Relating Semantic Models of Compensating CSP

Shamim Ripon and Michael Butler

School of Electronics and Computer Science
University of Southampton.
{sr03r,mjb}Cecs.soton.ac.uk

Abstract. Building equivalences between different semantic models of
a language strengthens the formal foundation of the language. This pa-
per shows the derivation of denotational semantics from operational se-
mantics of the language cCSP. The aim is to show the correspondence
between the operational and trace semantics. We extract traces from op-
erational rules and use structural induction to show the correspondence
between the two semantics of cCSP.

1 Introduction

Operational and denotational semantics are two well-known methods of assign-
ing meaning to programming languages and both semantics are useful for a
full description of the language. Denotational semantics associates an element
of a semantic domain to each expression in the language and the semantics is
compositional. Traces are one of the ways to define denotational semantics. A
trace gives the global picture of the behaviour of a system. The common way of
defining operational semantics is to provide state transition systems for the lan-
guage, where the transition system models the computation steps of expressions
in the language and allows the formal analysis of the language. Potential use for
operational semantics is for model checking.

Inspired by using process algebra, especially CSP [5], in transaction process-
ing, compensating CSP (cCSP) was introduced and its trace semantics were
defined in [2]. Following the introduction of trace semantics, the operational
semantics of cCSP are defined by using labelled transition system [3]. Having
defined both denotational and operational semantics, it is natural to see how
these two semantics are related to each other.

This paper draws the correspondence of two different semantic representa-
tions of a language. In particular, the aim is to accomplish the unification be-
tween operational and denotational approach of cCSP. The unification is based
on the approach where we use the transition rules from operational semantics
to derive the traces and then show that these derived traces correspond to the
original trace definitions of the operators by using induction over the definitions.
Proving the correspondence means that any of the presentations can be accepted
as a primary definition of the meaning of the language and each of the defini-
tions can be correctly used at different times and for different purposes. cCSP is
comprised of standard and compensable processes and for both of the processes

we derive traces by using the operational rules and show that the operational
semantics correspond to the denotational semantics.

The remainder of the paper is organised as follows. Section 2 recalls the traces
and operational semantics of cCSP. Following this, Section 3 briefly outlines the
approach taken to proving the correspondence and then describes the theorem
and the supporting lemmas by which we can draw the correspondence of the two
semantics. After briefly giving some related works, we then draw the conclusions
and discuss our future works.

2 Background

The cCSP language was inspired by two main ideas: transaction processing fea-
tures and process algebra, especially CSP. As in CSP, processes in cCSP are
modelled in terms of the atomic events they can engage in and the operators
provided by the language support sequencing, choice, parallel composition of
processes. In order to support failed transactions, compensation operators are
introduced. Processes are categorized into standard and compensable processes.
Standard processes do not have any compensation but compensations are at-
tached to compensable processes which are used to compensate the failure of
transactions.
We use P, @ to identify standard processes and PP, Q@ to identify com-

pensable processes. This section summarises the basics of cCSP language with
a brief description of the traces and operational semantics. The syntax of the
language is summarised here.
Standard Processes:

P,Q == A|P;Q | Pl|Q|[PP]|POQ|Pr> Q| SKIP | THROW | YIELD
Compensable Processes:
PP,QQ = P+ Q| PP;QQ | PP||QQ | PPOQQ | SKIPP | THROWW | YIELDD

The basic unit of a standard process is the atomic event (A). Other operators
of standard processes are the sequential (P ; @) and parallel (P|| @) composi-
tion of processes, the choice operator (O), interrupt handler (r>), the empty
process SKIP, the raise of an interrupt THROW and the yield of an interrupt
YIELD. In parallel processes, the whole group of parallel processes may fail
when one throws an exception and all the other processes are willing to yield
to that exception. A process that is ready to terminate is also willing to yield
an interrupt. Yield points are inserted in a process through YIELD. In parallel
composition, throwing an interrupt in one process synchronises with yielding in
another process. The basic way of constructing a compensable process is through
the compensation pair construct (P + @) where P is the forward behaviour and
Q) is its associated compensation which is designed to compensate the effect
of P. Sequential composition of compensable processes is defined so that the
compensations for the performed actions will be accumulated in reverse to their
original performance. Parallel composition of compensable processes is defined
so that compensations are accumulated in parallel. The current definition of par-
allel operator does not support synchronisation on normal events. By enclosing

a compensable process PP in a transaction block [PP] we get a complete trans-
action which converts the compensable process PP into a standard process. The
behaviours of the block are defined in terms of the behaviour of PP. Successfully
completed PP represents successful completion of the whole block and compen-
sations are no longer required. When the forward behaviour of PP throws an
interrupt, the compensations are executed in the appropriate order and the inter-
rupt is not observable outside the block. SKIPP, THROWW , YIELDD are the
compensable counterpart of the standard primitive processes. Figure 1 presents
an example of a transaction for processing customer order in a warehouse in
c¢CSP language. The transaction is represented in a transaction block where the
block consists of two processes composed sequentially. RestockOrder is the com-
pensation of AcceptOrder. FulfillOrder consists of processes which is composed
in parallel where the main tasks are booking a courier, packing the items and
check credit in parallel. In case of failure, the semantics the block will ensure
that the appropriate compensation will be invoked.

