
�������������

���	���	����	�

FIGURE 3.8: Callimachus Architecture
(Tzagarakis et al. 2002)

The infrastructure in Callimachus included the fundamental functionality, such as

persistent storage, naming and notification. The template repository stored the structure

template that defined the structure model upon which structure servers operated. The

middle layer comprised an open set of structure servers that delivered domain specific

abstractions and services to clients. Each structure server contained a structure template,

a structure cache and a set of behaviours which modelled the computational aspect of

a domain, a sub-domain or an application. Behaviours were divided into services and

internal operations. Services could be accessed by clients using a specific API and pro-

Chapter 3 Distributed Hypermedia Systems 47

tocol, while internal operations were primarily used by structure servers for consistency

purposes. The structure cache was a store for domain specific abstractions of struc-

ture servers. Abstractions should be loaded into the structure cache before behaviours

performed any operation on them.

The aggregate of the middle layer and the infrastructure originated from the con-

texts in the early Callimachus (Tzagarakis et al. 1999) which only consisted of dis-

tributed contexts and applications requesting hypermedia services. Each context was

an HBMS that stored hypermedia abstractions and provided hypermedia services. Con-

texts provided a data model that described hypermedia objects, such as documents,

nodes, links and anchors. Applications obtained hypermedia services from a context

by connecting to the context and communicating with it via a common application pro-

tocol. To locate hypermedia anchors and services in distributed contexts, Callimachus

utilised the Context Name Service (CNS) which generated and managed names of an-

chors and services.

Each context possessed a CNS that managed the database of bindings between

names to attribute values of anchors or services. A CNS name consisted of a handle

and a remainder separated by a delimiter. The handle identified the CNS in which the

remainder should be resolved. When an application requested operations on an anchor,

it needed to provide the anchor name which would be subsequently sent to the CNS

of the context to which the application was connected. The anchor name was split

into a handle and a remainder by the leftmost delimiter. Looking up the database of

bindings of the current CNS identified a new context indicated by the handle. The

remainder was sent to the CNS of the derived context to be resolved. This process

repeated until the name could not be split further. The remaining name revealed the

context in which the anchor of interest was created. The attributes of the anchor were

sent back from the target context to the application that requested the information. CNS

names were independent of the underlying physical configuration of contexts. Anchor

names remained valid even if the related context server20 was reconfigured, and only

the CNS database of bindings in the context in which reconfiguration occurred required

an update.

20The context server was a process which handled client (application) connections and requests as well
as provided hypermedia services.

Chapter 3 Distributed Hypermedia Systems 48

3.4 Distributed Link Service (DLS)21

The first implementation of the Microcosm philosophy on the Web was the DLS (Carr

et al. 1995). This was later extended so that link resolution was also distributed around

the Web (De Roure et al. 1996). The DLS technology has demonstrated that it is

possible to embody the Microcosm philosophy of open linking in the Web to get extra

functionality for publishers, authors and readers.

The DLS was a hypermedia service that clients could use to make inquiries against

sets of linkbases. It comprised client-side interface tools and the server-side link service

CGI scripts. There was a main linkbase for the link server which provided server facil-

ities of the DLS. Additional linkbases existed which allowed the server to offer a range

of different sets of links, known as contexts. A personal linkbase in which users might

wish to maintain links for their own use was allocated to each user. As described in

Section 2.4.3, Microcosm allowed messages to be passed and processed along its filter

chain in a sequential way, which was not a satisfactory solution in distributed environ-

ments. The DLS abandoned the chain topology of the filters. Multiple messages in the

DLS that contained multiple requests to the link service could be processed in parallel,

resulting in much more efficiency.

Moving away from its Microcosm roots, the DLS evolved into a proxy server im-

plementation in which the link server was in the form of a link server proxy between

the browser and the HTTP server. The reasons are explained as follows. First, users

of the original DLS had to learn many new concepts along with the link service. With

the proxy server approach, the link service was embedded in the document transport

system and links were compiled and inserted into documents when they were delivered

to the browser through an adapted Web proxy server. Thus there was no need for an

extra client interface for users except a normal Web browser (Carr et al. 1998b). The

DLS client might be configured to indicate user preferences for using the link service.

A control panel was supplied in the form of an HTML form and the results are sent back

to the link server. However, the documents into which links were inserted had to be in

a well-understood format, which made the system less open.

Another reason for adopting the proxy server approach lied in the fact that the

original DLS had to work with different and constantly changing Web browsers. Fur-

thermore, clients needed to find information such as the current selection and the cur-

rent document from different applications. The information could be encapsulated as

21The DDLS inherits its core concept from the DLS and therefore this section is dedicated to presenting
the DLS in its entirety.

Chapter 3 Distributed Hypermedia Systems 49

an HTTP request and communicated to the Web browser. As Web browsers and inter-

application communication evolved, it was difficult to extract such information using

the ‘standard’ software solution. Meanwhile, revisions in operating system implemen-

tations also had an impact on the consistent way in which the DLS client worked with

the Web environment. The interfaceless proxy server approach required no extra client

software for users and thereby able to address the issues.

The simple proxy DLS also brought problems that needed to be tackled. For in-

stance, the generation and processing of a common HTTP request for a document should

be as follows. The Web browser built an HTTP request and sent it to the HTTP server.

When the document which was returned by the HTTP server passed the link server

proxy, related links would be superimposed on the document. The document was then

delivered to the Web browser for viewing. During the procedure, link processing and

document delivery had to be synchronised with each other before the requested doc-

ument with newly-inserted links was returned to the user. If link processing cost too

much time, the delivery of the requested document to the user’s browser would be de-

layed. Moreover, the newly-inserted links might be viewed as infringing the original

document content. These links might also connect to other material, which could be

against the author’s will. Therefore, the proxy DLS had to solve the problems inher-

ently in its architecture before serving links better.

A possible solution to the above issues could be separating link processing and

document delivery and allowing them to take place asynchronously. An HTTP proxy

took the place of the link server proxy. The link server was attached to the HTTP proxy

with all its components, such as linkbases and link resolvers22. The new flow of the

HTTP request which was transmitted from the browser to the HTTP server remained

the same as before. However, on its return, a copy of the retrieved document would

be sent to the link server when it passed the HTTP proxy. As opposed to the previous

approach, the links which were relevant to the document would be returned indepen-

dently of document delivery and displayed in a separate window for recommendation

purposes, which made the DLS appear as an advisory service to the user (Carr et al.

1998b).

To be precise, the DLS is more like a dynamic link service than a truly distributed

link service. This is because linkbases are maintained on a single server, and the link

resolver component is located within the same server. Essentially, linkbase data was

regarded just as another document type, so it could be processed and maintained like

any other document. Most research on distributed aspects of the DLS initially looked

22The link resolver is a component that wraps the function to resolve to links, and is implemented by
means of CGI scripts.

Chapter 3 Distributed Hypermedia Systems 50

for solutions to dealing with decentralised linkbases. For instance, the proxy DLS (Carr

et al. 1998a) proposed a DLS network model in which linkbases were scattered around

on different servers and more than one link server was introduced. Agents embodied

in the proxy enabled queries to be sent from one link server to another. However, no

algorithm for query routing was offered, and the details on the way a proxy DLS deals

with a query involving linkbases on more than one link server were not clearly defined.

In a later paper, De Roure et al. (2000) discussed query processing in a distributed

context and investigated off-the-shelf services, such as HTTP, LDAP and Whois++, as

candidate technologies for distributed linkbases. It was demonstrated in their study that

directory services could be very useful within link service infrastructures.

3.5 Summary

The main objective of this chapter is to serve as an introduction to distributed hyper-

media systems, a field that embraces fundamental notions and philosophies in terms

of architecture by which this work is inspired. To this end, this chapter described the

major models of distributed computing and detailed their architectural features. A cross-

section of systems were cited and examined to help understand the various choices of

software architecture made in the design of distributed hypermedia systems. In contrast

to others, distributed hypermedia systems that adopt a service-based architecture have

yet to be implemented.

Studying the distributed hypermedia systems presented in this chapter shows that

resources or services can be located in these systems by either posing a query to a

central authority, or typing a URL, which is known through other means, pointing to

the resource or service. However, none of these systems has provided an approach

to resource or service discovery in a more dynamic and ad hoc environment without a

central authority. This work aims to enrich research on resource discovery in distributed

hypermedia systems by addressing the issue in the unstructured P2P DDLS in which the

central control is absent, see Chapter 6.

The next chapter will present the requirements analysis and design of a centralised

P2P DDLS which draws on the ideas from both the open hypermedia and P2P comput-

ing research areas.

Chapter 4

Requirements Analysis and Design of

the DDLS

4.1 Introduction

This chapter begins with an overview of extending the original DLS into a trulydis-

tributeddynamic link service - the DDLS (Distributed Dynamic Link Service). It then

centers around the work conducted in the design of the DDLS which is based on a

centralised P2P model that encapsulates a central service directory. Several aspects

of software engineering have been involved, ranging from analysis, design and proto-

typing, to evaluation, with the design of the software architecture being the primary

concern. For explanatory purposes, this chapter presents two prototypes that adopt a

client-server architecture - a common architecture shared by many OHSs (see Chapter 2

and Chapter 3), and a centralised P2P architecture, respectively. Finally, an evaluation

which consists of an operational analysis and feature comparison of both prototypes is

presented in detail.

4.2 Overview

It was identified in Section 3.4 that the original DLS was a dynamic link service rather

than a truly distributed link service. Linkbases, specified by users as a context for link

resolution and retrieval purposes, could be dynamically added or removed from the pro-

cess of link resolution and retrieval. All linkbases were maintained on a single server,

and the link resolver which provided hypermedia link services was located within the

51

Chapter 4 Requirements Analysis and Design of the DDLS 52

same server. The original DLS did not exhibit any distributed feature in terms of either

linkbases or link services.

Decentralising linkbases and link services is driven by the phenomenon that the

distinction between the role of a link service provider (a server) and that of a link service

requestor (a client) increasingly blurs. In a collaborative environment for example, a

single program may be required to act as either a server, or a client, or both. This

requirement cannot be fully satisfied by a client-server link service which may use a

central link server to manipulate linkbases distributed across the system, or use a central

repository to maintain linkbases while deploying link servers across multiple hosts.

Decentralising linkbases and link services is enabled by P2P computing (see Sec-

tion 5.2). Distributed systems based on the P2P paradigm are characterised by the

equal capability of participating nodes and the decentralisation of control, and such a

paradigm can be used to support a distributed OHS for collaboration in various settings.

A P2P system, in terms of the software architecture, falls into one of the following

main categories: the centralised P2P, the unstructured P2P and the structured P2P. The

main feature that makes the centralised P2P system different from the rest is its use

of a central service directory for resource publishing and discovery. In structured P2P

systems, the network topology and the placement of data objects are precisely deter-

mined, whereas in unstructured P2P systems they are not. More details can be found in

Chapter 5.

The centralised P2P model is closest to the traditional client-server model in the

sense that both maintain some form of centralisation1. This centralisation is crucial in

reducing the complexity of designing and implementing a P2P system. For instance, in a

centralised P2P system service/resource discovery involves posing a query to the central

authority for locating service/resource providers, whereas in a structured or unstructured

P2P system, carrying out the same task requires more complex search mechanisms.

More importantly, if the collaborative environment is well-arranged, for instance the

presence of a central service directory is allowed, the centralised P2P model will suffice

for supporting collaboration. This work therefore starts from designing and exploring

the centralised P2P DDLS. For explanatory purposes, two DDLS prototypes based on a

client-server architecture and a centralised P2P architecture respectively are described

later in this chapter.

The overall aim of this work, as stated in Section 1.3, is to investigate how the open

hypermedia approach can be enhanced by P2P technologies to support collaboration in

1However, the former requires that the functionality of both a provider and a requestor should be
implemented in a single program, while the latter assigns them to different programs.

Chapter 4 Requirements Analysis and Design of the DDLS 53

distributed environments. Such an aim implies that this work also needs to address is-

sues that would arise from environments of an ad hoc nature. An ad hoc environment

typically excludes the presence of any central service directory, and together with the

specific requirements for the DDLS applicable to such an environment, it invalidates

the use of a structured P2P model (see Section 5.4.2.3). Adopting an unstructured P2P

architecture poses new challenges to this work, with resource discovery being the most

crucial and complex issue to tackle. This work will later investigate the approach to

implement the unstructured P2P DDLS and develop mechanisms to enhance its perfor-

mance of supporting collaboration in ad hoc environments (see Chapter 6 and Chapter 7

for details).

4.3 Requirements Analysis

The DDLS aims to facilitate resource sharing-based collaboration between a community

of people with similar knowledge background. It is a tool that empowers any of its

users to take advantage of knowledge of peers to assist his/her own activities. This is

achieved by discovering related documents from peers and providing them to the user

who requests the assistance of peers’ knowledge. The peers’ knowledge is implicitly

conveyed by the way documents are categorised and the information about documents

is annotated.

The intended users of the DDLS are professionals in an organisation who rely on

computers to deal with their daily work. The DDLS users should be able to use the link

service, after suitable training, to store, organise and manipulate links referring to the

documents of interest.

The primary requirements for the DDLS are summarised as follows:

• The DDLS shall support users to store links that refer to documents of interest

and to maintain them in linkbases.

• Links shall be either manually populated during users’ browsing activities, or

automatically harvested from other sources.

• The DDLS shall have no restrictions on the content of the documents that are

involved in the linkbases - documents can be related to either a specific domain

or very diverse domains.

Chapter 4 Requirements Analysis and Design of the DDLS 54

• Users shall be in complete control of their linkbases. For instance, they can either

organise and manipulate their own linkbases at will, or place access restrictions

on the linkbases.

• When a user decides to obtain documents of interest from peers, all linkbases that

have been declared as public across the system shall be visible and accessible to

the user.

• The DDLS users shall not be aware of the operational difference between access

to public linkbases and access to their own linkbases, with the exception of that

caused by the delay of inter-network transmission.

• Every user shall have access to the public linkbases of others if permitted. The

operations he/she can conduct on the linkbases, however, include read and search

only.

• The DDLS search mechanism shall support document discovery among multiple

sources which are decentralised. A search shall be conducted based on various

criteria.

4.4 Design

The analysis in the previous section has established an understanding of the require-

ments for the DDLS from all perspectives. These requirements are to be satisfied by

tackling three main issues identified in this section: resource description, organisation

and operations, user interface and system functionality, and architecture.

4.4.1 Resource Description, Organisation and Operations

Linkbases are the repositories in which links are stored, organised and manipulated.

They are the most essential resources of the DDLS, as they are in the DLS, since the

main objective of a link service is to serve links rather than anything else. For each user,

different ‘context’ linkbases should be available for them to select from. By choosing

different contextual linkbases, users can specify the link set for their current information

needs. Linkbases should be represented in a manner that facilitates associated organi-

sation and operations. To this end, the XML model and syntax were chosen to express

linkbases in the DDLS.

Chapter 4 Requirements Analysis and Design of the DDLS 55

More than just a mark-up language such as HTML, XML is a meta-language that

can be used for defining new mark-up languages. Instead of replacing HTML, XML is

designed to complement it. HTML is currently only used for formatting and displaying

data, whereas XML is employed to represent the contextual meaning of the data. XML

has a number of advantages over HTML. Firstly, it separates content from presentation

of the document. If the content is updated, the document can still be consistently pre-

sented. HTML is unable to provide this reusability. Although the export of a document

in HTML can be done automatically, it is vulnerable to the change of the data content

of the document. Secondly, by specifying different presentation styles, with XML one

can give a document a different look upon requests when displaying the content, while

HTML usually gives one view of the data. Furthermore, HTML is not extensible so

application developers can not create their own tags for specific circumstances, whereas

in XML this is easily achieved since application-specific tags can be customised to meet

new requirements. Finally, for the description of data in a portable format, XML ensures

platform independence and interoperability between hosts.

For instance, in a DDLS linkbase, a link for a particular user as will be men-

tioned later in this section has the format as in Figure 4.1. Each link is described as a

triple (description, source and destination endpoints) and both the source and destina-

tion endpoints are further described through a field<data> that contains a field<url>

indicating the source and destination anchors of the link.

<linkbase>
<link id=“001”>

<description>acamedic-related.research</description>
<endpoint direction=“source”>

<data>
<url>http://www.rg.cs.university.ac.uk/projects/</url>

</data>
</endpoint>
<endpoint direction=“destination”>

<data>
<url>http://www.cs.university.ac.uk/projects/GIANT/</url>

</data>
</endpoint>

</link>
</linkbase>

1

FIGURE 4.1: An Example of Using the XML model and Syntax to Represent the
DDLS Linkbase

Each link entry in the linkbase may potentially have more than one source or desti-

nation anchor, which provides flexibility in dealing with all kinds of links. This feature

essentially provides a useful manipulation of generic links (see Section 2.4.3). Links

Chapter 4 Requirements Analysis and Design of the DDLS 56

can be searched by their link id (identity), description, source anchor or destination

anchor.

Linkbases are usually structured in a hierarchical way to facilitate the organisation

of information into categories. A tool that enables users to organise linkbases hierar-

chically in response to their primary content, is provided in the DDLS. In the hierarchy,

the intermediate nodes are analogous to directory listings in the conventional file sys-

tem and leaf nodes represent the real linkbases which contain links and the associated

information about the links. For example, if a user is a member of academic staff at

a university, a linkbase can be specified for his/her academic related material and an-

other linkbase for hobbies. In the academic related context, the user may have different

linkbases for research, teaching and publication, respectively, similarly for the hobby

linkbase.

The DDLS currently support three primitive linkbase types:

• Private linkbases: linkbases that belong to their owners (as well as their creators)

and are inaccessible to others.

• Public linkbases: linkbases that belong to their owners who grant permissions to

all the other users for accessing these linkbases.

• Personal linkbases: an aggregation of both private and public linkbases of the

same owner.

Users have all permissible rights over their personal linkbases, such as creation,

deletion and update of links in linkbases, and they grant access permissions for opera-

tions on their linkbases to other users upon request. These operations typically include

only search or retrieval of a specific or set of links. To increase the interoperability of

linkbases among different users, all linkbases in the DDLS may need to conform to the

same specification of organisation.

4.4.2 User Interface and System Functionality

Figure 4.2 and Figure 4.3 show the graphical user interface of the DDLS, through which

the primary hypermedia functionality available in the DDLS can be accessed and the

system can be configured. Two tabs, ‘Link Service’ and ‘Linkbase Config’, were de-

signed to serve the purposes, respectively.

Chapter 4 Requirements Analysis and Design of the DDLS 57

FIGURE 4.2: Screenshot of the DDLS User Interface - the ‘Link Service’ Tab

Both navigational facilities (link traversal) and authoring facilities (link creation,

update and deletion) are provided through the ‘Link Service’ tab of the user interface,

see Figure 4.2. Retrieving documents of interest is transformed into retrieving the links

that refer to the documents. In order to search for links, a user first selects from the

‘Linkbase selection’ list the linkbases that will be involved. Ticking the check box

titled ‘External public linkbases included’ indicates the search will be carried out in an

extended scope. The DDLS responds to such an action by locating all the available

public linkbases and presenting their description in the list for the user to choose from.

Other attributes that can be specified in the search criteria include the description2,

source anchor or destination anchor of target links. The ‘Search for links’ facility will

formulate a query for the search request. The query expression is typically represented

2The description of a link refers to an abstraction of the primary content of the document the link
refers to, and is not limited to the user’s selection based on which the link service will typically initiate
an action such as link following.

Chapter 4 Requirements Analysis and Design of the DDLS 58

by conjunctive operations on terms specified in the search criteria3. An empty attribute

indicates that any link matches the search criteria in terms of the attribute. After a query

is formulated, it is submitted to the associated link server. The latter, in turn, retrieves

links from related linkbases and displays the result in the ‘Available links’ table. Users

may follow any link in the result and the DDLS will dispatch the related document and

display it in a browser.

FIGURE 4.3: Screenshot of the DDLS User Interface - the ‘Linkbase Config’ Tab

A dialogue box is presented for adding new links to personal linkbases. When

prompted, a user provides information about the textual description, the source anchor

and the destination anchor of the link being added. The user can store the new link in

any existing linkbase according to the textual description of the link, or even create a

new linkbase for it. As in the DLS, the DDLS can automatically create a linkbase from

scratch by extracting sets of keywords from documents and turning them into generic

links so as to provide hypermedia functionality with minimal effort. Users can update

and remove links only from their personal linkbases.

DDLS users can configure the system, for instance, attaching or detaching personal

linkbases in response to their link service requirements, see the ‘Linkbase Config’ tab

in Figure 4.3. Linkbases are created with specified titles which capture the primary

3Support for disjunctive queries and others could also be implemented.

Chapter 4 Requirements Analysis and Design of the DDLS 59

content of documents their encompassing links refer to and inserted to certain points of

the hierarchy in the ‘Personal Linkbases’ pane, according to users’ personal views. The

removal of a linkbase will also lead to all links it maintains being discarded.

The accessibility of personal linkbases, which indicates whether the linkbases are

public or private, can also be configured by using the ‘Linkbase Configuration’ facility

the DDLS provides. Once a linkbase becomes public, it will be visible and accessible to

all users. Users are then able to select specific linkbases of interest from the ‘Linkbase

selection’ list on the ‘Link Service’ tab to personalise their query context.

4.4.3 Architecture

The centralised P2P architecture of the DDLS is illustrated in Figure 4.4. Each client,

or peer, has an associated link server, called LinkServerAgent. The LinkServerAgent

registers with the RegistryAgent, a central service directory not shown in Figure 4.4,

and expresses its capability for handling specfic messages. The main responsiblity of

the LinkServerAgent is to serve link service requests from peers. The UserAgent4 cap-

tures a link service request, wraps it in an HTTP request, and forwards it to the peer’s

LinkServerAgent. The LinkServerAgent queries against peer’s personal linkbases and

also forwards queries involving public linkbases of others to related LinkServerAgents.

A peer locates the LinkServerAgents belonging to others through the RegistryAgent.

Furthermore, a link following request will be forwarded by the LinkServerAgent to an

HTTP proxy which is responsible for sending the request to an HTTP server to fetch

the document of interest.

4.4.4 Prototypes

The two DDLS prototypes described in this chapter are based on the client-server and

the centralised P2P architectures (see Figure 4.5 and Figure 4.4). Both were imple-

mented using SoFAR5 (Moreau et al. 2000), a framework enabling rapid prototyping.

Prior to proceeding further, an overview of SoFAR is given below.

4The UserAgent is a component that simulates the functionality and presence of users. It is responsible
for interacting with and configuring the system.

5Southampton Framework for Agent Research

Chapter 4 Requirements Analysis and Design of the DDLS 60

HTTP Proxy

HTTP Server

HTTP
RequestDocument

LinkServerAgent
of Client A

HTTP
Request

UserAgent
of Client A

UserAgent
of Client C

UserAgent
of Client B

Document HTTP
Request

Related
Links

Linkbases of
Client A

Linkbases of
Client B

Linkbases of
Client C

LinkServerAgent
of Client B

LinkServerAgent
of Client C

Related
Links

Link
RequestRelated

Links

FIGURE 4.4: Centralised P2P Model for the DDLS

4.4.4.1 The Enabling Framework

SoFAR is a Java-based generic tool developed to investigate distributed information

management techniques. One of the major characteristics of Java which make it distinct

from other programming languages is that applications written using class libraries are

guaranteed to be portable across different platforms.

AgentsThe prime entities in SoFAR are referred to as agents (Jennings et al. 1998)

acting on behalf of other entity (or entities). Agents are hosted by platforms. The plat-

form is a Java Virtual Machine (JVM) and it can run a RMI registry listening on a spec-

ified port. The responsibility of a platform includes starting up agents and conducting

security check on agents’ permission to run on the intended location. Agents advertise

their services to a built-in matchmaker agent, the RegistryAgent, and express their ca-

pabilities for handling specific messages. By matching an agent’s need for services with

other agents’ ability to offer these services, the RegistryAgent can recommend a suit-

able service provider to the agent requesting the service. The RegistryAgent registers

itself with the RMI registry under a well-known URL, which makes it convenient for

other agents to locate the RegistryAgent by communicating with the RMI registry.

Chapter 4 Requirements Analysis and Design of the DDLS 61

Communication Communication in SoFAR is based on performatives. The mes-

sage intent is expressed using one of nine performatives defined in SoFAR and its con-

tent is in the form of an ontology6. By exchanging messages, agents are able to commu-

nicate information about their perception of the surrounding environment with regard

to the problem domain. Agent communication is carried out over a virtual link defined

by a startpoint and an endpoint. The startpoint is one end of the communication link

where the messages are sent from and the endpoint is the other end that extracts the mes-

sages from the communication link and forwards them onto the agent. SoFAR offers

synchronous and multicast communication via RMI.

4.4.4.2 Prototype Systems

Client-server DDLS The client-server DDLS, see Figure 4.5, possesses only a single

LinkServerAgent to serve all clients in the system. All personal linkbases are stored

and maintained locally by the LinkServerAgent. A link service request is wrapped in

an HTTP request and subsequently sent from a UserAgent to the LinkServerAgent. The

LinkServerAgent queries against the linkbases specified in the request and returns the

result, if any, to the UserAgent. If the request is regarding link following, it will be

further directed to an HTTP proxy which, in turn, forwards the request to an HTTP

server from which the requested document is fetched.

Centralised P2P DDLSThe centralised P2P DDLS is shown in Figure 4.4 and

the related description can be referred to in Section 4.4.3.

4.4.4.3 Component Interaction

From the perspective of the framework, agents in SoFAR are regarded as communica-

tion objects interacting with one another by means of a set of predefined communication

acts, or performatives. All performatives are implemented by binary methods and these

methods are wrapped in messages passed between agents when inter-agent communi-

cation occurs. The explanations for performatives that will appear in Figure 4.6 and

Figure 4.7 are outlined as follows.

• Query ref : a synchronous exhaustive search for all terms that match the predicate

being passed as an argument.
6An ontology is a formal specification that helps promote interoperability between agents. It consists

of a domain specific vocabulary and a set of assumptions about the intended meaning of words. Asser-
tions, queries and requests against the specific domain are composed by the vocabulary and exchanged
among agents.

Chapter 4 Requirements Analysis and Design of the DDLS 62

HTTP Proxy

HTTP Server

HTTP
RequestDocument

LinkServerAgent

HTTP
Request

UserAgent
of Client A

UserAgent
of Client C

UserAgent
of Client B

Document
HTTP

Request
Related
Links

Linkbases of
Client A

Linkbases of
Client B

Linkbases of
Client C

Related
Links

FIGURE 4.5: Client-Server Model for the DDLS

• Request: a performative used by an agent to request other agents to carry out

some tasks on its behalf.

Below is an example of the usage ofQuery ref andRequest:

a = this.findAgentTermsForQueryRef (new privateOrPublic ());

privateOrPublic pob = new privateOrPublic ();

pob.initNameOfLinkbase (nameOfCheckedLinkbase);

results = a[0].startpoint ().queryref (pob, null);

b = this.findAgentTermsForRequest (new createLinkbase ());

createLinkbase cl = new createLinkbase ();

cl.initNameOfLinkbase (nameOfLinkbase);

b[0].startpoint ().request (cl, null).

