Effects of Rate Adaptation on the Throughput of Random Ad Hoc Networks

Xiang Liu and Lajos Hanzo

School of ECS, University of Southampton, SO17 1BJ, UK.
Tel: +44-23-8059-3125, Fax: +44-23-8059-4508

Email:1lhQ@ecs.soton.ac.uk, http://www-mobile.ecs.soton.ac.uk

Abstract

The capacity of wireless ad hoc networks has been
studied in an excellent treatise by Gupta and Ku-
mar [1], assuming a fized transmission rate. By con-
trast, in this treatise we investigate the achievable
throughput improvement of rate adaptation in the con-
text of random ad hoc networks, which have been stud-
ied in conjunction with a fized transmission rate in [1].
Our analysis shows that rate adaptation has the poten-
tial of improving the achievable throughput compared
to fized rate transmission, since rate adaptation miti-
gates the effects of link quality fluctuations. However,
even perfect rate control fails to change the scaling law
of the per-node throughput result given in [1], regard-
less of the absence or presence of shadow fading. This
result is confirmed in the context of specific adaptive
modulation aided design examples.

1. INTRODUCTION

An ad hoc network consists of a number of mobile nodes,
which may communicate directly with each other over wire-
less links, but an ad hoc network has no base station infras-
tructure. One of the most important characteristics of ad hoc
networks is their achievable capacity [1]. More specifically,
in their landmark paper [1] Gupta and Kumar studied the
achievable capacity of ad hoc networks having n nodes, each
capable of transmitting at W bits per second. Two types of
network models were considered in their work, arbitrary net-
works, which consist of arbitrarily located nodes generating an
arbitrary traffic pattern, and random networks, which consist
of randomly located nodes generating a random traffic pat-
tern. The results of [1] showed that the throughput achiev-
able by each node was ©(W/\/n)! for arbitrary networks and
O(W/+/nlogn) for random networks. Both of these formulae
implied that the per-node throughput tended to zero, as the
number of nodes tended to infinity.

Directional and other types of smart antennas have also
been used for increasing the achievable capacity of wireless ad
hoc networks [2,3]. It was shown [2,3] that the scalability prob-
lem? might be mitigated by increasing the number of antenna
elements and the resultant antenna gain, which is a benefit of
having a narrower beam-width. However, despite its consid-
erable complexity, beamforming does not dramatically change
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IThe function ©(W/y/n) returns a value, which is not much
worse, but also not much better than W/y/n.

2Scalability in ad hoc networks implies that whether the net-
work is capable of providing an acceptable level of service, when the
number of nodes in the network tends to infinity [4].
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the scaling law® due to the limitations of realistic systems [3].

It was also shown [5] that terminal mobility was capable
of increasing the per-node throughput to ©(1) with the aid of
a two-hop strategy, even when the number of communicating
nodes n was high, provided that the transmission delay was not
taken into account, which is a somewhat irrealistic assumption.
However, the expected delay per packet imposed by the above
strategy might be ©(logn) [6], which suggests that mobile ad
hoc networks constituted by many nodes may not be scalable
in real-time applications.

The capacity of hybrid wireless networks, which consist
of ad hoc nodes benefitting from infrastructure support, was
studied in [7,8]. The results showed that the per-node through-
put of ad hoc networks was improved by the infrastructure
support provided by both regular base stations [7] and ran-
dom distributed access points [8].

A mathematical framework was defined for studying the
capacity of wireless ad hoc networks in [9]. The results showed
that multihop routing, spatial reuse*, successive interference
cancellation (SIC) and variable-rate transmissions hold the
promise of significantly improving the achievable capacity. Both
terminal mobility and fading were also found to increase the
achievable network capacity, provided that nodes were capa-
ble of tolerating large delays, since the network was allowed to
schedule its transmissions during favourable fading or mobility
conditions.

