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Abstract
The capacity of wireless ad hoc networks has been
studied in an excellent treatise by Gupta and Ku-
mar [1], assuming a fixed transmission rate. By con-
trast, in this treatise we investigate the achievable
throughput improvement of rate adaptation in the con-
text of random ad hoc networks, which have been stud-
ied in conjunction with a fixed transmission rate in [1].
Our analysis shows that rate adaptation has the poten-
tial of improving the achievable throughput compared
to fixed rate transmission, since rate adaptation miti-
gates the effects of link quality fluctuations. However,
even perfect rate control fails to change the scaling law
of the per-node throughput result given in [1], regard-
less of the absence or presence of shadow fading. This
result is confirmed in the context of specific adaptive
modulation aided design examples.

1. INTRODUCTION

An ad hoc network consists of a number of mobile nodes,
which may communicate directly with each other over wire-
less links, but an ad hoc network has no base station infras-
tructure. One of the most important characteristics of ad hoc
networks is their achievable capacity [1]. More specifically,
in their landmark paper [1] Gupta and Kumar studied the
achievable capacity of ad hoc networks having n nodes, each
capable of transmitting at W bits per second. Two types of
network models were considered in their work, arbitrary net-
works, which consist of arbitrarily located nodes generating an
arbitrary traffic pattern, and random networks, which consist
of randomly located nodes generating a random traffic pat-
tern. The results of [1] showed that the throughput achiev-
able by each node was Θ(W/

√
n)1 for arbitrary networks and

Θ(W/
√

n log n) for random networks. Both of these formulae
implied that the per-node throughput tended to zero, as the
number of nodes tended to infinity.

Directional and other types of smart antennas have also
been used for increasing the achievable capacity of wireless ad
hoc networks [2,3]. It was shown [2,3] that the scalability prob-
lem2 might be mitigated by increasing the number of antenna
elements and the resultant antenna gain, which is a benefit of
having a narrower beam-width. However, despite its consid-
erable complexity, beamforming does not dramatically change
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1The function Θ(W/
√

n) returns a value, which is not much
worse, but also not much better than W/

√
n.

2Scalability in ad hoc networks implies that whether the net-
work is capable of providing an acceptable level of service, when the
number of nodes in the network tends to infinity [4].

the scaling law3 due to the limitations of realistic systems [3].

It was also shown [5] that terminal mobility was capable
of increasing the per-node throughput to Θ(1) with the aid of
a two-hop strategy, even when the number of communicating
nodes n was high, provided that the transmission delay was not
taken into account, which is a somewhat irrealistic assumption.
However, the expected delay per packet imposed by the above
strategy might be Θ(log n) [6], which suggests that mobile ad
hoc networks constituted by many nodes may not be scalable
in real-time applications.

The capacity of hybrid wireless networks, which consist
of ad hoc nodes benefitting from infrastructure support, was
studied in [7,8]. The results showed that the per-node through-
put of ad hoc networks was improved by the infrastructure
support provided by both regular base stations [7] and ran-
dom distributed access points [8].

A mathematical framework was defined for studying the
capacity of wireless ad hoc networks in [9]. The results showed
that multihop routing, spatial reuse4, successive interference
cancellation (SIC) and variable-rate transmissions hold the
promise of significantly improving the achievable capacity. Both
terminal mobility and fading were also found to increase the
achievable network capacity, provided that nodes were capa-
ble of tolerating large delays, since the network was allowed to
schedule its transmissions during favourable fading or mobility
conditions.

In most of the above mentioned literature, a fixed transmis-
sion rate associated with a time-invariant modulation scheme
was assumed [1–3,5,7,8]. Toumpis and Goldsmith numerically
characterized the effects of rate adaptation with the aid of a
rigorous mathematical framework [9], stating that the associ-
ated computational complexity of scheduling would increase
exponentially, as the number of nodes increased.