In the example above, an agent initially queries the RegistryAgent using findAgent-

TermsForQueryRef (new privateOrPublic ()) to find the AgentTerms of all agents that

are able to handle the predicate ‘privateOrPublic’. An AgentTerm is a term representing

Chapter 4 Requirements Analysis and Design of the DDLS 63

an agent7. The agent then asks one of the agents located (the first one in this case) to

check whether the linkbase denoted by ‘nameOfCheckedLinkbase’ is private or pub-

lic. Similarly, if an agent anticipates creating a new linkbase with a name indicated by

‘nameOfLinkbase’, it needs to query the RegistryAgent using findAgentTermsForRe-

quest (new createLinkbase ()) to discover the AgentTerms of all agents that are able

to handle the predicate ‘createLinkbase’. If there is at least one agent satisfying the

requirement, the agent can request any of the located agents to create the new linkbase.

Client-Server DDLS Figure 4.6 depicts the component interaction in the client-

server DDLS in which each client is accompanied by a UserAgent. The single LinkServer-

Agent provides all the functionality that a link service should offer, for example, adding

and deleting links from a specified linkbase (Request), searching for links according to

some criteria (Query ref), etc. The LinkServerAgent fulfils its tasks on its own without

help from any other agent.

Linkbase of
Client A

Linkbase of
Client B

Linkbase of
Client C

QR, REQ

QR, REQ

QR, REQ

Performatives:
QR

REQ

Query_ref visibility of linkbases, public
links, or private links

Request adding or deleting links

LinkServerAgent

UserAgent of Client C

UserAgent of Client A

UserAgent of Client B

FIGURE 4.6: Component Interaction in the Client-Server DDLS

Centralised P2P DDLSThe interaction between components in the centralised

P2P DDLS is shown in Figure 4.7. In the centralised P2P DDLS, a pair of agents

consisting of the UserAgent and the LinkServerAgent are supplied to each client. The

pair reside on a single host and provide the same link service functionality as those on

any other host in the system. Unlike in the client-server DDLS, a user who requests

links from the linkbases of others in the centralised P2P DDLS needs to inform his/her

UserAgent of the request which will in turn queries the associated LinkServerAgents.

The UserAgent acquires information about all the other available LinkServerAgents

7An AgentTerm comprises the following fields: object ID and runtime information about the agent
that further embodies fields such as the user of the agent, the host on which the agent is running, the type
of the agent and the time the agent is started.

Chapter 4 Requirements Analysis and Design of the DDLS 64

LinkServerAgent
of Client AUserAgent of Client A

UserAgent of Client C

UserAgent of Client B

Linkbase of
Client A

Linkbase of
Client B

Linkbase of
Client C

 QR

Performatives:

QR

REQ

Query_ref private links

Request adding or deleting links

LinkServerAgent
of Client C

LinkServerAgent
of Client B

REQ

REQ

REQ

 QR

QR Query_ref visibility of linkbases or public links

 QR

 QR

FIGURE 4.7: Component Interaction in the Centralised P2P DDLS

by submitting a query (Query ref) to the RegistryAgent. The latter queries all regis-

tered capabilities, gets the information about target LinkServerAgents, and imports the

description of public linkbases from those LinkServerAgents. All LinkServerAgents

cooperate within this scenario.

4.5 Evaluation

It was declared in Section 4.2 that the centralised P2P DDLS aimed at supporting re-

source sharing-based collaboration among a community of people in a well-arranged

environment, together with several requirements for the DDLS identified in Section 4.3.

The design of the DDLS was therefore undertaken based on such an understanding. The

prototype developed can demonstrate, to some extent, that the DDLS which adopts a

centralised P2P architecture has satisfied all the requirements. This section continues to

reveal what happens behind the scene that gives the centralised P2P DDLS its strengths

and weaknesses. This is achieved by abstracting the operations that the client-server

DDLS and the centralised P2P DDLS share in common, and conducting an analysis

and comparison of the architecture of both.

Chapter 4 Requirements Analysis and Design of the DDLS 65

4.5.1 Operational Analysis

���������

	
�����
�

������������� ���������� ���
������

�������

������������������

�������

������������������

�� �� �� ��� ��� ���� ���

� � � ��

������	
��	�

����������	
�	
��	�

�����	���

���	�

FIGURE 4.8: Composition of Task Time for a Link Retrieval Request

To facilitate understanding the typical operational procedure in the DDLS, a re-

quest for link retrieval is examined. In response to the operations that need to be con-

ducted to satisfy the request, the task time, the AgentTerm location time, the check time,

the query time and the one-way communication time are defined as follows.

• The task time is the time recorded at a link service requestor (or a UserAgent) to

send the request for links in specified linkbases, and receive either one message

with all the links meeting the specified requirement or another indicating no links

has been found.

• The AgentTerm location time is recorded from the point at which a query regard-

ing link service providers is sent from a UserAgent to the RegistryAgent until the

time a reply is received by the UserAgent which contains either a list of available

link service providers or an empty list indicating the unavailability of any link

service provider.

• The time spent in checking the accessibility of specified linkbases is called the

check time, and is calculated from the point at which the link service requestor

sends the check request, until the time it receives the result from the related

LinkServerAgent.

• For each incoming query, a LinkServerAgent searches its linkbases and retrieves

links. The elapsed time, measured on the node where the LinkServerAgent re-

sides, is the query time.

Chapter 4 Requirements Analysis and Design of the DDLS 66

• The one-way communication time refers to the period between a link retrieval re-

quest travelling from a UserAgent to a LinkServerAgent that satisfies the request,

or vice versa.

Figure 4.8 shows the composition of the task time for a link retrieval request. The

agents involved in the time fragments are sequentially labelled in italics.

The client-server DDLS and the centralised P2P DDLS may incur different Agent-

Term location time, see phase 1 in Figure 4.8, since they lead to a different number of

agents being registered at the RegistryAgent. With a linear search mechanism, the time

to locate an AgentTerm isΘ(n), givenn is the number of all AgentTerms that are being

searched. However, this difference in the AgentTerm location time would vanish if the

search mechanism supports the location of any entity to be completed within the time

that is independent of the number of the entities being searched. For instance, a search

based on the hash table may lead to the AgentTerm location time scaling asΘ(1) in

both DDLSs.

The check time is specifically defined for all link service requests regarding pub-

lic linkbases, whereas requests involving private linkbases have no such needs. The

associated phase (2) relates to a request sent from a UserAgent to a LinkServerAgent

which carries out the accessibility check and returns the result back to the UserAgent.

The check time can be the same in both the client-server DDLS and the centralised P2P

DDLS with respect to the same link service request, unless both the UserAgent and the

LinkServerAgent reside on the same node in the client-server DDLS8.

The one-way communication time is the primary metric which demonstrates the

difference between the client-server and the centralised P2P DDLSs due to their inher-

ent architectures. The difference can be illustrated by a link service request regarding

retrieval of links in private linkbases. In the client-server DDLS, the retrieval of pri-

vate links involves a UserAgent interrogating a LinkServerAgent on a different node,

whereas the same task occurring in the centralised P2P DDLS relates to the UserA-

gent querying the LinkServerAgent residing locally. The one-way communication time

in the client-server DDLS is subject to the latency in inter-network communication,

because agents reside on multiple nodes and their communication over the network un-

avoidably suffers from the latency that exists in the network.

8In the client-server DDLS, the LinkServerAgent can be practically hosted by any node. Therefore,
a node hosting a LinkServerAgent can also be hosting a UserAgent, which may lead to the accessi-
bility check occurring locally. However, the same check in the centralised P2P DDLS always involves a
LinkServerAgent and a UserAgent on different nodes. Specifying that the UserAgent and the LinkServer-
Agent reside on different nodes in the client-server DDLS is to assure that the comparison between both
DDLSs is carried out under the identical circumstance.

Chapter 4 Requirements Analysis and Design of the DDLS 67

The client-server and the centralised P2P DDLSs lead to the same query time,

provided in both cases the nodes on which the LinkServerAgents reside possess the

same computing power.

4.5.2 Feature Comparison between the DDLSs with Different Ar-

chitectures

Though prototypes were implemented based on two different underlying models, an

effort was made to keep them functionally equal in order to achieve a fair comparison.

Table 4.1 summarises the comparison in which the advantages of the centralised P2P

DDLS over the client-server DDLS are labelled with
√

.

Feature Client-Server Centralised P2P
DDLS DDLS

Linkbase organisation
√

fixed flexible
Conditions of link service delivery lenient stringent
Degree of information freshness

√
low high

Overhead of link service delivery little much
User’s dependence on a single link server

√
much little

Removal of the single point of failure
√

no yes
Scalability

√
low high

TABLE 4.1: Feature Comparison between the Client-Server and the Centralised P2P
DDLSs

• Linkbase organisationThe central LinkServerAgent in the client-server DDLS

requires the same organisational structure for all personal linkbases of different

owners, or a schema that depicts individual structures should be available and

accessible to the link server (i.e. the LinkServerAgent) otherwise. In contrast, the

centralised P2P DDLS allows each link server to organise its local linkbases in

whatever way it prefers because the link server is the only party that maintains

and manipulates a peer’s personal linkbases directly.

• Conditions of link service delivery The client-server DDLS does not require

all registered users to be online when serving link requests, because all public

linkbases are maintained on a single node and access to the linkbases does not

necessarily entail the presence of their owners. This is an advantage over the

centralised P2P DDLS in which the public linkbases are available provided their

owners are online.

Chapter 4 Requirements Analysis and Design of the DDLS 68

• Information freshness for real-time searchUsers may not be able to publish

the latest update of linkbase information to other users in a timely manner in the

client-server DDLS. This may be a consequence of the disconnection of users

from the link server. However, the centralised P2P DDLS enables modification to

be reflected immediately once a peer updates the information about its linkbases.

For example, if a peer changes the accessibility property of its linkbases, any

subsequent search associated with the linkbases will be conducted in response to

the update.

• Overhead of link service deliveryThe centralised P2P DDLS brings some extra

operations for the link service request compared to the client-server DDLS. For

example, a search for links from public linkbases in the centralised P2P DDLS

involves a UserAgent interrogating the associated LinkServerAgents to obtain in-

formation about all public linkbases and to search for links in the linkbases. The

same process occurring in the client-server DDLS typically relates to a UserA-

gent querying against a single LinkServerAgent, which yields less operations and

messages. Moreover, the centralised P2P DDLS entails more agents in operation.

Let u be the number of users,P (u) andC(u) represent the number of agents

registered at the RegistryAgent in the centralised P2P DDLS and the client-server

DDLS, respectively. The following functions

P (u) = 2u + 1, C(u) = u + 1

reveal that the number of agents in the centralised P2P DDLS increases two times

as fast as that in the client-server DDLS as the number of users increases. Al-

though the difference in location time can be eliminated through certain search

mechanisms, the cost and resource consumption of extra agents introduced by the

centralised P2P DDLS remain.

• Users’ dependence on a single link serverUsers in the client-server DDLS rely

more on the link server than those in the centralised P2P DDLS. Without the

link server, the client-server DDLS can not enable users to access their own pri-

vate linkbases since all the functionality of link services can only be accessed

through the link server. In contrast, the centralised P2P DDLS alleviates users’

dependence on a single link server by allowing each user to have his/her own link

service provider. Therefore, users always have access to their own linkbases as

well as to the public linkbases whose owners are online.

• Single point of failure The centralised P2P DDLS decreases the possibility of the

single point of failure through distributing linkbases and link services across the

Chapter 4 Requirements Analysis and Design of the DDLS 69

system and directly transferring required links from the provider to the requestor,

whereas the client-server DDLS does not.

• Scalability9 Scalability has been partially achieved in the centralised P2P DDLS

through decentralising both linkbases and link services across the system. Peers

directly obtain links from providers, and a single link service request can be pro-

cessed by multiple service providers at one time. The net effect of a decreased

number of centralised operations and that of parallelism enable the DDLS scale to

a certain degree, although the location of linkbases is still very much centralised.

4.6 Summary

This chapter discussed several design issues for the DDLS, including resource descrip-

tion, organisation and operations, user interface and system functionality, and architec-

ture. In particular, the choice of the software architecture was of primary concern. To

accommodate the requirements for the DDLS applicable to a well-arranged environ-

ment, a centralised P2P architecture was proposed and a prototype based on the archi-

tecture was developed. To facilitate the explanation and comparison, another DDLS

prototype adopting the client-server model was also developed.

The centralised P2P DDLS has demonstrated, through an analysis and comparison,

its superiority to the client-server DDLS in the sense that the former incurs less commu-

nication across multiple nodes when a link service request regarding private linkbases

is involved, thus yielding a more rapid delivery of link services. Also, the decentralised

aspect of the centralised P2P paradigm increases the autonomy of each peer and the de-

gree of information freshness, reduces users’ dependence on a single link server, elimi-

nates the single point of failure and enhances the scalability of the DDLS. It should be

recognised, however, that the centralised P2P DDLS achieves its advantages at a cost of

potentially more overhead for delivering link services, more stringent conditions of the

service delivery, etc (see Table 4.1 for details).

So far, the objective of this work is partially achieved by a centralised P2P DDLS.

To be fully capable of supporting collaboration in an ad hoc environment, the DDLS

will need to adopt an unstructured P2P model. The next chapter will identify the fea-

tures of and requirements for the unstructured P2P DDLS and explains why the existing

9The wordscalability has long been used in software development to describe the capability of a
system to function well as it is changed in order to handle increasing demand or load that it would be
placed on.

Chapter 4 Requirements Analysis and Design of the DDLS 70

approaches to different P2P systems are not sufficient to achieve the eventual objective

of this work.

Chapter 5

Rethinking the P2P Paradigm

5.1 Introduction

Initial effort to extend the traditional hypermedia link service adopting a client-server

architecture to P2P environments was described in Chapter 4. The consequence is a

centralised P2P DDLS in which resource discovery resorts to a central directory and

resource fetching is inherently based on P2P. Circumstances with ad hoc properties

preclude the existence of such a centralised directory and a delicately designed indexing

scheme and search algorithm are therefore crucial to such systems.

This chapter discusses in more detail P2P computing, an area with major concepts

and technologies adopted by the DDLS. The definition of P2P is followed by the cat-

egorisation of P2P systems based on domains to which they have been applied. This

chapter also presents a taxonomy of contemporary P2P systems based on architecture,

examines their solutions to indexing and searching resources, compares their strengths

and weaknesses, and identifies the essential properties that an indexing scheme and

search algorithm for the unstructured P2P DDLS should possess.

5.2 P2P Computing

P2P (Clark 2001) can be described as an overlay network in which a group of peers

communicate using the same networking program. Each peer possesses the same capa-

bilities and can be autonomous, i.e. taking actions independently of one another. P2P

computing is not a new technology in nature. Early distributed applications such as

71

Chapter 5 Rethinking the P2P Paradigm 72

email systems and telephone services exhibit similarity to P2P. Email systems built on

SMTP1 rely on local servers to establish connections to other peer servers for mail de-

livery, and telephone services work by setting up channels between switching offices to

support simultaneous telephone calls.

Nonetheless, the novelty of P2P technologies developed over the last few years is

that they enable Internet-connected personal computers to play more important roles

than those played by client-server or master-slave systems. Although without continu-

ous connections to a network, decentralised personal computers can establish periodic

connections to one another. Sending and receiving messages and transferring files occur

directly between these computers. In addition, splitting a computational problem into

small independent parts enables each computer to process a different part and send the

result back to a central server for collection. The P2P network aims to provide services

and resources even in environments with unstable connectivity.

5.2.1 Categories of P2P Systems

P2P systems have typically been seen in the following domains: distributed computing,

file sharing, collaborative systems and P2P platforms, according to the classification by

Milojicic et al. (2002).

• Distributed computing Distributed computing is more recently, in the late 1990s,

used to refer to harnessing the collaboration of Internet-connected personal com-

puters. By pulling together the processing power of a network of personal com-

puters, distributed computing enables large computations. Whether a distributed

computing system is also a P2P system depends on the amount of computational

tasks each computer executes and the extent of autonomy that each computer

bears. Although distributed computing utilises spare computing resources of de-

centralised computers, Internet latencies are the principal obstacles to performing

critical communications and computational tasks. This leads to a limited scope of

distributed computing domains.

• File sharing File sharing must be one of the most popular and successful P2P

application areas. Aggregating storage from distributed participants, file sharing

systems achieve a potentially unlimited area for the exchange and sharing of files

and music clips. The file reference may be the only knowledge required for file

retrieval. P2P file sharing systems enforce duplication and replication policies to

1 Simple Mail Transfer Protocol

Chapter 5 Rethinking the P2P Paradigm 73

offer availability, reliability and faster retrieval. Moreover, by building anonymity

into systems using related algorithms, information about individual peers can not

be identified (Clarke et al. 2001). Efficient location and search capabilities are

the focus of research on P2P file sharing systems.

• Collaborative systemsCollaboration at the application level can be established

among peers. Examples can be found in online games and instant messaging sys-

tems. Peers carry out the given task in collaboration with others within the same

group. An event occurring at one peer will be notified to others for corresponding

action. Collaborative systems need to provide fault tolerant schemes for event

delivery. As requested by distributed computing, capabilities to circumvent real-

time constraints are also necessary features required of P2P collaborative systems.

• Platforms P2P platforms support a wide range of P2P applications by offering

basic core functionality and high level services. Objectives of P2P platforms

include an infrastructure for network programming and computing (e.g. JXTA)

and access to Web services on the Internet from any available devices (e.g. .NET

My Services).

5.2.2 Features of P2P Systems

This section provides an overview of the features exhibited by existing P2P systems.

They help explain the mechanisms utilised by P2P systems, the advantages they offer

and the challenges designers of P2P systems face.

• DecentralisationThe definition of P2P conveys two meanings: resource decen-

tralisation and processing decentralisation. Computational resources, such as

CPU2 cycles, data and computers, could be widespread, while processing might

involve distributed data and algorithms. Compared to traditional client-server

systems, P2P systems enable resources to be stored locally and accessed without

the intervention of a central server. Therefore, individual peers gain more control

over their own resources. Furthermore, decentralisation reduces the risk of the

single point of failure commonly found in client-server systems.

• Autonomy Peers form a virtual network in which each of them can act as a server,

a client, or both on top of the physical infrastructure. They store data and perform

tasks on their own behalf instead of relying on a dedicated server. The auton-

omy is introduced by the independence of peers from the restrictions imposed by

2Central Processing Unit

Chapter 5 Rethinking the P2P Paradigm 74

infrastructure protocols and services, and it gives rise to increased complexity of

service (or resource) location. The increased autonomy also brings increased con-

cerns regarding security because policies and restrictions may need to be applied

to peers’ behaviour.

• Ad hoc behaviour The temporary presence of participants results in the ad hoc

nature of a P2P system. They may join and withdraw from the network at any

time. This may not be a significant problem for P2P file sharing systems. How-

ever, in a collaborative P2P system, the absence of a particular peer may lead to

the failure of the collaboration, although the situation could be ameliorated by

supporting transparent delay of communication to the disconnected peer. P2P

systems should consider the dynamics of their peer network and provide solu-

tions to accommodate changes of peers to maintain consistency and stability, and

increase robustness.

• Anonymity Users and machines on a network can be uniquely identified by their

IP address. It is not desirable because users may be concerned with the ramifica-

tions of their actions, publishers may be worried about being deprived of rights to

speak freely, and storage systems may need to resist attempts by external systems

to detect and spoil data. Support for anonymity is also seen as a defense against

the censorship of digital content. Research on anonymous routing protocols aims

to disassociate a user’s IP address from the traffic that results from message rout-

ing. This primarily involves initiator anonymity, responder anonymity and mutual

anonymity between a pair of communicating parties.

• Scalability Decentralisation yields improved scalability in P2P systems in which

operations and computation are carried out in a decentralised manner and so are

data storing and exchanging. Moreover, scalability is accomplished by the paral-

lelism seen in both the programming model and the communication model. For

instance, Napster (Napster 2001) achieves good scalability by introducing a P2P

communication model which allows peers to directly download files from others

that have the required documents. Good scalability should not be accomplished

at the cost of other desirable features. Recent P2P systems which employ dis-

tributed hash table (DHT) techniques, such as CAN (Ratnasamy et al. 2001),

Chord (Stoica et al. 2001) and Pastry (Rowstron and Druschel 2001), trade flexi-

ble network topology and data placement for satisfactory scalability by modelling

the identifier space for efficient lookup.

• Self-organisationThe absence of a central authority for control in some of the

P2P systems partially accounts for the dynamism they exhibit. Peers join and

Chapter 5 Rethinking the P2P Paradigm 75

leave from the peer network frequently and the system relies on its own mecha-

nism to recover from the inconsistent state and become stable. However, as the

system scales, it is very difficult to predict the scale of the future number of peers

and workload. Therefore, the probability of failure is potentially on the increase.

P2P systems should possess the self-organisation capability to function even in

the face of an enormous increase in the number of peers without the need for

re-configuration or human intervention.

• Security The direct interaction between peers results in more security concerns in

P2P systems than their alternatives, such as client-server and centralised systems.

Apart from the security requirements shared with distributed systems, P2P sys-

tems confront new challenges in dealing with security issues. For instance, direct

transferring files between peers in file sharing systems may lead to false infor-

mation from an unreliable peer. Even worse cases include the execution of code

from a malicious peer. Therefore, trust between peers is an important property

that a peer can utilise to build its evaluation of others’ reputation. P2P file sharing

systems attract many public concerns about security. In particular, the ease of file

copying raises worries about protection of intellectual property, and this is one of

the reasons that the future of Napster-like file sharing systems is always tangled

with copyright law.

• Interoperability P2P systems are highly dependent on the network topology and

supporting applications, based on which distinct protocols are developed that de-

fine the way peers communicate over the network. Interoperability facilitates

shared conversation and cooperation among peers from different systems. These

peers are therefore allowed to exchange requests and resources. The principal

reason for pursuing interoperability between different P2P systems is to avoid re-

dundant development of services already provided by other systems and to focus

on only the services that are exclusively offered by individual P2P systems. Ef-

forts towards the realisation of improved interoperability between P2P systems

include developing standards and specifications, achieving mutual understanding

between system developers, and devising an infrastructure that offers services to

accommodate various needs of ported P2P systems.

5.3 A Taxonomy of P2P Systems

Unlike the classification presented in Section 5.2.1, this section utilises a taxonomy to

classify the P2P systems into groups by architectures. This is because the architecture

Chapter 5 Rethinking the P2P Paradigm 76

aspect of P2P systems draws more interest of this work. Some of the contemporary P2P

systems and applications in each of the groups are examined.

5.3.1 Centralised P2P

A centralised P2P system typically has a central repository to maintain the information

about resources that peers in the network possess. Resource discovery in such a system

involves querying against the central repository and identifying the best peer (depending

on users’ needs) that matches the request. The address of the best peer is returned to

the query originator and the subsequent file exchange occurs directly between the two

associated peers. The centralised P2P systems require that a central peer or a group of

dedicated peers coordinate update to the information held in the repository, which may

be difficult and expensive.

5.3.1.1 Napster

Napster (Napster 2001) promoted the centralised P2P model. It was introduced in 1999

as a file sharing software to exchange MP3 files on the Web. A centralised directory (ac-

tually several) which describes how files are distributed in Napster is maintained. Nodes

register with the directory when they join the Napster network. Users run the Napster

program in order to participate in the file sharing process. If an Internet connection

is detected on a user’s computer, the Napster software will help establish another con-

nection between the computer and one of the Napster’s Central Servers. The Napster

Central Server keeps a directory of all client computers connected to it and stores infor-

mation about them. A user’s file request will be placed to the Napster Central Server

that the user’s computer connects. The Server then looks up its directory to check any

match for the request. If there is any, the Napster Central Server will return a list of

all the matches and related information about them, such as the IP address and the file

size, to the requestor. The user decides which file he/she wants to download and tries

to establish a direct connection between his/her own computer and the computer with

the desired file (also referred to as the client computer) by sending a message that con-

tains the IP address of his/her computer to the client computer. Once the connection is

established, the client computer will directly transfer the file to the file requestor. The

connection is terminated by the client computer when downloading is finished.

Chapter 5 Rethinking the P2P Paradigm 77

5.3.2 Unstructured P2P

Unstructured P2P systems include Gnutella (Gnutella 2001) and Routing Indices (Cre-

spo and Garcia-Molina 2002a). The overlay topologies of both systems have ad hoc

properties and the placement of their data objects is unrelated with the overlay topology.

Freenet (Clarke et al. 2001) is also unstructured since in Freenet the overlay topology

is loosely controlled and the file placement is based on hints3.

5.3.2.1 Gnutella

Gnutella (Gnutella 2001) is a P2P file sharing protocol. Applications that implement

the Gnutella protocol allow users to search for and download files from other users on

Internet accessible hosts. To join the system, a peer initially connects to one of the

several peers already available known by out-of-band mechanisms, hence forming an

application level overlay on top of the physical network. Once attached to the network,

peers interact with one another by means of messages. When a user wishes to search

for a file, a query is issued and broadcast to all attached nodes. The recipients may

not respond with results if they do not have any desired data object. Nonetheless, they

will further forward the query to their attached nodes. Gnutella uses limited flooding

to distribute queries by attaching a TTL (Time-To-Live) tag which specifies the maxi-

mum number of hops a query can be relayed. Replies are routed back to the peer that

originally generates the query.

The advantage of such an unstructured system is that it models the real world better

than a structured P2P system (see Section 5.3.3) with the placement of data objects

being not subject to any knowledge of the network topology. However, it is hard to

locate the desired information without flooding queries to most parts of the overlay

network. Broadcasting on every query is not scalable. As more nodes join, more queries

may be generated and transmitted. In addition, flooding needs to be curtailed at some

point, which leads to some peers with desired data objects missing from the overall

result.

Research centered around the scalability of Gnutella makes up the majority of the

work. To seek more scalable search methods, Lv et al. (2002) study alternative search

methods in a Gnutella network with several overlay topologies, including a power-law

random graph, a normal random graph, a Gnutella graph and a two-dimensional Grid.

3However, Freenet is sometimes regarded as a structured P2P system because its search algorithm
resembles those used in DHTs-based structured P2P systems (see Section 5.3.3).

Chapter 5 Rethinking the P2P Paradigm 78

They propose a search mechanism based on multiple random walks to substitute the

flooding of queries in Gnutella, and reveal through simulation that, with a fixed number

of random walkers, the multiple random walk algorithm can help locate the desired data

object almost as quickly as Gnutella’s flooding while reducing the network traffic by

two orders of magnitude in many cases at the expense of a slight increase in the number

of hops. As demonstrated by the study, scalable searches in unstructured networks are

mainly attributed to the following principles: adaptive termination of query forwarding,

reduced message duplication, and small granularity of the coverage of visited nodes.

However, Ritter (2001) argues that Gnutella is never an ideal distributed and fully

capable network and proves that Gnutella is mathematically and technologically unable

to scale to a network of any reasonably large size. It is identified that the fundamental

flaws of Gnutella lie in its major architecture and cannot be mitigated effectively without

a re-design at the most basic level.

5.3.2.2 Freenet

Freenet (Clarke et al. 2001) is a cooperative distributed information storage and retrieval

system designed to offer privacy protection and information availability. By pooling

spare disk space across hundreds of thousands of collaborative computers into a self-

organising virtual file system, Freenet allows individuals to insert, store and retrieve

files anonymously without compromising any of its principle design goals.