In most of the above mentioned literature, a fixed transmis-
sion rate associated with a time-invariant modulation scheme
was assumed [1-3,5,7,8]. Toumpis and Goldsmith numerically
characterized the effects of rate adaptation with the aid of a
rigorous mathematical framework [9], stating that the associ-
ated computational complexity of scheduling would increase
exponentially, as the number of nodes increased.

In this paper, the effect of rate adaptation on the achiev-
able per-node throughput of ad hoc networks will be estimated.
In Section 2, the system model of wireless ad hoc networks is
introduced. In Section 3, the achievable throughput improve-
ments of perfect rate adaptation are estimated without tak-
ing into account the effects of fading. To expound further, in
Section 4 the effect of perfect rate adaptation under shadow-
ing is analyzed. Examples of Adaptive Quadrature Amplitude
Modulation (AQAM) simulations are provided in Section 5.
Finally, Section 6 provides our conclusions.

3The scaling law in ad hoc networks characterizes how the net-
work performance varies, as the number of nodes in the network
tends to infinity. In this treatise the network performance is mea-
sured by the achievable per-node throughput.

4Spatial reuse implies that more than one nodes are allowed to
attempt the simultaneous transmission of a given packet towards its
destination.
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2. SYSTEM MODEL

Our model of the ad hoc network considered is similar to that
used in [1], apart from a few modifications, which include the
employment of perfect rate adaptation and the effects of a
fading channel.

Let us consider a random ad hoc network supporting n
nodes uniformly and independently distributed in a unit area
S, which is a planar disk as in [1]. All nodes share the same
bandwidth, which is given by W Hz. All packet-transmissions
are slotted into perfectly synchronized time slots. No node is
capable of simultaneously transmitting and receiving signals,
or simultaneously transmitting/receiving signals to/from more
than one node. The power of each transmitting node is fixed
to P, Watts, i.e. no power control is used, which is typical in
cost-efficient ad hoc networks.

Let N; be the subset of nodes simultaneously transmitting
at some time instant. If node 4, i ¢ N} is receiving signals
from node j, j € N, then the Signal-to-Interference-plus-Noise
Ratio (SINR) experienced at node ¢ becomes:

Vi = BGi - (1)

Zke/\/ﬁ,k;&j PtGk’L + i

where v;; is the SINR at node i experienced by the signal
arriving from node j, while Gyg; is the power gain between
nodes k and 4, while 7; is the background noise encountered
at node ¢. The value of the power gain Gj; depends on the
propagation model, which will be discussed in Sections 3 and
4, taking into account the absence of fading or the presence of
log-normal shadow fading, respectively. The minimum SINR
required for successful reception is 3, as defined in [1].

Every transmitting node assumes perfect knowledge of its
link quality and hence we are estimating the achievable through-
put upper bound with the advent of perfect adaptive rate
transmission, which is a prerequisite for approaching the Shan-
non limit [10].

The common reliable transmission range 7(n) of all nodes
is chosen to guarantee the asymptotic connectivity of random
networks as in [1]. The shorthand of r, will be used for r(n)
in the sequel. Initially the minimum distance between nodes is
assumed to be 7pin, which satisfies rpin < 7, although later
this assumption will be dropped, letting rmin — 0.

3. THE EFFECTS OF PATH LOSS

In the absence of fading, i.e. when the only propagation phe-
nomenon considered is the path loss, the signal power is as-
sumed to decay upon increasing the distance r according to
o e

r~ <, yielding: G(r) = — . 2)
where 7 and G(r) are the distance and the power gain between
two nodes, respectively, and « is the path loss exponent. In
general we have 2 < a < 4 in a typical path loss model [11].

Let us assume that node j is transmitting to node ¢ roam-
ing at a distance less than r,. Owing to the central limit the-
orem, the interference may be assumed to be approximately
Gaussian. Thus only the fluctuation of the received signal
power is considered.

In the model of [1], the guard zone’ is appropriately se-
lected to guarantee that all nodes’ transmissions to other nodes
roaming at a distance less than r, achieve the minimum re-

quired SINR £, so that we have v;; = (3 (r—’”)a

Tji

5

5A guard zone is specified as a transmission exclusion zone im-
posed for the sake of preventing a neighbouring node from trans-
mitting on a channel already activated within the zone at the same
time.

