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The key element to support ad-hoc resource sharing on the Web is to discover resources of in-

terest. The hypermedia paradigm provides a way of overlaying a set of resources with additional

information in the form of links to help people find other resources. However, existing hyper-

media approaches primarily develop mechanisms to enable resource sharing in a fairly static,

centralized way. Recent developments in distributed computing, on the other hand, introduced

peer-to-peer (P2P) computing that is notable for employing distributed resources to perform a crit-

ical function in a more dynamic and ad-hoc scenario. We investigate the feasibility and potential

benefits of bringing together the P2P paradigm with the concept of hypermedia link services to

implement ad-hoc resource sharing on the Web. This is accomplished by utilizing a web-based Dis-

tributed Dynamic Link Service (DDLS) as a testbed and addressing the issues arising from the

design, implementation, and enhancement of the service. Our experimental result reveals the be-

havior and performance of the semantics-based resource discovery in DDLS and demonstrates

that the proposed enhancing technique for DDLS, topology reorganization, is appropriate and

efficient.
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1. INTRODUCTION

As sharing of resources between a community of Web users [Berners-Lee 1996]
cannot always be arranged in advance, the need for supporting resource shar-
ing in a dynamic ad-hoc context is demanding. We believe the key issue to
realize such a vision is resource discovery. As the most widely used and suc-
cessful hypermedia system [Lowe and Hall 1999], the Web has no full-text
search facilities of its own and relies on external search mechanisms. Open
hypermedia systems (OHSs) [Wiil 1997], among others, have the potential of
supporting resource discovery on the Web. Hypermedia aims to facilitate ac-
cess to and manipulation of information by using various relationships which
can be instantiated as hypermedia links, or links, between elements of infor-
mation. Every OHS requires a link service to maintain and manipulate links
separately (in linkbases1) from the documents they describe. Link services im-
plement resource sharing by sharing links among involved parties and carry
out link discovery by resorting to a central service directory (see Section 2.1).
They are mainly designed to operate in a fairly static environment in which
some form of centralized control is present and hence are incapable of directly
supporting resource sharing on the Web on an ad hoc basis.

Recent advances in distributed computing introduced peer-to-peer (P2P)
computing2 [Clark 2001]. The novelty of P2P technologies developed over the
last few years is that they allow Internet-connected personal computers to play
more important roles than those played by client-server or master-slave sys-
tems. P2P computing attracts considerable attention from research communi-
ties due to its potential for supporting activities among groups of people—it
provides individual nodes with autonomy and control over their own resources
and empowers sharing of resources in a decentralized, scalable, and ad-hoc fash-
ion. For instance, P2P file-sharing systems can achieve a potentially unlimited
area for the exchange and sharing of files and music clips by aggregating stor-
age from distributed participants and directly transferring resources of interest
between the provider and the requestor.

In this article, we bring together P2P with hypermedia link services. The
vision is to support a virtual research community in which people with similar
knowledge backgrounds maintain network accessible documents for sharing.

1Linkbases refer to the link databases that contain all the information about link availability.
2Although the term P2P computing is new, the basic P2P technology dates back to at least 1979

when USENET was originally implemented.
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In this application scenario, people are allowed to analyze, categorize, and an-
notate documents. The annotation information serves to discover documents
of interest. Because people may have different viewpoints on the same docu-
ment, sharing information about documents enables them to understand other
peers’ opinions on the same concept that a document conveys by means of the
way the document is annotated. A distinctive feature of such a scenario is ad-
hoc: resources available at any particular time is unknown and unpredictable
and both services and resources from a particular user are more probabilistic
than deterministic. To make this a reality, we further identified the following
key issues: routing queries to locate resources, organizing and manipulating
resources to facilitate discovery and presentation, and enhancing resource dis-
covery performance.

We describe the development of a Web-based Distributed Dynamic Link Ser-
vice (DDLS). The DDLS has its roots in the DLS (Distributed Link Service)
philosophy (see Section 2.3.1) and adopts an unstructured P2P architecture
(see Section 2.2.2) to allow users to possess their own linkbases and share the
linkbases with distributed online peers. In contrast to the DLS, the DDLS is
applicable to an environment lacking a centralized control for resource publish-
ing, discovery, and sharing and is characterized by intermittent availability of
resources. We represent the resources of each peer in the DDLS in terms of a
topic vector and apply a distance-based semantic search algorithm to resource
discovery (see Section 3.1.4). Further, we propose the use of the exponential
decay function and the naive estimator, both of which rely on the local knowl-
edge of peers to estimate the future information needs peers would require. The
DDLS peer network comprising all peers is reorganized by using this estimation
to improve ad-hoc resource sharing on the Web.

The remainder of the article is structured as follows. In Section 2, we present
the enabling technologies for the DDLS. We describe in Section 3 the design
issues of the DDLS. Reorganization that is intended to enhance resource dis-
covery in the DDLS peer network is discussed in Section 4. Section 5 details
simulations on semantic search and reorganization. Finally, we outline some
conclusions and future work in Section 6.

2. BACKGROUND

This section first discusses resource sharing in hypermedia link services, or
link services. This is followed by an introduction to P2P computing which has
the potential to support resource sharing on the Web in an ad-hoc manner and
a taxonomy of contemporary P2P systems with their strengths and weaknesses
highlighted. Finally, we present the major forerunners of the DDLS, including
the DLS from which the DDLS inherits its core concept and Microcosm TNG
that demonstrates using a centralized P2P model in link services to facilitate
resource sharing.

2.1 Resource Sharing in Link Services

The link service is a term first used by Pearl [1989]. Every OHS (e.g. Microcosm
[Fountain et al. 1990], DHM [Grønbæk et al. 1993], Hyper-G [Andrews et al.
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1995], Chimera [Anderson 1997] and HyperDisco [Wiil and Leggett 1997]) re-
quires a link service of one form or another to manage links. This is because
the open hypermedia model enables the maintenance and manipulation of links
separately (in linkbases) from the documents they describe which fundamen-
tally differs from the model of closed hypermedia systems, such as the Web.

Allowing links to be manipulated separately from documents makes it pos-
sible to describe resources and store the description with links referring to
them in linkbases. Resource discovery is turned into a link discovery problem;
link services address it by querying against linkbases, thus resource sharing
becoming link sharing.

Typically, link services host a central service directory for link location. This
makes link discovery simple but increases user dependence on a single link
server and introduces single points of failure. Further, users may not be able
to obtain updated links from others in a timely manner. We introduce in the
following section P2P computing that is capable of removing these shortcomings
and delivering mechanisms for supporting link services in a decentralized ad-
hoc manner.