The basic unit of storage in Freenet is a file. Nodes in Freenet query one another

to store and retrieve files which are named by location independent keys. The keys are

typically generated by using the hash function on the text description of files provided

by users when storing files in the network. Because a key can be computed from the de-

scription of a file, the file description (rather than the key) is commonly made available

to users of Freenet by mechanisms such as websites. To optimise the search, Freenet

clusters files with similar keys on a single node and maintains the information of suc-

cessful searches in a local routing table. Simulation performed by Clarke et al. (2001)

shows that the request path length of Freenet scales approximately logarithmically with

respect to the network size.

The operations supported in Freenet include insertion of and search for files, with

both working in a similar way. Each request is given a pseudo-random identifier and a

hops-to-live limit, the latter of which is analogous to the TTL employed by Gnutella.

If a search message is received by a node with the desired file, the entire file will be

returned as a successful result and the file’s key will be inserted into the local routing

Chapter 5 Rethinking the P2P Paradigm 79

table. This is carried out recursively until the file is returned to the initial requestor

with the file replicated at each node along the search path. Otherwise, the message

is forwarded to another node with the most similar key in the local routing table. An

insertion operation starts with a search operation. If a file with the specified key is found,

a collision notification will be sent to the insertion originator. If no file is discovered,

the new file will be placed on a node with files sharing similar keys. New nodes should

contact at least one node that already exists in the network to bootstrap themselves into

the system and perform a search request for announcing their presence.

5.3.2.3 Routing Indices

Crespo and Garcia-Molina (2002a) propose a distributed search in unstructured P2P

systems which builds Routing Indices (RIs) to facilitate query forwarding. RIs do not

maintain any dedicated node as the repository for indices of resources in the network.

They utilise the topic information of documents to create related groups. Each peer has

a local RI to maintain information on different topics along each path to its neighbours

which, in turn, collect topic information along each path to their neighbours using the

same mechanism. The way information is utilised and stored makes it expensive to

create and update RIs. Therefore, updates are suggested to be processed in batches if

doing so will not yield significant difference. RIs assist peers to forward queries to

good neighbours. The goodness of a neighbour is based on the number of documents

on specified topics. RIs deliver a good search result in a domain in which the category

of documents can be easily identified. However, as the number of categories increases,

RIs will consume a large amount of space for the maintenance of indices. Moreover,

the close interrelationship between RIs of related peers entails the accuracy of each

RI. RIs consist of three schemes: the compound, the hop-count and the exponentially

aggregated RIs.

The Compound Routing Indx (CRI) is a data structure that summarises both the

number of documents along each path and the number of documents on individual top-

ics. Given the index, the goodness of a neighbour can be computed using a simplified

model. The value of the goodness indicates the sequence of query forwarding and a

query is first sent to the best neighbour. The CRIs do not reflect the difference in hops

(or cost) that queries should travel to obtain the documents of interest, and therefore

they do not produce satisfactory results.

Alternative RIs are presented which include hop-count RIs and exponentially ag-

gregated RIs. The core part of a hop-count RI is a variant index of a CRI. The hop-

Chapter 5 Rethinking the P2P Paradigm 80

count RIs group documents based on hops. Therefore, the goodness of neighbours can

be computed based on a model that takes into account the cost of document fetching

because of the presence of hop information. Also, the number of messages required to

get documents can be obtained by using a cost model called the regular-tree cost model.

The model assumes that document results across the network are uniformly distributed

and the network itself is a regular tree. The disadvantage of hop-count RIs is that they

incur much higher storage and transmission cost than the CRIs. This problem can be

addressed by the exponentially aggregated RIs at the cost of some potential loss in ac-

curacy. An exponentially aggregated RI stores the result of applying the regular-tree

cost formula to a hop-count RI. Simulation demonstrates that the exponentially aggre-

gated RIs outperform the hop-count RIs in most cases. However, the assumption of the

regular-tree model may not always hold in many settings.

5.3.3 Structured P2P

Structured P2P systems feature the use of DHTs which assume that the network topol-

ogy is tightly controlled and the placement of files (or other data objects) is precisely

determined in such systems. Examples include CAN (Ratnasamy et al. 2001), Chord

(Stoica et al. 2001) and Pastry (Rowstron and Druschel 2001). Typical DHTs resolve

a keyword to a location where the contents are located or from where queries about the

contents can be further routed. The inherent self-organisation is attributed to the distri-

bution of keys in a uniform space in which node and object identifiers share the same

key space. Adopting DHTs requires unique hash techniques that transform the search

criterion into a unique key.

5.3.3.1 Chord

Chord (Stoica et al. 2001) is a scalable distributed lookup protocol that efficiently lo-

cates the specific node that stores a particular data item. The only operation that Chord

supports is to map a key onto a node. Applications of Chord, such as data location, can

be implemented by associating a key with each data item and storing the key/data item

pair at the node that the key is mapped to.

Chord uses consistent hashing to allocate each key and node anm-bit identifier. A

key’s identifier is generated by hashing the key, while a node’s identifier is produced by

hashing its IP address. The hash function assigns keys to nodes and enables each node to

receive roughly the same number of keys. Identifiers are ordered in a circle modulo 2m.

Chapter 5 Rethinking the P2P Paradigm 81

Key k is assigned to the first node whose identifier is equal to or follows the identifier

of k in the identifier space. The node is referred to as thesuccessor nodeof key k.

In Chord, each node need only be aware of its successor node on the identifier circle.

Queries for a given identifier can be passed around the circle via these successors until

a node whose identifier succeeds the desired identifier is encountered. The node is the

one that the query should be mapped to. Consistent hashing is also designed to achieve

minimal disruption in Chord during node arrival and departure. When a noden joins the

network, certain keys maintained byn’s successor are assigned ton. Meanwhile, when

noden leaves the network, all of its keys will be reassigned to its successor. Therefore,

transferring keys due to node arrival and departure only affects the immediate neighbour

of a joining or a leaving node.

The base Chord protocol may lead to all nodes being traversed during query map-

ping. To implement scalable and rapid key location, each Chord node maintains ad-

ditional information in its routing table. A routing table, referred to as afinger table

in Chord, has (at most)m entries. In addition to the keys that the current node stores,

each entry maintains a key identifier, an interval of key identifiers starting from the key

identifier, and a successor node which is responsible for the key identifier. A noden

which is searching for the successor node of keyk will first refer to its finger table to

find an interval that containsk. The corresponding successor node is the next one that

n should visit in order to locate the successor node ofk. By repeating the process,n

learns nodes whose identifiers are closer and closer to and precedek. The successor of

the node which most closely precedesk is the successor ofk.

Chord deals with node failure by allowing each node to maintain a list of multiple

nearest successors on the Chord identifier circle. A node replaces its information about

a failed successor with the next live one on the list. In a dynamic environment, the capa-

bility of preserving the correctness of locating every key is desirable. Chord has a sta-

bilisation scheme to maintain correct routing information with gracefully degraded per-

formance even in the face of concurrent joins, and lost and reordered messages. Chord

can achieve the scalability that P2P systems with widespread use of broadcast lack.

Given anN -node network, each Chord node maintains routing information about only

Θ(log N) other nodes. The cost of a Chord lookup scales asΘ(log N) and, with high

probability any node joining or leaving a Chord network uses no more thanΘ(log N2)

messages.

Chapter 5 Rethinking the P2P Paradigm 82

5.3.3.2 Content Addressable Network

The termContent Addressable Network(CAN) refers to a scalable indexing mechanism

which maps file names to their locations in the system (Ratnasamy et al. 2001). CAN is

able to provide not only P2P systems but also large scale storage management systems

hash table-like functionality on a very large scale, such as the Internet.

As a distributed infrastructure, CAN uses a virtuald-dimensional coordinate space

to store (key, value) pairs as follows. Keyk in a pair (k, v) is deterministically mapped

onto a pointP in the coordinate space by means of a uniform hash function. Pair (k, v) is

then stored in a zone which contains pointP . The entire coordinate space is partitioned

among all nodes in the system so that each node owns its individual, distinct zone. To

obtain a zone from the overall coordinate space, a new CAN node first discovers the

IP address of a bootstrap node already in the system. The bootstrap node supplies the

IP addresses of several randomly chosen nodes in the system. The new node randomly

chooses a point in the space and sends a JOIN request to the node whose zone the

chosen point is in. It obtains a zone from the current occupant node and learns the IP

addresses of its coordinate neighbours from the previous occupant. A request, such as

insert, lookup or delete, for a particular key is routed in CAN by following the straight

line through the Cartesian space from the source to the destination coordinate. CAN

always forwards a request towards the neighbour that is the closest to the destination

CAN node whose zone contains the key.

Each CAN node maintains a routing table withΘ(d) entries which refer to its

neighbours in thed-dimensional space. If the coordinate space is partitioned inton

equal zones, the average routing path length is(d/4)(n1/d), which indicates that, unlike

Chord, CAN’s routing table does not grow with the network size. To reduce the routing

path length and path latency, CAN can either increase the dimension of its coordinate

space, or maintain multiple independent coordinate spaces (called ‘reality’ in CAN) and

assign each node in the system a zone in each of the coordinate spaces. The high per-

node neighbour state and maintenance traffic are offset by improved data availability

and fault-tolerance. As opposed to increasing dimensions, increasing realities yields

shorter path length but improved data availability and fault-tolerance. Other measures

to improve data availability include using multiple hash functions. CAN achieves its

robustness by using a takeover algorithm which ensures one of the failed node’s neigh-

bours to take over responsibility. The designers present some initial results on the con-

struction of CAN topologies that are consistent with the underlying IP topology to avoid

unnecessary message routing via distant nodes. Furthermore, CAN employs caching

Chapter 5 Rethinking the P2P Paradigm 83

and replication techniques to deal with ‘hot spot’4 management.

5.3.3.3 Pastry

Pastry (Rowstron and Druschel 2001) was designed to be a general substrate for the

construction of a variety of P2P applications, such as data storage and sharing, group

communication and naming systems. It is a scalable P2P content location and rout-

ing scheme at the application level, based on a self-organising overlay network which

consists of nodes connected to the Internet.

Each node in Pastry is randomly assigned a 128-bit unique identifier (nodeId)

which indicates the location of the node in a circular nodeId space ranging from0 to

2128− 1. The nodeIds are so generated, typically by computing a cryptographic hash of

nodes’ public keys or their IP addresses, that the resulting set is uniformly distributed in

the 128-bit nodeId space. NodeIds and keys are both thought of as a sequence of digits

with base2b. Each node maintains aleafsetand a routing table for routing. The leafset

consists of theL5 clockwise and counter-clockwise neighbours of the current node in

the circular nodeId space. A node’s routing table is organised intodlog2b Ne rows with

each comprising2b − 1 entries, givenN the number of Pastry nodes in the network. At

row n of the routing table, the2b − 1 entries refer to nodes whose nodeIds share the

first n digits with the current node’s nodeId, but whose (n + 1)th digit has one of the

2b − 1 possible values other than the (n + 1)th digit of the current node’s nodeId. When

a node joins the system, it can initialise its leafset and routing table and maintain the

consistency of all system invariants by exchangingΘ(log N) messages.

Keys can be generated in different manners, such as computing the hash of the

file’s name and owner, or the topic name. A (key, value) pair is inserted in the circular

space by using Pastry to route the pair to the node whose nodeId is numerically closest

to the given key. Routing in Pastry is carried out as follows. In each routing step, a node

forwards a message to another node whose nodeId shares with the key a prefix that is at

least one digit longer than the prefix that the key shares with the current node’s nodeId.

If there is no such a node, the message is forwarded to a node whose nodeId shares with

the key a prefix as long as the current node but is numerically closer to the key than the

4In hypermedia terminology, hot spots are also referred to as persistent selections which represent
selections within components (information managed by applications) that persist between application
sessions and can be accessed later (D’Arlach and Leggett 1994). A hot spot typically takes the form of a
specifically defined area that contains a hyperlink. However, in this work ‘hot spot’ is used to denote the
phenomenon that in a query pattern a certain key is requested extremely often and the node holding that
key becomes overloaded.

5|L| is a configuration parameter with a typical value of 16 or 32.

Chapter 5 Rethinking the P2P Paradigm 84

current node’s nodeId. With normal operations, the expected number of routing steps is

Θ(log N) and each node maintains a routing table withΘ(log N) entries.

Pastry takes into account locality properties so as to enhance routing performance.

An application is assumed to provide functionality helping a Pastry node to determine

the ‘distance’ of another node to itself by means of network proximity. Network prox-

imity is based on a scalar proximity metric, such as the number of IP routing hops and

the geographic distance. For instance, Pastry can determine thek nodes whose nodeIds

are numerically nearest to the specified key. Based on its estimation of the density of

nodeIds exhibited by local information, Pastry adopts a heuristic to ensure that a mes-

sage is likely to be forwarded to first reach a node with the numerically nearest address

among thosek nodes.

5.4 A Web-based P2P Open Hypermedia System - the

Unstructured P2P DDLS

The essential characteristics of an unstructured P2P DDLS are initially identified in this

section, together with certain associated requirements to be satisfied. This section sub-

sequently explains why the existing approaches are not applicable to the unstructured

P2P DDLS with respect to the requirements.

5.4.1 Characteristics and Requirements

As a product of both the DLS technology and P2P computing, the unstructured P2P

DDLS exhibits the properties that can be seen in both fields and it faces, in the mean-

while, challenges that neither of them has ever encountered.

• Ad hoc properties The unstructured P2P DDLS aims to serve in an ad hoc col-

laborative environment in which peers are at distributed locations and resources

available at any particular time is unknown and unpredictable. Both services and

resources from a particular peer are more probabilistic than deterministic.

• Without centralised control A central authority indicates the possibility of reg-

istering available resources at one place. As a consequence, peers that require

particular resources can make use of the information advertised at the same place.

Chapter 5 Rethinking the P2P Paradigm 85

It is the scheme that a centralised P2P system adopts. The challenge for the un-

structured P2P DDLS is how to conveniently publish resource information and ef-

ficiently discover resources without any central authority in ad hoc settings which

can be pervasively identified nowadays.

• Resource descriptionThe collaborative participants provide links, which are

stored and manipulated in linkbases, to one another. For ease of management

and link discovery, the convention requires that links referring to related docu-

ments should be grouped and stored together (Carr et al. 1995). Therefore, the

primary content of documents that links in a linkbase refer to can be represented

by keywords which may be used as the indices when link discovery occurs. Be-

cause participants may store the representation of linkbases using various data

models and syntax, the incompatibility issue needs to be resolved. A data model

and syntax, which convey the precise representation of linkbases and exclude the

unambiguity when converting linkbase representations from their adopted data

models, are required to facilitate interoperability.

• Resource publishingThe difficulty arising in resource publishing is a conse-

quence of unavailability of a centralised mechanism, such as a centralised direc-

tory in which resource providers can advertise their resources and indicate from

where these resources can be obtained. A potential way to publish available re-

sources in the system is to express the characteristic information about the re-

sources in a local document and offer it upon other peers’ request. Although it

leads to the advertised information being accessible to a narrower scope of peers,

the approach does not necessarily exclude the reachability of that information

through indirect interaction.

• Resource discoveryNo hints are employed to guide the Gnutella search and such

a ‘blind’ search results in a large number of unnecessary messages. To avoid this,

DDLS resource discovery may take advantage of the feature of linkbases that the

primary concepts related to a peer’s linkbases can be represented by a vector of

keywords which may act as indices for resource discovery. If the topology of

the DDLS peer network takes into account the conceptual relationship between

linkbases of peers, the search for linkbases may potentially be more efficient.

However, this search cannot be fully supported by the standard keyword-based

match and therefore a semantic search is required. Furthermore, a semantic search

is required because the DDLS aims to facilitate the search of users whose infor-

mation needs are usually expressed by a limited number of search terms. Related

work on semantic search can be referred to in Appendix A.

Chapter 5 Rethinking the P2P Paradigm 86

• System re-organisationThe topology of the DDLS peer network is not im-

mutable because of the arrival and departure of peers. Changes may also result

from the update of peer resources. Through re-organising the peer network, peers

can select neighbours which will accommodate their future needs with high prob-

ability. Therefore, the performance of resource discovery in the DDLS can be

enhanced.

5.4.2 Limitations of Existing Approaches

5.4.2.1 Centralised P2P Solution

The centralised P2P typically requires a constantly updated directory which maintains

an index of available resources hosted at different locations. The resources of interest

are located by querying the central directory server. Centralised systems are vulnerable

to attacks and make it difficult and expensive to update indices. Also, the scalability

issue remains as a tough task to achieve.

5.4.2.2 Unstructured P2P Solution

Gnutella may be the most appealing and controversial unstructured P2P system as of

today. Without an index of documents, Gnutella propagates queries from nodes to nodes

until either matching documents are found or the termination conditions are satisfied.

Flooding the network with queries incurs an enormous amount of messages and network

traffic which are not desirable and affordable in ad hoc settings in which communication

may be subject to available bandwidth.

Other solutions, such as RIs, make assumptions about the grouping of documents

by topics. It may be applicable to a system maintaining documents regarding a specific

domain since the number of categories can be predicted or estimated. However, when

applied to a system hosting documents across a large number of domains, RIs will

consume a large amount of space for maintaining indices of nodes in response to the

various categories the documents belong to. The accuracy of the RI hosted by individual

nodes governs nearly all operations in the system. For instance, when creation and

update operations are carried out along a chain of nodes, any participating node which

refuses to cooperate will result in a system functioning improperly.

Chapter 5 Rethinking the P2P Paradigm 87

5.4.2.3 Structured P2P Solution

In recent years, the P2P community has extensively researched into the DHTs for un-

structured P2P systems. The adoption of DHTs assumes a highly structured system in

which the network topology is tightly controlled and the placement of files (or other data

objects) is precisely determined. A structured P2P system indexes the search space and

provides a mapping between hashed keys of file identifiers and locations for efficient

query routing to the node with desired files. This is practical because peers in struc-

tured P2P systems are primarily intended to store resources, whereas the DDLS focuses

on resource sharing and peers in the DDLS are owners, other than storage providers,

of the resources they maintain. Therefore, it is infeasible to apply techniques such as

DHTs that assign nodes, which may not necessarily be the owners, to host resources.

DHTs offer a very scalable solution to matching queries since the mapping between

a file identifier and a location is deterministic. They heavily rely on the uniqueness of

hashed keys and only files whose identifiers exactly match the requirement specified in

the query are returned. In contrast, the DDLS aims to provide more than that. The search

algorithm in the DDLS is to enable a mechanism that extends the discovered resources

from those with exactly matched keywords to resources carrying related concepts. This

can be potentially achieved by examining the semantics of resources peers maintain.

Typical DHTs resolve a keyword to a location where the contents are located or

from where queries about the contents can be further routed. Hence, it supports the

search on a single hash expression once at a time. However, the query of a typical

semantic search may consist of a random combination of terms and the relationship

among them. Carrying out the search by using DHTs involves searching for targets

that match at least one of the terms at a time and performing conjunctive or disjunctive

operations on the result with the assistance of filter structures, such as Bloom filters

(Mullin 1990). The relationship among terms is thoroughly omitted during the search

and it is clear that the result may not reveal all targets that should have been located.

The distribution of resources and requests across peers is one of the components

that affect the reachability of resources in a P2P system (Ledlie et al. 2002). If, for

example, the popularity of potential resources in the working scenario of the DDLS

follows a Zipf’s distribution (see Section 6.5.2), the formation of ‘hot spots’ will very

likely occur if DHTs are employed (Ganesan et al. 2003). Suppose there are 100 peers

in the DDLS and they share 100 topics representing the primary content of resources.

The popularity of the topics follows a Zipf’s distribution (see Figure 5.1). TopicA is the

most popular topic in the system with 100 instantiations. While topicB, the 15th most

Chapter 5 Rethinking the P2P Paradigm 88

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20

Pe
er

s

Topic popularity

1st most popular
topic with 100
instantiations
(Topic A)

15th most popular
topic with 5
instantiations
(Topic B)

FIGURE 5.1: Topics Following Zipf’s Distribution

popular topic, possesses 5 instantiations. Also, suppose that Chord is used to model the

search space in the DDLS as shown in Figure 5.2. Node 0 stores all the keys of topicB

and node 5 maintains those for 100 instantiations of topicA. The phenomenon of ‘hot

spot’ occurs at node 5 because it is heavily burdened with all the instantiations of topic

A. Although load balancing techniques could be utilised to ameliorate the situation, a

joint query involving multiple topics would lead to a more complicated search. It is not

known whether the benefit resulting from the adoption of load balancing techniques can

compensate for the overhead caused by carrying out a joint query.

6
0

24

5

1

3

Keys for Topic A
and all its
instantiations are
stored here (100
in total)

Hot
Spot

Keys for Topic B
and all its
instantiations are
stored here (5 in
total)

FIGURE 5.2: An Example of Using Chord to Model the DDLS Search Space

Chapter 5 Rethinking the P2P Paradigm 89

5.5 Summary

This chapter presented a more detailed background for P2P computing, examining the

definition, categories and features of P2P systems. A taxonomic review of the ap-

proaches employed in various contemporary P2P systems was also given.

DHTs are promising in many application areas and are extensively researched

among others. However, by analysing the characteristics of and requirements for the

DDLS, one would realise that the widespread applicability of DHTs cannot help solve

problems arising from the particular context of the unstructured P2P DDLS because

of the inherent nature of the way that DHTs work. For instance, the semantic search

required by the unstructured P2P DDLS calls for a different mechanism to discover

the resources of interest, which cannot be achieved by DHTs as demonstrated by the

analysis carried out in Section 5.4.2.3.

In the next chapter, the DDLS will shift to an unstructured P2P system in which

the issues centering around resource discovery based on semantics are the main focus

of attention.

Chapter 6

Evolution of the DDLS into an

Unstructured P2P System

6.1 Introduction

This chapter presents the work of evolving the centralised P2P DDLS demonstrated in

Chapter 4 into an unstructured P2P system. It begins with an introduction to the peer

network in the unstructured P2P DDLS, involving the relationship between peers and

how peers relate to the peer network due to their arrival and departure. The details of

how resources should be described in the given context are provided and this is followed

by the description of a distance-based semantic search algorithm adopted by resource

discovery. Finally, this chapter presents simulation that investigates the search algorithm

with varying distributions of potential resources and different query profiles involved.

6.2 DDLS Peer Network

In contrast to the peer network in the centralised P2P DDLS, the one in the unstructured

P2P DDLS is characterised by decentralisation of control - with the absence of a cen-

tral service directory. In the centralised P2P DDLS, peers rely heavily on the central

service directory to locate link service providers and linkbases (or links), whereas the

decentralised nature of the unstructured P2P DDLS entails collaboration between peers

to fulfill most of the tasks. Peer arrival, update and departure entailing notification sent

to related peers demonstrates such a close relationship among peers in the unstructured

90

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 91

P2P DDLS. The following subsections discuss the relationship between peers and that

between peers and the peer network.

6.2.1 Peer Relationship

In the DDLS1, the relationship between peers includes neighbours, contacts and dis-

connected peers. A peerpi obtaining the published topic information, which is the

representation of the abstract concepts a peer’s linkbases are associated with (see Sec-

tion 6.3.2), frompj indicates that:

1. pi has a neighbourpj;

2. pj has a contactpi.

If pi has never acquired information frompk and vice versa,pi andpk are referred to as

disconnected peers.

6.2.2 Supporting the ‘Published Topic List’ Data Structure

peerID αdist topics
j 0
k 2 D, E
m 5 G, H, I, J, K

TABLE 6.1: A Published Topic List in the Cache of Peerpi

It will be mentioned in Section 6.2.3 that upon its arrival at the DDLS, each peer

randomly selects a set of neighbours. The peer caches a list of published topics which

reflect the semantic relationship between its resources and those of all its neighbours.

The size of the cache is determined by a specified value or 128, whichever is smaller.

In the list, each entry comprises three fields. The first field indicates all the neighbours

which shareαdist (shown by the second field) related topics with the current peer. The

contents of these topics are listed in the third field. Table 6.1 gives an example published

topic list in the cache of peerpi. It indicates thatpi shares no relevant topics withpj.

The neighbours that have semantically related topics withpi arepk andpm, which have

2 and 5 relevant topics, respectively.

1The term ‘the DDLS’ refers to the unstructured P2P DDLS in the rest of this chapter unless specified
otherwise.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 92

6.2.3 Construction of Peer Network

The peer network can be modelled by a graphG in which the vertices represent peers

and the edges denote the semantic relationship between the resources possessed by

peers. Each of the peers publishes a list of topics which represent the primary content of

the documents links in its linkbases refer to. The topic lists can be asynchronously up-

dated by individual peers. The topology of the peer network takes shape in accordance

with the semantic properties of peers’ resources2. Therefore, the DDLS peer network

is also known as the semantic overlay. The construction of the semantic overlay is

explained by giving a description of peer arrival as follows.

Initially, when a peerpnew joins networkG, it contacts a set of randomly selected

peers3 represented byprandom
new . pnew informs each of the randomly selected peers in

prandom
new of its topic listTnew. It is assumed that the environment provides each peer with

a capability to identify the semantic relationship between entities (see Section 6.4.2).

All neighbours return related topics topnew. pnew will subsequently take advantage of

this information to construct its published topic list as well as form part of the semantic

overlay.

Figure 6.1 describes the algorithm for individual processing of the published topic

lists from neighbours at peers which accompanies the construction of the semantic over-

lay. The processing procedure is carried out in parallel at each of the peers inprandom
i

and leads to the creation of an overlay with clustered information. Peers in the ran-

domly connected network represent the semantic relationship between their resources

and those of others viaαdist. However, not every peer may have an overlap in the se-

mantic description of resources with others. In such a case, the associated information

is stored in the published topic list withαdist = 0.

Figure 6.2 demonstrates what occurs when a peerpnew joins the DDLS peer net-

work consisting ofpj, pk, pl, pm and pn. pnew randomly selects a set of peers that

includepm andpn and notifies both of its topic list. Through the same process, another

peerpl obtains information frompnew. The arrows in the figure show the direction that

collected information flows.
2In essence, the peer network is randomly established at the construction stage and the formation of its

topology in response to the semantic relationship between resources of pairs of peers only occurs during
re-organisation. The reason for this will be given in Section 7.8.

3These peers are randomly chosen from the identifier space or obtained via multicast.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 93

Notations:

Peer network: G
Set of peer identifiers: P
Set of topics: T
A peer instance in G including a peer
identifier and its topicsTi (defined later): (pi, Ti), with pi ∈ P
Topics ofpi : Ti = {t|t ∈ T, t× t ⊆ T}
Set of identifiers of the randomly
chosen neighbours ofpi: prandom

i

Capacity of the cached topic listEi

(defined later) ofpi: emax
i

Cardinality of intersection between topics
of pi and those of its neighbour: αdist

i,k

Set of semantically related topics between
pi and the same neighbour mentioned above:T common

i,k = {tm|tm ∈ T, tm × tm ⊆ T}
Set of identifiers of neighbours sharing
T common

i,k with pi: idpeer
i,k = {pm|pm ∈ P}

Entry of the cached topic listEi of pi: Ek
i = {(αdist

i,k , T common
i,k , idpeer

i,k)|0 < k ≤ emax
i }

Cached topic list ofpi: Ei = {Ek
i |0 < k ≤ emax

i }
Calculating the intersection between
topics ofpi and those ofpj : %(pi, pj)
Adding the identifier of the new
neighbourpk to idpeer

i,v : idpeer
i,v .addElement(pk)

Inserting an entryEv
i into Ei: Ei.insertElement(Ev

i)

Initial settings:

Online = true;
Allow queries = false.

