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Abstract

This paper introduces an orthogonal forward regression
(OFR) model structure selection algorithm based on the M-
estimators. The basic idea of the proposed approach is to
incorporate an IRLS inner loop into the modified Gram-
Schmidt procedure. In this manner the OFR algorithm is
extended to bad data conditions with improved performance
due to M-estimators’ inherent robustness to outliers. An il-
lustrative example is included to demonstrate the effective-
ness of the proposed algorithm.

1 Introduction

The orthogonal forward regression (OFR) is an efficient
algorithm to determine a parsimonious model structure [3].
Driven by requirements for improved model generaliza-
tion, a few variants of OFR have been introduced in order
to tackle ill-conditioning problem by modifying the selec-
tive criteria in forward regression [5]-[10]. Although these
methods do not generally need the assumption of a normal
error distribution, the parameter estimator may not be sta-
tistically optimal if the data exhibit bad conditions such as
outliers, or are heavy tailed compared to normal distribu-
tion. As a generalization of maximum-likelihood estima-
tion method for data with outliers, the general method of
M-estimation [12] is well established to tackle outliers in
observational data. Computationally M-estimator can be
derived using an iterative reweighted least squares (IRLS)
algorithm. M-estimation has been applied successfully to
time series prediction, image processing and pattern recog-
nition [6, 2, 7]. This paper presents a new model identifica-
tion algorithm that combines the M-estimator with forward
regression. Based on the modified Gram-Schmidt proce-
dure for orthogonal forward regression (OFR), the proposed
algorithm incorporates an IRLS inner loop into the modified
Gram-Schmidt procedure to derive a M-estimator of model
parameters. In combination with D-optimality for model

structure selection[10], the proposed algorithm simultane-
ously derive robust model structure and parameter estimates
for bad data conditions.

2 Preliminaries

A linear regression model (RBF neural network, B-
spline neurofuzzy network) can be formulated as [8, 1]
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where ������� �!�#"#"#"$�&% , and % is the size of the esti-
mation data set. ������� is system output variable, �������'�( ) � �����
�#"#"#"#� )+* �����-,/. is system input vector with an assumed
known dimension of 0 . � � �-12� is a known nonlinear basis
function, such as RBF, or B-spline fuzzy membership func-
tions. � ����� is an uncorrelated model residual sequence with
zero mean and variance of 354 . � � is model parameter, and6

is the number of regressors.
Eq.(1) can be written in the matrix form as78�:9<; �>= (2)

where 7?� ( ���@�A�
�#"#"#"$�����B%C�-,/. is the output vector. ;D�( � � �#"#"#"#��� 	 ,/. is parameter vector, = � ( � �@�A�
�#"#"#"#� � �B%C�-,�.
is the residual vector, and 9 is the regression matrix
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with � � �����O� � � ����������� . Denote the column vectors in 9 asP � � ( � � �@�A�
�#"#"#"#� � � �B%C�-,/. , Q �R���#"#"#"$� 6 . An orthogonal
decomposition of 9 is 9E�:SUT (3)

where TV�UWAX�Y Z2[ is an
6]\^6

unit upper triangular matrix
and S is an % \C6

matrix with orthogonal columns that



satisfy S . S � ������� W�� � �#"#"#"#�	� 	 [ (4)
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 .� 
 � � Q �E���#"#"#"$� 6 (5)

so that (2) can be expressed as

78���B9�T
� � �$�BT�� � �>= �:S�� �>= (6)

where �C� ( � � �#"#"#"$� � 	 ,/. is an auxiliary vector. The above
orthogonal decomposition can be realized by the modified
Gram-Schmidt algorithm [3], in which least squares pa-
rameter estimates are usually used. Based on the modified
Gram-Schmidt algorithm, a few variants of forward OLS
algorithms have been introduced to improve model general-
ization capability based on the concepts from Bayesian reg-
ularization/basis pursuit [9], experimental design and leave-
one-out (LOO) score respectively [4, 11]. Although these
methods do not generally need normality error distribution
assumption, the parameter estimator may not be statistically
optimal if the data exhibit bad conditions such as outliers,
or are heavy tailed. The general method of tackling this
problem is well established as M-estimation [12], which is
a generalization of maximum-likelihood estimation method
for data with outliers. The M-estimator [12] is described in
the following section.