2.2 P2P Computing

P2P computing can be described as an overlay network in which a group of
peers communicate using the same networking program. Each peer possesses
equal capabilities taking actions independently of each other. By employing dis-
tributed resources, peers perform a common function in a decentralized man-
ner. This paradigm, however, does not preclude centralization in some parts
of the network. The P2P network aims to provide services even in face of un-
stable connectivity. There are three categories of the P2P network: centralized,
unstructured, and structured.

2.2.1 Centralized P2P. A centralized P2P system, Napster for instance,
has a central repository to maintain the information about resources in the
network. Resource discovery in such systems involves a lookup in the central
repository. A central peer or a group of dedicated peers coordinate updates to
the information held in the repository. A centralized P2P system is susceptible
to common denial-of-service attacks. It may also give rise to the network hot
spot, which hinders the development of a scalable system using a centralized
P2P model.

2.2.2 Unstructured P2P. Gnutella is possibly the most appealing and con-
troversial unstructured P2P system as of today. As a P2P file-sharing applica-
tion and protocol, it models the realistic world better than a structured P2P
system (see Section 2.2.3) in that the placement of data objects is not subject to
any knowledge of the network topology. Gnutella does not maintain an index
of files available in the network. A search is performed by propagating queries
between nodes and is terminated on the successful retrieval of documents or on
achieving the termination conditions. An example condition is a TTL (Time-To-
Live) tag specifying the number of hops a query can be relayed. Using flooding
broadcast in Gnutella incurs an enormous number of messages and consumes
excessive network resources.

ACM Transactions on Internet Technology, Vol. 7, No. 2, Article 11, Publication date: May 2007.
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Other examples of unstructured P2P include KaZaA, Routing Indices (RIs)
[Crespo and Garcia-Molina 2002] and the hierarchy of resemblance (HR) search
[Larsen and Bouvin 2004]. KaZaA uses specially designated supernodes with
higher bandwidth connectivity to store information about the resources of peers
and routes all queries to the supernodes, whereas RIs provide a distributed in-
dex scheme to facilitate document retrieval. Each peer has a local RI to maintain
information on different topics of documents along each path to its neighbors
which, in turn, collects information from the documents of its neighbors us-
ing the same mechanism. The HR search relied on a hierarchy data structure
in which peers were ranked according to the previous search results. The well-
known random walk technique was adopted to facilitate searching the hierarchy
for distributed hypermedia structures.

2.2.3 Structured P2P. A typical structured P2P system, such as CAN
[Ratnasamy et al. 2001], Chord [Stoica et al. 2001], Pastry [Rowstron and
Druschel 2001] and Freenet-like GUIDs [Lukka and Fallenstein 2002], indexes
the search space and uses DHTs (Distributed Hash Tables) to map keys onto
nodes for efficient query routing. The adoption of DHTs assumes a highly struc-
tured system in which the P2P network topology is tightly controlled and the
placement of data items is precisely determined. DHTs offer a very scalable so-
lution to exact match queries as a lookup operation typically scales as �(log N ),
given N nodes in the system. DHTs assume the uniqueness of keys and only
return data items in a node whose identifier is exactly mapped from a speci-
fied key. A search for multiple data items by using DHTs involves searching
for the items in a sequential manner and performing conjunctive or disjunctive
operations on the result with the assistance of filter structures such as Bloom
filters [Mullin 1990]. However, the relationships between items are thoroughly
omitted during the search.

2.3 Major Forerunners of the DDLS

2.3.1 DLS. The first version of the DLS (Distributed Link Service) [Carr
et al. 1995] was a Web-based hypermedia link service that satisfied a user’s in-
formation needs by providing links that referred to the documents of interest.
It had an associated main linkbase used by the link server that provided the
server facilities. Additional linkbases were available that enabled the server to
offer a range of different sets of links, known as contexts. The personaliza-
tion feature of the DLS allowed each user to create their own linkbases. When
the link server responded to a follow link request, it looked up all the records
that shared the same source selection in the specified linkbases and decided
whether the link might be followed in the current context, whereas in the Web
environment, the same request may lead to the link being followed to only one
destination rather than many.

To be precise, the DLS was more like a dynamic link service than a truly dis-
tributed link service as it maintained linkbases on the same server as that of the
link resolver component. The proxy DLS [Carr et al. 1998] proposed a network
model which introduced multiple link servers and facilitated the distribution of
linkbases. However, neither the algorithm for query routing nor the details of
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how the proxy DLS dealt with a query that involved linkbases on multiple link
servers were revealed. Further, De Roure et al. [2000] discussed query process-
ing in a distributed context and demonstrated that directory services could be
very useful within the link service infrastructure.

2.3.2 Microcosm TNG. Microcosm TNG (The Next Generation) [Goose
1997] was intended to facilitate distributed information sharing and organiza-
tion. Like its predecessor Microcosm [Fountain et al. 1990], Microcosm TNG was
designed to be P2P. Peers appeared in the form of user sessions in Microcosm
TNG. A peer discovered services of interest by interrogating a message router
which kept a record of registered service providers both inside and outside the
domain. A domain typically involved one or more local/remote user sessions and
a domain daemon process that provided a single point of contact within each
domain and required each message router within the domain to register their
network address. Microcosm TNG exposed a centralized P2P nature in that it
maintained some form of central repository to publish linkbases and utilized
a P2P communication model to share linkbases. However, Microcosm TNG did
not address issues such as resource description and discovery arising in more
dynamic environments.

3. THE DISTRIBUTED DYNAMIC LINK SERVICE

In this section, we describe the design issues of a prototype of the Distributed
Dynamic Link Service (DDLS), including architecture, resource description,
resource publishing, and resource discovery.

3.1 Design and Prototyping

3.1.1 Architecture. The DDLS is an extension of the DLS and is intended
to support ad-hoc resource sharing among online users. Hence, we exclude a
central service directory from its architecture. Figure 1 illustrates the DDLS
architecture. Each client, or peer, has an associated link server. The link server
is responsible for storing and manipulating the peer’s personal linkbases (see
Section 3.1.2), and more importantly, it handles link service requests from
peers. The user interface captures a link service request, wraps it in an HTTP
request, and forwards it to the peer’s link server. The link server queries against
peer’s personal linkbases and also forwards queries involving public linkbases
of others to related link servers. A peer locates the target link servers through
the resource discovery mechanism presented in Section 3.1.4. Further, a fol-
low link request will be forwarded by the link server to an HTTP proxy. The
HTTP proxy then sends the request to an HTTP server to fetch the document
of interest.

3.1.2 Resource Description. Linkbases, the repositories in which links are
stored and manipulated, are the most essential resources in the DDLS. We
address the issue of resource description at the linkbase level as a starting
point. Because each linkbase maintains a list of links related to an abstract
concept, we can characterize the linkbases of a peer based on their associated
concepts in terms of a topic vector. Using the Resource Description Framework
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Fig. 1. The DDLS architecture.

