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Abstract

We introduce a way of viewing Petri nets as open systems. This is done by considering a bicategory
of cospans over a category of p/t nets and embeddings. We derive a labelled transition system (LTS)
semantics for such nets using GIPOs and characterise the resulting congruence. Technically, our
results are similar to the recent work by Milner on applying the theory of bigraphs to Petri Nets.
The two main differences are that we treat p/t nets instead of c/e nets and we deal directly with
a category of nets instead of encoding them into bigraphs.
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1 Introduction

The theory of Petri nets is an attractive graphical formalism which captures
several interesting issues associated with concurrency. More recently, the field
of process calculus has been concerned with exploring syntactic formalisms for
the description of concurrent and mobile systems and with associated proof
techniques. This paper is an attempt to relate the two perspectives by treating
Petri nets as a sort of algebra, together with a labelled transition system
semantics and an associated bisimulation congruence.
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We introduce the notion of Petri context which is a marked Petri net
enriched with an inner and an outer interface; for us an interface is simply
an arbitrary subset of the places of the net. A net with inner interface of
cardinality m and an outer interface of cardinality n is an arrow of a bicategory.

The composition of two such nets is simply the glueing together of nets
at their common interface. The usual “token-game” semantics of nets is im-
plemented as a reduction relation on the ground nets, which are nets with
empty inner interface. Indeed, each reaction rule models the firing of a net
transition, in the sense that the left hand side of the rule is the transition with
its input places marked and the output places unmarked, while the right hand
side is the transition with its input places unmarked and its output places
marked. The fact that we are concerned with terms (ground nets), contexts
(Petri contexts) and a reduction semantics clarifies our earlier remark about
viewing Petri nets as a kind of process calculus.

The advantage of such an approach is that we are now able to use intu-
itions and techniques from the field of process-calculi to reason about a net’s
behaviour. Indeed, instead of studying a (ground) net’s internal behaviour
as is usual in Petri net theory, we restrict our view of the net to the outer
interface and study how the net interacts with its environment by substituting
it into an arbitrary Petri context and studying the behaviour of the resulting
larger system. We believe that this is a valid and interesting way of treating
nets as open systems. In this paper, we begin the study of such nets and char-
acterise the canonical strong bisimilarity that arises by synthesising a labelled
transition system using the technique introduced by Leifer and Milner [6] and
expanded by the authors in [9].

Leifer and Milner introduced the notion of reactive systems in [6] as a
generalisation of several situations that occur in the field of process calcu-
lus. Indeed, since the publication of Berry and Boudol’s influential work on
the chemical abstract machine [2], it has become commonplace to define the
operational semantics of calculi via a reduction semantics — often generated
from basic rules and closed by substituting for parameters and into arbitrary
reactive/evaluation contexts. A labelled transition system is then normally
given later; these are vital because the notion of bisimulation and the associ-
ated coinductive reasoning is a powerful tool for reasoning about contextual
equivalence, provided that bisimilarity is sound for such an equivalence.

Leifer and Milner were particularly interested in using their theory on
examples where the contexts were not term algebras, but rather were of a
graphical nature. This work, developed to some extent in Leifer’s thesis [5],
has led to the definition of bigraphs by Milner and Jensen [3]. Bigraphs are
a powerful formalism intended to act as a sort of unifying language for con-
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current formalisms — in the sense that the study the relationship between two
languages, one may first encode them into bigraphs and study their theory
as bigraphical reactive systems. Unfortunately, relative pushouts (RPOs) typ-
ically do not exist in such cases, essentially because the algebraic structure of
contexts induces non trivial context automorphisms. Leifer and Milner solved
this problem by adding intensional information to the objects or the arrows
of the categories involved, taking away the possibility of automorphisms. As
a side-effect arrow composition becomes a partial operation, giving rise to
Milner’s notion of precategories.

The present authors, in [9], showed an alternative approach. They pro-
ceeded not by forgetting the automorphisms, rather by keeping them as a
first-class member of the category — this meant working in a 2-category or
bicategory instead of an ordinary category. The resulting generalisation of
relative pushouts, groupoidal relative pushouts or GRPOs satisfy similar prop-
erties to RPOs. Moreover, the solutions proposed by Milner and Leifer can
be recast naturally in this more abstract approach, as illustrated in [8].