Algorithm for processing of the published topic lists from neighhours atpi:

For u = 1 to |prandom
i |

αdist
i,v = |%(pi, p

random
i [u])|, with 0 < v ≤ |prandom

i |;
T common

i,v = %(pi, p
random
i [u]);

idpeer
i,v .addElement(prandom

i [u]);
Ei.insertElement(Ev

i).

FIGURE 6.1: Construction of the Semantic Overlay

6.2.4 Peer Departure

6.2.4.1 Notifying Contacts of Leaving Peers

The departure of a peer results in a notification sent to its contacts. Each contact then

updates its cached published topic list by searching for the entries that involve the leav-

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 94

�
���

�
�

�
�

�
�

�
�

�
�

FIGURE 6.2: A Peerpnew Joins the Semantic Overlay

ing peer and removing them.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

FIGURE 6.3: Contact with Peers Lost due to a Leaving Peer

A peer departure can potentially lead to network partition. The issue is more criti-

cal when the partition involves a large number of peers, which entails efficient recovery

of information about the lost community. For instance, the consequence of the depar-

ture ofpd, see Figure 6.3, is that the peers on the left side ofpd lose contact with those

on the right side. To have a robust system, measures are introduced to overcome such

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 95

�
�

�
�

�
�

�
�

�
�

�
�

FIGURE 6.4: Leaving Peerpd Notifies Contacts of its Neighbours

a loss. In addition to informing the contacts of its departure, a peer should also include

information about its neighbours. Therefore, its contacts gain the knowledge of others

which are two hops away. Upon the receipt of a departure notification, the contacts of

a leaving peer decide which neighbours of the leaving one can be chosen as their new

neighbours, thus preventing those neighbours from being isolated. The neighbours of a

leaving peer become isolated if they are not qualified as the neighbours of any contact of

the leaving peer. Figure 6.4 illustrates that a leaving peerpd notifies its contactspa and

pc that it has two neighbourspe andpg. By analysing the usefulness (see Section 7.4)

of pe andpg, contactpa decides to incorporate both into its published topic list, whereas

pc selects onlype as its new neighbour.

Figure 6.5 presents the detailed algorithm. A leaving peerpi takes the initiative

to inform each of the contacts of its neighbours before its departure from the peer net-

work. Each contactpu selects the neighbours ofpi to be their new neighbours on the

basis of their usefulness. If a neighbour ofpi is more useful than at least one ofpu’s

current neighbours,pw for example, it will be incorporated into the cache ofpu through

pu.addNeighbour(pw, Tw).

6.2.4.2 Merging Published Topic Lists from Leaving Peers

A departure notification is also dispatched to the neighbours of a leaving peer if the peer

is prepared to share its entire published topic list with neighbours. Sharing this infor-

mation allows neighbours of the leaving peer to choose others as their new neighbours

based on a usefulness analysis.

Suppose peerpj, in Figure 6.6, is going to disconnect from the peer network. It

has two neighbourpi andpk. Based on a usefulness analysis ofpi, pk discovers thatpi

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 96

Notations:

Same as in Figure 6.1. In addition,

Neighbours ofpi: Bpi = {(pj , Tj)|i 6= j, pj ∈ idpeer
i,h , 0 < h ≤ emax

i }
Contacts ofpi: Cpi = {(pj , Tj)|i 6= j, pi ∈ idpeer

j,h , 0 < h ≤ emax
j }

pi notifying contactpu of its
neighbourpw: pi.notify(pu, (pw, Tw))
Computing the usefulness ofpj

with respect topi: ιi,j
Adding a new neighbourpj to pi: pi.addNeighbour(pj , Tj)

Algorithm for a leaving peer pi to notify contacts of its neighbours:

For (pu, Tu) ∈ Cpi

For (pw, Tw) ∈ Bpi

pi.notify(pu, (pw, Tw));
For k = 1 to emax

u

If pv ∈ idpeer
u,k AND ιu,w > ιu,v, then

pu.addNeighbour(pw, Tw).

FIGURE 6.5: Algorithm for Leaving Peerpi Notifies Contacts of its Neighbours

possesses much more relevant resources than some of its current neighbours. Hence, it

contactspi and requests its published topic information. It should be stressed that the

usefulness analysis carried out bypk can only take advantage of the topic information

aboutpi held bypj which is however partial due to the way the published topic list is

constructed (see Section 6.2.2).

�
�

�
�

�
�

FIGURE 6.6: Peer Departure

6.3 Resource Description

Linkbases are one of the most essential resources in the DDLS. The accurate description

of such resources facilitates satisfying the link service request, for instance a request for

link retrieval. Section 4.4.1 proposed the description of linkbases in a centralised P2P

system through encoding the metadata of links in the XML model and syntax, and re-

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 97

source discovery is carried out based on the metadata of links. This section advocates

that, not only the links in a linkbase, but also the linkbase itself could be depicted

in a certain manner for ease of meeting link service requests. Resource discovery is

therefore performed based on the metadata of linkbases instead of that of links. This

approach leads to coarser granularity of resource representation in the DDLS but im-

proved scalability. This is feasible because the requirement for a semantic search mech-

anism (see Section 5.4.1) does not impose fine granularity upon the unstructured P2P

DDLS.

The XML model and syntax are demonstrated, see Section 6.3.2, less suitable for

describing linkbases in an unstructured P2P DDLS. Resource description will instead

utilise RDF which appears very promising for accomplishing resource description in a

link service with decentralisation of control. RDF is presented and its use in describing

the DDLS linkbases is explored in the following subsections.

6.3.1 Resource Description Framework (RDF)

The Semantic Web (see Section 1.3) is an extension to the current Web and based on

RDF standards and other standards yet to be defined. As a foundation for modelling

and interchanging metadata about the resources on the Web, RDF aims to provide in-

teroperability between applications that exchange machine understandable information.

The characteristic accords with the design objective of the DDLS to describe linkbases

as resources and facilitate resource sharing among various linkbase owners dispersed

globally.

The basic RDF model is designed to represent named properties and property val-

ues. It is a syntax neutral way of representing RDF expressions and currently RDF relies

on the support of XML. There are three kinds of objects in the basic data model: re-

sources, properties and statements. Resources are identified by a URI reference plus op-

tional fragment identifiers. The description of resources is partly represented by proper-

ties which are thought of as attributes of resources and convey the relationship between

resources. Statements are assertions about resources with named properties and values.

Resources, properties and values in a statement are called subject, predicate and object,

respectively.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 98

6.3.2 DDLS Resource Description

The XML model and syntax were chosen in Section 4.4.1 to present metadata of links

in the centralised P2P DDLS. Elements, such asdescription, endpointandurl, were

employed to convey the primary content of the document a link in the linkbase connects,

anchors of a link, etc. However, the XML model is less advanced than the RDF model

in the following aspects (in decreasing order of importance to resource description in

the DDLS):

• No associated semantics:XML centers on being a data format standard, whereas

RDF attempts to bring meaning, or semantics, to the data represented and can also

represent relationship.

• Complex query: The representation of a fact in XML can be done in a large

number of ways, which makes querying the XML logical tree difficult since all

sets of possible representations of the fact should be converted into one statement.

However, RDF does not bear this drawback since it specifies a standard way of

representing facts by statements. Without any unambiguity, many representations

of a fact in XML always lead to the same RDF tree, thereby querying RDF is

much easier.

• Dependability on schema:The modification made to the schema, for instance,

adding or removing an element, may invalidate a query that is based on the struc-

ture of the document.

• Inability to enable computers to infer or deduce: XML alone has no facilities

to describe a vocabulary. However, when using a RDF model to represent data,

one can either use existing vocabularies or creating his/her own ontologies. The

combination of a RDF model and associated ontologies enables computers to

discover the semantics of data and to infer or deduce facts.

• Reliance on a common syntax for two applications to communicate:XML

alone requires that two parties to agree on a common syntax for communication.

In contrast, using the RDF model allows two parties to communicate with differ-

ent syntax through the concept of equivalence.

• Less meaningful element name:A meaningful element name is a crucial hint

for human readers. Without a reference to the schema, nothing except the doc-

ument structure can be deduced from an XML document, whereas in RDF, the

elementdescriptionand its attributeaboutpoint out where the identification of

the resources being described can be located.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 99

The DDLS is anopen link servicewhich serves hyperlinks by retrieving them from

linkbases on demand. Each linkbase maintains a list of hyperlinks related to abstract

concepts. This allows characterising a peer’s linkbases on the basis of concepts in terms

of a topic vector. The RDF model is employed to represent the DDLS linkbase. The

RDF description of a linkbase can be augmented with related information, such as lo-

cation and type, and this information is encoded in sets of triples.

<?xml version=“1.0” encoding=“UTF-8”?>
<rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#

xmlns:lb=“http://www.semanticweb.com/rdf/linkbase-ns#”>
<rdf:Description about=“http://www.semanticweb.com/linkbase/research/linkbase.xml”>

<rdf:type resource=“http://www.semanticweb.com/rdf/linkbase-ns#Linkbase” />
<lb:topic>theory</lb:topic>

</rdf:Description>
</rdf:RDF>

1

FIGURE 6.7: An Example of Using the RDF Model to Represent the DDLS Linkbase

An example DDLS linkbase represented by the RDF model is demonstrated in

Figure 6.7. It indicates that the resource being described ishttp://www.semantic

web.com/linkbase/research/linkbase.xml. The type of the resource is defined as another

resourcehttp://www.semanticweb.com/rdf/linkbase-ns#Linkbase. The primary content

of this resource istheory.

Each peer in the DDLS holds an incomplete view of all the resource information

available in the system. To enable resource sharing among peers, the DDLS needs

a resource discovery mechanism which takes advantage of resource description that

individual peers publish. In the following section, this issue will be investigated.

6.4 Resource Discovery

Resource discovery in the DDLS revolves around the location of desired linkbases. The

centralised P2P DDLS in Section 4.4.4 employs a service directory to effect resource

discovery. However, such a centralised mechanism is not applicable to an unstructured

P2P DDLS which is characterised by decentralisation of control and aims to discover

resources with matching semantics. In this section, the concept of the DDLS semantic

search is introduced, which is followed by a distance-based semantic search algorithm

devised for resource discovery in the unstructured P2P DDLS (Zhou et al. 2003).

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 100

6.4.1 DDLS Semantic Search

Resource discovery in the DDLS context locates linkbases that satisfy queries posed by

users. The simplest case for the resource discovery mechanism performs a keyword-

based search. The keyword-based search is carried out by comparing the query ex-

pression against the description of available linkbases. The search returns all linkbases

whose descriptions match the query expression on a syntactic basis. As already men-

tioned in Section 6.3.2, each linkbase is associated with abstract concepts and a keyword-

based search will restrict the search result to linkbases with matching topics rather than

those with matching concepts. This limitation can be overcome by a semantic search.

The semantic search discovers not only linkbases which are explicitly specified by the

topics in a query, but also those which are conceptually related. The enabling tech-

niques, such as ontologies and inference logic, provide a way to identify the match on

which the semantic search relies. Related work on semantic search can be found in

Appendix A.

6.4.2 Major Assumptions of the Semantic Search Algorithm

The semantic search algorithm to be presented is based on several assumptions as fol-

lows.

1. Moderate number of participants

The typical scenario that the DDLS applies to involves a small number (hundreds)

of associated participants (peers).

2. Capability to identify semantic relationships

The environment provides each peer with a capability to identify the semantic

relationship between topics representing the primary content of resources, such as

‘being semantically related’. The semantic similarity can be described in different

ways and the existence of such a mechanism is assumed. It may exist in the form

of a controlled vocabulary or may be based on inference logic, or otherwise.

3. Statically defined relationship among topics

The algorithm assumes that the semantic relationship among topics is statically

defined and does not cater for environments in which the semantic relationship

can be constantly redefined.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 101

6.4.3 Query Mechanism: Topic Query and Associated Operations

The DDLS supports queries with conjunctive and disjunctive operations on query pred-

icates – in this work topics are used to define query predicates. A query expression is

represented by conjunctive/disjunctive operations on groupings of topics. Figure 6.8

presents an example RDF topic query. The extensibility of RDF is utilised to define a

tag<rdfsq: equal> that represents the state of being semantically related. Tags, such

as<rdf:Integer> and<rdf:String>, can be employed to identify primitive data types.

The query result needs to return all the linkbases which are semantically related to both

‘Topic A’ and ‘Topic B’ or ‘Topic C’.

1: <rdfq:rdfquery>
2: <rdfq:From eachResource=“http://www.ddls.com/
3: linkbases/collaborativeenvironmentx/peerlinkbase”>
4: <rdfq:SELECT>
5: <rdfq:Condition>
6: <rdfq:and>
7: <rdfsq:equal>
8: <rdfq:Property name=“lb:topic”/>
9: <rdf:String>Topic A</rdf:String>
10: </rdfsq:equal>
11: <rdfsq:equal>
12: <rdfq:Property name=“lb:topic”/>
13: <rdf:String>Topic B</rdf:String>
14: </rdfsq:equal>
15: </rdfq:and>
16: <rdfq:or>
17: <rdfsq:equal>
18: <rdfq:Property name=“lb:topic”/>
19: <rdf:String>Topic C</rdf:String>
20: </rdfsq:equal>
21: </rdfq:or>
22: </rdfq:Condition>
23: </rdfq:SELECT>
24: </rdfq:From>
25:</rdfq:rdfquery>

1

FIGURE 6.8: The Typical Specification of DDLS Topic Queries

All topics in a conjunctive predicate need to be satisfied by the description of

linkbases simultaneously, whereas those in a disjunctive predicate can be evaluated

against the description of linkbases respectively. The result of a disjunctive query in

the DDLS is typically generated by merging the results of conjunctive sub-queries. For

instance, in Figure 6.8, the query is initially split into two sub-queries, each of which

contains a conjunct, wrapped in two separate messages. One sub-query is constructed

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 102

by statements from line 7 to 14 with italics typeface and the other from line 17 to

20. Both the query and its sub-queries are assigned with Universally Unique Identi-

fiers (UUIDs) (The Open Group 1997). Suppose that the query identifier is2fac1234-

31f8-11b4-a222-002035b29092, which is inherited by both of its sub-queries. The first

sub-query with sub-query identifier58f202ac-22cf-11d1-b12d-002035b29092returns

all the linkbases having related topics with both ‘Topic A’ and ‘Topic B’. The second

one with sub-query identifier5a389ad2-22dd-11d1-aa77-002035b29092fetches all the

linkbases possessing related topics with ‘Topic C’. Results of sub-queries returned to the

query originator will be merged given the same query identifier2fac1234-31f8-11b4-

a222-002035b29092.

6.4.4 Distance-based Semantic Search Algorithm

The search algorithm uses the distanceαdist as shown in Table 6.1 that represents the

proximity of resources of a pair of neighbours. Based on the proximity, a peer further

propagates queries to either some or all of its neighbours. The details of the algorithm

are explained as follows. Any participating peer can initiate a semantic search query.

The query is evaluated against the initiator’s cached information to determine the dis-

tance between the query expression and the cached information about the neighbours.

If the query evaluator finds a match, it routes the query to the associated peers. A match

means there is an overlap between the query topics and the topics in an entry of the

published topic list of the query evaluator. In case no match has been found, the query

is propagated to all neighbours of the current query evaluator. Subsequently, the query

will be successively evaluated by each of the recipient peers. The number of hops for

query propagation is limited by the life time of the query, expressed by a TTL tag as

used in Gnutella. Query matches are directly routed back to the query initiator. The

algorithm for processing queries atpi is presented in Figure 6.9.

6.5 Simulation

The aim of this section is to present a series of experiments which simulate resource

discovery in the DDLS to investigate the behaviour and measure the performance of the

search algorithm that resource discovery relies on. After giving a brief introduction to

the simulator which was employed by all experiments in this work, this section presents

a factor that is closely associated with simulation: topic distribution. This is followed

by the description of the metrics in performance measurement and all major issues

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 103

Notations:

Same as in Figure 6.1. In addition,

Set of query identifiers: Q
An incoming topic query instance ofpi

including a query identifier and its topics
(defined later): (qin

i , T query
i), with qin

i ∈ Q
Topics of a topic query instance ofpi: T query

i = {t|t ∈ T, t× t ⊆ T}
Forwarding an incoming query
(qin

i , T query
i) frompi to pj : pi.forwardQuery(pj , (qin

i , T query
i))

Initial settings:

Online = true;
Allow queries = true;
Overlap = false.

Algorithm for query processing at pi:

For u = |Ei| downto1
If αdist

i,u ≥ |T query
i |, then

If T query
i ⊆ T common

i,u , then
Overlap = true;
For eachpw ∈ idpeer

i,u

pi.forwardQuery(pw, (qin
i , T query

i)).
If Overlap ≡ false, then

For u = |Ei| downto1
For eachpw ∈ idpeer

i,u

pi.forwardQuery(pw, (qin
i , T query

i)).

FIGURE 6.9: Algorithm for Query Processing atpi

regarding the search algorithm that needs to be explored through simulation. Finally,

all the experiments are presented.

6.5.1 Overview of the Simulator

A simulator, which was designed to provide the operational conditions of the DDLS for

testing and evaluation purposes, is provided and utilised in all the simulation described

in this work. One of the many basic requirements for the simulator is to set up the

entire experimental environment with each node/peer bearing equal capability in terms

of computing power.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 104

The simulator is implemented in Java and deployed on a single machine. Each peer

is effected as an object and communicates with one another through message passing.

A single message queue is provided which hosts the incoming and outgoing messages

of all peers to be processed. Realising the single message queue through a thread for all

the peers instead of allowing each peer to have a message queue, alleviates the heavy

use of the CPU caused by multiple executions of all threads. In a time-sliced system, as

used in the DDLS simulation, the CPU is divided into time slots and each of the equal-

and-highest priority threads is iteratively given a time slot in which to run. The Java

scheduler chooses the following thread to execute in a round robin fashion. This does

not guarantee that the requirement for equal capability of peers is enforced. The sim-

ulator is therefore so implemented that peers process the same amount of messages in

each allocated time slot in turn. This is one of the methods that enforce equal capability

shared by all peers.

6.5.2 Topic Distribution

The DDLS search mechanism locates semantically related resources. Therefore, the

distribution of individual topics which represent the primary content of resources is not

of interest. Instead, topics are grouped by semantics and the distribution of such topic

groups are what should be utilised to study the DDLS search. From now on, topic

popularity (or probability) defined later refers to the popularity (or probability) of topic

groups each of which has distinct semantics unless indicated otherwise.

First, the Zipf’s distribution of topics is investigated. Zipf’s law (Zipf 1949) is

named after the Harvard linguistic professor George Kingsley Zipf (1902-1950). It

states that the frequency of occurrence of some event (P), as a function of the rank

(i) that is determined by the frequency of occurrence, is a power-law functionpi ∝ 1
iα

with α close to unity. It has been shown that Zipf’s distribution characterises the use of

words in a natural language, for instance English.

The term ‘topic popularity’ used in simulation represents how popular a topic/-

topics is/are in terms of the number of peers holding it/them. Letti be the topic popu-

larity of the i’th topic in a Zipf’s distribution.

ti ∝
1

iα

whereα = 1. The Zipf’s distribution of topics in a system of 100 peers that share 100

various topics is demonstrated in Figure 5.1.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 105

To compare against the Zipf’s distribution, the uniform distribution of topics is

chosen in which each peer is shared by the same number of peers. The term ‘topic

probability’ used in simulation denotes the percentage of peers that possess the topic(s)

compared to all peers in the system. Letti be the topic probability of any topic in a

uniform distribution.

ti = C

where C is a constant.

6.5.3 Metrics and Issues

Algorithm performance is a complex aspect that could be measured by various indices,

for instance search speed and accuracy, the number of messages sent, system load and

resource consumption. In the context of the DDLS, performance issues are primarily

measured by the following metrics:

• Hops: delay in finding all answers as measured in the number of hops, also known

as path length;

• Recall: the percentage of matches that can be found;

• Broadcast rate4: the time of broadcast carried out by all peers to propagate queries

over a period of time.

Elements which may have an effect on hops, recall and broadcast rate will be

investigated. It is conjectured that exploring answers to the following questions would

be helpful in understanding the search algorithm.

1. What is the behaviour of the semantic search when single or multiple topics are

involved?

2. What is the relationship between the amount of information a peer should cache

about its neighbours and the search performance?

3. Does the resource (or topic) distribution have an impact on the search perfor-

mance?
4This metric can be used to estimate the consumption of network resources during resource discovery,

for instance, the number of potential messages generated with each query.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 106

4. Should the peer network remain unchanged or be re-organised to improve the

search performance? If so, what techniques should be utilised to guide the re-

organisation process?

6.5.4 Single Topic Search

The simulation on single topic search among topics following a Zipf’s distribution and

uniform distributions was conducted, respectively. The experimental settings and dis-

cussion are presented in this section.

Experiment 1

Experimental settingsThe first experiment examined the relationship between the

cache rate and the number of hops required to achieve the maximum recall. The cache

rate represents the percentage of peers whose topic information is in the cache com-

pared to all peers in the system. This experiment was performed with 100 peers in a

controlled environment, where the distribution of topics was kept constant throughout

the experiment and the number of peers in the system was restricted. Each peer could

cache the topic information of a specified percentage of all peers and randomly choose

a list of topics from a global list of 100 entities, ensuring that the topics of all peers fol-

lowed a Zipf’s distribution and uniform distributions, respectively. The cache rate was

varied from 1%, 2% to 90%. The fifteenth most popular topic, shared by 5 peers (out

of 100) in the system, was chosen as the query topic for the experiment with a Zipf’s

distribution. A topic with the topic probability of 5%, i.e. shared by 5 peers out of 100,

was randomly chosen from the global list to formulate a query for the experiment with

a uniform distribution. In both experiments, a topic shared by the same number of peers

(5) was chosen to formulate a single topic search. This was meant to contrast the be-

haviour and performance of the search involving one distribution with those involving

the other.

DiscussionThe results in Table 6.2 and Table 6.3 show that, regardless of the dis-

tribution the topic in a query is associated with, the cache rate is inversely proportional

to the average number of hops that are needed to achieve the maximum recall. It is

observed that except the cases in which the cache rate equals 1% or 2%, i.e. each peer

only caches the topic information from one or two of its neighbours, the resource dis-

covery mechanism in the DDLS can lead to a satisfactory recall (at least 98%) within

the experimental settings. The cache rate being 1% and greater only guarantees that

each peer is aware of at least another peer (a neighbour), whereas it is not assured that

each peer is known by at least another peer (a contact). Therefore, the maximum recall

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 107

cannot always reach 100%. The data collected in Table 6.2 and Table 6.3 is the average

result from multiple executions (20) of the experiment in which different topologies of

the peer network were generated.

Cache rate 1% 2% 3% 4% 5%
Average number of hops 0.01 7.36 5.85 5.09 4.41

Maximum recall 1% 80% 100% 100% 100%

Cache rate 10% 20% 30% 40% 50%
Average number of hops 2.83 2.05 2.00 2.01 1.98

Maximum recall 100% 99% 98% 99% 100%

Cache rate 60% 70% 80% 90%
Average number of hops 1.92 1.84 1.63 1.40

Maximum recall 100% 100% 100% 100%

TABLE 6.2: Relationship between the Cache Rate and the Average Number of Hops
(Zipf’s Distribution)

Cache rate 1% 2% 3% 4% 5%
Average number of hops 2.47 8.86 6.14 4.91 4.13

Maximum recall 9% 80% 100% 100% 100%

Cache rate 10% 20% 30% 40% 50%
Average number of hops 3.09 2.06 1.98 2.00 1.96

Maximum recall 100% 100% 98% 99% 100%

Cache rate 60% 70% 80% 90%
Average number of hops 1.98 1.87 1.66 1.46

Maximum recall 100% 100% 100% 100%

TABLE 6.3: Relationship between the Cache Rate and the Average Number of Hops
(Uniform Distribution)

Experiment 2

Experimental settingsThe second experiment aimed to explore the properties of

the semantic search algorithm of the DDLS in which topics follow a Zipf’s distribution.

It was carried out over the first nineteen most popular topics. In a peer network con-

sisting of 100 peers, a Zipf’s distribution of 100 topics yields 19 bands, see Figure 5.1,

each of which is occupied by topics that are shared by the same number of peers. The

cache rate was kept at 5% throughout the experiment and all the other experimental

settings were retained as in Experiment 1. To ensure each peer has at least one neigh-

bour, the cache rate should be 1% or greater. However, it is shown that a very low level

of the cache rate results in unacceptable recall, for instance 1% in a Zipf’s distribution

and 9% in uniform distributions, which does not demonstrate the typical behaviour and

performance of the semantic search but represents the extreme case. Therefore, this ex-

periment and all those presented later use 5% as the cache rate because such a relatively

low cache rate is more realistic for a peer network which allows for a wide range of the

number of peers.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 108

0%

20%

40%

60%

80%

100%

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19

Decreasing topic popularity

A
ve

ra
ge

 r
ec

al
l

10th hop

9th hop

8th hop

7th hop

6th hop

5th hop

4th hop

3rd hop

2nd hop

1st hop

FIGURE 6.10: Average Recall Level at Progressive Hop Counts in Single Topic Search
(Zipf’s Distribution)

0%

20%

40%

60%

80%

100%

90%
 80%
 70%
 60%
 50%
 40%
 30%
 20%
 10%
 1%

Decreasing topic distribution

A
ve

ra
ge

 r
ec

al
l

10th hop

9th hop

8th hop

7th hop

6th hop

5th hop

4th hop

3rd hop

2nd hop

1st hop

FIGURE 6.11: Average Recall Level at Progressive Hop Counts in Single Topic Search
(Uniform Distribution)

DiscussionThe recall level gained as the hop count increases in search of topics

with different popularities in a Zipf’s distribution is plotted in Figure 6.10. It is shown

that the second most popular topic which is shared by 50% of all peers in the system

is accompanied by the lowest recall level at almost every hop. The discovery indicates

that a search for that topic will lead to the greater average number of hops to achieve

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 109

a certain level of recall, compared to a search for any other topic. Table 6.4 further

demonstrates this with the maximum average number of hops produced by a search for

the second most popular topic. Thereafter, the average number of hops that are needed

to reach the maximum recall is in proportion to topic popularity, with the least popular

topic resulting in the least average number of hops to achieve the maximum recall. This

phenomenon can be explained as follows. The number of hops needed to achieve the

maximum recall is subject to the probability of the query topic. On the one hand, the

discovery of a certain number of instantiations of a topic with little probability results in

more hops. On the other hand, according to the search algorithm (see Section 6.4.4), lit-

tle probability of the query topic yields little probability of overlap between peers, thus

triggering a higher broadcast rate which implies less hops to locate the same number of

instantiations. Letx be the probability of a query topic andf(x) be the number of hops

to achieve the maximum recall:f(x) = d(x) ∗ b(x). d(x) andb(x) are associated with

the two aspects as analysed above withd(x) being a decreasing function andb(x) being

an increasing function ofx over [0, 1]. Becausef(x) is continuous over [0, 1] andf(0)

= f(1) = 0, there must be at least a single pointx at whichf(x) has its maximum.