<?xml version=“1.0” encoding=“UTF-8”?>

<rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#

xmlns:lb=“http://www.ddls.com/rdf/linkbase-ns#”>

<rdf:Description about=“http://www.ddls.com/linkbases/project/resource.xml”>

<rdf:type resource=“http://www.ddls.com/rdf/linkbase-ns#Linkbase” />

<lb:topic>design</lb:topic>

</rdf:Description>

</rdf:RDF>

Fig. 2. An example of using the RDF model to represent the DDLS linkbase.

(RDF) [Lassila and Swick 1999] to represent linkbases enables us to augment
the linkbase description with related information, for example, location and
type. Such information is encoded in sets of triples.

Figure 2 presents an example DDLS linkbase represented by the RDF
model. It indicates that the resource being described is http://www.ddls.com/
linkbases/project /resource.xml. The type of the resource is defined as another
resource http://www.ddls.com/rdf/linkbase-ns#Linkbase. The primary content
of this resource is design.

3.1.3 Resource Publishing. As a peer participates in the DDLS, it contacts
a random set of peers already in the peer network, known as neighbors. The
new participant informs each neighbor of its published topic information. It is
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Table I. A Published Topic List

in the Cache of Peer pi

PeerID αdist Topics

j 0

k 2 D, E

m 5 G, H, I, J, K

assumed that the environment provides each peer with a capability to identify
the semantic relationship between entities (see Section 3.1.4). All neighbors
return related topics to the new peer. The latter subsequently takes advantage
of this information to construct a published topic list (see Section 3.1.3) in cache.

The size of the cache is determined by a specified value or by a default of
128. In the list, each entry comprises three fields. The first field indicates all
the neighbors that share αdist (shown by the second field) related topics with
the current peer. The contents of these topics are listed in the third field. Table I
gives an example published topic list in the cache of peer pi. It indicates that pi

shares no relevant topics with pj . The neighbors that have semantically related
topics with pi are pk and pm, which have 2 and 5 relevant topics, respectively.

The published topic lists are mutable since the resources of peers may change
over time. They are maintained in the cache of individual peers instead of in a
central repository. This helps keep the freshness of information in the lists.

3.1.4 Resource Discovery. Resource discovery in the DDLS revolves
around the location of desired linkbases. If the search mechanism relies on
the standard keyword-based match, then only linkbases with matching syntax
instead of matching concepts can be discovered. We present in this section our
approach (which was partially reported in Zhou et al. [2003]).

3.2 Major Assumptions

The semantic search algorithm to be described is based on the following
assumptions.

—Capability to identify semantic relationships. The environment provides each
peer with a capability to identify the semantic relationship between topics
representing the primary content of resources, such as being semantically
related. The semantic similarity can be described in different ways and the
existence of such a mechanism is assumed. It may exist in the form of a
controlled vocabulary (e.g., ontologies) or may be based on inference logic, or
otherwise.

—Statically defined relationship among topics. The search algorithm assumes
that the semantic relationship between topics is statically defined and does
not cater for environments in which the semantic relationship can be con-
stantly redefined.

3.3 Query Mechanism: Topic Query and Associated Operations

The DDLS supports queries with conjunctive and disjunctive operations on
query predicates, and in this work topics are used to define query predicates.
A query expression is represented by conjunctive/disjunctive operations on
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Fig. 3. The typical specification of DDLS topic queries.

groupings of topics. Figure 3 presents an example RDF topic query. The extensi-
bility of RDF is utilized to define a tag <rdfsq: equal> that represents the state
of being semantically related. Tags, such as <rdf:Integer> and <rdf:String>,
can be employed to identify primitive data types. The query result needs
to return all the linkbases semantically related to (Topic A and Topic B) or
Topic C.

All topics in a conjunctive predicate need to be simultaneously satisfied by
the description of linkbases, whereas those in a disjunctive predicate can be
evaluated against the description of linkbases. The result of a disjunctive
query in the DDLS is typically generated by merging the results of conjunctive
subqueries. For instance, in Figure 3, the query is initially split into two sub-
queries, each of which contains a conjunct, wrapped in two separate messages.
One subquery is constructed by statements from line 7–14 with italic typeface
and the other from line 17–20. Both the query and its subqueries are assigned
with Universally Unique Identifiers (UUIDs) [The Open Group 1997]. Suppose
that the query identifier is 2fac1234-31f8-11b4-a222-002035b29092 which is
inherited by both of its subqueries. The first subquery with subquery identifier
58f202ac-22cf-11d1-b12d-002035b29092 returns all the linkbases having re-
lated topics with both Topic A and Topic B. The second one with subquery iden-
tifier 5a389ad2-22dd-11d1-aa77-002035b29092 fetches all the linkbases pos-
sessing related topics with Topic C. Results of subqueries returned to the query
originator will be merged and given the same query identifier 2fac1234-31f8-
11b4-a222-002035b29092.

ACM Transactions on Internet Technology, Vol. 7, No. 2, Article 11, Publication date: May 2007.
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3.4 Distance-Based Semantic Search Algorithm

The DDLS semantic search algorithm is based on the concept of the distance
vector, such as αdist, as shown in Table I, that represents the proximity of re-
sources of a pair of neighbors. Based on the proximity, a peer propagates queries
to either some or all of its neighbors.

The details of the algorithm are described as follows. Any participating peer
can initiate a semantic search query. The query is evaluated against the initia-
tor’s cached information to determine the distance between the query expres-
sion and the cached information about the neighbors. If the query evaluator
finds a match, it routes the query to the associated peers. A match means there
is an overlap between the query topics and the topics in an entry of the pub-
lished topic list of the query evaluator. In case no match has been found, the
query is propagated to all neighbors of the current query evaluator. The query
is subsequently evaluated by each of its recipient peers. The number of hops for
query propagation is limited by the lifetime of the query, expressed by a TTL
tag as used in Gnutella. Query matches are directly routed back to the query
initiator.

3.5 Discussions

We have presented the DDLS in support of ad-hoc resource sharing on the Web.
The DDLS’s capability of serving links on demand without the assistance of a
central service directory relies on a distance-based semantic search mechanism.
Unlike other related work on semantic search [Deerwester et al. 1990; Heflin
and Hendler 2000; Li et al. 2002; Guha et al. 2003], the DDLS assumes the
ability of identifying semantically-related terms that all related work possesses
and focuses on an underlying mechanism that supports the semantic search in
a P2P context that none of them is able to tackle.