Recently, the authors have shown that GRPOs exist within a wide class
of cospan bicategories over adhesive categories, the latter were introduced by
the second author and S. Lack [4]. The technical details of this paper can be
largely seen as an application of that general theorem to the adhesive category
of Petri nets and embeddings MNet (cf. section 2).

Recently, Milner [7] has applied the theory of bigraphs to c/e Petri nets,
by encoding the nets into bigraphs and studying their behavioural theory.
Unfortunately, in order to make this work, Milner had to introduce a further
complication into the theory of bigraphs — namely a type system. This was
necessary in order to restrict the allowable contexts — since it is possible to
construct bigraphs which are not in the image of the encoding. We avoid such
encoding problems by working directly with a category of Petri nets.

Our work is related to the work on open Petri nets by Baldan, Corradini,
Ehrig and Heckel [1]. While we leave it as future work to determine the precise
relationship, we mention here the main structural difference. Firstly, an open
place in their terminology is a place in our outer interface. Baldan et al. make
a distinction between input places and output places, where an input place is
able to receive tokens from the environment and an output place is able to
contribute tokens to the environment. All the places in our interfaces are both
input and output in their sense, since they are able to both receive tokens from
and contribute tokens to the environment.

In section 2 we introduce the category of nets which shall be relevant
throughout the paper. We turn such nets into open systems by providing them
with inner and outer interfaces in section 3. We provide the semantics of the
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Fig. 1. Example of an embedding.

model is section 4 and proceed to derive the labelled transition semantics using
GRPOs. In section 5 we characterise the resulting bisimulation congruence
using a simpler LTS. We conclude and offer directions for future work in
section 6. In order to increase the readability of this introductory exposition
we have left out most of the proofs.

2 Petri nets and embeddings

A marked net p is a place-transition net together with a marking; more for-
mally a it is a quadruple (P, T, K, s,t, k) where P, T and K are respectively
finite sets of places, transitions and tokens, s,t : T — S% are, respectively,
the sources and targets of a transition, and k : K — P is the positions of the
tokens on the places. For the purpose of this paper, we rule out nets with
self-loops, e.g., we assume that transitions have disjoint pre- and post-sets.
We shall define a structural notion of Petri net morphism, as opposed to the
usual behavioural notions; this is because we shall use the morphisms to speak
about the topology of a net instead of its behaviour. Thus a net morphism
f:p— p consists of maps fo : P — P, fi : T — T and f, : K — K’
such that s'f; = f$s and ¢'f; = [t and k' fo = fok. As we are interested
exclusively in embeddings, we shall assume that fy, fi and fo are injective.
Let MNet be the category of marked nets and embeddings.

Example 2.1 Consider the two marked nets illustrated in Figure 1. There
is an obvious embedding of the left net into the right net, as indicated by the
arrow.

Proposition 2.2 MNet is adhesive.

Proof. The category MINet is actually the subcategory of monos of a presheaf
topos. We leave the details to the reader. |
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Fig. 2. Nets p1, p2 and their composition pap; : 1 — 1.

3 Nets with interfaces

We are now ready to endow our nets with interfaces which shall allow us to
compose them.

Definition 3.1 (Net with interfaces) Given finite ordinals m and n, a (marked)
net with inner interface m and outer interface n, denoted p : m — n, is a
marked net p = (P, T, K, s,t, k) together with injective functions ¢ : m — P
and o : n — P. Graphically, we represent such a net by labelling a subset of
places with 1 through to m, the inner-face, and a subset with 1 through to n,
the outer-face.

We shall follow the convention of drawing the numbers corresponding to
the inner interface under a place and the numbers corresponding to the outer
interface over a place.

We shall sometimes refer to a net p : m — n with interfaces as a Petri
context. When m = 0 we shall refer to such net as a Petri term.

Example 3.1 Consider the three nets illustrated in Figure 2. The leftmost
net has inner interface 1 and outer interface 2, the second net has inner inter-
face 2 and outer interface 1 while the rightmost net has both inner and outer
interface 1.

Definition 3.2 (Bicategory of nets with interfaces) The bicategory of nets
with interfaces INet has:

e objects: the finite ordinals 0, 1, ...;

e arrows: the arrows from m to n are the marked nets p : m — n with inner
interface m and outer interface n;

e 2-cells: marked net isomorphisms which preserve the inner and the outer
interface — in other words, a 2-cell @ : p — p' : m — n is an embedding
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Fig. 3. The identity id : n — n.