In this paper, the effect of rate adaptation on the achiev-
able per-node throughput of ad hoc networks will be estimated.
In Section 2, the system model of wireless ad hoc networks is
introduced. In Section 3, the achievable throughput improve-
ments of perfect rate adaptation are estimated without tak-
ing into account the effects of fading. To expound further, in
Section 4 the effect of perfect rate adaptation under shadow-
ing is analyzed. Examples of Adaptive Quadrature Amplitude
Modulation (AQAM) simulations are provided in Section 5.
Finally, Section 6 provides our conclusions.

3The scaling law in ad hoc networks characterizes how the net-
work performance varies, as the number of nodes in the network
tends to infinity. In this treatise the network performance is mea-
sured by the achievable per-node throughput.

4Spatial reuse implies that more than one nodes are allowed to
attempt the simultaneous transmission of a given packet towards its
destination.
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2. SYSTEM MODEL

Our model of the ad hoc network considered is similar to that
used in [1], apart from a few modifications, which include the
employment of perfect rate adaptation and the effects of a
fading channel.

Let us consider a random ad hoc network supporting n
nodes uniformly and independently distributed in a unit area
S, which is a planar disk as in [1]. All nodes share the same
bandwidth, which is given by W Hz. All packet-transmissions
are slotted into perfectly synchronized time slots. No node is
capable of simultaneously transmitting and receiving signals,
or simultaneously transmitting/receiving signals to/from more
than one node. The power of each transmitting node is fixed
to Pt Watts, i.e. no power control is used, which is typical in
cost-efficient ad hoc networks.

Let Nt be the subset of nodes simultaneously transmitting
at some time instant. If node i, i /∈ Nt is receiving signals
from node j, j ∈ Nt, then the Signal-to-Interference-plus-Noise
Ratio (SINR) experienced at node i becomes:

γji =
PtGji∑

k∈Nt,k �=j PtGki + ηi
, (1)

where γji is the SINR at node i experienced by the signal
arriving from node j, while Gki is the power gain between
nodes k and i, while ηi is the background noise encountered
at node i. The value of the power gain Gji depends on the
propagation model, which will be discussed in Sections 3 and
4, taking into account the absence of fading or the presence of
log-normal shadow fading, respectively. The minimum SINR
required for successful reception is β, as defined in [1].

Every transmitting node assumes perfect knowledge of its
link quality and hence we are estimating the achievable through-
put upper bound with the advent of perfect adaptive rate
transmission, which is a prerequisite for approaching the Shan-
non limit [10].

The common reliable transmission range r(n) of all nodes
is chosen to guarantee the asymptotic connectivity of random
networks as in [1]. The shorthand of rn will be used for r(n)
in the sequel. Initially the minimum distance between nodes is
assumed to be rmin, which satisfies rmin < rn, although later
this assumption will be dropped, letting rmin → 0.

3. THE EFFECTS OF PATH LOSS

In the absence of fading, i.e. when the only propagation phe-
nomenon considered is the path loss, the signal power is as-
sumed to decay upon increasing the distance r according to
r−α, yielding:

G(r) = r−α, (2)
where r and G(r) are the distance and the power gain between
two nodes, respectively, and α is the path loss exponent. In
general we have 2 ≤ α ≤ 4 in a typical path loss model [11].

Let us assume that node j is transmitting to node i roam-
ing at a distance less than rn. Owing to the central limit the-
orem, the interference may be assumed to be approximately
Gaussian. Thus only the fluctuation of the received signal
power is considered.

In the model of [1], the guard zone5 is appropriately se-
lected to guarantee that all nodes’ transmissions to other nodes
roaming at a distance less than rn achieve the minimum re-

quired SINR β, so that we have γji = β
(

rn
rji

)α

.

5A guard zone is specified as a transmission exclusion zone im-
posed for the sake of preventing a neighbouring node from trans-
mitting on a channel already activated within the zone at the same
time.

In the model of [1], the transmission rate is fixed. Hence
the throughput cg achievable without rate adaptation is also
fixed and determined by the Shannon limit [10] at the mini-
mum required SINR β, yielding cg = W log2(1 + β).