In the DDLS semantic search algorithm, a query is propagated to all neigh-
bors only if no match is found in the cache of the query evaluator. This should
not be interpreted the same as in Gnutella where queries are always broadcast
to all neighbors of the query recipient. On the one hand, query broadcasting is
a compromise between reducing the consumption of network resources and ex-
tending the possibility of locating targets. On the other hand, as we will present
in the following section, the DDLS peer network will perform reorganization
whenever necessary, which enables peers to become neighbors of others sharing
semantically-related resources. As a consequence, the time of query broadcast-
ing can be reduced. This also explains why we consider reorganization as an
integral part of the DDLS.

4. REORGANIZING THE DDLS PEER NETWORK

In this section, we define the concept of reorganization in the context of the
DDLS peer network and introduce a data structure, query history, that plays an
important role in facilitating reorganization. We then analyze resource supply
and demand in the DDLS peer network and summarize the major criteria for
reorganization resulting from this analysis. Finally, we propose two different
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techniques, the exponential decay function and the naive estimator3, to assist
peers in making decisions on choosing neighbors during reorganization.

4.1 An Introduction to Reorganization

In the context of the DDLS peer network, we define reorganization as an act
of altering the virtual neighborhood of any peer in the network to optimize
resource discovery. It can be triggered by the state change of any peer in
the network including the (dis)appearance of a peer and resource/neighbor
update to a peer. In this work, we are particularly interested in update-related
reorganization.

The inherent organizational structures of P2P systems differ from one an-
other. For instance, centralized P2P would not benefit from reorganization be-
cause resource discovery in such systems heavily relies on a central service
directory and altering the network topology does not facilitate resource loca-
tion. For structured P2P that adopts DHTs to index the search space for ef-
ficient lookup, reorganization bears no significance either. Unstructured P2P
is perhaps the most promising system that would benefit from employing re-
organization because it does not depend on a central directory and neither
does it have a tight control over the network topology and the placement of re-
sources. However, little work on reorganization in unstructured P2P has been
reported.

Another reason for adopting reorganization in the DDLS is that the knowl-
edge of resources owned by each peer is restricted to its neighbors and peers
view a limited scope of the global information about resources in the system—
reorganization can help broaden the peer’s horizons.

The third reason is that, according to the DDLS semantic search algorithm,
a query will be broadcast if no match can be found in the cache of the query
evaluator. By making peers with semantically-related resources neighbors, the
chance that a query can be satisfied by neighbors increases, thus reducing the
time of expensive broadcast.

When reorganization occurs, involved peers can employ different reorganiza-
tion techniques (see Section 4.4 and 4.5) to discover a new set of neighbors that
are most qualified to help achieve the objective of reorganization and replace
their current set of neighbors with the new one. These techniques rely on an
important data structure, query history that maintains for peers the routing
information of queries propagated from others. The next section introduces this
data structure and related operations.

4.2 Query History

Query history is a collection of all queries a peer has encountered over a pe-
riod of time. Peers may be able to predict the future information needs of oth-
ers by analyzing query history which is subsequently accompanied by rational
reorganization.

3We reported our preliminary study on naive estimator-supported reorganization in Zhou et al.

[2004].
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Query history is realized as a FIFO (First In First Out) queue. The oldest
entry of the query history is discarded when the queue is full. Let T denote
the set of all the topics. Each entry of query history includes three fields: the
query identifer, query topics, and the arrival time of the query. The set of query
identifiers is Q , the capacity of query history of peer pi is hmax

i , and the set of
arrival time of queries is A. Query history of pi can be represented by Hi =
{(qm

i , hm
i , am

i )|qm
i ∈ Q , hm

i ∈ T, hm
i × hm

i ⊆ T, am
i ∈ A, 0 < m ≤ hmax

i }.

4.3 Criteria and Metric

The knowledge of resource supply and demand in the DDLS peer network is
essential for developing the reorganization techniques as reorganization aims
at enhancing the performance of resource discovery. We present the two follow-
ing criteria that result from an analysis of resource supply and demand in the
DDLS and should be utilized to guide rational reorganization.

(1) Peers that share related topics should be incorporated into the same
cluster4.

(2) Peers should be situated in the vicinity of those that would accommodate
potential information needs with high probability.

Criterion (1) indicates that peers with related topics should become neighbors
since this allows a peer to identify others that accommodate similar information
needs, or demand, conveyed by queries. Hence, the peer can forward subsequent
related queries and avoid costly broadcast; key to the reduction of local broad-
cast is the local knowledge of the supply available at neighbors. Meanwhile,
a peer can identify the potential demand of others from its query history. By
taking advantage of this demand information, peers are able to choose their
best neighbors during reorganization. This gives rise to criterion (2).

We employ the term usefulness to represent the relative extent to which a
peer should become a neighbor of another peer during reorganization. Assume
that candidate neighbor pj (of pi) publishes a topic list Tj . Let εi, j be a metric
that represents the information needs exhibited in the query history of pi.
Different techniques will be utilized to estimate the value of εi, j in the following
sections. Also, let ηi, j denote the extent to which pj would match the queries
that pi can satisfy:

ηi, j = |Ti
⋂

Tj |
|Ti| .

Let ιi, j represent the usefulness of pj with respect to pi

ιi, j =
√

(κ1εi, j )2 + (κ2ηi, j )2, (1)

4The term cluster is derived from the unsupervised clustering method that groups entities into

clusters by the similarity of their features without any prior knowledge about the number of the

clusters, which fits in with the DDLS clustering problem. However, because the resources of each

peer are represented by a set of characteristic topics, a peer incorporated into more than one cluster

would occur frequently.
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where κ1 and κ2 are constant coefficients associated with query history and
the cached topic information, respectively. The quantitative relationship of the
significance between εi, j and ηi, j can be adjusted by assigning specific values
to κ1 and κ2. Within the capacity of its cache, pi keeps peers with the greatest
value of ι as its new neighbors during reorganization and discards the rest.

In the following sections, we introduce the exponential decay function and
the naive estimator that support reorganization to deliver an improved perfor-
mance of resource discovery in the DDLS. The fundamental assumption behind
both techniques is that the recent past will approximate the immediate future.

4.4 Exponential Decay Function-Based Usefulness Decision

A straightforward approach to distinguish the instances of query topics with
various times of occurrence, is to allocate various weights to these instances. An
exponential decay function W (S(q)) can satisfy the requirement. Let W (S(q))
be a weight function of S(q) which is, in turn, a sequence function of an incoming
query q. The following phenomena can be observed in query history to which
an exponential decay function is applied.

—More recent query topic instances are always awarded higher weights for
their occurrences.

—Two query topic instances that occurred more recently will have a bigger
gap between their weight than another two (with the same distance in the
sequence of query history entries) that occurred less recently.

Let hmax
i be the capacity of query history Hi of pi. The exponential decay

function takes the following form:

W (S(q)) = e−S(q).

For sequence function S(q), the following equations hold.

