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1 Introduction 

Optimization problems in electromagnetic design are 

typified by features which present difficulties to most 

deterministic search algorithms, e.g. the existence of 

multiple local minima.  Genetic Algorithms (GAs), on 

the other hand, with their ability to search more 

globally, are better suited for exploring complicated 

objective function landscapes. The high 

computational cost of evaluating the objective 

function in such problems, however, means that direct 

use of a GA is often not feasible or impractical, due to 

the general requirement for a large number of 

objective function evaluations.  Additional cost-

effective techniques must be used, with the aim to 

make the GA require fewer evaluations of the 

objective function.  Techniques used include hybrid 

algorithms, GAs specially adapted for small 

population sizes, and simplifying the problem by 

removing irrelevant design variables.  One technique, 

called surrogate modelling, is the focus of this paper.   

 

A surrogate model is a functional relationship 

between the design variable space of an optimization 

problem, and the objective function space, which is 

constructed based on a set of design vectors which 

have their objective function values known.  Having 

constructed a surrogate model, a GA can then use it to 

predict fitness values for unevaluated design vectors, 

rather than call the true expensive objective function, 

thus reducing computational costs.  However, ideally 

the reliability of the model should be taken into 

account as well, when choosing points to evaluate; 

this is discussed further in Section 2.  Different 

methods exist to construct surrogate models, 

including polynomial approximation, artificial neural 

networks (ANNs) and kriging; the use of these three 

types of surrogate model in electromagnetic design 

optimization is discussed in Section 3.  Developments 

in this area outside the field of electromagnetic design 

optimization are discussed in Section 4. 

2 Model Accuracy  

Care should be taken when using a surrogate model to 

select design vectors to evaluate for optimization 

purposes.  In particular, the existence of false optima 

(points which are optima of the surrogate model, but 

which are not optima of the true objective function 

space, see Fig 1) means that selecting points to 

evaluate based entirely on their predicted objective 

function value is not desirable.  Instead, ideally some 

measure of the reliability of the predicted objective 

function value should also be considered, and so the 

choice of the next point to evaluate becomes a balance 

between attempting to locate the best points and 

aiming at improving the accuracy of the surrogate. 

Fig. 1 False minimum in a surrogate model 

 

3 Surrogate-assisted single-
objective electromagnetic 
design optimization 

3.1 Polynomial approximations 

Polynomial approximation suffers in that inclusion of 

additional points into the model does not necessarily 

lead to increased model accuracy.  In particular, if 

only the optimum of the surface is added, the model 

can converge very quickly to a false optimum [1]. 

 

In [2], model accuracy was considered in several 

ways.  The initial set of examples was chosen so as to 

minimize the condition number of the matrix [M] 

which was to be inverted in order to determine the 

polynomial coefficients.  A dynamic weighting factor 

was then used as the optimization process proceeded 

to place more emphasis on the region around the 

predicted optimum.  Then, in order to ensure that [M] 

did not become ill-conditioned as the optimization 

process continued, additional learning points were 

evaluated, chosen specifically so as to minimize the 

condition number of [M].  The method was 

successfully used to optimize a brushless permanent 

magnet motor; an analysis of the errors on predicted 

optima and learning points indicated that the inclusion 

of learning points was effective in improving the 

accuracy of the polynomial surrogate model.  



3.2 Artificial Neural Networks 

A wide range of different types of ANNs exist which 

may be used to construct surrogate models.  One 

popular type used is a radial basis function ANN.  A 

method in [3] uses multiquadric radial basis functions 

to successfully optimize a C-core magnet and a 

magnetizer.  In addition to evaluating the predicted 

optimum during on-line learning, design vectors in 

the most unexplored regions of design space were also 

evaluated, with the aim of avoiding local minima; 

however it is likely this has improved the model 

accuracy globally as well. 

 

3.3 Kriging 

Kriging has recently been recognized as a useful 

method for surrogate model construction for 

electromagnetic optimal design [4].  Due to its 

statistical nature, useful information may be extracted 

giving an indication of model accuracy and reliability.   

 

The EGO algorithm [5] uses such information to build 

up an auxiliary function, known as the expected 

improvement, which automatically balances the 

objective function values predicted by the kriging 

model, with the uncertainty in this prediction.  By 

optimizing this auxiliary function, model accuracy 

increases as the optimum is being searched for.  A 

variation of EGO, known as superEGO, has been used 

to solve two electromagnetic design problems with 

expensive objective functions [6], and convergence 

was found to occur within tens of iterations.  

4 Developments Elsewhere 

Other algorithms have been developed outside the 

electromagnetic design community which also 

consider model reliability when searching for new 

points. One such approach, based on a radial basis 

function ANN surrogate model, known as rbfsolve 

[7], predicts the location of a potential new optimum 

(whose objective function value f* is lower than the 

current minimum fmin) and evaluates a measure of the 

credibility of the response surface which would 

interpolate it and the existing data.  A measure of the 

“bumpiness” of the resulting response surface serves 

as a measure of its credibility, with smoother surfaces 

being deemed more acceptable.   

Fig. 2 Two response surfaces which pass through 

an existing set of examples and a predicted optimum 

For example, in Fig 2, the proposed optimum (xa*,f*) 

is preferred to the proposed optimum (xb*,f*), as the 

surface which interpolates it and the existing set of 

points (shown as black dots) is less “bumpy” than the 

surface which interpolates (xb*,f*).  The algorithm 

has performed well on test functions, but has yet to be 

applied to electromagnetic optimal design problems. 

5 Conclusion 

Surrogate models have proven to be effective in 

reducing the cost of electromagnetic optimal design 

problems.  Model reliability has been recognised as an 

important factor and attempts have been made to 

ensure model accuracy improves as the optimization 

search proceeds.  However, suitable algorithms exist 

which are yet to be implemented in electromagnetic 

design optimization. The full paper will critically 

assess various surrogate modelling techniques. 
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