Since node j is randomly and uniformly distributed in S,
furthermore, given that rji is less than the reliable range of
transmission rn, the conditional Probability Density Function
(PDF) of the distance rji and the conditional PDF of the SINR
γji can be shown to be:

fr|r<rn(rji) =
2rji

r2
n − r2

min

, rmin < rji < rn, (3)

fγ|r<rn(γji) =
2

(
γji

β

)− 2
α
−1

αβ

[
1 −

(
rmin

rn

)2
] , β < γji. (4)

If perfect rate adaptation is available, the achievable aver-
age throughput ca can be shown to be:

ca =
2W

(r2
n − r2

min) ln 2

∫ rn

rmin

rji ln

[
1 + β

(
rn

rji

)α]
drji. (5)

Hence it is possible to estimate the achievable normalized
per-node throughput improvement of ci = ca/cg attained with
the advent of perfect rate adaptation by numerical integra-
tion. Upon substituting the normalized minimum distance of
u = rmin/rn between ad hoc nodes as well as the normalized
distance s = rji/rn into Equation 5, we arrive at the follow-
ing theorem quantifying the normalized per-node throughput
improvement in the absence of fading.

Theorem 1

ci =
ca

cg
=

2
∫ 1

u
s ln(1 + βs−α)ds

(1 − u2) ln(1 + β)
≤ 2

∫ 1

0
s ln(1 + βs−α)ds

ln(1 + β)

= c0
i < +∞, (6)

where the upper bound c0
i is the maximum achievable normal-

ized throughput improvement ci attained with the advent of
perfect rate adaptation, when we have rmin = 0. �

Note in Equation 6 that the upper bound c0
i is a constant

that is independent of n, and it is determined purely by the
propagation parameters, α and β. Therefore, it is concluded
that ca has the same order as cg, which is the achievable per-
node throughput in the model of [1]. In other words, even
perfect rate adaptation fails to change the scaling law of the
achievable per-node throughput result of [1].

Figures 1 and 2 show that the achievable normalized per-
node throughput improvement ci is a decreasing function of
the normalized minimum distance rmin/rn. In other words,
as the minimum distance between nodes decreases, the achiev-
able normalized per-node throughput improvement increases,
because the link quality fluctuation becomes larger at a smaller
normalized minimum distance between nodes, while fixed rate
transmission fails to efficiently exploit the available capacity,
when the link quality is improved.

4. THE EFFECTS OF SHADOW FADING

If the effects of shadowing are taken into account, the shadow-
faded power gain is log-normally distributed with a mean given
by Equation 2. Then the conditional PDF of the shadow-faded
power gain at a certain distance is given by [11]:

fG|r(G) =
1√

2πσG
e
− (ln G+α ln r)2

2σ2 , (7)
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Figure 1: The normalized per-node throughput improvement ci

versus the normalized minimum distance rmin/rn between nodes
for different values of the path loss exponent α at a required SINR
value of β = 10 dB in the absence of fading, which is computed from
Equation 6.
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Figure 2: The normalized per-node throughput improvement ci

versus the normalized minimum distance rmin/rn between nodes
for different values of the required SINR β at a path loss exponent of
α = 3 in the absence of fading, which is computed from Equation 6.

where G and r are the power gain and the distance between
two nodes, respectively and σ is the standard deviation of the
lognormal shadowing in natural units. In practice the range
of σ is 5 ∼ 12 dB and its typical value is 8 dB [11], i.e. we
have 1.15 ∼ 2.76 and 1.84 in terms of natural units.

Owing to the central limit theorem, the interference is ap-
proximatively Gaussian distributed. Hence only the fluctua-
tion of the shadow-faded received signal power is considered.
The guard zone is appropriately selected to guarantee that all
nodes’ transmissions to other nodes roaming at a distance less
than rn achieve the minimum required SINR β on average,
hence we have:

γji = βrα
nGji, (8)

where the shadow-faded power gain Gji is log-normally dis-
tributed with a mean of r−α

ji .
Substituting Equation 8 into Equation 7 and applying the

probability transformation formula [12], we have the condi-
tional PDF of γji at a given distance rji:

fγ|rji
(γji) =

1√
2πσγji

e
− (ln γji+α ln rji−ln β−α ln rn)2

2σ2 . (9)

Upon substituting Equation 3 into Equation 9 and apply-
ing the theorem of total probability [12], we arrive at the PDF
of γji conditioned on rji < rn:

fγ|rji<rn(γji) =
2

∫ rn

rmin
rjie

− (ln γji+α ln rji−ln β−α ln rn)2

2σ2 drji√
2πσγji(r2

n − r2
min)

.