S
(
q1

i

) = 1, S
(
q2

i

) = 2, . . . , S
(
qhmax

i
i

) = hmax
i ,

where q1
i , q2

i , . . . , qhmax
i

i are a sequence of incoming queries ordered by the ar-
rival time with q1

i being the most recent incoming query.
Suppose pi needs to decide how useful neighbor pj is. For a time interval

I , the metric εi, j that represents the information needs exhibited in the query
history of pj during the interval, takes into account all query instances in
the query history of pi whose topics are semantically subsumed by pj ’s topics.
Therefore,

εi, j =
∑

W (m) =
∑

e−m,

where 0 < m ≤ hmax
i and a1

i − I ≤ am
i ≤ a1

i .
Again, let ηi, j be the extent to which that pj would match the queries that

pi can satisfy and ιi, j represent the usefulness of pj with regard to pi.

ιi, j =
√(

κ1

∑
e−m

)2

+ (κ2ηi, j )2. (2)
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4.5 Naive Estimator-Based Usefulness Decision

The foundation of the naive estimator [Rosenblatt 1956] is that, for any given
h and n independent observations X 1, X 2, . . ., X n from the random variable X ,
the probability P (x − h < X < x + h) can be approximated by the proportion
of the samples falling in the interval (x − h, x + h). Thus the naive estimator
f̂ h(x) for the estimation of density value f (x) at point x is defined as

f̂ h(x) = 1

n

n∑
i=1

1

h
w

(
x − X i

h

)
,

with h being a small number and the weight function defined as

w(x)

{
1
2

if |x| < 1

0 otherwise.

The naive estimator is a nonparametric approach [Silverman 1986] in that
less rigid assumptions, for example, the density function underlying the data,
are made about the distribution of the observations. It is the observed data
that is crucial in determining the estimate of f (•). Inspired by this feature,
we realized that in the DDLS the distribution of query topics can be estimated
based on the overall view of peers, while the probability of query topics at a
single peer can be approximated by the peer’s local view.

The purpose of introducing query history is to perform an informal investiga-
tion into the properties of queries, and guide reorganization of the peer network
using the properties of queries revealed. In the DDLS, the probability of query
topics is an important property that needs to be explored for predicting the
future information needs. The naive estimator can take advantage of the query
history maintained by individual peers to approximate the future information
needs they would require.

Suppose the probability of topics in the query history of peer pi can be de-
picted by function fi,h(t) of a discrete random variable t, where t denotes the
least index of the same set of related topics in history entries. For example, if
Ta and Tb denote the topics of the 1st and 5th entries in query history and both
share the same set of related topics, then the observations of t for both entries
will be 1 instead of 5. Using the naive estimator, the estimate of probability of
topics at t is

f̂ i,h(t) = 1

n

n∑
k=1

1

h
w

(
t − Tk

h

)
,

with h = 0.5. It should be stressed that f̂ i,h(t) takes into account all entries in
the query history of pi no matter when they arrived. This is contrary to what
occurs in exponential decay function-based usefulness decision.

Assume that neighbor pj of pi publishes its topic list Tj . Let εi, j be the
estimate of the probability of topics in Tj in future queries encountered by pi.

εi, j =
∑

f̂ i,h(t).

εi, j considers the estimate at all t where the topics of history entries are seman-
tically subsumed by topics in Tj . Let ιi, j represent the usefulness of pj with
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regard to pi and ηi, j be the extent to which that pj would match the queries
that pi can satisfy.

ιi, j =
√(

κ1

∑
f̂ i,h(t)

)2

+ (κ2ηi, j )2. (3)

5. SIMULATION

Due to the large scale of the proposed DDLS peer network and the complexity
of its resource discovery problem, in this section we demonstrate, through a
series of simulations the performance of the semantic search algorithm and the
performance improvements brought in by employing reorganization.

5.1 Topic Distribution

The DDLS search mechanism locates semantically-related resources. Hence,
the distribution of individual topics that represent the primary content of re-
sources is not of interest. Instead, topics are grouped by semantics and the
distribution of such topic groups are what should be utilized to study the DDLS
search. Hereafter, topic popularity (or probability), which will be defined later,
refers to the popularity (or probability) of topic groups each of which has distinct
semantics unless indicated otherwise.

We first investigate the Zipf ’s distribution of topics. Zipf ’s law [1949] is named
after the Harvard linguistic professor George Kingsley Zipf (1902–1950). It
states that the frequency of occurrence of some event (P ), as a function of
the rank (i) that is determined by the frequency of occurrence, is a power-law
function pi ∝ 1

iα with α close to unity. Zipf ’s distribution has been demonstrated
to characterize the use of words in a natural language, for instance, English.

The term topic popularity represents how popular a topic/topics is/are in
terms of the number of peers holding it/them. Let ti be the topic popularity of
the i-th topic in a Zipf ’s distribution.

ti ∝ 1

iα
,

where α = 1.
To compare against Zipf ’s distribution, the uniform distribution of topics was

chosen in which each topic is shared by the same number of peers. The term
topic probability denotes the percentage of peers that possess a topic/topics
compared to all peers in the system. Let ti be the topic probability of any topic
in a uniform distribution,

ti = C,

where C is a constant.

5.2 Metrics and Issues

It can be complicated to evaluate algorithm performance against a number
of metrics, for instance, search speed and accuracy, the number of messages
sent, system load, and resource consumption. In the context of the DDLS,
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performance issues are primarily measured by the following metrics.

—Hops: delay in finding all answers as measured in the number of hops.

—Recall: the fraction of matches that can be found.

—Broadcast rate5: the time of broadcast carried out by all peers to propagate
queries over a period of time.

Elements that may have an effect on hops, recall, and broadcast rate will be
investigated. We conjectured that exploring answers to the following questions
would be helpful in understanding the search algorithm and hence devised the
simulations in Section 5.3 and Section 5.4.

(1) What is the basic behavior of the semantic search in terms of the aforemen-
tioned metrics?

(2) What is the relationship between the amount of information a peer should
cache about its neighbors and the search performance?

(3) Does the topic distribution have an impact on the search performance?

(4) Should the peer network remain unchanged or be reorganized to improve
the search performance? If so, what techniques should be utilized to guide
the reorganization process?

5.3 Simulation on Semantic Search

5.3.1 Semantic Search. The simulations described in this section6 reveal
the behavior and performance of resource discovery in the DDLS that employs
the distance-based semantic search algorithm. Semantic search was carried
out in peer networks in which topics follow a Zipf ’s distribution or a uniform
distribution. We executed 20 runs for each simulation and averaged the data
collected.

Experimental settings (first). We define the cache rate as the percentage of
peers whose topic information is in cache compared to all peers in the system.
This first experiment was intended to explore the relationship between the
cache rate and hops.

