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1 Introduction

Optimization problems in electromagnetic design are
typified by features which present difficulties to most
deterministic search algorithms, e.g. the existence of
multiple local minima. Genetic Algorithms (GAs), on
the other hand, with their ability to search more
globally, are better suited for exploring complicated
objective  function  landscapes. @ The  high
computational cost of evaluating the objective
function in such problems, however, means that direct
use of a GA is often not feasible or impractical, due to
the general requirement for a large number of
objective function evaluations.  Additional cost-
effective techniques must be used, with the aim to
make the GA require fewer evaluations of the
objective function. Techniques used include hybrid
algorithms, GAs specially adapted for small
population sizes, and simplifying the problem by
removing irrelevant design variables. One technique,
called surrogate modelling, is the focus of this paper.

A surrogate model is a functional relationship
between the design variable space of an optimization
problem, and the objective function space, which is
constructed based on a set of design vectors which
have their objective function values known. Having
constructed a surrogate model, a GA can then use it to
predict fitness values for unevaluated design vectors,
rather than call the true expensive objective function,
thus reducing computational costs. However, ideally
the reliability of the model should be taken into
account as well, when choosing points to evaluate;
this is discussed further in Section 2. Different
methods exist to construct surrogate models,
including polynomial approximation, artificial neural
networks (ANNs) and kriging; the use of these three
types of surrogate model in electromagnetic design
optimization is discussed in Section 3. Developments
in this area outside the field of electromagnetic design
optimization are discussed in Section 4.

2 Model Accuracy

Care should be taken when using a surrogate model to
select design vectors to evaluate for optimization
purposes. In particular, the existence of false optima

(points which are optima of the surrogate model, but
which are not optima of the true objective function
space, see Fig1) means that selecting points to
evaluate based entirely on their predicted objective
function value is not desirable. Instead, ideally some
measure of the reliability of the predicted objective
function value should also be considered, and so the
choice of the next point to evaluate becomes a balance
between attempting to locate the best points and
aiming at improving the accuracy of the surrogate.
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Fig. 1 False minimum in a surrogate model

3 Surrogate-assisted single-
objective electromagnetic
design optimization

3.1 Polynomial approximations

Polynomial approximation suffers in that inclusion of
additional points into the model does not necessarily
lead to increased model accuracy. In particular, if
only the optimum of the surface is added, the model
can converge very quickly to a false optimum [1].

In [2], model accuracy was considered in several
ways. The initial set of examples was chosen so as to
minimize the condition number of the matrix [M]
which was to be inverted in order to determine the
polynomial coefficients. A dynamic weighting factor
was then used as the optimization process proceeded
to place more emphasis on the region around the
predicted optimum. Then, in order to ensure that [M]
did not become ill-conditioned as the optimization
process continued, additional learning points were
evaluated, chosen specifically so as to minimize the
condition number of [M]. The method was
successfully used to optimize a brushless permanent
magnet motor; an analysis of the errors on predicted
optima and learning points indicated that the inclusion
of learning points was effective in improving the
accuracy of the polynomial surrogate model.



3.2 Artificial Neural Networks

A wide range of different types of ANNs exist which
may be used to construct surrogate models. One
popular type used is a radial basis function ANN. A
method in [3] uses multiquadric radial basis functions
to successfully optimize a C-core magnet and a
magnetizer. In addition to evaluating the predicted
optimum during on-line learning, design vectors in
the most unexplored regions of design space were also
evaluated, with the aim of avoiding local minima;
however it is likely this has improved the model
accuracy globally as well.

3.3 Kiriging

Kriging has recently been recognized as a useful
method for surrogate model construction for
electromagnetic optimal design [4]. Due to its
statistical nature, useful information may be extracted
giving an indication of model accuracy and reliability.

The EGO algorithm [5] uses such information to build
up an auxiliary function, known as the expected
improvement, which automatically balances the
objective function values predicted by the kriging
model, with the uncertainty in this prediction. By
optimizing this auxiliary function, model accuracy
increases as the optimum is being searched for. A
variation of EGO, known as superEGO, has been used
to solve two electromagnetic design problems with
expensive objective functions [6], and convergence
was found to occur within tens of iterations.

4 Developments Elsewhere

Other algorithms have been developed outside the
electromagnetic design community which also
consider model reliability when searching for new
points. One such approach, based on a radial basis
function ANN surrogate model, known as rbfsolve
[7], predicts the location of a potential new optimum
(whose objective function value f* is lower than the
current minimum fy,;;,) and evaluates a measure of the
credibility of the response surface which would
interpolate it and the existing data. A measure of the
“bumpiness” of the resulting response surface serves
as a measure of its credibility, with smoother surfaces
being deemed more acceptable.
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Fig. 2 Two response surfaces which pass through
an existing set of examples and a predicted optimum

For example, in Fig 2, the proposed optimum (x,*,*)
is preferred to the proposed optimum (x,*,f*), as the
surface which interpolates it and the existing set of
points (shown as black dots) is less “bumpy” than the
surface which interpolates (xp*,f*). The algorithm
has performed well on test functions, but has yet to be
applied to electromagnetic optimal design problems.

5 Conclusion

Surrogate models have proven to be effective in
reducing the cost of electromagnetic optimal design
problems. Model reliability has been recognised as an
important factor and attempts have been made to
ensure model accuracy improves as the optimization
search proceeds. However, suitable algorithms exist
which are yet to be implemented in electromagnetic
design optimization. The full paper will critically
assess various surrogate modelling techniques.
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