(10)
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Figure 3: The normalized per-node throughput improvement ci

versus the normalized minimum distance rmin/rn between nodes
for different values of the path loss exponent α at a required SINR
value of β = 10 dB and a lognormal shadowing standard deviation
of σ = 8 dB in the presence of shadow fading, which is computed
from Equation 12.

Therefore the normalized per-node throughput improve-
ment ci achieved with the aid of perfect rate adaptation may
be expressed as follows:

ci =
ca

cg
=

∫ ∞
β

fγ|r<rn(γji) ln(1 + γji)dγji

ln(1 + β)
∫ ∞

β
fγ|r<rn(γji)dγji

. (11)

Upon substituting the logarithmic normalized minimum
distance of u = ln rmin − ln rn between ad hoc nodes as well
as the logarithmic normalized distance of s = ln rji − ln rn

and the logarithmic normalized SINR of t = ln γji − ln β into
Equation 11, we arrive at the following theorem in the presence
of shadow fading.

Theorem 2

ci =

∫ +∞
0

ln(1 + βet)dt
∫ 0

u
e2se

− (t+αs)2

2σ2 ds

ln(1 + β)
∫ +∞
0

dt
∫ 0

u
e2se

− (t+αs)2

2σ2 ds

≤
∫ +∞
0

ln(1 + βet)dt
∫ 0

−∞ e2se
− (t+αs)2

2σ2 ds

ln(1 + β)
∫ +∞
0

dt
∫ 0

−∞ e2se
− (t+αs)2

2σ2 ds

= c0
i < +∞, (12)

where the upper bound c0
i experienced in the presence of shadow

fading is the maximum achievable normalized throughput im-
provement ci attained with the advent of perfect rate adapta-
tion, when we have rmin = 0. �

Observe in Equation 12 that the upper bound c0
i is still a

constant, regardless of the specific value of n, and it is purely
determined by the propagation parameters α, β and σ. There-
fore, it is concluded that ca has the same order as cg, which
is the achievable throughput in the model of [1]. In other
words, perfect rate adaptation fails to change the scaling law
of the per-node throughput result of [1], even in the presence
of shadow fading.

Figures 3 - 5 show that the achievable normalized per-
node throughput improvement ci experienced in the presence
of shadow fading is also a decreasing function of the normalized
minimum distance rmin/rn, and this trend is similar to that in
the absence of shadowing, as it was evidenced by Figures 1 and
2. However, the achievable normalized per-node throughput
improvement ci is higher than unity even at rmin/rn = 1,
which is different from that in the absence of shadowing. This
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Figure 4: The normalized per-node throughput improvement ci

versus the normalized minimum distance rmin/rn between nodes
for different values of the required SINR β at a path loss exponent
value of α = 3 and a lognormal shadowing standard deviation of
σ = 8 dB in the presence of shadow fading, which is computed from
Equation 12.
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Figure 5: The normalized per-node throughput improvement ci

versus the normalized minimum distance rmin/rn between nodes
for different values of the lognormal shadowing standard deviation
σ at a path loss exponent value of α = 3 and a required SINR of
β = 10 dB in the presence of shadow fading, which is computed
from Equation 12.

gain was achieved by counteracting the link quality variation
imposed by shadow fading, regardless of the normalized node
separation. Observe in Equation 12 that at rmin/rn = 1 we
have:

ci| rmin
rn

=1 =

∫ +∞
0

ln(1 + βet)e
− t2

2σ2 dt

ln(1 + β)
∫ +∞
0

e
− t2

2σ2 dt
> 1. (13)

We observe from Equation 13 that the normalized per-node
throughput improvement ci achieved at rmin/rn = 1 is inde-
pendent of the path loss exponent α, and it is purely deter-
mined by the required minimum SINR β as well as the log-
normal shadowing standard deviation σ. This is because the
conditional PDF of γji at a given distance rji does not de-
pend on α at rmin = rn, as observed in Equation 9. Hence the
curves associated with different values of α in Figure 3 con-
verge, when we have rmin → rn, but this is not the case for
different values of β, as seen in Figure 4 or for different values
of σ, as portrayed in Figure 5.