We performed the experiment involving 100 peers7 in a controlled environ-
ment in which the distribution of topics was kept constant throughout the ex-
periment and the number of peers in the system was restricted. Each peer was
associated with a certain cache rate and can randomly choose a list of topics
from a global list of 100 entities, ensuring the topics of all peers followed a spec-
ified distribution. The cache rate was varied from 1%, 2%, to 90%. The fifteenth
most popular topic, shared by 5 out of 100 peers in the system, was chosen as the
query topic for the experiment with Zipf ’s distribution. A topic with the topic

5This metric can be used to estimate the consumption of network resources during resource dis-

covery, for instance, the number of potential messages generated in resolving a query.
6Due to space limit, we present only experiments on single topic search and refer the readers to

Zhou [2004] for more details on multiple topic search that exhibits qualitatively similar behaviors.
7At the current stage, we are interested in exploring the basic behavior and performance of the

DDLS and will investigate in future work its scalability compared to other systems.
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Table II. Cache Rate, Hops and

Recall Resulting from Searching

for a Topic Shared by 5 Out of

100 Peers (Zipf ’s Distribution)

Cache Rate Hops Recall

1% 0.01 1%

2% 7.36 80%

3% 5.85 100%

4% 5.09 100%

5% 4.41 100%

10% 2.83 100%

20% 2.05 99%

30% 2.00 98%

40% 2.01 99%

50% 1.98 100%

60% 1.92 100%

70% 1.84 100%

80% 1.63 100%

90% 1.40 100%

Table III. Cache Rate, Hops and

Recall Resulting from Searching

for a Topic Shared by 5 Out of

100 Peers (Uniform Distribution)

Cache Rate Hops Recall

1% 2.47 9%

2% 8.86 80%

3% 6.14 100%

4% 4.91 100%

5% 4.13 100%

10% 3.09 100%

20% 2.06 100%

30% 1.98 98%

40% 2.00 99%

50% 1.96 100%

60% 1.98 100%

70% 1.87 100%

80% 1.66 100%

90% 1.46 100%

probability of 5%, that is, shared by 5 out of 100 peers, was randomly chosen
from the global list to formulate a query for the experiment with the uniform
distribution.

Discussion. The results in Table II and Table III show that, regardless of
the distribution the topic in a query is associated with, the number of hops is
inversely proportional to the cache rate. It is observed that except the cases in
which the cache rate equals 1% or 2%, that is, each peer only caches the topic
information from one or two of its neighbors, the resource discovery mechanism
can lead to a satisfactory recall (at least 98%) within the experimental settings.
The cache rate at 1% and greater only guarantees that each peer is aware of at
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Fig. 4. Recall at successive hops (Zipf ’s distribution).

least another peer (neighbor), whereas it is not assured that each peer is known
by at least another peer. Therefore, the recall cannot always reach 100%.

Experimental setting (second). The second experiment aimed to explore the
properties of the semantic search algorithm of the DDLS in which topics follow
Zipf ’s distribution.

The experiment was carried out over the first nineteen most popular topics.
In a peer network consisting of 100 peers, Zipf ’s distribution of 100 topics yields
19 bands, each of which is occupied by topics that are shared by the same
number of peers. The cache rate was kept at 5% throughout the experiment,
and all the other experimental settings were retained as in the first experiment.
To ensure each peer has at least one neighbor, the cache rate should be 1%
or greater. However, it is shown that a very low cache rate can result in an
unacceptable recall, for instance, 1% in Zipf ’s distribution and 9% in uniform
distributions, which does not demonstrate the typical behavior and performance
of the semantic search but represents the extreme case. Hence, this experiment
and others presented later use 5% as the cache rate because such a relatively
low cache rate is more realistic for a peer network that allows for a wide range
of the number of peers.

Discussion. In search of topics with different popularities in Zipf ’s distri-
bution, the DDLS delivers the recall at successive hops as plotted in Figure 4.
It is shown that the second most popular topic shared by 50% of all peers is
accompanied by the minimum recall at almost every hop. The finding indicates
that a search for that topic will lead to more hops to achieve a certain level
of recall compared to a search for any other topic. Table IV further demon-
strates this with the most hops produced by a search for the second-most pop-
ular topic. Thereafter, the hops are in proportion to topic popularity, with the
least-popular topic resulting in the least hops. This phenomenon can be ex-
plained as follows. The number of hops is subject to the probability of the query
topic. On the one hand, the discovery of a certain number of instantiations of a
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Table IV. Hops Resulting from Semantic Search for Topics that Follow

Zipf ’s Distribution

popularity 1 2 3 4 5 6 7

hops 5.47 8.10 6.33 5.84 5.20 5.01 5.00

recall 99% 99% 94% 100% 97% 96% 100%

popularity 8 9 10 11 12 13 14

hops 4.74 4.71 4.85 4.75 4.60 4.70 4.44

recall 99% 100% 99% 100% 98% 100% 100%

popularity 15 16 17 18 19

hops 4.22 4.01 3.96 3.77 3.06

recall 100% 100% 100% 100% 100%

Fig. 5. Recall at successive hops (uniform distributions).

topic with low probability results in more hops. On the other hand, according to
the search algorithm (see Section 3.1.4), low probability of the query topic yields
low probability of overlap between peers, thus triggering a higher broadcast rate
which implies less hops to locate the same number of instantiations. Let x be the
probability of a query topic and f (x) be the number of hops: f (x) = d (x) ∗ b(x).
d (x) and b(x) are associated with the two aspects as previously analyzed with
d (x) as a decreasing function and b(x) as an increasing function of x over [0, 1].
Because f (x) is continuous over [0, 1] and f (0) = f (1) = 0, there must be at
least a single point x at which f (x) has its maximum.

Experimental settings (third). The third experiment was set up to inves-
tigate the properties of the semantic search algorithm of the DDLS in which
topics follow uniform distributions.

We carried out the experiment with the topic probability ranging from 1%,
5%, 10% to 90%. Again, the cache rate was kept at 5% throughout the ex-
periment, and all the other experimental settings were kept as in the first
experiment.

Discussion. Figure 5 shows the recall at successive hops in search of topics
with different probabilities in uniform distributions. Within the first 10 hops, a
search for topics with a probability of 45% yields the minimum recall at almost
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Table V. Hops Resulting from Semantic Search for Topics that Follow Uniform Distributions

probability 90% 85% 80% 75% 70% 65% 60% 55% 50% 45%

hops 5.51 6.04 6.04 6.32 6.81 7.59 7.66 8.28 7.72 7.83

recall 99% 99% 99% 99% 98% 97% 99% 98% 99% 97%

probability 40% 35% 30% 25% 20% 15% 10% 5% 1%

hops 6.98 6.60 6.16 5.79 5.44 5.00 4.88 4.03 3.08

recall 99% 99% 97% 99% 99% 99% 100% 100% 100%

every hop. This phenomenon is analogous to the one in Figure 4 that the search
for the second-most popular topic (shared by 50 out of 100 peers) results in
the minimum recall at practically every hop. Table V reveals that the topic
probability of 55% is related to the most hops. The number of hops increases
before the topic probability reaches 55% and decreases thereafter. Contrary to
the experiment with topics from Zipf ’s distribution (see the second experiment)
in which 50% is the turning point for all observations, this experiment shows
that the turning point exists in the range of [45%, 55%]. We speculated that
both results should be consistent with each other, and the inconsistency in the
results is due to the limited experimental conditions.