In the model of [1], the transmission rate is fixed. Hence
the throughput ¢4 achievable without rate adaptation is also
fixed and determined by the Shannon limit [10] at the mini-
mum required SINR 3, yielding ¢, = W log, (1 + 3).

Since node j is randomly and uniformly distributed in S,
furthermore, given that rj; is less than the reliable range of
transmission 7y, the conditional Probability Density Function
(PDF) of the distance r;; and the conditional PDF of the SINR
vji can be shown to be:

27"]'2'

2 )

min

2 () "
of {1 - (m—)z}

If perfect rate adaptation is available, the achievable aver-
age throughput ¢, can be shown to be:

2W n n ) &
e mind B B CONEG

2
(Tn min

Hence it is possible to estimate the achievable normalized
per-node throughput improvement of ¢; = cq /¢y attained with
the advent of perfect rate adaptation by numerical integra-
tion. Upon substituting the normalized minimum distance of
U = Tmin/Tn between ad hoc nodes as well as the normalized
distance s = r;;/rn into Equation 5, we arrive at the follow-
ing theorem quantifying the normalized per-node throughput
improvement in the absence of fading.

Frir<rn (T33) = = Tmin < Tji < Tn, (3)

TR —T

fw\r<rn ('in) = B < Vii- (4)

Ca

Theorem 1

e 2[ysn(1+Bs)ds _ 2 [ sln(l+ Bs *)ds
g  (1—w2)In(1+3) — In(1+ 3)

= c? < +00, (6)

where the upper bound ¢ is the mazimum achievable normal-
ized throughput improvement c¢; attained with the advent of
perfect rate adaptation, when we have Tmin = 0. [J

Note in Equation 6 that the upper bound ¢! is a constant
that is independent of n, and it is determined purely by the
propagation parameters, o and (3. Therefore, it is concluded
that ¢, has the same order as ¢y, which is the achievable per-
node throughput in the model of [1]. In other words, even
perfect rate adaptation fails to change the scaling law of the
achievable per-node throughput result of [1].

Figures 1 and 2 show that the achievable normalized per-
node throughput improvement ¢; is a decreasing function of
the normalized minimum distance rmin/r». In other words,
as the minimum distance between nodes decreases, the achiev-
able normalized per-node throughput improvement increases,
because the link quality fluctuation becomes larger at a smaller
normalized minimum distance between nodes, while fized rate
transmission fails to efficiently exploit the available capacity,
when the link quality is improved.

4. THE EFFECTS OF SHADOW FADING

If the effects of shadowing are taken into account, the shadow-
faded power gain is log-normally distributed with a mean given
by Equation 2. Then the conditional PDF of the shadow-faded
power gain at a certain distance is given by [11]:

Fon(@) 1 _ (nG+alnnr? )
= —— 252
“lr V 27TO'G€ 7
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Figure 1: The normalized per-node throughput improvement c;
versus the normalized minimum distance 7,,in/rn between nodes
for different values of the path loss exponent a at a required SINR
value of 8 = 10 dB in the absence of fading, which is computed from

Equation 6.
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Figure 2: The normalized per-node throughput improvement c;
versus the normalized minimum distance 7.in /7 between nodes
for different values of the required SINR 3 at a path loss exponent of
« = 3 in the absence of fading, which is computed from Equation 6.

where G and r are the power gain and the distance between
two nodes, respectively and o is the standard deviation of the
lognormal shadowing in natural units. In practice the range
of 0 is 5 ~ 12 dB and its typical value is 8 dB [11], i.e. we
have 1.15 ~ 2.76 and 1.84 in terms of natural units.