5. EXAMPLE: AQAM

The family of AQAM schemes constitutes an efficient rate
adaptation technique designed with low complexity in mind for
the sake of increasing the achievable throughput [13]. There
are several criteria that may be invoked for choosing the switch-
ing levels between the adjacent AQAM modes [13, 14]. In the

previous sections we used the idealized concept of instanta-
neous SINR channel quality knowledge for evaluating the ben-
eficial effects of perfect rate adaptation on the achievable ef-
fective throughput upper bound.

In this section a K-mode adaptive square QAM scheme
using Gray coding is investigated. The mode selection rule is
formulated as follows [14]:

Choose mode k, when we have sk ≤ γs < sk+1, k ∈ {0, ..., K},
where γs is the instantaneous SNR per symbol, sk is the kth
switching level and s0 = 0, sK+1 = ∞. The AQAM constella-
tion size is given by Mk phasors in mode k as follows:

M0 = 0, M1 = 2, Mk = 22(k−1), k = 2, ..., K.

The number of bits per symbol (BPS) bk transmitted in mode
k is given by:

b0 = 0, bk = log2 Mk, k = 1, ..., K.

The general BER expression of M -ary square QAM using
Gray coding is given by Equation 14 and 16 in [15], where
γ = γs

log2 M
is the SNR per bit. Hence we arrive at the AQAM

parameters listed in Table 1, which are independent of the
associated SNR distribution. For example, if a 5-mode square
AQAM scheme is adopted, the maximum constellation size will
be M5 = 256 and the highest switching level becomes s6 = ∞,
regardless of the target BER.

The average number of bits per symbol normalized to that
of the fixed rate BPSK scheme is [14]:

Bi =

∑K
k=1 bk

∫ sk+1
sk

fγs(γs)dγs

BBPSK
, (14)

where fγs(γs) is the PDF of the SNR per symbol and BBPSK

is the BPS throughput of the fixed rate BPSK scheme. In
general a constant symbol rate is used in AQAM, regardless
of the modulation mode selected, hence a constant bandwidth
is required. Again, if we treat the co-channel interference as
noise, which is justified by the central limit theorem, fγs(γs) is
given by Equations 4 and 10 in the absence and in the presence
of shadowing, respectively. The PDFs of their normalized val-
ues associated with rmin = 0 are depicted in Figure 6. Since
the SINR achieved at the fringes of the transmission range rn

exactly satisfies the minimum SINR requirement β, provided
that only the effect of path loss is considered, the SINR nor-
malized to β is always higher than or equal to 0 dB in the
absence of fading, as suggested by Figure 6. The peak value of
the SINR PDF is reached at a normalized SINR value of less
than 0 dB in the presence of shadowing, because the abscissa

value of the peak r−αe−σ2
of the lognormal distribution in

Equation 7 is less than the SINR’s mean value of r−αe−σ2/2.
The achievable normalized average BPS throughput Bi versus
the number of modes K of K-mode square AQAM systems
associated with rmin = 0 and β = s1 is characterized in Fig-
ure 7, which was recorded both in the absence of fading and
in the presence of shadowing.