2.1 M-estimators

The M-estimators have been well studied [12]. Consid-
ering the linear regression model given by (1), M-estimator
minimizes the cost function
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where the function �I� � ������� is some predetermined nonneg-
ative functionals for different types of estimators, e.g. for
least squares �I� � ������� ����� � � �������R� � 4 ����� . Typically�I� � ������� is an even function and nondecreasing with respect
to the absolute value of � ����� . The problem of least squares
estimator is that

� 	 will be influenced by any outlier typ-
ified by a large absolute value � ����� , assuming that if any
outlier has yet been detected and removed in the estimation
data set. The general M-estimator can tolerate undetected
outliers by assigning a smaller weight to observations with
residuals with large absolute values, so the parameter esti-
mates are less vulnerable to unusual data. The most com-
mon types of M-estimators are the Huber estimator given
by [12]
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or the Turkey bisquare estimator, given by
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where the parameter � is called a tuning constant, e.g. it is
common to choose � �U��0 1#2�3 3 for the Huber estimator and� �4250 6�783 3 for the Turkey bisquare estimator. These val-
ues offer robustness against outliers, but yet produce 9 38:
efficiency when the errors are normal [12].

The M-estimator can be derived by setting; � 	; � � < �>=<!? �A@ (10)

to yield ; � 	; � � 9 .CB �D@ (11)

where @ is zero vector.B � ( ; � 	; � �@�A� �E0 0 0 � ; � 	; � �B%C� , .� ( F � � �@�A���
�E0 0 0 � F � � �B%C���-, . (12)

where
F � � � is the derivative of �I� � � with respect to � . De-

fine the weight function

G ������� F � � �������� ����� � for ���E���E0 0 0 �&%
0 (13)

Equation (11) can be written as

9 .IH = �A@ (14)

where H � diag WEG �@�A�
�JG �J���
�E0 0 0 G �B%C� [ , whose solution is
given as the weighted least squaresK� 	 �UWA9 . H 9 [ � � 9 . H 7 (15)

Because G ����� ’s are a prior unknown, an iteratively
reweighted least square (IRLS) is required. The M-
estimator IRLS procedure is as follows:

Denote L as the iteration step. Initially set L � � ,HNM �JO �DP (i.e. least squares) to derive an initial model resid-
uals � M �JO ����� , then for L � �!�E0 0 0 � L�Q ,

G M R O ������� F � � M R � �JO �������� M R � �JO ����� � for ���U���E0 0 0 �&%
0 (16)

From (8) and (9), the weight functions of Huber and the
Turkey bisquare estimator can be explicitly given by

G M R O� �������TS � for � � M R � �JO ����� ��� �&U +WV XZY�[]\ M � O U for � � M R � �JO ����� ��$ � (17)
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respectively. Let H M R O � diag WEG M R O �@�A� , G M R O �J��� ,0 0 0 G M R O �B%C� [ , thenK� M R O	 �UWA9 .IH M R O 9 [�� � 9 .ZH M R O 7 (19)

= M R O � 7 " 9 K� M R O	 (20)

where = M R O � ( � M R O �@�A�
�#"#"#"$� � M R O �B%C�-,/. are ready for next
iteration step. The above procedure iterates until the param-
eter estimator

K� 	 converges at L � L
Q .K� 	 � WA9 .IH M R*) O 9 [�� � 9 .ZH M R*) O 7 (21)