Owing to the central limit theorem, the interference is ap-
proximatively Gaussian distributed. Hence only the fluctua-
tion of the shadow-faded received signal power is considered.
The guard zone is appropriately selected to guarantee that all
nodes’ transmissions to other nodes roaming at a distance less
than 7, achieve the minimum required SINR [ on average,

hence we have: v = Bro Gy, (8)
where the shadow-faded power gain Gj; is log-normally dis-
tributed with a mean of ;.

Substituting Equation 8 into Equation 7 and applying the
probability transformation formula [12], we have the condi-
tional PDF of v;; at a given distance 7j;:

_ (nyji+alnrj;—lnB—aln rn)?

G

1
s ji) = —F/——¢€
f’v\ ],(’YJ ) \/%O"in
Upon substituting Equation 3 into Equation 9 and apply-
ing the theorem of total probability [12], we arrive at the PDF
of ~;; conditioned on rj; < 7y:

(Inyjitolnr;—ln f—alnrp)?
rn _
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Figure 3: The normalized per-node throughput improvement c;
versus the normalized minimum distance 7y,in/rn between nodes
for different values of the path loss exponent a at a required SINR
value of 3 = 10 dB and a lognormal shadowing standard deviation
of o = 8 dB in the presence of shadow fading, which is computed
from Equation 12.

Therefore the normalized per-node throughput improve-
ment ¢; achieved with the aid of perfect rate adaptation may
be expressed as follows:

ca g Frirar, (i) In(1 4 y50)dv; )
cg (@ +p8) [5° frirar, (ii)dysi

Upon substituting the logarithmic normalized minimum
distance of u = In7min — In7, between ad hoc nodes as well
as the logarithmic normalized distance of s = Inrj; — Inry,
and the logarithmic normalized SINR of ¢t = In~y;; — In 3 into
Equation 11, we arrive at the following theorem in the presence
of shadow fading.

Cy =

Theorem 2

oo _ (tt+as)?

0+ In(1 + Be")dt ff e*e” 27 ds
G = oo L 0 o (ttes)?

In(1+p) [;77dt [, e?se” 207 ds

Loo _ (t+as)?

0+ In(1 + Be')dt ffoo e*e” 207 ds

— too o _ (ttas)?
In(1+p) [;77dt [°__e?e” 2.7 ds

= ¢ < +oo, (12)
where the upper bound ¢ experienced in the presence of shadow
fading is the mazximum achievable normalized throughput im-
provement ¢; attained with the advent of perfect rate adapta-
tion, when we have 1y, = 0. O

Observe in Equation 12 that the upper bound ¢! is still a
constant, regardless of the specific value of n, and it is purely
determined by the propagation parameters «, § and o. There-
fore, it is concluded that ¢, has the same order as ¢4, which
is the achievable throughput in the model of [1]. In other
words, perfect rate adaptation fails to change the scaling law
of the per-node throughput result of [1], even in the presence
of shadow fading.

Figures 3 - 5 show that the achievable normalized per-
node throughput improvement ¢; experienced in the presence
of shadow fading is also a decreasing function of the normalized
minimum distance 7yin /7y, and this trend is similar to that in
the absence of shadowing, as it was evidenced by Figures 1 and
2. However, the achievable normalized per-node throughput
improvement c¢; is higher than unity even at rmin/rn = 1,
which is different from that in the absence of shadowing. This
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Figure 4: The normalized per-node throughput improvement c;
versus the normalized minimum distance 7y,in/rn between nodes
for different values of the required SINR ( at a path loss exponent
value of @ = 3 and a lognormal shadowing standard deviation of
o = 8 dB in the presence of shadow fading, which is computed from
Equation 12.
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Figure 5: The normalized per-node throughput improvement c;
versus the normalized minimum distance 7in/rn between nodes
for different values of the lognormal shadowing standard deviation
o at a path loss exponent value of @ = 3 and a required SINR of
B = 10 dB in the presence of shadow fading, which is computed
from Equation 12.