Figure 7 shows that AQAM is capable of substantially im-
proving the average BPS throughput both in the absence of
fading and in the presence of shadowing compared to the fixed
rate BPSK scheme. However, the additional throughput im-
provement achieved by a high-complexity scheme using more
than four AQAM modes is marginal, because the probability
of activating the high-BPS modes drops exponentially, when
the SINR normalized to β increases, as suggested by the PDF
seen in Figure 6. This result is in line with Theorem 1 and The-
orem 2, suggesting that even perfect rate adaptation is inca-
pable of improving the scaling law of the per-node throughput
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k 0 1 2 3 4 5 6
Mk 0 2 4 16 64 256 1024
bk 0 1 2 4 6 8 10

sk(dB) BER = 10−3 −∞ 6.7895 9.7998 16.5430 22.5490 28.4147 34.2607
sk(dB) BER = 10−5 −∞ 9.5879 12.5982 19.4551 25.5684 31.5341 37.4728

mode No Tx BPSK QPSK 16-QAM 64-QAM 256-QAM 1024-QAM

Table 1: The parameters of K-mode square AQAM systems using Gray coding and designed for maintaining BER = 10−3 and 10−5,
respectively. The switching thresholds were evaluated from Equations 14, 16 in [15] and γ = γs/ log2 M .
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Figure 6: The PDFs of the SINRs normalized to the minimum
SINR requirement β both in the absence of fading and in the pres-
ence of log-normal shadowing having α = 3 and σ = 8 dB, which
were computed from Equations 4 and 10 for rmin = 0, respectively.
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Figure 7: The achievable normalized per-node average BPS
throughput Bi versus the number of modes K in K-mode square
AQAM systems using Gray coding for a path loss exponent value of
α = 3, a lognormal shadowing standard deviation of σ = 8 dB and
a target BER of 10−3 and 10−5, respectively, recorded both in the
absence of fading and in the presence of shadow fading in a random
ad hoc network. The PDF fγs (γs) of the SNR per symbol is given
by Equation 10 and Equation 10, respectively.

attained either in the absence of fading or in the presence of
shadowing. The achievable normalized average BPS through-
put recorded in the case of a higher threshold set designed for
maintaining BER ≥ 10−5 is only marginally lower than that
in the case of a lower threshold set designed for maintaining
BER ≥ 10−3, since the distributions of the normalized SINR
of the BER = 10−5 and 10−3 scenarios are identical, as seen
in Figure 6. This implies that a lower BPS throughput im-
provement may be achieved in case of requiring a lower BER
of 10−5, which conforms to the trends observed in Figure 2.
However, it does not imply that the AQAM scheme achieves a
lower BPS throughput in the case of aiming for a lower instan-
taneous BER, since we normalize the BPS throughput to that
of the fixed rate BPSK scheme, which is different for the sce-
narios of BER = 10−3 and BER = 10−5 owing to the different
values of rn.

6. CONCLUSION

In this paper we have focused our attention on the effects of
rate adaptation on the achievable throughput of random ad
hoc networks, which was discussed in the context of both path
loss and shadow fading. In conclusion, perfect rate adapta-
tion has the potential of considerably improving the achiev-
able throughput of the random ad hoc network compared to
fixed rate transmissions, since rate adaptation is capable of
mitigating the effects of link quality fluctuations, as shown in
Figures 1 - 5. However, Theorem 1 and 2 revealed that even
perfect rate control fails to change the scaling law of the per-

node throughput result given by Θ
(

1√
n log n

)
in [1], regardless

of the absence or presence of shadow fading. This conclu-
sion was further confirmed by Figure 7 in the context of our
AQAM examples. The maximum normalized throughput im-
provement c0

i achieved with the aid of perfect rate adaptation
is determined purely by the path loss exponent α, the required
minimum SINR β and the lognormal shadowing standard de-
viation σ. We observed in Figures 1, 3 and 5 that the achiev-
able normalized throughput c0

i increases, as α or σ increases,
because it is capable of efficiently mitigating the link quality
variations. More explicitly, this was demonstrated in Figure 1
in the absence of fading, while in Figures 3 and 5 in the pres-
ence of shadowing, respectively. By contrast, c0

i decreases as
β decreases, as a consequence of the reduced marginal channel
throughput, as shown in Figure 2 in the absence of fading and
in Figure 4 in the presence of shadowing, respectively.
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