3 Model identification algorithm using for-
ward regression with M-estimation

The modified Gram-Schmidt procedure can be used to
perform the orthogonalization and parameter estimation,
usually with parameters derived as least squares parame-
ters. In this section a new model identification algorithm
that combines M-estimator with forward regression is in-
troduced based on the modified Gram-Schmidt procedure.
Geometrically the system output vector 7 , is projected onto
a set of orthogonal basis vectors, W)
 � �E0 0 0 � 
 � �E0 0 0 [ . For the
modified Gram-Schmidt algorithm, the model residual is
decreased by projecting the system output vector 7 onto a
new basis 
 � at step Q . Denote model residual vector as= M �WO , where the subscript denotes forward regression stepQ . Initially model residuals = M + O is 7 . The procedure at for-
ward regression step Q , can be explicitly interpreted as fit-
ting the previous model residual vector = M � � �JO (as derived
from forward regression step � QZ" �A� ) using a single variable
 � to solve a new model residual vector = M �WO . Because M-
estimator can enhance model parameter robustness in bad
data conditions such as outliers, the proposed algorithm in
this work is a variant of modified Gram-Schmidt procedure
that includes the IRLS inner loop so as to derive the M-
estimators of the auxiliary vector � .

Starting from Q �V� , the columns P Z , Q � � �-, � 6
are made orthogonal to the Q th column at the Q th stage. The
D-optimality criterion [10] for each of P Z , Q � � �., � 6
columns is evaluated, and the most relevant column is
selected to be interchanged with the Q th column. The
M-estimator for the Q th regressor (the selected regressor)
is then derived, as shown below, via the proposed Re-
weighted least squares (IRLS) inner loop. The operation is
repeated for � � Q � 00/21 � 6 " �A� .

The following IRLS algorithm inner loop aims to derive
either Huber or bisquare M-estimator for the Q th element
of the auxiliary vector � , which is initialized as the ordinary

least squares parameter estimator
� M �JO� �43�5687 V 6 Y�[]\3 56 3 6:9�<; .

Iterated Re-weighted least squares (IRLS) inner loop:

i. Initialize L �V� . Note that model residual vector is
initialized as = M �JOM �WO based on the parameter

� M �JO� .

ii. For Huber M-estimator, set � � � �M �WO ���0 1#2�3 std � = M R � �JOM �WO � , where std �-12� denotes standard devia-
tion. Use (17) to constructH M R O� � diag WEG M R O� � � M R � �JOM �WO �@�A���
�JG M R O� � � M R � �JOM �WO �J�����

�E0 0 0 �JG M R O� � � M R � �JOM �WO �B%C��� [80 (22)

or for bisquare M-estimator, set � � � %M �WO �250 6�783 std � = M R � �JOM �WO � . Then use (18) to constructH M R O% � diag WEG M R O% � � M R � �JOM �WO �@�A���
�JG M R O% � � M R � �JOM �WO �J�����
�E0 0 0 �JG M R O% � � M R � �JOM �WO �B%C��� [ (23)

iii. DenoteH M R O �TS H M R O� for Huber M-estimatorH M R O% for bisquare M-estimator
(24)

and � M R O� � 
 .� HNM R O = M � � �JO
 .� H M R O 
 � (25)

= M R OM �WO � = M � � �JO " � M R O� 
 � (26)

where = M R OM �WO � ( � M R OM �WO �@�A�
� � M R OM �WO �J���
�E0 0 0 � � M R OM �WO �B%C�-,/. .

(NB. The orthogonal forward regression can be explic-
itly interpreted as fitting the previous model residual vector= M � � �JO using the selected orthogonal basis 
 � . While

� M �JO�
is derived as least squares parameter estimates associated
with 
 � , (25)-(26) are the direct application of (19)-(20)
to derive Re-weighted least square parameter estimates for
M-estimators.)

iv. If = � M R O� " � M R � �JO� =?>A@ , where @ is arbitrarily small
number, then set L � L � � , and goto step ii. Otherwise,
set = M �WO � = M R OM �WO ,

� � � � M R O� . Finish the IRLS inner loop.