gain was achieved by counteracting the link quality variation
imposed by shadow fading, regardless of the normalized node
separation. Observe in Equation 12 that at 7, /rn, = 1 we
have: X
+oo t 7;7
e i, = Jo 7 In(1 + Be’)e - dt o1
" In(1+B) [F=e 27 dt
We observe from Equation 13 that the normalized per-node
throughput improvement ¢; achieved at rpin/r = 1 is inde-
pendent of the path loss exponent «, and it is purely deter-
mined by the required minimum SINR 3 as well as the log-
normal shadowing standard deviation o. This is because the
conditional PDF of «;; at a given distance r;; does not de-
pend on & at Tmin = T, as observed in Equation 9. Hence the
curves associated with different values of o in Figure 3 con-
verge, when we have r,in — 7, but this is not the case for
different values of (3, as seen in Figure 4 or for different values
of o, as portrayed in Figure 5.

(13)

5. EXAMPLE: AQAM

The family of AQAM schemes constitutes an efficient rate
adaptation technique designed with low complexity in mind for
the sake of increasing the achievable throughput [13]. There
are several criteria that may be invoked for choosing the switch-
ing levels between the adjacent AQAM modes [13,14]. In the

previous sections we used the idealized concept of instanta-
neous SINR channel quality knowledge for evaluating the ben-
eficial effects of perfect rate adaptation on the achievable ef-
fective throughput upper bound.

In this section a K-mode adaptive square QAM scheme
using Gray coding is investigated. The mode selection rule is
formulated as follows [14]:

Choose mode k, when we have s < vs < Sg+1,k € {0,..., K},

where 7, is the instantaneous SNR per symbol, s is the kth
switching level and sp = 0, sx+1 = co. The AQAM constella-
tion size is given by M), phasors in mode k as follows:

My=0, My=2 M;,=2"Y k=2 K
The number of bits per symbol (BPS) bj, transmitted in mode
k is given by:

bo:o7 b :logsz,kzl,...,K.

The general BER expression of M-ary square QAM using
Gray coding is given by Equation 14 and 16 in [15], where

vy = mQﬁ is the SNR per bit. Hence we arrive at the AQAM

parameters listed in Table 1, which are independent of the
associated SNR distribution. For example, if a 5-mode square
AQAM scheme is adopted, the maximum constellation size will
be M5 = 256 and the highest switching level becomes sg = 00,
regardless of the target BER.

The average number of bits per symbol normalized to that
of the fixed rate BPSK scheme is [14]:

b b Lo o ()

Bi = , 14
Bppsk (14)

where f,,(7s) is the PDF of the SNR per symbol and Bgpsk
is the BPS throughput of the fixed rate BPSK scheme. In
general a constant symbol rate is used in AQAM, regardless
of the modulation mode selected, hence a constant bandwidth
is required. Again, if we treat the co-channel interference as
noise, which is justified by the central limit theorem, f, (vs) is
given by Equations 4 and 10 in the absence and in the presence
of shadowing, respectively. The PDFs of their normalized val-
ues associated with 7, = 0 are depicted in Figure 6. Since
the SINR achieved at the fringes of the transmission range r,
exactly satisfies the minimum SINR requirement (3, provided
that only the effect of path loss is considered, the SINR nor-
malized to [ is always higher than or equal to 0 dB in the
absence of fading, as suggested by Figure 6. The peak value of
the SINR PDF is reached at a normalized SINR value of less
than 0 dB in the presence of shadowing, because the abscissa

value of the peak ree=o”

of the lognormal distribution in
Equation 7 is less than the SINR’s mean value of e/,
The achievable normalized average BPS throughput B; versus
the number of modes K of K-mode square AQAM systems
associated with 7, = 0 and § = s1 is characterized in Fig-
ure 7, which was recorded both in the absence of fading and
in the presence of shadowing.