5.3.2 Summary. The experiments presented in this section investigated
the DDLS resource discovery for topics following Zipf ’s distribution and uniform
distributions, the potential distributions if topics are sorted by popularity. The
main metrics in performance evaluation include hops, recall, and broadcast
rate which have been employed to describe the following principal findings.

(1) When the cache rate is greater than 2%, the resource discovery mechanism
can lead to a satisfactory recall (at least 98%).

(2) The number of hops is inversely proportional to the cache rate (except the
extreme cases such as 1% in the simulation).

(3) In search of a topic with a probability less than 50%, the number of hops is
inversely proportional to the topic probability/popularity, whereas in search
of a topic with a probability more than 50%, the number of hops is propor-
tional to the topic probability/popularity.

Further, we observed that the broadcast rate is inversely proportional to topic
probability/popularity.8 This is because a less popular query topic indicates a
lower probability of overlap between peers, thus triggering a higher broadcast
rate to locate all the instantiations of the topic.

The simulation result has given an answer to the first three questions raised
in Section 5.2, that is, the anticipated behavior of the semantic search, the
impact of the cache rate, and resource (or topic) distribution on the search per-
formance. The last question that relates to reorganization of the peer network
is left to be explored in the following section.

8The experimental data is omitted and we refer interested readers to Zhou [2004].
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5.4 Simulation on Reorganization

Simulation on reorganization supported by the exponential decay function and
the naive estimator, respectively, is described in this section. Both reorganiza-
tion techniques are subsequently discussed and compared.

5.4.1 Exponential Decay Function Supported Reorganization (EDFSR).
This section presents the simulation that investigates the behavior of re-
organization supported by the exponential decay function. Particularly, the
simulation explores the relationship between query history and the overlap
information in usefulness decision and examines their individual significance
for reorganization.

Experimental settings. The settings remain the same as in the second ex-
periment of the semantic search. Moreover, a set of query topics that followed
Zipf ’s distribution9 was constructed and each query (482 instantiations in total
derived from the global list of 100 entities) chose a single topic from this set.
The capacity of query history was h. The experimental procedure is described
as follows.

(1) Over a time interval I, q (q ≥ h) queries are issued. A snapshot of query
history of each peer and the topology of the peer network is maintained.

(2) Another q queries are issued over I in the peer network with the same
topology as that maintained in step (1). The snapshot of the queries and
the query initiators is kept.

(3) Based upon the query history and the topology maintained in step (1), the
peer network is reorganized since a certain percentage, known as the up-
dating rate u.r., of all peers launch an update to their resources (which also
results in an update to the topic information about the resources). For the
sake of simplicity, these peers do not practically update topics in simula-
tion but only choose their new neighbors in terms of usefulness (κ1 = 0 and
κ2 = 1). The query initiators kept in step (2) issue the same queries as in
step (2) over I.

(4) Repeat step (3) with pairs of values for κ1 and κ2: (0.01, 1), (0.1, 1), (1, 1),
(10, 1), (100, 1) and (1, 0), respectively.

Utilizing the query history generated in step (1), step (2), (3) and (4) were set
up to examine the hop reduction in various environments, including that with-
out reorganization (step (2)) and those with reorganization (step (3) and (4)).

Discussion. Figure 6 shows the hop reduction that can be achieved by us-
ing different values for the exponent in the exponential decay function. The
greater the absolute value of the exponent is, the steeper the slope of the curve
that represents the function would be. This feature of the exponential decay
function indicates that, among others used in the experiment, f (m) = e−2m

would result in the greatest difference between the weights allocated to a pair
of query history entries. The simulation result reveals that f (m) = e− m

500 yields

9Studies show the presence of Zipf ’s law in Gnutella and Web queries [Breslau et al. 1999;

Sripanidkulchai 2001].
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Fig. 6. Hop reduction in EDFSR that uses query history of different capacities (50 and 250).

the greatest hop reduction in most cases. However, the curve associated with
f (m) = e− m

1000 in the figure indicates that merely increasing the exponent does
not necessarily lead to a greater reduction in hops. This is also supported by
the result of the simulation conducted with the capacity of the query history
equal to 250—conducting the simulation with a different history capacity is
done to explore the frequency with which queries should be captured to facili-
tate reorganization.10 Figure 6 demonstrates that, with an increased capacity
(250) of the query history, the greatest hop reduction is accomplished by EDFSR
associated with f (m) = e− m

500 in most cases.

Figure 7 captures the impact that the updating rate has on hops. It can be
seen that the more peers that carry out an update, the more hops are needed
to discover all targets. We plot the hop reduction resulting from EDFSR that
uses different updating rates in Figure 8. Only a relatively low updating rate,

10Figures 7 through 11 have a companion one that presents the result of simulations using h =

250, see Zhou [2004].
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Fig. 7. Hops in EDFSR, f (m) = e− m
500 , h = 50.

Fig. 8. Hop reduction in EDFSR, f (m) = e− m
500 , h = 50.

5% and 10% for example, gives rise to a reduction in hops. When the updating
rate exceeds 20%, EDFSR does not necessarily lead to any hop reduction.

The recall and the broadcast rate delivered by adopting EDFSR can be seen
to in Figure 9 and Figure 10. The curve associated with the updating rate of
60% is under all the rest in both subfigures, which indicates that one peer
network with a higher updating rate (such as 60%) incurs a lower recall as
well as a lower broadcast rate than another with a lower updating rate (such
as 5%, 10%, and 30%). Moreover, an obvious phenomenon in the figure is that
the recall is primarily proportional to the broadcast rate. In combination with
Figure 7, one would discover that the relationship among the recall (r), hops (h),
the broadcast rate (b), and the updating rate (u) across different combinations
of κ1 and κ2, can be simply depicted by

r ∗ u = C1, b ∗ u = C2, h/u = C3, (4)

where C1, C2 and C3 are constants related to ( κ1 : κ2 ).
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Fig. 9. Recall in EDFSR, f (m) = e− m
500 , h = 50.

Fig. 10. Broadcast rate in EDFSR, f (m) = e− m
500 , h = 50.