Experiment 3

Experimental settingsThe third experiment was set up to investigate the properties

of the semantic search algorithm of the DDLS in which topics follow uniform distri-

butions. It was performed with the topic probability ranging from 1%, 5%, 10% to

90%. Again, the cache rate was kept at 5% throughout the experiment and all the other

experimental settings were kept as in Experiment 1.

DiscussionFigure 6.11 shows that the recall level increases at progressive hop

counts in search of topics with different probabilities in uniform distributions. Within

the first 10 hops, a search for topics with a probability of 45% yields the lowest recall

level at almost every hop. This phenomenon is analogous to the discovery in Figure 6.10

that the search for the second most popular topic (shared by 50 peers out of 100) results

in the lowest recall level at approximately every hop. Table 6.5 reveals that the topic

probability of 55% is related to the maximum average number of hops to obtain the max-

imum recall. The average number of hops increases before the topic probability reaches

55% and decreases thereafter. In contrast to the experiment with topics from a Zipf’s

distribution (see Experiment 2) in which 50% is the turning point for all observations,

this experiment (with topics from uniform distributions) shows that the turning point

exists in the range of [45%, 55%]. It is speculated that both results should be consistent

with each other and the inconsistency in the results is due to the limited experimental

conditions.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 110

Topic popularity 1 2 3 4 5
Average number of hops 5.47 8.10 6.33 5.84 5.20

Maximum recall 99% 99% 94% 100% 97%

Topic popularity 6 7 8 9 10
Average number of hops 5.01 5.00 4.74 4.71 4.85

Maximum recall 96% 100% 99% 100% 99%

Topic popularity 11 12 13 14 15
Average number of hops 4.75 4.60 4.70 4.44 4.22

Maximum recall 100% 98% 100% 100% 100%

Topic popularity 16 17 18 19
Average number of hops 4.01 3.96 3.77 3.06

Maximum recall 100% 100% 100% 100%

TABLE 6.4: Average Number of Hops to Achieve the Maximum Recall (Zipf’s Distri-
bution)

Topic probability 90% 85% 80% 75% 70%
Average number of hops 5.51 6.04 6.04 6.32 6.81

Maximum recall 99% 99% 99% 99% 98%

Topic probability 65% 60% 55% 50% 45%
Average number of hops 7.59 7.66 8.28 7.72 7.83

Maximum recall 97% 99% 98% 99% 97%

Topic probability 40% 35% 30% 25% 20%
Average number of hops 6.98 6.60 6.16 5.79 5.44

Maximum recall 99% 99% 97% 99% 99%

Topic probability 15% 10% 5% 1%
Average number of hops 5.00 4.88 4.03 3.08

Maximum recall 99% 100% 100% 100%

TABLE 6.5: Average Number of Hops to Achieve the Maximum Recall (Uniform Dis-
tribution)

6.5.5 Multiple Topic Search

The simulation on multiple topic search was performed to explore the search perfor-

mance under the circumstances in which topics with distinct popularities are involved

in a single semantic search.

Experiment 1

Experimental settingsThe settings were kept as in Experiment 2 of single topic

search. However, a multiple topic query involves two topics with different popularities

in a Zipf’s distribution. Each multiple topic search is based on the second most popular

topic and another less popular one5. For instance, the first multiple topic search relates

5The most popular topic is not used because it is shared by all peers in the network and using it with
another less popular topic in a multiple topic search resembles a single topic search for the less popular
topic.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 111

Topic Average Average Average Average
Popularity Maximum Recall Number of Hops Matches Broadcast Rate

2 99% 8.10 50.00
3 94% 6.30 33.00

(2, 3) 99% 5.30 18.40 87.30

2 99% 8.10 50.00
4 100% 5.84 25.00

(2, 4) 100% 4.88 11.40 93.01

2 99% 8.10 50.00
5 97% 5.20 20.00

(2, 5) 100% 4.88 10.6 95.60

2 99% 8.10 50.00
6 96% 5.01 17.00

(2, 6) 100% 4.62 9.00 96.61

2 99% 8.10 50.00
7 100% 5.00 14.00

(2, 7) 100% 4.37 6.40 97.60

2 99% 8.10 50.00
8 99% 4.74 13.00

(2, 8) 100% 4.46 5.40 97.81

2 99% 8.10 50.00
9 100% 4.71 11.00

(2, 9) 100% 4.23 6.40 98.21

2 99% 8.10 50.00
10 99% 4.85 10.00

(2, 10) 100% 4.00 5.00 98.61

2 99% 8.10 50.00
11 100% 4.75 9.00

(2, 11) 100% 4.25 5.40 98.00

2 99% 8.10 50.00
12 98% 4.60 8.00

(2, 12) 100% 3.89 3.60 99.20

2 99% 8.10 50.00
13 100% 4.70 7.00

(2, 13) 100% 3.88 3.00 99.01

2 99% 8.10 50.00
14 100% 4.44 6.00

(2, 14) 100% 3.68 2.40 99.21

2 99% 8.10 50.00
15 100% 4.22 5.00

(2, 15) 80% 2.97 1.80 99.41

TABLE 6.6: Multiple Topic Search based on Two Topics with Distinct Popularities in
Zipf’s Distribution

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 112

Topic Average Average Average Average
Popularity Maximum Recall Number of Hops Matches Broadcast Rate

2 99% 8.10 50.00
16 100% 4.01 4.00

(2, 16) 80% 2.80 2.00 99.80

2 99% 8.10 50.00
17 100% 3.96 3.00

(2, 17) 100% 3.26 1.20 99.41

2 99% 8.10 50.00
18 100% 3.77 2.00

(2, 18) 20% 0.56 0.20 99.60

2 99% 8.10 50.00
19 100% 3.06 1.00

(2, 19) 60% 1.74 0.60 99.41

TABLE 6.7: Multiple Topic Search based on Two Topics with Distinct Popularities in
Zipf’s Distribution (Continued)

to the second and the third most popular topics, and the last multiple topic search in-

volves the second and the nineteenth most popular topics. The cache rate was set as 5%.

The network topologies generated in single topic search for individual topics (with the

same experimental settings) were employed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 r
ec

al
l

Hops

2 < p <= 15

popularity = 2nd
popularity = pth
popularity = (2nd,pth)

FIGURE 6.12: Average Recall Level at Progressive Hop Counts in Multiple Topic
Search (Zipf’s Distribution)

DiscussionTable 6.6 and Table 6.7 present the result of the experiment with mul-

tiple topic search involving topics from a Zipf’s distribution. It is observed that the

average number of hops to achieve the average maximum recall decrease as the proba-

bility (or popularity) of the component topics (see the column titled ‘Average Matches’)

reduces. This is analogous to the pattern that exists in the simulation on single topic

search, see Table 6.4. However, the probability of the component topics chosen for

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 113

each multiple topic search is less than 50%6 in this experiment. Therefore, only the

situation in which the average number of hops that are needed to achieve the maximum

recall is in proportion to the probability of the component topics, can be observed. The

average broadcast rate is inversely proportional to the probability (or popularity) of the

component topics, because less popular query topics yield less probability of overlap

between peers, thus triggering a higher broadcast rate to locate all the instantiations.

The recall level obtained at progressive hop counts is plotted in Figure 6.127. The result

of all multiple topic searches carried out shows that the average recall level at each hop

is inversely proportional to the topic probability (or popularity). Table 6.6 and Table 6.7

reveal that the behaviour of multiple topic search exhibits similarity to that of single

topic search, see Figure 6.10.

Experiment 2

Experimental settingsThe settings were kept as in Experiment 3 of single topic

search, except that each multiple topic query involves two topics from a uniform dis-

tribution. Again, the network topologies generated in single topic search for individual

topics (with the same experimental settings) were employed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 r
ec

al
l

Hops

0 < d < 70

probability = p%
probability = (p%,p%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 r
ec

al
l

Hops

70 <= d < 100

probability = p%
probability = (p%,p%)

FIGURE 6.13: Average Recall Level at Progressive Hop Counts in Multiple Topic
Search (Uniform Distribution)

DiscussionTable 6.8 demonstrates the result of the experiment with multiple topic

search involving topics from uniform distributions. It can be observed that the average

number of hops to achieve the average maximum recall increases before the probabil-

6The maximum probability of the component topics is 18.40%.
7This figure is a schematic of a series of figures sharing the similar trend of each curve and the same

relative relationship among the curves. Simulation results withp > 15 are not shown because they are
not typical due to the little probability of the component topics, e.g. 2.00%, 1.20%, 0.20% and 0.60% in
Table 6.7.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 114

Topic Average Average Average Average
Probability Maximum Recall Number of Hops Matches Broadcast Rate

90% 99% 5.51 90.00
(90%, 90%) 98% 5.95 80.40 0.72

80% 99% 6.04 80.00
(80%, 80%) 98% 7.05 63.80 12.73

70% 98% 6.81 70.00
(70%, 70%) 96% 7.61 50.60 35.28

60% 99% 7.66 60.00
(60%, 60%) 99% 6.90 34.20 65.84

50% 99% 7.72 50.00
(50%, 50%) 99% 5.53 24.20 81.95

40% 99% 6.98 40.00
(40%, 40%) 100% 5.24 16.20 89.40

30% 97% 6.16 30.00
(30%, 30%) 99% 4.76 10.20 94.43

20% 99% 5.44 20.00
(20%, 20%) 100% 3.75 4.00 99.00

10% 100% 4.88 10.00
(10%, 10%) 98% 2.68 1.00 99.40

1% 100% 3.08 1.00
(1%, 1%) 0% 0.00 0.00 99.21

TABLE 6.8: Multiple Topic Search based on Two Topics with Distinct Probabilities
from Uniform Distributions

ity of the component topics drops below 50.60% and decreases thereafter, as the topic

probability of the component topics (see the column titled ‘Average Matches’) reduces.

The pattern is the same as can be seen in the simulation on single topic search, see Ta-

ble 6.5. Again, the average broadcast rate is inversely proportional to the probability of

the component topics. The explanation, which was given in the previous experiment for

the relationship between the average broadcast rate and the popularity of the component

topics in a multiple topic search for topics from a Zipf’s distribution, is also applicable

herein.

The recall level at progressive hop counts is plotted in Figure 6.138. It is shown

that the average recall level at each hop is proportional to the topic probability when the

probability of each component topic is greater than 70%9 and is inversely proportional

to the topic probability when the probability of each component topic is less than 70%.

This phenomenon is in accordance with the one observed in single topic search, see

8This figure is a schematic of a series of figures possessing the similar trend of each curve and the
same relative relationship among the curves.

9Table 6.8 shows that the row with the topic probability in single topic search equal to 70% is a turning
point.

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 115

Figure 6.11.

6.6 Understanding the Semantic Search through Simu-

lation

Simulation, which covers 5 distinct but interrelated experiments, has been conducted on

single topic search and multiple topic search so as to explore the behaviour and perfor-

mance of the distance-based semantic search algorithm. The experiments investigated

the Zipf’s distribution and the uniform distribution of topics - the two most potential

distributions if topics are sorted by popularity. The main metrics in performance evalua-

tion include hops, recall and broadcast rate which are employed to describe the principal

findings outlined as follows.

1. In a single topic search, the cache rate (except the extreme cases, such as 1% in

the simulation) is inversely proportional to the average number of hops that are

needed to achieve the maximum recall.

2. The search for a topic with a probability less than 50% yields the average num-

ber of hops needed to achieve the maximum recall inversely proportional to topic

probability (or popularity). In contrast, the search for a topic with a probability

more than 50% results in the average number of hops needed to achieve the max-

imum recall proportional to topic probability (or popularity). This phenomenon

was observed in simulation with both Zipf’s distribution and uniform distribution

of topics.

3. If the single topic in a search is replaced with multiple topics, 2 topics for exam-

ple, the observations mentioned above remain unchanged.

4. The average broadcast rate is inversely proportional to topic probability (or pop-

ularity).

While simulation on single topic search revealed the essential behaviour and per-

formance of the semantic search algorithm, extending the simulation to multiple topic

search was intended to confirm the universality of such properties. Examining both

finding 2 and 3 described above, one would discover that:

1. Because topics with distinct semantics are considered independent of one another,

the joint popularity (or the joint probability) of component topics should be used

Chapter 6 Evolution of the DDLS into an Unstructured P2P System 116

in multiple topic search as the topic popularity (or probability) used in single topic

search, when predicating the behaviour and search performance of the semantic

search.

2. Topic popularity (or probability) of topics is what should be taken into account,

other than the distribution of all topics, when discussing the behaviour and per-

formance of the semantic search.

6.7 Summary

According to the requirements for an unstructured P2P DDLS as identified in Chap-

ter 5, this chapter revised the resource description mechanism by adopting the RDF

model and presented the formal representation of a distance-based semantic search al-

gorithm. The meaning conveyed bysemantic searchin the context of the DDLS was

highlighted. It is clear that the approaches of related work documented in Appendix A

can be complement, instead of alternatives, to the DDLS semantic search. This is be-

cause the DDLS assumes the ability of identifying semantically related terms that all

related work possesses, and focuses on an underlying mechanism that supports the se-

mantic search in a P2P context that none of them is able to tackle. Simulation which

involved different topic distributions and query profiles has been carried out to investi-

gate the behaviour and performance of the semantic search algorithm. Many similarities

have been observed from the simulation with a Zipf’s distribution and uniform distri-

butions of topics. The simulation result has given an answer to the first three questions

raised in Section 6.5.3 that of the anticipated behaviour of the semantic search, the im-

pact of the cache rate and resource (or topic) distribution on the search performance.

The last question which relates to re-organisation of the peer network is left to be ex-

plored by the next chapter.

Chapter 7

Re-organising the DDLS Peer Network

7.1 Introduction

The DDLS peer network was constructed with a goal to facilitate resource sharing-based

collaboration. In Chapter 6, essential understanding of the extent to which this goal

can be accomplished with the help of devised mechanisms, has been obtained through

simulation. This chapter investigates the way of further boosting the performance of

resource discovery through re-organisation, an action that may occur throughout the

lifetime of the peer network.

The aim of this chapter is to present the concept of re-organisation in the context

of the DDLS peer network and describe the techniques that can be utilised for imple-

menting re-organisation. This chapter introduces a data structure referred to asquery

historyupon which re-organisation heavily relies. The exponential decay function and

the naive estimator are proposed as re-organisation techniques and simulation that ver-

ifies the effectiveness of both techniques is described. This chapter discusses a further

move, using the virtual overlap which helps reinforce the principle of the semantic

search algorithm, to facilitate re-organisation. A utility equation is proposed to evaluate

the gains in the search performance resulting from re-organisation. Finally, a review of

re-organisation is presented which looks back at the origin, features and techniques of

re-organisation, summarises the principle findings of simulation on re-organisation, and

gives a complementary explanation for some phenomena observed in simulation.

117

Chapter 7 Re-organising the DDLS Peer Network 118

7.2 Concept and Forms

Re-organisation of the peer network in the context of the DDLS is defined asan act

of altering the virtual neighbourhood of any peer in the network to optimise resource

discovery. It is typically triggered by the state change of any peer in the network which

includes the (dis)appearance of a peer, resource update to a peer and update of neigh-

bours of a peer.

Re-organisation (not including that results from peer arrival and departure) is not

a subject that has been researched extensively by the P2P community. This is because

the inherent organisational structure of P2P systems differs from one another. For in-

stance, centralised P2P systems would not benefit from re-organisation because resource

discovery in such systems relies heavily on a centralised directory and altering the net-

work topology does not facilitate the location and retrieval of resources of interest. For

structured P2P systems that adopt DHTs to index the search space for efficient lookup,

re-organisation bears no significance either. Unstructured P2P systems are perhaps the

most promising systems that would benefit from employing re-organisation, because

they do not depend on a central directory and neither do they have a tight control over

the network topology and the placement of resources. Little work which relates to

re-organisation in unstructured P2P systems has been carried out and reported. This

work aims to explore the way of improving the performance of resource discovery by

proposing re-organisation in the DDLS peer network, and evaluate the approach through

simulation (see Section 7.5.2 and Section 7.5.4).

The major forms of re-organisation in the DDLS peer network comprise the fol-

lowing classes, mainly differing from one another in terms of origin.

1. Passive re-organisation: Re-organisation results from either the arrival, departure

or update of peers is referred to as passive re-organisation. In this form of re-

organisation, peers take an inactive part in altering the network topology, because

they are committed to the peer network which regulates that the topology of the

peer network should reflect the up-to-date relationship between peers. Peer ar-

rival and departure related re-organisation has been described in Section 6.2.3

and Section 6.2.4. Update related passive re-organisation is the focus of the work

presented later in this chapter.

2. Proactive re-organisation: Peers may take the initiative to perceive and predict

the potential information needs through some mechanism. They can therefore

re-organise the network topology to enable those needs to be satisfied in the fu-

Chapter 7 Re-organising the DDLS Peer Network 119

ture with high probability. This type of re-organisation is named proactive re-

organisation and can benefit from the techniques for update related passive re-

organisation.

3. Autonomous re-organisation: The fullest extent of autonomy is observed in this

kind of re-organisation. It typically involves peers which adjust their resources in

response to information needs. Thus, the relationship between the updating peers

and their neighbours may no longer hold, which gives rise to a variation of the

network topology.

When re-organisation is triggered, regardless of the form, involved peers will

utilise the techniques proposed later in this chapter (see Section 7.5.1 and Section 7.5.3)

to discover a set of neighbours which are most qualified to help achieve the objectives

of re-organisation, and replace the current neighbours with the new ones.

Though the origin of re-organisation can be as diverse as shown above, the objec-

tives of such re-organisation are always straightforward, i.e. to reflect the up-to-date

relationship between peers and to deliver an improved performance in resource discov-

ery through the alteration of the network topology.

In the DDLS, the knowledge of resources owned by each peer is restricted to its

neighbours. Peers view a limited scope of the global information about resources in the

system. There are two ways for information (about resources) sharing in such a net-

work - sharing the topic information with neighbours as in Section 6.2.3, and utilising

the query routing information. The routing information of queries that have been prop-

agated from other peers, is maintained in a data structure calledquery history. The next

section introduces the data structure and related operations.

7.3 Supporting the ‘Query History’ Data Structure

Query history is a collection of all queries a peer has encountered over a period of time.

Peers may be able to predict the future information needs of others by analysing query

history, which is subsequently accompanied by rational re-organisation.

Query history is realised as a FIFO (First In First Out) queue, see Figure 7.1.

History information is discarded when the queue overflows. LetT denote the set of all

the topics. Each entry of query history includes three fields: the query identifer, query

topics and the arrival time of the query. The set of query identifiers isQ, the capacity of

Chapter 7 Re-organising the DDLS Peer Network 120

����

�����

�

�

�

��
�

��
� � � �

�

�

��
�

��
� � � �

�

�

��
�

��
� � � �

�

�

�	
�

�	
� � � �

	

�

�
�
�

�
�
��
��
��
�

�
�
����

�
��� �

�
���

�
�

�
� � � � �

FIGURE 7.1: Query History ofpi at an Instant of Time

query history of peerpi is hmax
i and the set of arrival time of queries isA. Query history

of pi can be represented byHi = {(qm
i , hm

i , am
i)|qm

i ∈ Q, hm
i ∈ T, hm

i × hm
i ⊆ T, am

i ∈
A, 0 < m ≤ hmax

i }.

7.4 Criteria and Metric

One of the objectives of re-organisation is to optimise resource discovery. This entails

the knowledge of resource supply and demand in the DDLS peer network. An analy-

sis of the resource supply and demand yields two criteria which can be used to guide

rational re-organisation.

1. Peers that share related topics should be incorporated into the samecluster1.

2. Peers should be situated in the vicinity of those that would accommodate potential

information needs with high probability.

The reason is explained as follows. Having neighbours with related topics allows a peer

to identify others that accommodate similar information needs conveyed by queries.

The peer can therefore propagate subsequent related queries and avoid costly broadcast.

1The termclusteris derived from the unsupervised clustering method which groups entities into clus-
ters by the similarity of their features without any prior knowledge about the number of the clusters,
which fits in with the DDLS clustering problem. However, because the resources of each peer are repre-
sented by a set of characteristic topics, a peer being incorporated into more than one cluster would occur
frequently.

Chapter 7 Re-organising the DDLS Peer Network 121

Key to the reduction of local broadcast is the local knowledge ofsupplyavailable at

neighbours. Meanwhile, a peer can identify the potential information needs of others

from its query history and make peers with desired topics its neighbours through re-

organisation. In the proposed techniques (see Section 7.5.1 and Section 7.5.3), a peer

analyses the potentialdemandof others based on their previous information needs ex-

hibited in query history and chooses appropriate peers that fulfill the requirement as

neighbours.

The termusefulnessis employed to represent the relative extent to which a peer

should be considered as a neighbour of another peer during re-organisation. Assume

that a candidate neighbourpj (with respect topi) publishes a topic listTj. Let εi,j be a

metric which represents the information needs exhibited in query history ofpi. Different

techniques will be utilised to estimate the value ofεi,j in the following sections. Also,

let ηi,j denote the extent to whichpj would match the queries thatpi can satisfy:

ηi,j =
|Ti

⋂
Tj|

|Ti|
.

Let ιi,j represent the usefulness ofpj with respect topi

ιi,j =
√

(κ1εi,j)2 + (κ2ηi,j)2 (7.1)

whereκ1 andκ2 are constant coefficients associated with query history and the cached

topic information, respectively. The quantitative relationship of the significance be-

tweenεi,j andηi,j can be adjusted by assigning specific values toκ1 andκ2.

Within the capacity of its cache,pi only keeps peers with the greatest value ofι as

its new neighbours during re-organisation, and discards the rest.

For ease of comprehension, it is necessary to interpret the physical significance

of Equation 7.1. Figure 7.2 geometrically demonstrates the usefulness of candidate

neighbourspj andpk with respect topi. The usefulness of candidates is quantitatively

represented by the radius of a series of coaxial circles. The longer the radius is, the

more useful a candidate is. Equation 7.1 can reflect such a relationship even without

the coefficientsκ1 andκ2. However, in some cases, a unit of change ofε may yield

a different alteration in the usefulness metricι compared to that caused by a unit of

change ofη. A unit of change of a variable refers to the difference between a pair of

its consecutive permissible values. For instance, the (non-)existence of a topic in the

overlap or in query history yields a unit of change ofη or ε. It is implied that in useful-

ness decision the significance of a topic in the overlap may be rated differently relative

to that of a topic in query history. To discard such a constraint,κ1 andκ2 are used to

Chapter 7 Re-organising the DDLS Peer Network 122

0

jp

kp

ji ,1εκ

ki ,1εκ

ki ,2ηκ
ji ,2ηκ

ji ,ι

ki ,ι

FIGURE 7.2: Usefulness of Candidates for Neighbours ofpi

leverage the contribution from both aspects. The performance of resource discovery

affected by various relationships betweenκ1 andκ2 will be explored in Section 7.5.2

and Section 7.5.4.

7.5 Enabling Techniques

The standard LRU/LFU (least recently/frequently used) algorithm (Silberschatz and

Galvin 1994) has gained wide acceptance in such domains as the caching strategies

in Web proxies and the page replacement policy in operating systems. By keeping track

of the time/number that each object or page is referenced, the LRU/LFU decides which

object or page to be replaced with a new one, when the cache reaches its capacity or a

page not resident in the main memory is needed by an active process. Such algorithms

are of particular interest to re-organisation in the DDLS. The issue in re-organisation

is to decide which queries should be taken into account to compute the usefulness of

neighbours while ignoring the others, which is similar to that in both caching strategies

and the page replacement policy, i.e. using some technique to measure the superiority

(or suitability) of some entities over the others.

The fundamental assumption behind the LRU/LFU algorithm is that the recent past

will approximate the immediate future. Therefore, the caching strategies for example,

can deduce the likelihood of future references to the cached entities based on the ob-

servations of either their size, recency or frequency. The re-organisation techniques

Chapter 7 Re-organising the DDLS Peer Network 123

presented in the following subsections make the same assumption and employ different

strategies to support the usefulness decision, however.

The exponential decay function is used to vary the significance of queries in query

history based on both the time (recency) and the number of occurrence (frequency),

whereas the naive estimator diversifies the significance of queries in query history in

terms of the probability of query topics (analogous to frequency). The former strategy

subsumes both the LRU and the LFU while the latter is a variant of the LFU.

7.5.1 Exponential Decay Function-based Usefulness Decision

A straightforward approach to distinguish the instances of query topics with various

times of occurrence is to allocate various weights to these instances. An exponential

decay functionW (S(q)) can satisfy the requirement.W (S(q)) is a weight function

of S(q) which is in turn a sequence function of an incoming queryq. The following

phenomena can be observed in query history to which an exponential decay function is

applied:

• More recent query topic instances are always awarded higher weights for their

occurrences;

• More significant difference between two query topic instances occurring more

recently can be observed than that between two topic instances, with the same

distance in sequence, occurring less recently.

Let hmax
i be the capacity of query historyHi of pi. The exponential decay function

takes the following form:

W (S(q)) = e−S(q).

For sequence functionS(q), the following equations hold.

S(q1
i) = 1, S(q2

i) = 2, . . . , S(q
hmax

i
i) = hmax

i

where q1
i , q2

i , . . . , q
hmax

i
i are a sequence of incoming queries ordered by the arrival

time with q1
i being the most recent incoming query.

Supposepi is going to decide how useful a candidate neighbourpj is. Given an

interval I, the metricεi,j which represents the information needs exhibited in query

Chapter 7 Re-organising the DDLS Peer Network 124

history ofpj takes into account all query instances in query history ofpi whose topics

are semantically subsumed bypj ’s topics. Therefore,

εi,j =
∑

W (m) =
∑

e−m

where0 < m ≤ hmax
i anda1

i − I ≤ am
i ≤ a1

i .

Again, letηi,j be the extent to which thatpj would match the queries thatpi can

satisfy andιi,j represent the usefulness ofpj with regard topi.

ιi,j =
√

(κ1

∑
e−m)2 + (κ2ηi,j)2 (7.2)

7.5.2 Simulation on Exponential Decay Function Supported

Re-organisation (EDFSR)

This section presents the simulation that investigates the behaviour of re-organisation

of the peer network based on the exponential decay function. In addition, the simu-

lation explores the relationship between query history and the overlap information in

usefulness decision, and examines their individual significance for re-organisation.

Experimental settingsThe simulator introduced in Section 6.5.1 was employed

to simulate a peer network consisting of 100 peers. Each peer randomly chose a list

of topics from a global list of 100 entities, ensuring that the topics followed a Zipf’s

distribution. The cache rate was kept at 5%. A set of query topics which followed a

Zipf’s distribution2 was constructed and each query (482 instantiations in total derived

from the global list of 100 entities) chose a single topic from this set. The capacity of

query history wash. The experimental procedure is described as follows.