« : p — p’ which is surjective on places, transitions and tokens and moreover
ar = ¢ (inner interfaces are preserved) and ao = o' (outer interfaces are
preserved).

We illustrate the identity arrows of INet in Figure 3.

Composition in INet can be described intuitively as the glueing of marked
nets along their common interface. More formally, given nets p; : k — [ and
P2 1 I — m, the composite net pop; : k — m is obtained by taking the pushout
in MNet of 0, : | — py and ¢5 : | — ps. Thus the result is obtained by putting
the two nets side by side, equating the places with shared interface and adding
together the tokens on these equated places.

Example 3.2 The rightmost net in Figure 2 is the composition of the other
two nets.

We shall say that a marked net is discrete when it contains no transitions
and no tokens — in other words it is a set of places. The bicategory INet is
actually (biequivalent to) the full subcategory of the bicategory Cospan(INet)
with discrete nets as objects. This fact is useful for us because we are able
to apply the central result of [10] which provides a construction of GRPOs in
certain cospan bicategories over adhesive categories.

Lemma 3.3 INet has GRPOs.

Proof. Because INet can be seen as a full subcategory of a cospan bicategory
over an adhesive category (see Proposition 2.2), the main theorem of [10]
applies to the larger cospan bicategory. Thus, it remains only to verify that,
starting with a diagram in INet, the construction of GRPOs within the larger
bicategory Cospan(INet) results in a diagram in INet. We leave out this
routine calculation. O

4 The token game as reaction

In this section, we formalise the token-game semantics of nets via reaction
rules. This allows us to use the framework of reactive systems (cf. [6,8,11])
and derive a canonical labelled transition system on which bisimilarity is a
congruence.

Definition 4.1 (P) We obtain a reactive system P from INet by letting the
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Fig. 4. A reaction rule ({: 0 - m+n,7:0—m+n) € R.
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Fig. 5. GIPO in INet giving rise to a label in LTS(P).

set of reactions R include, for every m, n € N and ky,...,kn, l1,...,1, € NT
a reaction rule as illustrated in Figure 4. One also needs to provide reaction
rules for transitions which have places both in the pre- and post-set; we leave
the details to the reader.

Let —> denote the reaction relation obtained by closing the reaction
rules detailed in Definition 4.1 under composition with arbitrary Petri con-
texts. Intuitively, this relation corresponds to the ordinary Petri net semantics
in the sense that we have p—>*p’ iff p’ can be obtained from p by firing a
number of transitions.

Using GIPOs, we can generate a labelled transition system LTS(P) to
reason about marked nets with interfaces. The states are Petri terms modulo
isomorphism. The labels are the smallest contexts which allow a reaction to
occur, in the sense that the resulting redex diagram is a GIPO. We direct the
reader to [9,8,11] for background on such construction and for further details.

Definition 4.2 (LTS(P)) The labelled transition system LTS(PP) has:
 states: Petri terms modulo isomorphism;

« transitions: p—L dr if there exists a reaction rule (I,r) € R, a Petri
context d and a net isomorphism « : fp — dl so that the diagram in
Figure 5 is a GIPO in INet.

Example 4.1 We illustrate an example of a transition in Figure 6. The
corresponding GIPO is illustrated in Figure 7, where the four Petri nets depict
the arrows on the respective edges of the a redex-square.



114 V. Sassone, P. Sobocifski / Electronic Notes in Theoretical Computer Science 127 (2005) 107-120

St o
1

1 2
- R
1

Fig. 7. GIPO corresponding to the transition in Figure 6.
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As a consequence of a general result [9] (which is a generalisation of the
original result [6]) by Leifer and Milner, strong bisimilarity on LTS(P) is a
congruence. In this paper, we concentrate solely on strong bisimilarity; we
leave the treatment of weak bisimilarity as future work. Weak bisimilarity
promises to be a more interesting equivalence because it does not distinguish
terms based only on internal behaviour. However, strong bisimilarity already
makes several interesting identifications on Petri terms, some of which we
illustrate in Figure 8.