ProcessOrder = [(AcceptOrder + RestockOrder) ; FulfillOrder |
FulfillOrder = BookCourier + CancelCourier ||
PackOrder ||
CreditCheck ; (Ok ; SKIPP O NotOk ; THROWW)
PackOrder = ||i € Items o (Packltem(i) + UnpackItem(i))

Fig. 1. Order transaction processing

2.1 Trace Semantics

A trace of a process records history of behaviour up to some point. The trace
semantics of the cCSP language are summarised in Figure 2. We show the op-
erators on traces which are then lifted to operators on set of traces. Traces
considered for cCSP are non-empty sets.

The semantics of a standard process is a set of traces of the form s{w) where
s € X* (X is alphabet of normal events) and w € 2 (2 = {V, !, 7}), which
means all traces end with any of the events in {2, which are called terminal
events. The terminal events represent the termination of a process. Successful
termination is shown by a v'. Termination by either throwing or yielding an
interrupt is shown by ! or ? respectively. The following healthiness condition

p{(v') € P or p(!) € P for some p € X*

declares that all standard processes consists of some terminating or interrupting
behaviour. Unlike standard CSP, the trace prefixes are not included in traces
of ¢CSP. In sequential composition (p ; ¢), the traces are the concatenated ob-
servable traces of p and ¢, only when p terminates successfully,(ends with v),
otherwise the trace is only p. The traces of two parallel processes are p{w)|| g(w’)

Standard Processes
Atomic Action
For A € X, T(4) ={(A4,v)}

Sequential Composition
p(V);¢=p.¢, and pw);q=p{w), where w# v
T(P;Q)={p;qlpePAqgeQ}

Parallel Composition

w My
)l = {rwkw) | r € (p] 0)} where «’
T(P|Q)={r|re(ldrpePArqge Q}

Interrupt Handler
p{!) > ¢ = p.¢ and pw) > ¢ = p{w), where w #!
PrQ={pr>qlpeP AqeQ}

Choice
T(POQ) = T(P)uU T(Q)

Transaction Block
[p(.»'] = p.p’ and [p(v),p']=p(V)
T([PP])) = {[p,»'] | (p,p") € PP A last(p) #7}

Basic Processes
T(SKIP) = {(v)}, T(THROW) = {()}, T(YIELD) = {(7),(V)}

Compensable Processes
Compensation Pair
p(V)+q=(p{v),q) and p(w)+q = (p(w),{V)) where w# v
T(P+Q)={p+qlpePNrqgeQ}
Sequential Composition
(p(v),0") i (¢,4)=(p.gq,¢" ; p') and (p(w),p"); (¢,4") = (p(w),p’) where w # v
T(PP; QQ)={pp;aq|pp € PP Aqqe QQ}
Parallel Composition
(., P)I(g, ') =A{(r,7") | r € (plle) A" € (P'lld')}
T(PP||QQ) = {rr | rr € (ppllag) A pp € PP A qq € QQ}

Compensable Choice
T(PPOPQ) = T(PP)U T(QQ)

Compensable Basic Processes

T(SKIPP) = T(SKIP =~ SKIP) = {({}),(v')), (v}, (¥)}
T(THROWW) = T(THROW =+ SKIP) = {((?),(v')), ({1}, (v'})}
T(YIELDD) = T(YIELD + SKIP) = {({?),(v'))}

Fig. 2. Trace semantics of cCSP

which corresponds to the set (p ||| g), the possible interleaving of traces of both
processes and followed by wé&w’, the synchronisation of w and w’.

Compensable processes are comprised of forward and compensation behaviour
and the traces of compensable processes consist of a pair of traces of the form
(s{w), s'(w')), where s(w) is the forward behaviour and s’(w’) is the compensa-
tion behaviour. In sequential composition, the forward traces correspond to the
original forward behaviour and it is then followed by the traces of the compen-
sation. Traces of parallel composition are defined as the interleaving of forward
traces followed by the interleaving of compensations. Traces of the compensa-

tion pair are the traces of both of the processes of the pair when the forward
process (P) terminate with a (v'), otherwise it is traces of the forward process
followed by only a (v'). Traces of a transaction block are only the traces of the
compensable process inside the block when the process terminates with a (v'),
otherwise when the forward process terminates with a (!) the traces of the block
are the traces of the forward process followed by the traces of the compensation.
Similar to standard processes, the following healthiness condition

(p(v),p'(w)) € PP or (p{1),p'(v)) € PP
or (p(),p'(v)) € PP for some p,p’

states that compensable processes consist of some terminating or interrupting
behaviour which ensures that traces of processes are non-empty and this condi-
tion is preserved by all the operators.