1. Over a time intervalI, q (q ≥ h) queries are issued. A snapshot of query history

of each peer and the topology of the peer network is maintained.

2. Anotherq queries are issued overI in the peer network with the same topology as

that maintained in Step 1. The snapshot of the queries and the query initiators is

kept.

3. Based upon the query history and the topology maintained in step 1, the peer

network is re-organised since a certain percentage, known as the updating rate

2Studies show the presence of Zipf’s law in Gnutella and Web queries (Breslau et al. 1999, Sripanid-
kulchai).

Chapter 7 Re-organising the DDLS Peer Network 125

u.r., of all peers launch an update to their resources (which also results in an

update to the topic information about the resources). For the sake of simplicity,

these peers do not practically update topics in simulation but only choose their

new neighbours in terms of usefulness (κ1 = 0 andκ2 = 1). The query initiators

kept in step 2 issue the same queries as in step 2 overI.

4. Repeat step 3 with pairs of values forκ1 andκ2: (0.01, 1), (0.1, 1), (1, 1), (10, 1),-

(100, 1) and(1, 0) respectively.

Based on the query history generated in step 1, step 2, 3 and 4 were set up to exam-

ine the average reduction in hops to achieve the maximum recall in various environ-

ments, including that without re-organisation (step 2) and those with usefulness-based

re-organisation (step 3 and 4).

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 r
ed

uc
ti

on
 in

 h
op

s

κ1:κ2

h = 50

e-x/1000

e-x/500

e-x/100

e-x/50

e-x/10

e-x

e-2x

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 r
ed

uc
ti

on
 in

 h
op

s

κ1:κ2

h = 250

e-x/1000

e-x/500

e-x/100

e-x/50

e-x/10

e-x

e-2x

FIGURE 7.3: Average Reduction in Hops to Achieve the Maximum Recall with
EDFSR,u.r. = 5%

DiscussionFigure 7.3 shows the average reduction in hops to achieve the max-

imum recall when the exponent in the exponential decay function is associated with

various values. The greater the absolute value of the exponent is, the steeper the slope

of the curve that represents the function would be. This feature of the exponential de-

cay function indicates that, among others used in the experiment,f(m) = e−2m would

result in the greatest difference between the weights allocated to a pair of query history

entries. The simulation result reveals thatf(m) = e−
m
500 yields the greatest average

reduction in hops to achieve the maximum recall in most cases. However, the curve

associated withf(m) = e−
m

1000 in the figure indicates that merely increasing the ex-

ponent does not necessarily lead to a greater average reduction in hops. This is also

supported by the result of the simulation conducted with the capacity of the query his-

tory equal to 250. The objective of conducting the simulation with a different history

capacity is to explore the frequency of which queries should be captured to facilitate

Chapter 7 Re-organising the DDLS Peer Network 126

re-organisation. Figure 7.3 demonstrates that, with the specified experimental settings

and increased query history capacity (250), the greatest average reduction in hops to

achieve the maximum recall is accomplished by EDFSR associated withf(m) = e−
m
500

in most cases.

 3.4

 3.8

 4.2

 4.6

 5

 5.4

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

to
 a

ch
ie

ve

 th
e

m
ax

im
um

 r
ec

al
l

κ1:κ2

h = 50

u.r.: updating rate

u.r.=5%
u.r.=10%
u.r.=20%
u.r.=30%
u.r.=40%
u.r.=50%
u.r.=60%

 3.4

 3.8

 4.2

 4.6

 5

 5.4

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

to
 a

ch
ie

ve

 th
e

m
ax

im
um

 r
ec

al
l

κ1:κ2

h = 250

u.r.=5%
u.r.=10%
u.r.=20%
u.r.=30%
u.r.=40%
u.r.=50%
u.r.=60%

FIGURE 7.4: Average Number of Hops to Achieve the Maximum Recall with EDFSR,
f(m) = e−

m
500

Figure 7.4 captures the impact that the updating rate has on the average number

of hops to achieve the maximum recall. It can be seen that peers updating resources

deteriorates the search performance in terms of the average number of hops to achieve

the maximum recall. The more peers that carry out an update, the greater average

number of hops are need to discover all the targets. With a greater capacity of query

history, a similar pattern can be observed as in the right sub-figure of Figure 7.4.

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1

 0.1

 0.3

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 r
ed

uc
ti

on
 in

 h
op

s

κ1:κ2

h = 50

u.r.: updating rate

u.r.=5%
u.r.=10%
u.r.=20%
u.r.=30%
u.r.=40%
u.r.=50%
u.r.=60%

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1

 0.1

 0.3

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 r
ed

uc
ti

on
 in

 h
op

s

κ1:κ2

h = 250

u.r.=5%
u.r.=10%
u.r.=20%
u.r.=30%
u.r.=40%
u.r.=50%
u.r.=60%

FIGURE 7.5: Average Reduction in Hops to Achieve the Maximum Recall with
EDFSR,f(m) = e−

m
500

The average reduction in hops to achieve the maximum recall with EDFSR is

demonstrated in Figure 7.5. Only a relatively low updating rate, 5% and 10% for ex-

ample, leads to a positive average reduction in hops to achieve the maximum recall.

Chapter 7 Re-organising the DDLS Peer Network 127

If the updating rate exceeds 20%, EDFSR does not necessarily deliver a better search

performance in terms of the average reduction in hops to achieve the maximum recall.

 0.8

 0.85

 0.9

 0.95

 1

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 m
ax

im
um

 r
ec

al
l

κ1:κ2

h = 50

u.r.=5%
u.r.=10%
u.r.=20%
u.r.=30%
u.r.=40%
u.r.=50%
u.r.=60%

 0.8

 0.85

 0.9

 0.95

 1

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 m
ax

im
um

 r
ec

al
l

κ1:κ2

h = 250

u.r.=5%
u.r.=10%
u.r.=20%
u.r.=30%
u.r.=40%
u.r.=50%
u.r.=60%

 38

 40

 42

 44

 46

 48

 50

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 b
ro

ad
ca

st
 r

at
e

κ1:κ2

h = 50

u.r.: updating rate

u.r.=5%
u.r.=10%
u.r.=20%
u.r.=30%
u.r.=40%
u.r.=50%
u.r.=60%

 160

 170

 180

 190

 200

 210

 220

 230

 240

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 b
ro

ad
ca

st
 r

at
e

κ1:κ2

h = 250

u.r.=5%
u.r.=10%
u.r.=20%
u.r.=30%
u.r.=40%
u.r.=50%
u.r.=60%

FIGURE 7.6: Average Maximum Recall and Average Broadcast Rate with EDFSR,
f(m) = e−

m
500

The average maximum recall and the average broadcast rate with EDFSR can be

referred to in Figure 7.6. The curve associated with the updating rate of 60% is under

all the rest in both sub-figures, which indicates that one peer network with a higher

updating rate (such as 60%) incurs a lower average maximum recall level as well as

a lower average broadcast rate than another with a lower updating rate (such as 5%,

10% and 30%). Moreover, an obvious phenomenon in the figure is that the average

maximum recall is primarily proportional to the average broadcast rate. In combination

with Figure 7.4, one would discover that the relationship among the average maximum

recall (r), the average number of hops to achieve the maximum recall (h), the average

broadcast rate (b) and the updating rate (u) across different combinations ofκ1 andκ2,

can be simply depicted by

r ∗ u = C1, b ∗ u = C2, h/u = C3 (7.3)

whereC1, C2 andC3 are constants related to (κ1 : κ2).

Chapter 7 Re-organising the DDLS Peer Network 128

7.5.3 Naive Estimator-based Usefulness Decision

The foundation of the naive estimator (Rosenblatt 1956) is that for any givenh andn

independent observationsX1, X2, . . ., Xn from the random variableX, the probability

P (x−h < X < x+h) can be approximated by the proportion of the samples falling in

the interval(x− h, x + h). Thus the naive estimator̂fh(x) for the estimation of density

valuef(x) at pointx is defined as

f̂h(x) =
1

2nh
[no. ofXi falling in (x− h, x + h)]

A more transparent form of the naive estimator can be procured by defining a

weight function

w(x)

{
1
2

if |x| < 1

0 otherwise

The naive estimator is therefore also written as

f̂h(x) =
1

n

n∑
i=1

1

h
w(

x−Xi

h
)

with h being a small number.

The naive estimator is a nonparametric approach (Silverman 1986) in that less rigid

assumptions, for example the density function underlying the data, are made about the

distribution of the observations. It is the observed data that is crucial in deciding the

estimate off(•). This feature indicates that the distribution of query topics in the DDLS

can be estimated based on the overall views of peers, while the probability of query

topics at a single peer can be approximated by the peer’s local view (Zhou et al. 2004).

The purpose of introducing query history is to perform an informal investigation

into the properties of queries, and guide re-organisation of the peer network using the

properties of queries revealed. In the DDLS, the probability of query topics is an im-

portant property that needs to be explored for predicting the future information needs.

The naive estimator can take advantage of query history maintained by individual peers

to approximate the future information needs they would encounter.

Suppose the probability of topics in query history of peerpi can be depicted by

functionfi,h(t) of a discrete random variablet, wheret denotes the least index of the

same set of related topics in history entries. For example, ifTa andTb denote the topics

of the 1st and 5th entries in query history and both share the same set of related topics.

Chapter 7 Re-organising the DDLS Peer Network 129

q 1
i , , a 1

i

q 2
i , , a 2

i

q 3
i , , a 3

i

q 4
i , , a 4

i

{A, C}

{A, B, C}

{A, C}

{B, C, D}

q 5
i , , a 5

i{A, B, C}

q 6
i , , a 6

i{D, E, F}

q 7
i , , a 7

i{E, F}

q 8
i , , a 8

i{E, F}

)(ˆ
, tf hi

t

t = 1

t = 2

t = 1

t = 4

t = 2

t = 6

t = 7

t = 7 {A, C} {A, B, C} {B, C, D} {D, E, F} {E, F}

8

1

8

2

8

3

1 2 3 4 5 6 7

FIGURE 7.7: Computation of̂fi,h(t) based on Query History ofpi

The observations oft for both entries will be 1 instead of 5. Using the naive estimator,

the estimate of probability of topics att is

f̂i,h(t) =
1

n

n∑
k=1

1

h
w(

t− Tk

h
)

with h = 0.5. It should be stressed thatf̂i,h(t) takes into account all query history entries

of pi no matter when they arrived. This is contrary to what occurs in exponential decay

function-based usefulness decision.

Assume that a candidate neighbourpj of pi publishes its topic listTj. Let εi,j be

the estimate of the probability of topics inTj in future queries encountered bypi.

εi,j =
∑

f̂i,h(t)

εi,j considers the estimate at allt where the topics of history entries are semantically

subsumed by topics inTj. Figure 7.7 explains how to computêfi,h(t) based on query

history of pi. If the topics inTj comprise{A, C, E, F}, εi,j should take into account

both t = 1 andt = 7 at which topics of history entries are semantically subsumed by

those inTj. Therefore,

εi,j =
2

8
+

2

8
=

1

2
.

As in Section 7.5.1, letιi,j represent the usefulness ofpj with regard topi andηi,j

be the extent to which thatpj would match the queries thatpi can satisfy.

ιi,j =
√

(κ1

∑
f̂i,h(t))2 + (κ2ηi,j)2 (7.4)

Chapter 7 Re-organising the DDLS Peer Network 130

7.5.4 Simulation on Naive Estimator Supported Re-organisation

(NESR)

The simulation in this section aims to explore the properties of re-organisation of the

peer network based on the naive estimator. It also helps understand the quantitative re-

lationship between query history and the overlap information in the usefulness decision

during re-organisation.

Experimental settingsThe experimental settings remain the same as those de-

scribed in Section 7.5.2 except that the usefulness decision is enabled by the naive

estimator.

 3.4

 3.8

 4.2

 4.6

 5

 5.4

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

to
 a

ch
ie

ve
 th

e
m

ax
im

um
 r

ec
al

l

κ1:κ2

h = 50

u.r.: updating rate

u.r.=5%
u.r.=10%
u.r.=20%
u.r.=30%
u.r.=40%
u.r.=50%
u.r.=60%

 3.4

 3.8

 4.2

 4.6

 5

 5.4

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

to
 a

ch
ie

ve
 th

e
m

ax
im

um
 r

ec
al

l

κ1:κ2

h = 250

u.r.=5%
u.r.=10%
u.r.=20%
u.r.=30%
u.r.=40%
u.r.=50%
u.r.=60%

FIGURE 7.8: Average Number of Hops to Achieve the Maximum Recall with NESR

DiscussionWith NESR, the average number of hops to achieve the maximum

recall varies with the updating rate, see Figure 7.8. Similar to the pattern observed in

Figure 7.4, the more peers that conduct an update, the more average number of hops are

needed in search of all targets.

It is observed in Figure 7.9 that the impact from query history is predominant in

reducing the average number of hops to achieve the maximum recall when the updating

rate is relatively low, for instance 5% and 10% in the experiment. However, as the

updating rate increases, see the curves associated with the updating rate equal to 40%,

the overlap information becomes more influential on the the average reduction in hops

than query history.

This experiment also reveals that, compared to EDFSR, NESR is applicable to a

more dynamic peer network, i.e. a peer network with a higher updating rate, in terms of

the average reduction in hops to achieve the maximum recall. It is shown in Figure 7.5

Chapter 7 Re-organising the DDLS Peer Network 131

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1

 0.1

 0.3

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 r
ed

uc
ti

on
 in

 h
op

s

κ1:κ2

h = 50

u.r.: updating rate

u.r.=5%
u.r.=10%
u.r.=20%
u.r.=30%
u.r.=40%
u.r.=50%
u.r.=60%

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1

 0.1

 0.3

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 r
ed

uc
ti

on
 in

 h
op

s

κ1:κ2

h = 250

u.r.=5%
u.r.=10%
u.r.=20%
u.r.=30%
u.r.=40%
u.r.=50%
u.r.=60%

FIGURE 7.9: Average Reduction in Hops to Achieve the Maximum Recall with NESR

that a peer network with an updating rate greater than 20% suffers from a negative aver-

age reduction in hops to achieve the maximum recall with EDFSR. However, Figure 7.9

demonstrates that NESR can boost the threshold up to 40%3.

 0.8

 0.85

 0.9

 0.95

 1

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 m
ax

im
um

 r
ec

al
l

κ1:κ2

h = 50

u.r.=5%
u.r.=10%
u.r.=20%
u.r.=30%
u.r.=40%
u.r.=50%
u.r.=60%

 0.8

 0.85

 0.9

 0.95

 1

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 m
ax

im
um

 r
ec

al
l

κ1:κ2

h = 250

u.r.=5%
u.r.=10%
u.r.=20%
u.r.=30%
u.r.=40%
u.r.=50%
u.r.=60%

 38

 40

 42

 44

 46

 48

 50

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 b
ro

ad
ca

st
 r

at
e

κ1:κ2

h = 50

u.r.: updating rate

u.r.=5%
u.r.=10%
u.r.=20%
u.r.=30%
u.r.=40%
u.r.=50%
u.r.=60%

 160

 170

 180

 190

 200

 210

 220

 230

 240

(1:0)(100:0)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 b
ro

ad
ca

st
 r

at
e

κ1:κ2

h = 250

u.r.=5%
u.r.=10%
u.r.=20%
u.r.=30%
u.r.=40%
u.r.=50%
u.r.=60%

FIGURE 7.10: Average Maximum Recall and Average Broadcast Rate with NESR

Figure 7.10 illustrates the average maximum recall and the average broadcast rate

3The average change of all metrics introduced by different re-organisation techniques is of particular
concern. Hence, using different network topologies in simulation on EDFSR and NESR is allowed.

Chapter 7 Re-organising the DDLS Peer Network 132

with NESR. A greater level of the average maximum recall is always accompanied by

a higher average broadcast rate, which indicates that the ratio of the average maximum

recall to the average broadcast rate is nearly constant. As with EDFSR, Equation 7.3

holds across different combinations ofκ1 andκ2 with NESR.

7.5.5 Re-organisation with Virtual Overlap

It was identified in Section 7.4 that peers sharing related topics should be incorporated

into the same cluster and peers should also be situated in the vicinity of those that

would accommodate their information needs with high probability. Therefore, the re-

organisation techniques utilise both the overlap information between peers and query

history maintained by individual peers to satisfy such requirements. Recalling the way

a published topic list is constructed and the semantic search algorithm works, one might

be able to realise the need for altering the data structure of the published topic list. The

reason is that, although query history is taken into account in usefulness decision of re-

organisation, the published topic list upon which the search algorithm primarily relies

does not efficiently support and enforce the utilisation of query history. As depicted in

Table 6.1, the last field in the published topic list which embodies all the shared topics

between a pair of peers, guides query routing when a search is carried out. However,

if, for example, peerpj is chosen as a neighbour ofpi only because the former covers

topics in the history entries of the latter but these two do not share any related topics, no

measures can guarantee that the following queries which are related topj will be routed

to pj without using a local broadcast as expected.

�
�

�
�

�
�

����	��
�

�	��
�����
�

FIGURE 7.11: Semantic Search without Virtual Overlap

Figure 7.11 shows thatpi and pj have no related topics in common, andpj is

recently chosen aspi’s neighbour becausepj satisfied queries frompi. pk is another

neighbour ofpi. A query involving topicE will be forwarded bypi to bothpk andpj

through a local broadcast instead ofpj only according to the search algorithm (see Sec-

Chapter 7 Re-organising the DDLS Peer Network 133

tion 6.4.4). This makes the introduction ofpj as a new neighbour ofpi lack significance

in terms of the reduction in broadcast rate.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 10%

without virtual overlap
with virtual overlap

 0.75

 0.8

 0.85

 0.9

 0.95

 1

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 20%

without virtual overlap
with virtual overlap

 0.75

 0.8

 0.85

 0.9

 0.95

 1

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 30%

without virtual overlap
with virtual overlap

 0.75

 0.8

 0.85

 0.9

 0.95

 1

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 40%

without virtual overlap
with virtual overlap

 0.75

 0.8

 0.85

 0.9

 0.95

 1

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 50%

without virtual overlap
with virtual overlap

 0.75

 0.8

 0.85

 0.9

 0.95

 1

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 60%

without virtual overlap
with virtual overlap

FIGURE 7.12: Average Maximum Recall with EDFSR,h = 50, f(m) = e−
m
500

One of the approaches to enforce the utilisation of query history in re-organisation

is to re-define the data structure of the published topic list. The field exposing the shared

topics between a pair of peers is currently responsible for hosting avirtual overlap. The

virtual overlap consists of both the shared topics between a pair of peers and the topics in

query history that a neighbour can successfully answer. The addition of history related

information to the publish topic list would enable the following queries to be routed to

pj which is chosen as a neighbour ofpi because of its coverage of topics in the history

entries ofpi, without using broadcast.

Chapter 7 Re-organising the DDLS Peer Network 134

 3.6

 4

 4.4

 4.8

 5.2

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)A
ve

ra
ge

 n
um

be
r

of
 h

op
s

to
 a

ch
ie

ve

 th
e

m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 10%

without virtual overlap
with virtual overlap

 3.6

 4

 4.4

 4.8

 5.2

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)A
ve

ra
ge

 n
um

be
r

of
 h

op
s

to
 a

ch
ie

ve

 th
e

m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 20%

without virtual overlap
with virtual overlap

 3.6

 4

 4.4

 4.8

 5.2

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)A
ve

ra
ge

 n
um

be
r

of
 h

op
s

to
 a

ch
ie

ve

 th
e

m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 30%

without virtual overlap
with virtual overlap

 3.6

 4

 4.4

 4.8

 5.2

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)A
ve

ra
ge

 n
um

be
r

of
 h

op
s

to
 a

ch
ie

ve

 th
e

m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 40%

without virtual overlap
with virtual overlap

 3.6

 4

 4.4

 4.8

 5.2

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)A
ve

ra
ge

 n
um

be
r

of
 h

op
s

to
 a

ch
ie

ve

 th
e

m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 50%

without virtual overlap
with virtual overlap

 3.6

 4

 4.4

 4.8

 5.2

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)A
ve

ra
ge

 n
um

be
r

of
 h

op
s

to
 a

ch
ie

ve

 th
e

m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 60%

without virtual overlap
with virtual overlap

FIGURE 7.13: Average Number of Hops to Achieve the Maximum Recall with
EDFSR,h = 50, f(m) = e−

m
500

A series of simulation was carried out to investigate the gains in performance

resulting from applying the virtual overlap to both EDFSR and NESR. Section 6.5.3

presents three metrics: hops, recall and broadcast rate, from which the essential com-

ponents in the utility function defined below to estimate the gains are derived.

utility = ∆h−∆r + ∆b (7.5)

where r represents the average maximum recall,h the average number of hops to

achieve the maximum recall,b the average broadcast rate and∆ denotes the decrease

Chapter 7 Re-organising the DDLS Peer Network 135

 25

 30

 35

 40

 45

 50

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 b
ro

ad
ca

st
 r

at
e

κ1:κ2

updating rate = 10%

without virtual overlap
with virtual overlap

 25

 30

 35

 40

 45

 50

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 b
ro

ad
ca

st
 r

at
e

κ1:κ2

updating rate = 20%

without virtual overlap
with virtual overlap

 25

 30

 35

 40

 45

 50

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 b
ro

ad
ca

st
 r

at
e

κ1:κ2

updating rate = 30%

without virtual overlap
with virtual overlap

 25

 30

 35

 40

 45

 50

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 b
ro

ad
ca

st
 r

at
e

κ1:κ2

updating rate = 40%

without virtual overlap
with virtual overlap

 25

 30

 35

 40

 45

 50

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 b
ro

ad
ca

st
 r

at
e

κ1:κ2

updating rate = 50%

without virtual overlap
with virtual overlap

 25

 30

 35

 40

 45

 50

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 b
ro

ad
ca

st
 r

at
e

κ1:κ2

updating rate = 60%

without virtual overlap
with virtual overlap

FIGURE 7.14: Average Broadcast Rate with EDFSR,h = 50, f(m) = e−
m
500

of any variable. Because the metrics are different, a normalisation process should be

applied to the variables which maps the value of the variables onto an interval, such as

[0, 1].

Figure 7.12 shows the average maximum recall achieved by EDFSR which con-

siders the virtual overlap, and by EDFSR which does not. It is not significant that

re-organisation with the virtual overlap outperforms that without virtual overlap in most

cases. Nonetheless, withκ1 : κ2 = 1 : 0, i.e. considering only the impact of query

history on re-organisation, an increase of the average maximum recall is observed with

various updating rates when EDFSR takes into account the virtual overlap. In addition,

Chapter 7 Re-organising the DDLS Peer Network 136

a significant increase can be seen in the average number of hops to achieve the max-

imum recall by EDFSR that uses the virtual overlap (see Figure 7.13). Though this

increase is not desirable in terms of utility, the latter can be compensated to some extent

by the decrease in the average broadcast rate, see Figure 7.14. This phenomenon is

explained as follows.

Pi

Pj

Pk

Pl

Pm

Pi

Pj

Pk

Pl

Pm

(a) (b)

FIGURE 7.15: Re-organisation Leads to the Same Clustering but Distinct Topologies

Through clustering peers that share related topics may participate in the same clus-

ter4, i.e. they are more similar to each other than they are to others outside the cluster.

However, it is difficult to maintain the shortest distance (in terms of hops) between

peers. For instance, supposepi has four neighbours:pj, pk, pl andpm. Sub-figure (a)

in Figure 7.15 shows the best case in which the minimum average number of hops ((1

+ 1 + 1 + 1) / 4 = 1) is achieved whenpi discovers targets from all of its neighbours.

Sub-figure (b) in the same figure demonstrates the worst case, after re-organisation, in

which it costs a query frompi the maximum average number of hops ((1 + 2 + 3 + 4) / 4

= 2.5) to locate all targets frompi’s neighbours,pi’s neighbours’ neighbours, etc. This

example indicates that, although re-organisation is able to group peers into appropriate

clusters, it does not guarantee the minimum average number of hops to achieve a certain

level of recall. Recalling that Equation 7.5 shows, with a certain level of the variation

of recall, the gains from re-organisation can also be achieved through maximising∆b5.

This has been accomplished and demonstrated by EDFSR using the virtual overlap, see

Figure 7.14.

4Due to the cardinality of the topics that peers possess, each of them may belong to more than one
cluster at a time.

5∆b denotes the decrease of the average broadcast rate.

Chapter 7 Re-organising the DDLS Peer Network 137

The result of simulation on NESR that adopts the virtual overlap can be referred to

in Figure 7.16, Figure 7.17 and Figure 7.18.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 10%

without virtual overlap
with virtual overlap

 0.75

 0.8

 0.85

 0.9

 0.95

 1

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 20%

without virtual overlap
with virtual overlap

 0.75

 0.8

 0.85

 0.9

 0.95

 1

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 30%

without virtual overlap
with virtual overlap

 0.75

 0.8

 0.85

 0.9

 0.95

 1

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 40%

without virtual overlap
with virtual overlap

 0.75

 0.8

 0.85

 0.9

 0.95

 1

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 50%

without virtual overlap
with virtual overlap

 0.75

 0.8

 0.85

 0.9

 0.95

 1

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 60%

without virtual overlap
with virtual overlap

FIGURE 7.16: Average Maximum Recall with NESR,h = 50

7.5.6 Comparison between EDFSR and NESR

EDFSR and NESR share the same assumption that the recent past will approximate the

immediate future. They both rely on the observation of queries in the past to estimate

the future information needs. If comparing each figure of simulation on EDFSR with

its counterpart of simulation on NESR, one would discover principally similar patterns

from both.

Chapter 7 Re-organising the DDLS Peer Network 138

 3.6

 4

 4.4

 4.8

 5.2

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

to
 a

ch
ie

ve

 th
e

m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 10%

without virtual overlap
with virtual overlap

 3.6

 4

 4.4

 4.8

 5.2

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

to
 a

ch
ie

ve

 th
e

m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 20%

without virtual overlap
with virtual overlap

 3.6

 4

 4.4

 4.8

 5.2

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

to
 a

ch
ie

ve

 th
e

m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 30%

without virtual overlap
with virtual overlap

 3.6

 4

 4.4

 4.8

 5.2

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

to
 a

ch
ie

ve

 th
e

m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 40%

without virtual overlap
with virtual overlap

 3.6

 4

 4.4

 4.8

 5.2

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

to
 a

ch
ie

ve

 th
e

m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 50%

without virtual overlap
with virtual overlap

 3.6

 4

 4.4

 4.8

 5.2

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

to
 a

ch
ie

ve

 th
e

m
ax

im
um

 r
ec

al
l

κ1:κ2

updating rate = 60%

without virtual overlap
with virtual overlap

FIGURE 7.17: Average Number of Hops to Achieve the Maximum Recall with NESR,
h = 50

By changing the updating rate in the simulation with various conditions, it was

found, typically, that the greater the updating rate, the more the performance of resource

discovery (except the average broadcast rate) deteriorates. This situation can be partly

ameliorated by reducing the capacity of query history. Essentially, this translates to

decreasing the time interval during which queries are captured. As a consequence, the

updating rate will potentially be lower.