5 Characterising bisimilarity

The labelled transition system LTS(P) derived using GIPOs is canonical and
bisimilarity on it is a congruence. However, because of the nature of the
underlying reactive system, LTS(P) is easily seen to be infinitely branching
and may seem rather complex at first. Here we characterise the bisimulation
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Fig. 8. Pairs of bisimilar Petri terms.
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congruence using a much simpler setting; indeed, we shall define an alternative
simple labelled transition system on Petri terms and prove that the resulting
bisimilarity coincides with bisimilarity on LTS(P).

Definition 5.1 We define an Its T as follows:

 states are Petri terms modulo isomorphism;

 there are three types of transitions:
- p—ipp/ if p/ is the net resulting from p by adding a token at its ith outer
place;
- p—pp’ if p has a token at its ith outer node and p’ is the net resulting
from p after removing a token from its 7th outer place;
- p—p' if p’ results from p through the firing of one transition (without
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any interaction with the environment).
Let ~4 denote (strong) bisimilarity on such lts.

The following lemma presents some of the properties of ~.
Lemma 5.2

(i) if p ~4 ¢ then p and ¢ have equal interfaces, with the same number of
tokens on each outer place;

(ii) if p ~4 ¢ and p contains a transition which consumes k;,, ..., k;, tokens
from respectively p’s i1th,. . . iy th outer place, then ¢ contains a transition
which also consumes k; , ..., k;, tokens from ¢’s 7;th,. .. i,th outer place.

Returning to LTS(P), it is easy to see that the labels generated via GI-
POs contain at most one Petri net transition, since every individual reaction
corresponds to the the firing of a single transition in the token game.

Proposition 5.1 If pi> p’ then f contains at most one transition.

It is clear that if pib p and f is discrete then the transition corresponds
to an internal firing of a transition without any interaction from the environ-
ment.

The following lemma relates such internal transitions in both the transition
systems.

Lemma 5.3 p —— p/ in 7% iff pid=p p/ in LTS(P).

Proof. Omitted. O
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Fig. 11. \mn:n —n—1.

It is also possible that f contains no transitions but instead adds tokens
to one or more outer places of p which allows a transition of within p to fire.
The properties of GRPOs guarantee that the tokens added are precisely the
tokens required for the transition to fire, that is, no unnecessary tokens are
added.

The following lemma relates such transitions with traces in T%.

Lemma 5.4 Suppose that pib p" and [ contains no transitions and is not

discrete. Then there exist m >0, 1 < 4y,...,%, <nand ky,...,k, > 0 such
that p ﬂnﬂ e M;WL p’, where —; denotes a sequence of 7 transitions.

We now turn our attention to the only other possible case for f, by relating
in the following lemma relates labelled transitions in LTS(P) which contain a
Petri transition, and certain traces in T%.

Lemma 5.5 Consider a diagram as in Figure 5, where f is a Petri context
which contains exactly one transition ¢ with m input places, n output places,
with k; tokens being consumed a the ¢th input place and [; tokens being
produced at the ith outer place, as in Figure 4.

Let 41,..., %, be the places of p which are identified with the input places
of t, and let ki,..., k], denote the number of tokens consumed from these
places as a result of ﬁrlng the transition.

Similarly, let ¢},...,4, be the placeb of p which are identified with the
output places of ¢, and let 1, ... be the number of tokens which result
from firing the transition.

?n’

Then, the following facts hold, where —; denotes a sequence of ¢ transi-
tions, and f represent the residue of f after the firing.

(i) if p—L p” is a transition in LTS(P) then there exists p’ such that p” =

— —%,,/ +17 +1
fp and p —>k/1 . Z—>k/ —Z>l/ Lq/ p’ is a trace in T4 ;
—ipy i)
(ii) 1fp—>k/ . Z—>k/ —Z>l/ . Ll/ p' is a trace in T then p—L» fpis a
transition in LTS( ).
Proof. Omitted. o

Two particular labels of transitions in LTS(P) shall be useful, in,,, and
outy,, : n — n+ 1, illustrated in Figure 9. A transition in,,, results in
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the introduction of a token at the mth outer place of a net. Similarly, a
transition out,,, results in the taking away one token from the mth outer
place. The transitions in,,, and out,,, are not exactly the same as +m and
—m of T} because they leave behind a residue in,,, and out,,, as illustrated
in Figure 10.