2.2 Operational Semantics

By using labelled transition systems [10], the operational semantics specifies the
relation between states of a program. We extend the terms of the language to
define the operational semantics with 0 and (PP, P), where 0 represents the null
process which cannot perform any event and (PP, P) is an auxiliary construct
which is derived during defining the operational semantics of compensable se-
quential composition. These auxiliary terms have no corresponding definitions
in the trace definition of the language. The compensation pair defined here has
a subtle difference to that presented in the original trace definition [2], where
an extra behaviour was included, which allows the operator to yield immedi-
ately with an empty compensation. The same behaviour can be obtained from
the definition presented here by adding a YIFLD sequentially followed by the
forward behaviour of the pair as follows:

P+'"Q = (YIELD ; P)+ Q

YIELD can either yield (7) or terminate with a v'. When it yields the above def-
inition gives the required extra behaviour of yield with an empty compensation
of the original trace model and when YIELD terminates with a v', the above
definition gives the same behaviour presented in this paper.

Each process has two different kind of transition: by normal events and by
terminal events. Normal events make the transition of a process from one state
to another state. For example, the normal event a makes the transition of a
standard process from P to P’ and a compensable process from PP to PP’.

P -%5 P’ (P'is a standard process)
PP % PP’ (PP’ is a compensable process)
A terminal event (w) causes the standard processes to terminate with a null (0)

process. But the effect of a terminal event is different in a compensable pro-
cess, where the compensable process terminates and the attached compensation,

Standard Processes

Atomic Action: AL SKIP (A€ X)
Basic Processes: SKIP />0, THROW — 0, YILED -0, YIELD -0
P p P=0
Sequential Composition: §1: ——————— (a€X) 852: ———— (w# V)
P;Q—P;Q P;Q—0
v a oy
93 w (aeZUR)
PiQ—=Q
p - p a ’
Parallel Composition: P1 : 7 : Q 7 Q (a€X)
PlQ — P'@Q PlQ — P|@’
w W' w ey
PS:LW where W' |17V 7V V
PlQ=50 WS ITT 277
P p <
Choice: C1: —Zl : Q _:lQ (ae XU
POQ % P POQ % @
P p P~
Interrupt Handler: JH1 : 77 (a€eX) IH2: ;ﬁ (weXAw#!)
P>Q—P>Q P>Q—0
! a.
THS - w (aeXUR)
PrQ — @
PP - PP’ pp -5 p
Transaction Block: T'1: Ti (a€eX) T2: ;/
[PP] — [PP] [PP] 50
!
PP pAp -t p
3. LA e xun)
[PP] % P/
Compensable Processes
P p P00
Compensation Pair: R1: ———————(a€X) R2: ——————
P+Q— P +Q P+Q—Q
P50
R3: ——————— (W#V)
P Q- SKIP
PP % PP’ PP P
Sequential Composition: CS1 : T (aeX) : ;W (w# V)
PP; QQ — PP’ ; QQ PP;QQ—P
v w v a
PP P PP P (QQ’
cs3: TE—PAQQ = Q) gy, PP PAQQ— QO
PP;QQ > Q:P PP QQ —(QQ", P)
a , w
055:QQT—QQ(aex) CSG:QQ—_W’Q@JGQ)
(QQ, P) —(QQ', P) (QQ,P) —Q: P
PP -2, pp' < Q0
Parallel Composition: CP1 : 7 P2 : Qo T Qe (a€X)
PP||QQ — PP'|QQ PP||QQ — PP|QQ’
PP -5 P o
cpg, LL—PAQQ—Q
PPIIQQ ™= P||Q
PP % PP’ - !
Compensable Choice: CC1 : % cC2: M (aeX)
PPOQQ — PP’ PPOQRQ — QQ’
o3 H . L—’WQ (we Q)
PPOQQ 2 P PPOQQ - Q

Fig. 3. Operational semantics of cCSP

6

which is a standard process, is stored for future use.
P50
PP 2+ P (P is the compensation)

The operational semantics of cCSP are summarised in Figure 3 . Considering
standard processes, in sequential composition (P ; @), the second process @ in
the sequence can start only when the first process P terminates successfully (with
V'), otherwise the first process will terminate with ! or ? and the second process
will not start. In parallel composition each process can evolve independently and
processes synchronise only on terminal events.