Figure 7 shows that AQAM is capable of substantially im-
proving the average BPS throughput both in the absence of
fading and in the presence of shadowing compared to the fixed
rate BPSK scheme. However, the additional throughput im-
provement achieved by a high-complexity scheme using more
than four AQAM modes is marginal, because the probability
of activating the high-BPS modes drops exponentially, when
the SINR normalized to [ increases, as suggested by the PDF
seen in Figure 6. This result is in line with Theorem 1 and The-
orem 2, suggesting that even perfect rate adaptation is inca-
pable of improving the scaling law of the per-node throughput
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My, 0 2 4

by, 0 1 2
sk(dB) BER=10"2 | —oco | 6.7895 | 9.7998
51(dB) BER = 107° —oo | 9.5879 | 12.5982
mode No Tx | BPSK QPSK

3 1 5 6
16 64 256 1024
4 6 8 10
16.5430 | 22.5490 | 28.4147 34.2607
19.4551 | 25.5684 | 31.5341 37.4728
16-QAM | 64-QAM | 256-QAM | 1024-QAM

Table 1: The parameters of K-mode square AQAM systems using Gray coding and designed for maintaining BER = 10~2 and 1075,
respectively. The switching thresholds were evaluated from Equations 14, 16 in [15] and v = s/ logy M.
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Figure 6: The PDFs of the SINRs normalized to the minimum
SINR requirement 3 both in the absence of fading and in the pres-
ence of log-normal shadowing having a = 3 and ¢ = 8 dB, which
were computed from Equations 4 and 10 for r,,;, = 0, respectively.
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Figure 7: The achievable normalized per-node average BPS

throughput B; versus the number of modes K in K-mode square
AQAM systems using Gray coding for a path loss exponent value of
a = 3, a lognormal shadowing standard deviation of o = 8 dB and
a target BER of 1073 and 1075, respectively, recorded both in the
absence of fading and in the presence of shadow fading in a random
ad hoc network. The PDF f,, (vs) of the SNR per symbol is given
by Equation 10 and Equation 10, respectively.

attained either in the absence of fading or in the presence of
shadowing. The achievable normalized average BPS through-
put recorded in the case of a higher threshold set designed for
maintaining BER > 107° is only marginally lower than that
in the case of a lower threshold set designed for maintaining
BER > 1073, since the distributions of the normalized SINR
of the BER = 107° and 10™2 scenarios are identical, as seen
in Figure 6. This implies that a lower BPS throughput im-
provement may be achieved in case of requiring a lower BER
of 107°, which conforms to the trends observed in Figure 2.
However, it does not imply that the AQAM scheme achieves a
lower BPS throughput in the case of aiming for a lower instan-
taneous BER, since we normalize the BPS throughput to that
of the fixed rate BPSK scheme, which is different for the sce-
narios of BER = 10~% and BER = 10~° owing to the different
values of r,.

6. CONCLUSION

In this paper we have focused our attention on the effects of
rate adaptation on the achievable throughput of random ad
hoc networks, which was discussed in the context of both path
loss and shadow fading. In conclusion, perfect rate adapta-
tion has the potential of considerably improving the achiev-
able throughput of the random ad hoc network compared to
fized rate transmissions, since rate adaptation is capable of
mitigating the effects of link quality fluctuations, as shown in
Figures 1 - 5. However, Theorem 1 and 2 revealed that even
perfect rate control fails to change the scaling law of the per-

node throughput result given by © < in [1], regardless

Moo
of the absence or presence of shadow fading. This conclu-
sion was further confirmed by Figure 7 in the context of our
AQAM examples. The maximum normalized throughput im-
provement ¢} achieved with the aid of perfect rate adaptation
is determined purely by the path loss exponent «, the required
minimum SINR g and the lognormal shadowing standard de-
viation 0. We observed in Figures 1, 3 and 5 that the achiev-
able normalized throughput ¢! increases, as a or ¢ increases,
because it is capable of efficiently mitigating the link quality
variations. More explicitly, this was demonstrated in Figure 1
in the absence of fading, while in Figures 3 and 5 in the pres-
ence of shadowing, respectively. By contrast, ¢ decreases as
0 decreases, as a consequence of the reduced marginal channel
throughput, as shown in Figure 2 in the absence of fading and
in Figure 4 in the presence of shadowing, respectively.
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