In the case of in,, ,, the residue can be forgotten as we now demonstrate.
In the following let \,,,, be the Petri context illustrated in Figure 11. We use
\» as a shorthand for \,, ,.
Lemma 5.6 Given an arbitrary Petri term p with outer interface n, we have
that \,119nmnp ~ p.
Corollary 5.7 For any two Petri terms p and ¢, if in,,p ~ iy, ,q then
p~q.

Proof. Using the conclusion of Lemma 5.6 and the fact that ~ is a congruence
we have p ~ \pi10m0D ~ \nt190mnq ~ ¢ =

The situation for out is slightly trickier in that the analogue of Lemma 5.6
is actually false — the transition introduced into a net by out can keep firing
if more tokens appear at its input place. A simple counterexample is the

. 1 . .
Petri term p = O} Although p clearly cannot perform any internal behaviour,

we have that \sout; 1p can perform a reaction. Fortunately, the analogue of
Corollary 5.7 holds.

Lemma 5.8 For any two Petri terms p and ¢, if out,, ,p ~ out,, ,q then p ~ gq.

Proof. Omitted. O

We are now ready to prove the main result of this section which is that
the observational power of the two labelled transition systems coincides.

Theorem 5.9 ~ = ~.

Proof. (1) ~ C ~,. First we shall show that the labels of 7. are at least as
powerful as the labels generated via GIPOs.
It is enough to show that { (p,q) | p ~ ¢} is a T4 bisimulation. Indeed,

suppose that p — p/. Then pL> in;,p' using part 2 of Lemma 5.5.
Using the fact that p ~ ¢, we have qm—“> q" and in;,p’ ~ ¢"; using part 1
of Lemma 5.5, there exists a ¢’ such that ¢’ = in; ¢’ and ¢ iR q'. Moreover,
we have in; ,p’ ~ in; ,q', which using Corollary 5.7 yields p’ ~ ¢

The case of p — p/ is similar, with Lemma 5.8 playing a key role.
Finally, using Lemma 5.3, if p — p’ then p—49 /. Then ¢—<p ¢ for
some ¢’ such that p’ ~ ¢’. Using Lemma 5.3 again yields ¢ — ¢'.
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(2) ~+ C ~. We shall show that the contextual closure of ~y, A =
{(ep,cq) | p~<+ q} is a LTS(PP)-bisimulation.

Indeed, suppose that for some p ~4 ¢ we have cpib p’. Using standard
theory [9], we can decompose the GIPO corresponding to the label and obtain
a transition pf—lb p"” and context d’ so that d'p” = p'.

We now use the fact that f’ is either discrete, consists only of tokens,
or consists of exactly one transition. If f’ is discrete, one uses Lemma 5.3
to obtain that also qf—/b q", with p” ~1 ¢”. Because GIPOs compose, we
obtain cqg—L» d'q", and clearly (p/,d'q") € A.

If f"is not discrete but contains only tokens, we use Lemma 5.4 to obtain
a trace p +—i1>k1 +—im>kmi> p"; yielding a corresponding trace ¢ +—i1>k1

: +—i’”>kmL> q" with p” ~. ¢”. Using the second part of Lemma 5.2, we are
able to conclude that ¢ has a transition which requires precisely the added
tokens to fire; meaning that we are able to derive qib q". We are now able
to use the fact that GIPOs compose as in the previous case.

Finally, if f contains a single transition ¢, then using part 1 of Lemma 5.5,
there exist iy,...,%, and ji, ..., j, such that p _—il>k1 e ﬂkmilql +—j">ln
p" such that p” = f'p”. Then we have that ¢ can also perform the above trace
and arrive at ¢’ such that p” ~ ¢'. Using part 2 of Lemma 5.5, qu fq.

Using the fact that GIPOs compose, we have cg—L—» dfq. O

6 Conclusion and future work

We have described a way of using Petri nets in order to model open systems.
The approach is based on previous theoretical work and inherits a canonical
labelled transition system and the resulting strong bisimulation congruence.
We have characterised the congruence using a simpler transition system. Our
work is technically very similar to Milner’s treatment of Petri nets inside
bigraphs.

As future work, we plan to analyse the exact relationship of our approach
with open nets [1]. We also plan to study weak bisimilarity which promises to
be more interesting than strong bisimilarity from an operational perspective.
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