4 An illustrative example

Consider using an RBF network to approximate the
‘sinc’ functionB+� ) ���DC�E F � ) �) � " �G; � ) � �G; (27)



Table 1. RMS errors and model size of derived models with respective to true function B�

0 0.03 0.05 0.10 0.15 0.20

OFR with D-optimality Training set 0.0102 0.0138 0.0143 0.0157 0.0175 0.0249
and least squares Test set 0.0102 0.0135 0.0139 0.0158 0.0175 0.0254

Model size 22 22 22 22 22 21
OFR with D-optimality Training set 0.0131 0.0139 0.0141 0.0129 0.0140 0.0219
and Huber M-estimator Test set 0.0131 0.0135 0.0136 0.0126 0.0137 0.0219

Model size 22 22 22 22 22 21
OFR with D-optimality Training set 0.0128 0.0131 0.0137 0.0124 0.0135 0.0218
and Bisquare M-estimator Test set 0.0128 0.0128 0.0132 0.0121 0.0133 0.0217

Model size 22 22 22 22 22 21
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Figure 1. Data generated by ‘sinc ’ function
with additive noise of various levels of out-
liers;(Dotted – %>� ; � ; 0 ;83 4 � (normal) and Circle
– %>� ; � ; 0 � 4 � (outliers) )
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Figure 2. The Bisquare M-estimator model
predictions with

� �<; 0 � and true functions.

1000 training data ��� ) � were generated from ��� ) ���-B+� ) � �� , using uniformly distributed random
)�� ( " �G; �#�G;�, . The

additive noise � is a Gaussian mixture that mixes two types
of noises, a larger portion of normal noise with smaller
variance and a smaller portion of noise with higher vari-
ance. i.e. ��� � %>� ; � ; 0 � 4 � � �@� " � �@%>� ; � ; 0 ;83 4 � , where; 1 � 1 ; 0 � as a small number to denote the contamina-
tion ratio, such that � has the probability �@� " � � of being
drawn from %>� ; � ; 0 ;83 4 � ( as “normal ”), and a probability�

of %>� ; � ; 0 � 4 � (as “outliers ”).

For various levels of contamination ratio
�

, 1000 noisy
observations were generated and divided into a training data
set of 500 data points and a test data set of 500 data points.
The 500 training data points is shown in Fig.1 for different�

. For each case, the proposed algorithm is applied based
on the RBF network. All the training data points are used
as the candidate centre set � Y ’s, with � � ����������� constructed
using Gaussian function � � ����� ) � � � � �	��

��W " = ) "



� � = 4���� 4 [ . The width � � � is fixed for simplicity. Note
that by removing the IRLS inner loop of the algorithm, the
procedure simply reduces to OFR with D-optimality algo-
rithm [10]. With various values of

�
as different level of bad

data conditions, the proposed algorithm is compared with
OFR with D-optimality algorithm using only least squares
estimates and SVM regression. All of the derived models
based on OFR algorithm have the number of centers in the
range of 0 / �?�!� � ��� . The root of mean squares (RMS)
errors of a range of data conditions are listed in Table 1. It
is seen that the proposed algorithm is most robust to out-
liers when the data contains approximately �G;�: outliers.
To achieve better performance for M-estimators, it is useful
to slightly adjust tuning constants because these are set for9 38: efficiency when data is normal. As data distribution
is unknown these values can be adjusted via iterations and
cross-validation. For the training data set with

� � ; 0 � ,
the model predicted output by using the proposed algorithm
with Turkey bisquare M-estimators is shown in Fig.2.

5 Conclusions
In this paper a new orthogonal forward regression (OFR)

model identification algorithm has been introduced. The
orthogonal forward regression (OFR), often based on the
modified Gram-Schmidt procedure, is an efficient method
incorporating structure selection and parameter estima-
tion simultaneously. The proposed algorithm includes M-
estimator by using an iterative re-weighted least squares
(IRLS) algorithm inner loop based on the modified Gram-
Schmidt procedure. D-optimality as a model structure ro-
bustness criterion is used in model selection. In this manner
the proposed approach extends the use of the OFR algo-
rithm for parsimonious model structure determination even
in bad data conditions via the derivation of parameter M-
estimators with inherent robustness to outliers.
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