Thermal-Safe Test Scheduling for Core-Based System-on-a-Chip Integrated Circuits

Rosinger, Paul, Al-Hashimi, Bashir and Chakrabarty, Krishnendu (2005) Thermal-Safe Test Scheduling for Core-Based System-on-a-Chip Integrated Circuits. IEEE Transactions on Computer Aided Design, 25, (11), 2502-2512.


[img] PDF
Download (214Kb)


Overheating has been acknowledged as a major problem during the testing of complex system-on-chip (SOC) integrated circuits. Several power-constrained test scheduling solutions have been recently proposed to tackle this problem during system integration. However, we show that these approaches cannot guarantee hot-spot-free test schedules because they do not take into account the non-uniform distribution of heat dissipation across the die and the physical adjacency of simultaneously active cores. This paper proposes a new test scheduling approach that is able to produce short test schedules and guarantee thermal-safety at the same time. Two thermal-safe test scheduling algorithms are proposed. The first algorithm computes an exact (shortest) test schedule that is guaranteed to satisfy a given maximum temperature constraint. The second algorithm is a heuristic intended for complex systems with a large number of embedded cores, for which the exact thermal-safe test scheduling algorithm may not be feasible. Based on a low-complexity test session thermal cost model, this algorithm produces near-optimal length test schedules with significantly less computational effort compared to the optimal algorithm.

Item Type: Article
Divisions: Faculty of Physical Sciences and Engineering > Electronics and Computer Science > Electronic & Software Systems
ePrint ID: 261582
Date Deposited: 24 Nov 2005
Last Modified: 27 Mar 2014 20:04
Publisher: IEEE
Further Information:Google Scholar

Actions (login required)

View Item View Item