To reinforce the principle of the semantic search algorithm to achieve a better per-

formance (a lower average broadcast rate in particular), the virtual overlap was intro-

duced in both EDFSR and NESR. When taking into account the virtual overlap, both

Chapter 7 Re-organising the DDLS Peer Network 139

 25

 30

 35

 40

 45

 50

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 b
ro

ad
ca

st
 r

at
e

κ1:κ2

updating rate = 10%

without virtual overlap
with virtual overlap

 25

 30

 35

 40

 45

 50

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 b
ro

ad
ca

st
 r

at
e

κ1:κ2

updating rate = 20%

without virtual overlap
with virtual overlap

 25

 30

 35

 40

 45

 50

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 b
ro

ad
ca

st
 r

at
e

κ1:κ2

updating rate = 30%

without virtual overlap
with virtual overlap

 25

 30

 35

 40

 45

 50

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 b
ro

ad
ca

st
 r

at
e

κ1:κ2

updating rate = 40%

without virtual overlap
with virtual overlap

 25

 30

 35

 40

 45

 50

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 b
ro

ad
ca

st
 r

at
e

κ1:κ2

updating rate = 50%

without virtual overlap
with virtual overlap

 25

 30

 35

 40

 45

 50

(1:0)(100:1)(10:1)(1:1)(0.1:1)(0.01:1)(0:1)(0:0)

A
ve

ra
ge

 b
ro

ad
ca

st
 r

at
e

κ1:κ2

updating rate = 60%

without virtual overlap
with virtual overlap

FIGURE 7.18: Average Broadcast Rate with NESR,h = 50

re-organisations see a decrease in the average broadcast rate with almost every combi-

nation ofκ1 andκ2 at the cost of an increase in the average number of hops to achieve

the maximum recall.

Measure EDFSR NESR
Foundations recency and frequency a variant of frequency
Operational means Queries with the same The equal frequency of a pair

frequency may be allocatedof queries in query history
different significance. dictates their equal significance.

Applicability updating rate up to 20% updating rate up to 40%

TABLE 7.1: Comparison between EDFSR and NESR

Chapter 7 Re-organising the DDLS Peer Network 140

EDFSR and NESR also greatly differ from each other in terms of foundations,

operational means and application domains, see Table 7.1.

7.6 Understanding the Utility of Re-organisation

The utility of re-organisation using the virtual overlap was defined in Equation 7.5 as

a combination of the average maximum recall, the average number of hops to achieve

the maximum recall and the average broadcast rate which derive from the three primary

metrics established for evaluating the re-organisation performance at the very start (see

Section 6.5.3). One fact which needs to be emphasised is that, introducing the virtual

overlap is not a deviation from the original principle of the semantic search algorithm,

but a further move that reinforces the principle to achieve a better search performance

(primarily represented by the reduced average broadcast rate) in re-organisation. Equa-

tion 7.5 is not exclusively utilised by evaluating the search performance with the virtual

overlap supported re-organisation. It is essentially universal in measuring any effort

to enhance the performance of resource discovery in the DDLS, because it expresses

the primary objective of re-organisation. This section employs the utility equation to

explain to what extent re-organisation has achieved the objective it aims at.

To understand the relationship between the terms in the equation, a review of the

available information in the DDLS peer network is necessary. The essential information

sources include the published topic list and query history. The information embodied

by the published topic list reflects available resources at neighbours and the semantic

relationship between resources of a pair of peers. Therefore, it acts as an indicator

of how semantically related (the resources of) a pair of peers are. Meanwhile, query

history captures queries in the past, and thus is utilised to estimate information needs in

the immediate future.

The idea of coupling the two sources to guide re-organisation of the peer network,

originates from the analysis of resource supply and demand in the network, see Sec-

tion 7.4. A semantic search, the main activity the performance of which re-organisation

is intended to boost, can be simply viewed as formulating a query with respect to the in-

formation needs (demand) and retrieving targets that match the query from a collection

of available resources (supply). In the DDLS, information exposed by the published

topic list and query history underpins such a process. Because the information is local

to individual peers, the knowledge of resource supply and demand based on it is also

local.

Chapter 7 Re-organising the DDLS Peer Network 141

Applying the local knowledge to re-organisation, a peer acquires new neighbours

that are most capable of sharing related resources with it and potentially satisfying fu-

ture queries it would encounter. Re-organisation correlates a peer with those useful

neighbours, and its primaryobjectiveof producing the higher level of the maximum

recall, the less number of hops to achieve the maximum recall and the lower level of

broadcast rate is expressed by the utility equation6. Meanwhile, re-organisation is able

to yield, revealed by simulation, the less number of hops to achieve the maximum recall

(only when the updating rate in the peer network is relatively low7) through increasing

the overlap between peers and including potential resource providers to satisfy future

queries.

Examining the search performance associated with the relatively low updating

rates in simulation on both EDFSR and NESR (without using the virtual overlap), one

would discover that the variation of the average maximum recall8 is roughly propor-

tional to that of the average broadcast rate across different combinations ofκ1 andκ2.

Assume that the contributions of both variations to the utility of re-organisation neu-

tralise each other. The average reduction in hops to achieve the maximum recall can be

greater than 0. Thus, taking (∆b - ∆r) in Equation 7.5 as 0, the utility of both EDFSR

and NESR is as follows.

utility = ∆h−∆r + ∆b = ∆h > 0 (7.6)

However, the utility of proposed re-organisation (without using the virtual overlap) is

only achieved when the updating rate remains relatively low.

The following is the evaluation of the utility of re-organisation that uses virtual

overlap9. For both EDFSR and NESR, the increase in the average maximum recall

is only achieved when the updating rate is not more than 20%, and in the rest cases,

the average maximum recall always decreases with re-organisation10, see Figure 7.12

and Figure 7.16. While EDFSR hardly achieves any decrease in the average number

6The desirable utility value should be greater than 0.
7With EDFSR, the updating rate should be not more than 20%, whereas with NESR the threshold

rises to 40%.
8The variation of the average maximum recall resulting from re-organisation can be observed by

comparing the value of the average maximum recall atκ1 : κ2 = 0 : 0 with that at another combination
of κ1 andκ2 which is used in the re-organisation.

9It is stressed out that Equation 7.5 is initially introduced to evaluate the gains brought by using
thevirtual overlapin re-organisation (compared to without using the virtual overlap in re-organisation).
Whereas, the analysis of the utility of re-organisation here is concerned about the gains brought by con-
ductingre-organisationwith virtual overlap (compared to without using re-organisation at all).

10This can be observed from the curve which is associated with the virtual overlap by comparing the
average maximum recall atκ1 : κ2 = 0:0 with the average maximum recall at other combinations ofκ1

andκ2.

Chapter 7 Re-organising the DDLS Peer Network 142

of hops to reach the maximum recall (see Figure 7.13), NESR can deduce the average

number of hops to achieve the maximum recall with an updating rate up to 20% (see

Figure 7.17). Meanwhile, a desired decrease in the average broadcast rate can always

be found in both EDFSR and NESR, see Figure 7.14 and Figure 7.18. The utility of re-

organisation using the virtual overlap can therefore be obtained by replacing the terms

in Equation 7.5 with corresponding data from simulation. Because of different available

computational conditions and requirements for re-organisation, the utility can also be

computed with different weights attached to each term in the equation.

7.7 Consistency Maintenance of Associated Data Struc-

ture

Before proceeding to the conclusion, this section discusses the operations that are cru-

cial to avoid the potential inconsistency of the associated data structure resulting from

re-organisation, and thus to warrant the consistency of the peer network.

The consistency of the associated data structure, such as that of the published topic

list, suffers from re-organisation unless necessary measures are undertaken to maintain

it. The published topic list reflects the relationship between resources of a peer and

its neighbours and it is the major source based on which the knowledge of the local

peer network can be obtained. Activities such as resource discovery have heavy de-

pendencies on local knowledge. Therefore, the inconsistency of such a data structure

may deteriorate the functioning of resource discovery in the peer network. To maintain

the peer network in proper functioning conditions, the published topic list needs timely

update once re-organisation occurs.

With all the operations presented in Section 6.2 that maintain data consistence in

passive re-organisation triggered by peer arrival and departure, this section only de-

scribes those associated with update related passive re-organisation.

The update events that trigger re-organisation consist of addition of new topics and

subtraction and modification of existing topics, with modification being viewed as a

combination of addition and subtraction operations.

If an update involves only the addition of new topics, the published topic list may

be inconsistent since the previous overlap of topics between the updating peer and its

neighbours may not reflect the up-to-date state of their relationship. The inconsistency

Chapter 7 Re-organising the DDLS Peer Network 143

Notations:

Same as in Figure 6.1 and Figure 6.5. In addition,

Updated topics ofpi: T
′
i = {t|t ∈ T, t× t ⊆ T, T

′
i ∩ Ti ⊃ ∅}

Set of identifiers of the affected
neighbours because of update ofpi: Λi

Adding a set of identifiersidpeer
i,u to Λi: Λi.addElement(idpeer

i,u)
Removing theu′th entry from the
published topic list ofpi: pi.removeElementAt(u)

Algorithm for pi to maintain its published topic list up-to-date:

Λi = ∅
If T

′
i ⊂ Ti , then /* removal of topics */
For u = 1 to |Ei|

If T
′
i ⊆ T common

i,u , then
pi.removeElementAt(u);
Λi.addElement(idpeer

i,u).
For eachpk ∈ Λi

pi.addNeighbour(pk, Tk).
Else /* addition and modification of topics */

For u = 1 to |Ei|
pi.removeElementAt(u);
Λi.addElement(idpeer

i,u).
For eachpk ∈ Λi

pi.addNeighbour(pk, Tk).

FIGURE 7.19: pi Maintains the Published Topic List Up-to-date

could potentially occur to the entire published topic list. As a consequence, the list

needs to be re-constructed.

In most cases, a subtraction operation may not yield an update affecting all entries

in the published topic list. For instance, if subtraction involves topics possessed by the

updating peer but not by its neighbour, the published topic list can remain intact. This

is because the subtraction does not invalidate the overlap information between the pair

of peers. However, if such subtraction relates to shared topics, the published topic list

may become inconsistent. Under such a circumstance, only the affected entries need to

be re-constructed.

Modification of topics exhibits a combined behaviour of both addition and sub-

traction of topics. An updating peer needs to re-create its published topic list in case of

modification.

Chapter 7 Re-organising the DDLS Peer Network 144

In addition to refreshing its published topic list, an updating peer is responsible

for informing each of its contacts of the update, so that the latter is able to modify its

cached topic information accordingly.

Figure 7.19 demonstrates how to bring the published topic list up to date by dis-

carding information that does not reflect the newly-formed relationship between re-

sources of a pair of peers. A peerpi launches the refreshing process when its topic in-

formation is updated. For subtraction operation, if the updated topics are those shared by

neighbours appearing in an entry withαdist
i,u for example, the entry is discarded from the

published topic list ofpi by pi.removeElementAt(u). pi removes all affected neigh-

bours and then adds them as new neighbours in order to maintain its published topic list

up-to-date. For addition and modification operations, re-construction of the published

topic list is compulsory.

7.8 Review of Re-organisation

An intuition of improving resource discovery in the DDLS is to re-organise the peer

network wherever necessary after it is established. The reason why re-organisation does

not apply to the construction of the peer network will be given later. The criteria for re-

organisation state that peers possessing semantically related resources should cluster

together, and if peers cannot be located in the vicinity of others with related resources,

they should stay closer to peers which can potentially satisfy their future information

needs. The criteria are derived from an analysis of supply and demand in the peer

network (see Section 7.4). Knowledge of supply from neighbours (obtained from the

published topic list) and previous demand (known from query history), enables a peer

to measure to what extent a candidate neighbour would have satisfied its queries in the

past. Supported by a very important assumption that the recent past will predicate the

immediate future, a peer selects those with the high potential (indicated by usefulness)

to fulfil its future information needs as neighbours once re-organisation is triggered.

Measuring to what extent a candidate neighbour would have satisfied the previous

demand based on query history is key for a peer to identify useful neighbours. This

work has explored the use of two techniques - the exponential decay function and the

naive estimator - in determining the usefulness of neighbours. The exponential de-

cay function varies the significance of queries in query history based on both the time

(recency) and the number of occurrence (frequency), whereas the naive estimator diver-

sifies the significance of queries in query history in terms of the probability of query

topics (analogous to frequency).

Chapter 7 Re-organising the DDLS Peer Network 145

The efficiency of both proposed re-organisation techniques (EDFSR and NESR)

has been evaluated and confirmed through a series of simulations in which hops, recall

and broadcast rate were utilised as metrics. The main findings of simulation on both

techniques are similar in pattern, and are summarised together as follows.

1. The more peers that conduct an update, the more hops are needed in search of all

targets.

2. The impact from query history is predominant in reducing the number of hops to

achieve the maximum recall when the updating rate is relatively low (not more

than 20% with EDFSR and 40% with NESR). However, as the updating rate in-

creases (more than 20% with EDFSR and 40% with NESR), the overlap informa-

tion becomes more influential on the reduction in the number of hops than query

history. If excessive peers (more than 20% with EDFSR and 40% with NESR)

carry out updates over a time interval during which queries used by EDFSR or

NESR are captured, re-organisation may not necessarily lead to a better perfor-

mance (except the reduced broadcast rate).

3. One peer network with a higher updating rate (such as 60%) incurs the lower level

of the maximum recall, the greater number of hops to achieve the maximum recall

and the lower level of broadcast rate than another with a lower updating rate (such

as 5%, 10% and 30%).

Simulation has demonstrated, see finding 2, that the exponential decay function,

compared to the naive estimator, is applicable to a relatively less dynamic peer network.

Nonetheless, it should be pointed out that the simulation has adopted a Zipf’s distribu-

tion for query topics, a pattern widely observed in large scale distributed systems such

as the Web and Gnutella. This is typically a generalisation of query distribution over the

course of days or even months. However, it does not capture any time related feature

of queries, such as during which period a certain query has been the most popular one.

This explains why the Zipf’s distribution of query topics favours NESR. The real poten-

tial of EDFSR will only be fully exploited when work has been carried out to examine

the typical pattern of query topics in OHSs in terms of a combination of both recency

and frequency. Moreover, the same finding shows that, due to the unpredictable dynam-

ics of the network at the construction stage, re-organisation techniques should not be

applied. Therefore, it is reasonable for peers to randomly choose neighbours when the

peer network is initially established.

This work also advocates measuring the increase of the resource discovery perfor-

mance resulting from re-organisation through a combination of the metrics defined in

Chapter 7 Re-organising the DDLS Peer Network 146

Section 6.5.3, thus producing a utility equation (see Section 7.5.5). This ensures that the

evaluation of re-organisation is conducted in an overall manner. However, this work has

only presented simulation results captured by single metrics, respectively, and left the

evaluation to be accomplished in response to different available computational condi-

tions and requirements for re-organisation by applying tunable weights to each term in

the utility equation. The utility equation can be extended by incorporating other metrics

wherever necessary as more concerns are involved.

7.9 Summary

This chapter introduced the concept of re-organisation which aims to enhance the per-

formance of resource discovery in the DDLS by altering virtual neighbourhood of

peers. The exponential decay function and naive estimator were proposed to support

re-organisation. Both techniques demonstrate, through simulation, their different capa-

bilities to improve performance with regard to different metrics.

The use of the virtual overlap, which signifies a further move to reinforce the prin-

ciple of the semantic search algorithm and aims at a better search performance brought

by re-organisation, was introduced. To measure the gains in performance, this chapter

provided a utility equation which can be employed with different weights attached to

its terms to take into account potential computation conditions and requirements for

re-organisation.

The following final chapter concludes with a summary of this work and presents

the potential future directions for both extending the DDLS and researching into P2P

OHSs.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

The scenario of collaboration based on resource sharing among a community of people

with similar knowledge background inspired this work. Its requirement for equal ca-

pability and autonomy of individuals, and a cooperative effort of all people to enable

collaboration makes most of the existing approaches less applicable. Meanwhile, a re-

view of the literature reporting on related research clarifies that the realisation of such

a scenario is only possible when associated technologies from multiple disciplines are

involved. Essentially, this work draws on research from open hypermedia, P2P comput-

ing, the Semantic Web and information retrieval, see Table 8.11.

Issues Enabling Technologies
resource maintenance open hypermedia
resource management open hypermedia
resource presentation open hypermedia
information (about resources) encodingthe Semantic Web
resource clustering the Semantic Web, information retrieval
resource discovery the Semantic Web, information retrieval, P2P
architecture, topology P2P
re-organisation P2P

TABLE 8.1: Technologies from Multiple Disciplines Supporting the DDLS

As a complementary hypermedia link service with which clients can make en-

1The support of resource clustering and discovery from the Semantic Web can be enabled by its key
technologies, for instance OWL (see Section 2.5) which is intended to be used for defining structured and
Web-based ontologies that describe and represent an area of knowledge. However, this work assumed the
existence of such a capability, and therefore did not focus on it.

147

Chapter 8 Conclusions and Future Work 148

quiries against distributed sets of linkbases, the DLS has demonstrated its support for

supplying links that refer to concrete resources, rather than directly transferring the

resources. This fundamental feature qualifies the DLS for the paradigm of resource

sharing in collaboration, but mechanisms that enable efficient resource publishing and

discovery are still missing to make cooperation in an ad hoc environment a reality. The

main objective of this work was to explore how the DLS approach could be augmented

to continuously function in an environment, as depicted by the scenario, in which dis-

tributed resources were available for sharing. To achieve this goal, a number of issues

were identified in Section 1.3.

One of these issues relates to addressing resource description and maintenance so

as to benefit resource discovery in a distributed environment characterising different

degrees of decentralisation of control. Section 4.4.1 and Section 6.3.2 respectively dis-

cussed the use of the XML model and that of the RDF model to describe resources and to

encode the information about resources at link and linkbase levels. Describing resources

at the link level supports a finer grained search, whereas using associated concepts to

describe resources at the linkbase level has been recognised more feasible because of the

need for a semantic search to locate conceptually related resources2. Through an exam-

ination of the requirements for resource discovery in the DDLS (see Section 5.4.1), the

semantic search was identified as an essential and indispensable mechanism, and a com-

parison between the XML model and the RDF model further revealed the possibility of

realising the semantic search that the RDF model would enable (see Section 6.3.2).

Unlike others in the P2P community, this work urged an approach to resource

discovery in an unstructured P2P system that should take into account the semantic re-

lationship between resources and form an overlay on top of the relationship to facilitate

discovery. The way the semantic overlay in the DDLS is constructed enables peers to

obtain information about related resources hosted by neighbours, thus facilitating query

forwarding. This work on the semantic search in an unstructured P2P system differs

from others in the sense that its applicability is not restricted to a specific domain as in

(Crespo and Garcia-Molina 2002b). The enabling techniques, such as ontologies and

inference logic, can empower the DDLS semantic search to satisfy users by extending

potential targets from resources syntactically the same to those conceptually related.

This work was further driven in pursuit of techniques that can enhance the per-

formance of resource discovery. The potential approach, re-organisation of the peer

network, is considered feasible . This is because the network topology and the loca-

tion of resources should not be precisely determined and correlated with each other in

2Although resource description and resource discovery based on the semantic search can be performed
at the link level, doing so will inevitably deteriorate the scalability of the DDLS.

Chapter 8 Conclusions and Future Work 149

the DDLS as in DHTs-based P2P solutions, which makes altering neighbourhood of

peers possible. An analysis of the network supply and demand in Section 7.4 iden-

tified the available information in the peer network that could be utilised to support

re-organisation.

The proposed re-organisation techniques, the exponential decay function and the

naive estimator, both take advantage of the overlap information between resources of

peers and the history of queries that peers have encountered, but differ in the way that

query history is utilised in support of re-organisation. Their effectiveness in optimis-

ing resource discovery was demonstrated through simulation, and the enhanced per-

formance was proposed to be measured by a combination of recall, hops and broad-

cast rate. Considering the different computational conditions and requirements for re-

organisation in reality, this work urges a reasonable weighting scheme in evaluating the

enhanced performance resulting from re-organisation.

In conclusion, the DDLS represents the research on extending open hypermedia

systems into P2P environments. In particular, it revolves around issues that arise from

implementing a hypermedia link service with a P2P nature. By using the open hyper-

media paradigm to maintain and present resources, RDF to encode information about

resources, the clustering technique to group resources and form the information space,

a semantic search mechanism to discover resources, this work has demonstrated the in-

dividual functionality of technologies from multiple disciplines in conducting and pro-

moting open hypermedia research, and more importantly, its practice and methodology

can be of benefit to other research in both open hypermedia and P2P communities.

8.2 Future Work

8.2.1 System Enhancements

There are, so far, some issues in the DDLS which require further investigation. The

accomplishment of these tasks will not only enhance the DDLS but also fundamentally

benefit and promote the P2P open hypermedia research. The potential work is outlined

as follows.

Multiple attribute-based searchThe way that a linkbase typically contains links

that resolve to documents with semantically related content, enables associating linkbases

with abstract concepts and searching for linkbases of interest based on concepts. In the

DDLS, such concepts are referred to astopics. Supporting search based on such a single

Chapter 8 Conclusions and Future Work 150

attribute as topic is apparently, however, not sufficient for OHSs other than the DDLS,

because some of the OHSs may need to search for other hypermedia structures than

links, such as anchors, nodes, etc. Whether anchors and nodes can also be represented

usingtopic-likeattributes based on which a semantic search can be conducted, remains

unexplored. Moreover, if multiple attributes are utilised to describe various hypermedia

structures in the DDLS, the way that the semantic overlay is constructed is no longer

appropriate, because it only takes into account the overlap information focusing on top-

ics. For the same reason, the semantic search algorithm and re-organisation of the peer

network also require a revision.

Using ontologies to identify semantic relationshipAn ontology is an explicit

specification of how to represent objects, concepts and other entities in some area of

interest and the relationship among them. The importance of ontologies in identify-

ing the semantic relationship between resources in the DDLS, is clear. This work will

need to either utilise, merge or extend existing ontologies, and establish an approach

that enables the use of ontologies in a more rigorous and explicit manner. Carr et al.

(2001) proposed the use of thesaurus-supported ontologies in a Conceptual Open Hy-

permedia Service to empower the retrieval of pertinent information, and a Description

Logic model to guarantee an explicit, rigorous and declarative specification of con-

cepts. Moreover, to support the DDLS semantic search for concepts across domains,

ontology-mapping tools will also need to be developed.

Geography-based efficiencyThis work conducted efficiency measurement of se-

mantic search and re-organisation in terms of hops at the application level. However,

Ratnasamy et al. (2002) argued that the real efficiency of P2P routing algorithms should

be measured in the end-to-end latency of the path, because the application level hops

might involve a path that spanned a continent or merely a LAN, and ignoring the la-

tency of individual hops would result in a path with high latency. A basic approach

in various algorithms is to associate a cost in latency with each hop and take this cost

into account when choosing either the next hop node or neighbours. This method can

apparently be experimented on the DDLS for implementing geography-based efficiency

in both semantic search (choosing the next hop node) and re-organisation (deciding the

usefulness of neighbours).

Knowledge of resource and query distributionThe query distribution of Gnutella

and Web has been investigated and the typical query pattern has been discovered (Sri-

panidkulchai 2001, Breslau et al. 1999), which is crucial to the settings of simulation

which evaluates the search performance in these and similar systems. The same work in

OHSs remains unexplored. Without the knowledge of typical resource and query distri-

Chapter 8 Conclusions and Future Work 151

bution, simulation designers of P2P OHSs, such as that of this work, can only speculate

the potential distribution based on results observed in other large scale distributed sys-

tems.

Scalability Decentralisation enables improved scalability in P2P systems in the

sense that data storage, operations, computation and communication can be carried out

in a decentralised manner. Most structured P2P systems achieve satisfactory scalability

through the use of DHTs which resolve a keyword to a location where the contents are

located or from where queries about the contents can be further routed. However, the

same level of scalability that structured P2P systems have accomplished is a difficult

target for unstructured P2P solutions (including the DDLS) to fulfill, because the latter

does not, and cannot, model the information space for efficient lookup as structured

P2P systems do. This work has taken into account the scalability issue in the design

of the DDLS. For instance, according to the semantic search algorithm, queries are

always intended to reach peers with related resources, thus avoiding a local broadcast.

However, no evaluation of the DDLS scalability has been conducted yet, and therefore

the understanding of the DDLS scalability is not clear and requires an analysis and

simulation.

Security P2P systems, in contrast to centralised and client-server systems, incur

more security threats. For the DDLS which serves as a distributed link service, security

measures should be implemented to protect peer machines from crashing or sensitive

data being leaked, and to prevent malicious peers from providing unreliable informa-

tion. The former issue regarding the protection of peer machines can be addressed

by techniques described in (Milojicic et al. 2002) typically involving enforcing safety

properties and security properties. Kamvar et al. (2003) addressed the latter issue by

taking into account trust between peers and allowing peers to use a global trust value

to choose peers from which they download files. Hence, the system is enabled to effi-

ciently identify malicious peers and isolate them from the network. An approach that

helps identify reputable interacting parties by trust should be developed for the DDLS,

and therefore peers are able to identify trustworthy peers, obtain reliable information

and allow access only from trusted or authenticated counterparts.

8.2.2 Research Directions

The idea of applying the P2P paradigm to open hypermedia has yet to be well re-

searched and realised. This work provided the methodology of implementing such an

idea through constructing a distributed link server system, the DDLS, on top of a P2P

Chapter 8 Conclusions and Future Work 152

model which empowers resource sharing collaboration among a community of people

with similar knowledge background. Unlike any other work in the P2P community, this

research identified the features of the DDLS from the point of view of open hyperme-

dia, and pointed out that the unstructured P2P model was more suitable for the DDLS

than the centralised P2P model in an ad hoc environment. Meanwhile, unlike any other

work in the open hypermedia community, this research developed, in response to an

unstructured P2P paradigm, a series of mechanisms to facilitate resource discovery.

This research has been undertaken in the particular context of P2P link server sys-

tems, and the author believes that the following two aspects will warrant long term

investigation in pursuit of enhancing different kinds of OHSs with the full potential of

the P2P paradigm. The first involves the attitude towards selecting (reusing) or devel-

oping the proper P2P technologies for the OHS in question, while the second advocates

the use of other state-of-the-art technologies from associated disciplines.

Recently, research in the P2P community has advanced technologies to satisfy the

requirements for P2P systems of distinct architectures. Some technologies can be di-

rectly applied to P2P open hypermedia. For instance, Lukka and Fallenstein (2002)

utilised Freenet-like GUIDs for the location and retrieval of blocks of media content

for implementing the Xanadu model. Their approach was successful because DHTs

offer an efficient and scalable solution to keyword-based search queries. Whereas, de-

signers of other systems, the DDLS for example, prefer semantic search queries which

are intended to discover semantically related resources. This makes any existing P2P

approach less applicable. Therefore, this work concentrated on developing new mecha-

nisms to accommodate the requirement. Little other work in this area includes the hier-

archy of resemblance (HR) search (Larsen and Bouvin 2004). The HR search relied on

a hierarchy data structure in which peers were ranked according to the previous search

results. The well-known random walk technique was adopted to facilitate searching

the hierarchy for distributed hypermedia structures. These examples demonstrate that,

although advanced P2P technologies are available for direct use, analysing the features

of and requirements for the target OHS to discover the potential of developing more

applicable, relevant and efficient alternatives, is always of paramount importance. The

author also envisions the combination of distinct P2P technologies in an OHS wherever

necessary.