5.4.2 Naive Estimator Supported Reorganization (NESR). The simulation
in this section was carried out to explore the properties of reorganization sup-
ported by the naive estimator. Also, it helps understand the quantitative re-
lationship between query history and the overlap information in usefulness
decision of re-organization.

Experimental settings. The experimental settings remain the same as in
Section 5.4.1 except that usefulness decision is enabled by the naive estimator.

Discussion. It is observed in Figure 11 that the impact from query history
is predominant in hop reduction when the updating rate is relatively low, for
instance, 5% and 10% in the experiment. As the updating rate increases (see the
curves associated with the updating rate equal to 40%), the overlap information
becomes more influential on hop reduction than query history.
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Fig. 11. Hop reduction in NESR, h = 50.

This experiment also reveals that, compared to EDFSR, NESR is applicable
to a more dynamic peer network, that is, a peer network with a higher updating
rate in terms of hop reduction. Recall that, as shown in Figure 8, a peer net-
work with an updating rate greater than 20% results in no hop reduction when
using EDFSR. Figure 11 demonstrates that NESR can boost the threshold up
to 40%.

We observed similar patterns in NESR (figures are omitted) as those illus-
trated by Figures 7 through 10. In the DDLS peer network using NESR, the
more peers that conduct an update, the more hops are needed in search of all
targets. A higher recall is always accompanied by a higher broadcast rate which
indicates that the ratio of the recall to the broadcast rate is nearly constant.
As in EDFSR, Equation (4) holds across different combinations of κ1 and κ2 in
NESR.

5.4.3 Comparison Between EDFSR and NESR. EDFSR and NESR share
the same assumption that the recent past will approximate the immediate fu-
ture. They both rely on the observation of queries in the past to estimate future
information needs. If comparing each figure of simulation on EDFSR with its
counterpart of simulation on NESR, one would discover qualitatively similar
patterns from both. We found that for both techniques the greater the updating
rate, the more the performance of resource discovery (except the broadcast rate)
deteriorates. This situation can be partly ameliorated by reducing the capacity
of the query history which translates to decreasing the time interval during
which queries are captured. Hence, the updating rate becomes lower.

Meanwhile, EDFSR and NESR greatly differ from each other in terms of
foundations, operational means, and application domains (see Table VI).

5.4.4 Summary. We have evaluated and confirmed the efficiency of pro-
posed reorganization techniques (EDFSR and NESR) through a series of
simulations in which recall, hops, and broadcast rate were utilized as metrics.
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Table VI. Comparison Between EDFSR and NESR

EDFSR NESR

foundations recency and frequency a variant of frequency

operational means Queries with the same The equal frequency of a pair

frequency may be allocated of queries in query history

different significance. dictates their equal significance.

applicability updating rate up to 20% updating rate up to 40%

The main findings for both techniques are similar in pattern and are summa-
rized as follows.

(1) The more updating peers, the more hops are needed in search of all targets.

(2) The impact from query history is predominant in hop reduction when the
updating rate is relatively low (not more than 20% in EDFSR and 40% in
NESR). Otherwise, the overlap information becomes more influential than
the query history, and, in this case, reorganization may not necessarily lead
to a better performance (except a reduced broadcast rate).

(3) One peer network with a higher updating rate (such as 60%) incurs a lower
recall, a lower broadcast rate, and more hops than another with a lower
updating rate (such as 5%, 10%, and 30%).

We demonstrated that the exponential decay function compared to the naive
estimator is applicable to a relatively less dynamic peer network (see find-
ing (2)). However, it should be pointed out that the simulations adopted Zipf ’s
distribution for query topics, a pattern widely observed in large scale distributed
systems such as the Web and Gnutella. This is a generalization of query distri-
bution over the course of days or even months and does not capture any time-
related feature of queries such as during which period a certain query was the
most popular one. This explains why Zipf ’s distribution of query topics favors
NESR. The real potential of EDFSR will only be fully exploited when work is
conducted to examine the typical pattern of query topics in hypermedia link
services in terms of a combination of both recency and frequency. Moreover, the
same finding shows that, due to the unpredictable dynamics of the network at
the construction stage, reorganization techniques should not be applied. Hence,
it is reasonable for peers to randomly choose neighbors when the peer network
is initially established.

We evaluated the performance of resource discovery by using the metrics
defined in Section 5.2, respectively, while a comprehensive evaluation calls for
a simulation result measured by some utility function that consists of a combi-
nation of these metrics. We left this to be accomplished in response to different
available computational conditions and requirements for reorganization.

6. CONCLUSIONS AND FUTURE WORK

We began this work with a vision of implementing a hypermedia link service
that is able to facilitate ad-hoc resource sharing between a community of Web
users. This has been accomplished by using the open hypermedia paradigm
to maintain and present resources, RDF to encode information about the
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resources, the clustering technique to group resources and form the information
space, a semantic search mechanism to discover resources, and reorganization
techniques to enhance the performance of resource discovery.

The DDLS approach is not limited to application to hypermedia link services.
Other distributed systems that require support to operate in an ad-hoc environ-
ment may benefit significantly from growing into the problem space addressed
by this work. For instance, locating other peers in a collaborative P2P system
or any specific resource on the Grid [Foster et al. 2001] may convert the sin-
gle attribute-based DDLS semantic search to multiple attribute-based search.
This could involve associating tunable weight with each attribute according to
its importance.

The design of the DDLS was carried out with an assumption that peers are
provided with the capability of identifying semantic relationships between con-
cepts. Essentially, an ontology is one of the mechanisms that enable this.11 In
future work, we will either utilize, merge, or extend existing ontologies and
establish an approach to use ontologies in a more rigorous and explicit man-
ner. Also, there is no previous research on the pattern of resource and query
distribution in hypermedia link services. Without that knowledge, we can only
speculate on the potential distribution based on observations from other large-
scale distributed systems. This issue is also under investigation.

Further, we envisioned a natural extension of this work to address the scala-
bility issue in triple stores built specifically for the Semantic Web [Berners-Lee
et al. 2001]. This is because there is a demanding need for scalable techniques
to remove performance bottlenecks in existing centralized triple stores of
large scale, and we have long believed that introducing semantics awareness
into resource discovery in unstructured P2P network, as we did in this
work, could enable better performance to be delivered than that obtained
by using canonical techniques such as flooding-based Gnutella and random
walk. Moreover, since both the Semantic Web and the open hypermedia allow
resources to be described by attached meaning (in terms of metadata), it is
feasible that we apply the DDLS approach to engineer large-scale triple stores.
At the time of writing, we have developed a very close variant of the DDLS
semantic search algorithm and demonstrated its superiority over others in
enhancing the scalability of triple stores. This complements our scalability
study of the DDLS in this work. We will present the details in a forthcoming
article.
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