This research has demonstrated the feasibility and potential of utilising technolo-

gies from multiple disciplines in implementing a P2P OHS. However, it assumed the

existence of some non-trivial mechanisms, such as the one responsible for identifying

the semantic relationship between resources and another that conducts service discov-

Chapter 8 Conclusions and Future Work 153

ery. The former can be accomplished by using ontologies as described in Section 8.2.1,

while the latter may utilise technologies from Grid research in which service discovery

is among the most active research topics. The author believes that successfully address-

ing such issues in the context of OHSs will also enlighten and facilitate P2P research.

Appendix A

Related Work on Semantic Search

Related work on semantic search presented in this appendix shares the same understand-

ing of the DDLS semantic search (see Section 6.4.1) that semantic search is not carried

out on the basis of the terms in a query but the concepts that carry the same meaning.

They offer a domain specific approach to satisfactory semantic search on a static repos-

itory. Some rely on the information collected by a Web crawler and others utilise the

result from traditional Web search, which makes it unable to provide up-to-date infor-

mation. The target platform of the semantic search, in all these search mechanisms, is

limited to systems with either a centralised or a client-server software architecture.

A.1 Latent Semantic Indexing

Latent Semantic Indexing (LSI) (Deerwester et al. 1990) is an information retrieval

technique designed to overcome a fundamental problem of matching terms of queries

with those of documents on the basis of concepts instead of terms. LSI uses a statis-

tical technique called singular-value decomposition to explore the underlying semantic

structure in term-document association data and create a concept space to reflect the

major associative patterns observed in data.

A matrix of terms by documents is generated initially. Each row represents a term

and each column corresponds to a document. Any entry in the matrix represents the

frequency of a term in a document the corresponding row and column denote. The

closely associated terms and documents are positioned near one another. The matrix is

decomposed into the product of three other matrices: aTerm× mmatrix (A), anm× m

154

Appendix A Related Work on Semantic Search 155

matrix (B) and anm× documentmatrix (C), wherem1 is the rank of the original matrix

and them× m matrix can be thought of as the concept space. The idea is that one can

use matrixA to search for concepts. Given a concept, related concepts can be retrieved

via matrixB. Subsequently, given all the concepts retrieved, desirable documents can

be retrieved using matrixC.

LSI addresses two classical problems in the information retrieval domain: that of

synonym (different terms with the same meaning) and polysemy (one term having more

than one meaning). In addition, it has been reported to outperform more conventional

vector-based methods with regard to recall and precision. A manifest problem with LSI

is performance. The singular-value decomposition complexity isΘ(N2m3) whereN is

the number of terms and documents andm is the number of dimensions in the concept

space. Also, determining the value form is inherently another problem encountered by

LSI. The optimal value form has been observed in addressing various domain specific

problems, which implies that the decision relies on the specific collection of documents

of interest.

A.2 Simple HTML Ontology Extensions

The Simple HTML Ontology Extensions (SHOE) language allows users to define con-

trolled, shareable and extensible vocabularies and associate machine understandable

meaning with them (Heflin and Hendler 2000). The vocabularies are ontologies that

consist of the definition of concepts and categories, and relationship between concepts.

Web pages can embed semantic markup in SHOE to describe their content, with the

relationship between the concepts on Web pages being indicated by SHOE ontologies.

A Web crawler is developed to search for Web pages with SHOE markup, identify cat-

egory and relationship claims on the page, and store them in a knowledge base (KB).

SHOE search provides a general-purpose query tool which requires that users spec-

ify the context of queries by choosing an ontology and associated properties that satisfy

their needs. Complex queries can be constructed automatically in response to the type

of arguments in the queries. SHOE search bears a Web search feature. For Web pages

without SHOE markup, this feature translates a SHOE search query into one that can

be accepted and processed by a number of popular search engines, which enhances the

Web search with SHOE specific functionality.

1The value ofm is relatively small with the range between 50 and 350.

Appendix A Related Work on Semantic Search 156

A.3 ASCS Semantic Search

The DARPA Agent Markup Language (DAML) enables the creation of ontologies for

any domain that support the unambiguous description of Web content (Lassila et al.

2000), and the Agent Semantic Communication Service (ASCS) allows users to make

precise queries for information encoded in DAML/OWL on static repositories (Li et al.

2002). The ASCS consists of two main components: a Semantic Search Agent (SSA)

that helps other agents to find entities on the basis of the ontologies they share, and a

Semantic Translation Service (STS) that is responsible for supporting communication

between agents using different ontologies.

A DAML crawler is used to parse DAML-encoded pages and construct indices for

the content. A SSA accepts a DAML/RDF query and converts it into a Prolog query.

DAML statements are stored as Prolog assertions in a server which, upon the receipt

of a Prolog query from the SSA, examines its repository and returns the result to the

SSA. In order to find more matches in other repositories, the SSA may also send the

query to an available STS. The STS reformulates the Prolog query according to the

destination ontology and further converts it into DAML/RDF format to be processed by

another SSA known to perform the search on the destination ontology. When the result

is returned by the second SSA, the STS translates it back into the starting ontology. All

responses from different paths of search are merged and presented to the user.

A.4 W3C Semantic Search

The W3C semantic search2 focuses on a search mechanism based on the denotation of

the search query and utilises relevant information aggregated from a web of distributed

machine understandable data created by the Semantic Web and Web services to aug-

ment traditional search results. Semantic search is viewed by Guha et al. (2003) as

an application of the Semantic Web to search problems. It divides the entire search

process into two parts: using a common search engine to provide the traditional text

search result and obtaining relevant data extracted from the Semantic Web to augment

the traditional search result.

W3C semantic search applications are built on top of an infrastructure named TAP

which provides a set of mechanisms for websites to expose data onto the Semantic

2It is so named as to avoid being misunderstood with the general term of semantic search. In reality,
W3C semantic search is one of the applications of the semantic search referred to in the current section.

Appendix A Related Work on Semantic Search 157

Web and for applications to consume this data via a query interface calledGetData.

For websites without the corresponding machine understandable form of data, HTML

scrapers are written to locate and covert the relevant pages into machine readable data

and make them available via theGetDatainterface. The TAP knowledge base offers

applications an ontology that defines a number of basic terms across a broad range of

domains. Thus data sources in the form of a number of triples compose a Semantic

Web.

The W3C semantic search employs a simple registry to keep track of which URL

has values for which properties about which classes of resources. Therefore, a query

to the registry can be redirected to the website that contains the answer. The search

terms are mapped to the nodes in the Semantic Web by identifying their denotations.

On the basis of all returned nodes corresponding to search terms, a breadth first search

is conducted in the Semantic Web graph starting from the queried terms to collect the

first N triples, whereN is a predefined limit. The initial effort of W3C semantic search

revolves around search queries denoting people.

Appendix B

Definitions of Terms and Variables

Used in Simulation

broadcast rate the time of broadcast carried out by all peers to propagate
queries over a period of time.

cache rate the percentage of peers whose topic information is in the cache
compared to all peers in the system.

hops delay in finding all answers as measured in the number of hops,
also known as path length.

recall the percentage of matches that can be found.

topic popularity how popular a topic/topics is/are in terms of the number of peers
holding it/them.

topic probability the percentage of peers that possess the topic(s) compared to all
peers in the system.

updating rate the percentage of all peers launching an update to their resources
(which also results in an update to the topic information about the
resources) over a period of time.

usefulness the relative extent to which a peer should become a neighbour
of another peer during re-organisation.

158

Bibliography

Anderson, Kenneth M. (1997). Integrating open hypermedia systems with the World

Wide Web. InProceedings of the 8th ACM conference on Hypertext, Southamp-

ton, UK, pp. 157–166. ACM Press.

Anderson, Kenneth M., Richard N. Taylor, and E. James Whitehead, Jr. (1994).

Chimera: hypertext for heterogeneous software environments. InProceedings

of the 1994 ACM European conference on Hypermedia technology, Edinburgh,

Scotland, pp. 94–107. ACM Press.

Andrews, Keith, Frank Kappe, and Hermann Maurer (1995). Serving information

to the Web with Hyper-G. InProceedings of the 3rd International World-Wide

Web Conference on Technology, Tools and Applications, Darmstadt, Germany,

pp. 919–926. Elsevier North-Holland, Inc.

Apple Computer Inc. (1989).HyperCard stack design guidelines. Boston, MA, USA:

Addison-Wesley Longman Publishing Co.

Bass, Len, Paul Clements, and Rick Kazman (2003).Software Architecture in Prac-

tice (2nd ed.). Addison Wesley Professional.

Belkin, Nicholas J. and W. Bruce Croft (1992). Information filtering and information

retrieval: Two sides of the same coin?Communications of the ACM 35(12),

29–38.

Berners-Lee, Tim (1996). The World Wide Web - Past, Present and Future.Journal

of Digital information 1(1).

Berners-Lee, Tim, Robert Cailliau, Jean-Francois Groff, and Bernd Pollermann

(1992). World-Wide Web: The Information Universe.Electronic Networking:

Research, Applications and Policy 1(2), 74–82.

Berners-Lee, Tim, James Hendler, and Ora Lassila (2001). The Semantic Web.Sci-

entific American 284(5), 34–43.

Breslau, Lee, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker (1999). Web

Caching and Zipf-like Distributions: Evidence and Implications. InProceedings

159

BIBLIOGRAPHY 160

of IEEE INFOCOM’99, New York, NY, USA, pp. 126–134.

Bush, Vannevar (1945). As We May Think.The Atlantic Monthly.

Carmody, Steven, Walter Gross, Theodor H. Nelson, David Rice, and Andries van

Dam (1969). A Hypertext Editing System for the /360. In M. Faiman and J. Niev-

ergelt (Eds.),Pertinent Concepts in Computer Graphics, Urbana, IL, USA, pp.

291–330. University of Illinois Press.

Carr, Leslie, Sean Bechhofer, Carole Goble, and Wendy Hall (2001). Conceptual

Linking: Ontology-based Open Hypermedia. InProceedings of the 10th interna-

tional conference on World Wide Web, Hong Kong, pp. 334–342. ACM Press.

Carr, Leslie, David De Roure, Wendy Hall, and Gary Hill (1995). The Distributed

Link Service: A Tool for Publishers, Authors and Readers. InProceedings of

the 4th International World Wide Web Conference: The Web Revolution, Boston,

Massachusetts, USA, pp. 647–656.

Carr, Leslie, David De Roure, Wendy Hall, and Gary Hill (1998a). Implementing

an Open Link Service for the World Wide Web.World Wide Web Journal 1(2),

61–71.

Carr, Leslie, Wendy Hall, and Steve Hitchcock (1998b). Link Services or Agent Ser-

vices? InProceedings of the 9th ACM conference on Hypertext and hypermedia,

Pittsburgh, Pennsylvania, USA, pp. 113–122. ACM Press.

Clark, David (2001). Face-to-Face with Peer-to-Peer Networking.Computer 34(1),

18–21.

Clarke, Ian, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong (2001).

Freenet: A Distributed Anonymous Information Storage and Retrieval System.

In Proceedings of the ICSI Workshop on Design Issues in Anonymity and Unob-

servability, Berkeley, CA, USA, pp. 311–320.

Crespo, Arturo and Hector Garcia-Molina (2002a). Routing Indices for Peer-to-Peer

Systems. InProceedings of the 22nd International Conference on Distributed

Computing Systems, Vienna, Austria, pp. 23–34. IEEE Computer Society.

Crespo, Arturo and Hector Garcia-Molina (2002b). Semantic Overlay Networks for

P2P Systems. Technical report, Computer Science Department, Stanford Univer-

sity.

D’Arlach, Carmen Ximena and John J. Leggett (1994). A Spatial Hypertext Editor.

Technical Report TAMU-HRL-94-005, Hypermedia Research Laboratory, De-

partment of Computer Science, Texas A&M University, College Station, Texas.

BIBLIOGRAPHY 161

Davis, Hugh C. (1998). Referential Integrity of Links in Open Hypermedia Systems.

In Proceedings of the 9th ACM conference on Hypertext and hypermedia, Pitts-

burgh, Pennsylvania, USA, pp. 207–216. ACM Press.

De Roure, David, Leslie Carr, Wendy Hall, and Gary Hill (1996). A Distributed

Hypermedia Link Service. InProceedings of the 3rd International Workshop on

Services in Distributed and Networked Environments (SDNE’96), pp. 156–161.

De Roure, David C., Nigel G. Walker, and Leslie A. Carr (2000). Investigating Link

Service Infrastructures. InProceedings of the 11th ACM on Hypertext and hyper-

media, San Antonio, Texas, USA, pp. 67–76. ACM Press.

Deerwester, Scott, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and

Richard Harshman (1990). Indexing by Latent Semantic Analysis.Journal of the

American Society of Information Science 41(6), 391–407.

Englebart, Doug (1986). The augmented knowledge workshop. InProceedings of the

ACM Conference on the history of personal workstations, Palo Alto, CA, USA,

pp. 73–83. ACM Press.

Fountain, Andrew M., Wendy Hall, Ian Heath, and Hugh C. Davis (1990). MICRO-

COSM: An Open Model for Hypermedia with Dynamic Linking. In A. Rizk,

N. Streitz, and J. Andre (Eds.),Proceedings of the European Conference on Hy-

pertext (ECHT’90),, Paris, France, pp. 298–311. Cambridge University Press.

Ganesan, Prasanna, Qixiang Sun, and Hector Garcia-Molina (2003). YAPPERS: A

Peer-to-Peer Lookup Service Over Arbitrary Topology. InProceedings of IEEE

INFOCOM, San Francisco, California, USA, pp. 1250– 1260.

Gnutella (2001). The gnutella home page. http://www.gnutella.com/.

Goose, Stuart (1997).A Framework for Distributed Open Hypermedia. Ph. D. thesis,

University of Southampton.

Grønbæk, Kaj, Niels Olof Bouvin, and Lennert Sloth (1997). Designing Dexter-

based hypermedia services for the World Wide Web. InProceedings of the 8th

ACM conference on Hypertext, Southampton, United Kingdom, pp. 146–156.

ACM Press.

Grønbæk, Kaj, Jens A. Hem, Ole L. Madsen, and Lennert Sloth (1993). Designing

Dexter-based cooperative hypermedia systems. InProceedings of the 5th ACM

conference on Hypertext, Seattle, Washington, USA, pp. 25–38. ACM Press.

Grønbæk, Kaj, Lennert Sloth, and Peter Ørbæk (1999). Webvise: Browser and

Proxy Support for Open Hypermedia Structuring Mechanisms on the WWW.

BIBLIOGRAPHY 162

In Proceedings of the 8th International Conference on World Wide Web, Toronto,

Canada, pp. 1331–1345. Elsevier North-Holland, Inc.

Grønbæk, Kaj and Randall H. Trigg (1994). Design Issues for a Dexter-Based Hy-

permedia System.Communications of the ACM 37(2), 40–49.

Guha, R., Rob McCool, and Eric Miller (2003). Semantic Search. InProceedings of

the 12th international conference on World Wide Web, Budapest, Hungary, pp.

700–709. ACM Press.

Haan, Bernard J., Paul Kahn, Victor A. Riley, James H. Coombs, and Nor-

man K. Meyrowitz (1992). IRIS hypermedia services.Communications of the

ACM 35(1), 36–51.

Halasz, Frank and Mayer Schwartz (1994). The Dexter hypertext reference model.

Communications of the ACM 37(2), 30–39.

Halasz, Frank G. (1988). Reflections on Notecards: Seven Issues for the Next Gen-

eration of Hypermedia Systems.Communications of the ACM 31(7), 836–852.

Halasz, Frank G., Thomas P. Moran, and Randall H. Trigg (1986). Notecards in

a nutshell. InProceedings of the SIGCHI/GI conference on Human factors in

computing systems and graphics interface, Toronto, Ontario, Canada, pp. 45–52.

ACM Press.

Hall, Wendy, Hugh Davis, and Gerard Hutchings (1996).RETHINKING HYPER-

MEDIA: The Microcosm Approach. Norwell, MA, USA: Kulwer Academic Pub-

lishers.

Heflin, Jeff and James Hendler (2000). Searching the Web with SHOE. InAAAI

Workshop on Artificial Intelligence for Web Search, Menlo Park, CA, USA, pp.

35–40. AAAI Press.

Jennings, Nicholas R., Katia Sycara, and Michael Wooldridge (1998). A Roadmap

of Agent Research and Development.Journal of Autonomous Agents and Multi-

Agent Systems 1(1), 7–38.

Kahan, Jośe, Marja-Ritta Koivunen, Eric Prud’Hommeaux, and Ralph R. Swick

(2001). Annotea: An Open RDF Infrastructure for Shared Web Annotations.

In Proceedings of the 10th international conference on World Wide Web, Hong

Kong, pp. 623–632. ACM Press.

Kamvar, Sepandar D., Mario T. Schlosser, and Hector Garcia-Molina (2003). The

Eigentrust Algorithm for Reputation Management in P2P Networks. InProceed-

ings of the 12th International World Wide Web Conference, Budapest, Hungary,

pp. 640–651. ACM Press.

BIBLIOGRAPHY 163

Larsen, Reńe Dalsgaard and Niels Olof Bouvin (2004). HyperPeer: Searching for

Resemblance in a P2P Network. InProceedings of the 15th ACM conference on

Hypertext and hypermedia, Santa Cruz, California, USA, pp. 268–269.

Lassila, Ora and Ralph R. Swick (1999). Resource Description Framework (RDF)

Model and Syntax Specification. W3C Recommendation, World Wide Web Con-

sortium.

Lassila, Ora, Frank van Harmelen, Ian Horrocks, James Hendler, and Deborah L.

McGuinness (2000). The semantic Web and its languages.IEEE Intelligent Sys-

tems 15(6), 67–73.

Ledlie, Jonathan, Jacob M. Taylor, Laura Serban, and Margo Seltzer (2002). Self-

Organization in Peer-to-Peer Systems. InProceedings of the 10th ACM SIGOPS

European Workshop.

Li, John, Adam Pease, and Christopher Barbee (2002). Experimenting with ASCS

Semantic Search. Project report, Teknowlege Corporation, Palo Alto, CA, USA.

Lowe, David and Wendy Hall (1999).Hypermedia & the Web. John Wiley & Sons,

Inc.

Lukka, Tuomas J. and Benja Fallenstein (2002). Freenet-like GUIDs for Imple-

menting Xanalogical Hypertext. InProceedings of the 13th ACM conference on

Hypertext and hypermedia, College Park, Maryland, USA, pp. 194–195. ACM

Press.

Lv, Qin, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker (2002). Search and Repli-

cation in Unstructured Peer-to-Peer Systems. InProceedings of the 16th interna-

tional conference on Supercomputing, New York, New York, USA, pp. 84–95.

ACM Press.

Maurer, H. (1996).Hyper-G is now HyperWave: The Next Generation Web Solution.

Addison-Wesley Publishing Company.

Meyrowitz, Norman (1986). Intermedia: The Architecture and Construction of an

Object-Oriented Hypemedia System and Applications Framework. InProceed-

ings of Conference on Object Oriented Programming Systems Languages and

Applications, Portland, Oregon, USA, pp. 186–201. ACM Press.

Milojicic, Dejan S., Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne,

Bruno Richard, Sami Rollins, and Zhichen Xu (2002). Peer-to-Peer Computing.

Technical Report HPL-2002-57, HP Laboratories, Palo Alto, CA, USA.

Moreau, Luc, Nick Gibbins, David De Roure, Samhaa El-Beltagy, Wendy Hall,

Gareth Hughes, Dan Joyce, Sanghee Kim, Danius Michaelides, Dave Millard,

BIBLIOGRAPHY 164

Sigi Reich, Robert Tansley, and Mark Weal (2000). SoFAR with DIM Agents: An

Agent Framework for Distributed Information Management. In Jeffrey Bradshaw

and Geoff Arnold (Eds.),Proceedings of the 5th International Conference and

Exhibition on The Practical Application of Intelligent Agents and Multi-Agents,

Manchester, UK, pp. 369–388. The Practical Application Company Ltd.

Mullin, James (1990). Optimal Semijoins for Distributed Database Systems.IEEE

Transactions on Software Engineering 16(5), 558–560.

Napster (2001). The napster home page. http://www.napster.com.

Nelson, Theodore H. (1987).Computer Lib/Dream Machines, rev. ed.Redmond,

WA, USA: Microsoft Press.

Nelson, Theodor Holm (1995). The Heart of Connection: Hypermedia Unified by

Transclusion.Communications of the ACM 38(8), 31–33.

Nielsen, Jakob (1990).Hypertext & Hypermedia. San Diego, CA, USA: Academic

Press Professional, Inc.

Nürnberg, Peter J., John J. Leggett, and Erich R. Schneider (1997). As We

Should Have Thought. InProceedings of the 8th ACM conference on Hypertext,

Southampton, United Kingdom, pp. 96–101. ACM Press.

Nürnberg, Peter J., John J. Leggett, Erich R. Schneider, and John L. Schnase (1996).

Hypermedia Operating Systems: A New Paradigm for Computing. InProceed-

ings of the Hypertext ’96 Conference, Bethesda, Maryland, USA, pp. 194–202.

ACM Press.

Østerbye, Kasper and Uffe Kock Wiil (1996). The Flag Taxonomy of Open Hy-

permedia Systems. InProceeding of the 7th ACM Conference on Hypertext,

Bethesda, Maryland, USA, pp. 129–139. ACM Press.

Pearl, Amy (1989). Sun’s Link Service: A Protocol for Open Linking. InProceed-

ings of the 2nd annual ACM conference on Hypertext, Pittsburgh, Pennsylvania,

USA, pp. 137–146. ACM Press.

Ratnasamy, Sylvia, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker

(2001). A scalable content-addressable network. InProceedings of the 2001 ACM

SIGCOMM Conference, San Diego, California, USA, pp. 161–172. ACM Press.

Ratnasamy, Sylvia, Scott Shenker, and Ion. Stoica (2002). Routing Algorithms

for DHTs: Some Open Questions. InPeer-to-Peer Systems: 1st International-

Workshop, IPTPS 2002, Volume 2429/2002, Cambridge, MA, USA, pp. 45–52.

Springer-Verlag Heidelberg.

BIBLIOGRAPHY 165

Reich, Sigi, Uffe K. Wiil, Peter J. N̈urnberg, Hugh C. Davis, Kaj Grønbæk, Ken-

neth M. Anderson, David E. Millard, and Jörg M. Haake (1999). Addressing

Interoperability in Open Hypermedia: The Design of the Open Hypermedia Pro-

tocol.The New Review of Hypermedia and Multimedia (NRHM) 5, 207–248.

Ritter, Jordan (2001). Why Gnutella Can’t Scale. No, Really.

http://www.darkridge.com/jpr5/doc/gnutella.html.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density func-

tion. Annals Mathematical Statistics 27, 832–837.

Rowstron, Antony and Peter Druschel (2001). Pastry: Scalable, distributed ob-

ject location and routing for large-scale peer-to-peer systems. InProceedings of

the 18th IFIP/ACM International Conference on Distributed Systems Platforms

(Middleware 2001), Heidelberg, Germany.

Silberschatz, Abraham and Peter Baer Galvin (1994).Operating Systems Concepts

(4 ed.). Reading, MA: Addison-Wesley.

Silverman, B. W. (1986). Density estimation for statistics and data analysis.Mono-

graphs on Statistics and Applied Probability.

Smith, Michael K., Chris Welty, and Deborah L. McGuinness (2004). OWL Web

Ontology Language Guide. W3C Recommendation, World Wide Web Consor-

tium.

Sripanidkulchai, Kunwadee (2001). The popularity of Gnutella queries and its impli-

cations on scalability. Featured on O’Reilly’s www.openp2p.com website.

Stoica, Ion, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-

nan (2001). Chord: A Scalable Peer-to-peer Lookup Service for Internet Appli-

cations. InProceedings of the 2001 ACM SIGCOMM Conference, San Diego,

California, USA, pp. 149–160. ACM Press.

The Open Group (1997). DCE 1.1: Remote Procedure Call. Technical Standard

C706, The Open Group.

Theodoridis, Sergios and Konstantinos Koutroumbas (1999).Pattern Recognition(1

ed.). Academic Press.

Tzagarakis, Manolis, Dimitris Avramidis, Maria Kyriakopouliu, monica schraefel,

Michalis Vaitis, and Dimitris Christodoulakis (2002). Structuring primitives in

the callimachus component-based open hypermedia system.Journal of Network

and Computer Applications 26(1), 139–162.

Tzagarakis, Manolis, Michalis Vaitis, Athanasios Papadopoulos, and Dimitris

Christodoulakis (1999). The Callimachus Approach to Distributed Hyperme-

BIBLIOGRAPHY 166

dia. InProceedings of the 10th ACM Conference on Hypertext and hypermedia,

Darmstadt, Germany, pp. 47–48. ACM Press, New York, NY, USA.

van Ossenbruggen, Jacco, Lynda Hardman, and Lloyd Rutledge (2002). Hypermedia

and the Semantic Web: A Research Agenda.Journal of Digital information 3(1).

Wiil, Uffe Kock (1997). Open Hypermedia: Systems, Interoperability and Standards.

Journal of Digital Information 1(2).

Wiil, Uffe Kock and John J. Leggett (1996). The HyperDisco Approach to Open

Hypermedia Systems. InProceedings of the 7th ACM conference on Hypertext,

Bethesda, Maryland, USA, pp. 140–148. ACM Press.

Wiil, Uffe Kock and John J. Leggett (1997). Workspaces: The HyperDisco approach

to Internet distribution. InProceedings of the 8th ACM Conference on Hypertext,

Southampton, UK, pp. 13–23. ACM Press.

Wiil, Uffe Kock and Peter J. N̈urnberg (1999). Evolving hypermedia middleware

services: lessons and observations. InProceedings of the 1999 ACM Symposium

on Applied Computing, San Antonio, Texas, USA, pp. 427–436. ACM Press.

Wiil, Uffe K., Samir Tata, and David L. Hicks (2003). Cooperation Services in the

Construct Structural Computing Environment.Journal of Network and Computer

Applications 26(1), 115–137.

Yankelovich, Nicole, Bernard J. Haan, Norman K. Meyrowitz, and Steven M.

Drucker (1988). Intermedia: The Concept and the Construction of a Seamless

Information Environment.IEEE Computer 21(1), 81–96.

Zhou, Jing, Vijay Dialani, David De Roure, and Wendy Hall (2003). A Distance

Based Semantic Search Algorithm for Peer-to-Peer Open Hypermedia Systems.

In Pingzhi Fan and Hong Shen (Eds.),Proceedings of the 4th International Con-

ference on Parallel and Distributed Computing, Applications and Technologies,

Chengdu, China, pp. 7–11. IEEE Press.

Zhou, Jing, Wendy Hall, and David De Roure (2004). When Open Hypermedia

Meets Peer-to-Peer Computing. InProceedings of the 15th ACM conference on

Hypertext and hypermedia, Santa Cruz, California, USA, pp. 266–267. ACM

Press.

Zipf, George Kingsley (1949).Human Behavior and the Principle of Least Effort.

Cambridge, MA: Addison-Wesley.