Compensable process has a forward behaviour and a compensation of the
forward behaviour which will store after the completion of the forward behaviour
for future use. In compensable sequential composition (PP ; QQ), while the first
process (PP) terminates, its compensation (P) will be stored and the second
process (QQ) will start. In this scenario we get an auxiliary construct ((QQ, P))
and it will be described later in the proof. After termination of the second
process (QQ) its compensation (@) will accumulate in front of P, i.e., (@ ; P).
In parallel composition the basic difference with standard processes is that after
termination, compensations are accumulated and in parallel. In compensation
pair, after successful completion of the forward behaviour the compensation will
be stored for future use, however, unsuccessful termination, i.e, termination by !
or ? results an empty compensation. Transaction block converts a compensable
process into a standard process. A non-terminal event changes the state of the
process inside the block. Successful completion of the forward process inside the
block means completion of the whole block, but throwing an interrupt by the
compensable process inside the block causes the compensation to run.

3 Correspondence

This section shows the correspondence between the operational and trace se-
mantics. The correspondence is shown in two steps. In the first step, traces are
derived from operational rules and in the next step, we show the correspondence
between the derived traces and the original definitions of the trace semantics.

Operational semantics defines the lifted transition relation labelled by se-
quence of events. The derived traces of a standard process P is defined as DT'(P),
if we let ¢ € DT(P) then we get the following definition:

te DT(P) = P50

where ¢ is the derived trace which consists of a sequence of events followed by
a terminal event w € {v/,!, 7}. By applying induction over the traces, where (w)
is considered as the basic step and (a)t is considered as the inductive step, we
show that

(w)

w

P—0 = P—70
Py = 3p.p S p AP b0

Compensable processes are modelled by using pair of traces: one for forward
behaviour and another for compensation. The following definition represents a
completed behaviour of the forward process:

PP R

where ¢ is the trace of the forward behaviour and R is the compensation. When
the behaviour of the compensation is added we get the following definition:

pp 0 = 3R PP R A RS0

where ¢’ is the trace of the compensation. By using these two definitions we get
the trace derivation rule of a compensable process PP defined as:

(t,t') e DT(PP) = PP "0

Induction over traces are applied here similar to standard processes. After de-
riving the traces, we then show the correspondence. The traces of standard and
compensable processes are presented as T(P) and T(PP) respectively. Recall
that T(P) and T(PP) are defined directly for the constructs of cCSP (Fig 2)
while DT(P) and DT (PP) are defined indirectly via operational rules. By struc-
tural induction over the derived traces, we show that DT(P) = T(P) and
DT(PP) = T(PP). The paper shows the proof of the following theorem:

Theorem 1.
DT(P)= T(P) for all standard processes P, not containing 0

DT(PP) = T(PP) for all compensable processes PP, not containing (PP, P) or 0

The theorem is proved by structural induction over terms of the language. In
the following sections, we show the correspondence of the two semantics of the
cCSP operators for both standard and compensable processes.

There is another theorem that is required during the proofs to show the
correspondence.

Theorem 2. For any process term P (not containing 0)
vP-3t-P -0

This theorem can be proved by induction over process terms.

3.1 Sequential Composition

This section demonstrates the correspondence of sequential composition. The
correspondence is drawn separately for standard and compensable processes.

Standard Process

The correspondence between derived traces and the original defined traces are
drawn by showing that DT'(P ; Q) = T(P ; @) and to prove it consider that
DT(P)=T(P) and DT(Q) = T(Q). Welet t € DT(P ; Q) and following the
trace derivation rule we get

teDT(P: Q) = (P: Q) -0
On the other hand, let ¢t € T(P ; @) and from the definition of trace semantics

te T(P;Q)
= dp,q-t=(p;q) N peT(P) AN g€ T(Q) |[trace definition]
= dp,q-t=(p;q N peDT(P) N q€ DT(Q) [induction assumption]
= dp,qg-t=(p;9) AP0 A Q-0 [trace derivation rule]

This leads to the following lemma:

Lemma 3
(P;Q) >0 = 3pg-t=p;9) A P0A Q50

The lemma is proved by induction over the traces. The induction is based on
the following two cases:

— case (w) - the lemma is proved for trace (w) (basic step).

— case (a)t - the lemma is proved for the trace (a)t considering that the
lemma holds for trace ¢ (inductive step).

The following equations are derived from operational rules which will support
the proof of the above lemma.

¢« (P;Q) =0 PL0AQ-50 VvV PL0Aw#Y
e (P;Q)-%R = @GP - PP AR=(P;Q) VvV P50AQ-5R
The basic step of the inductive proof of the lemma is trivial. The inductive step

is given here:
Case - (a)t:

P:0)™0 = 3R (P:Q) R A R0
“From operational rules (51) and (53)”
= 3P PSP A(P:Q) 50 (1)
VP 0AQ-“RAR-O (2)

From (1)

3PP P A (P;Q) 50
= “inductive hypothesis”

IJP PSP ATpqgt=0p ;9 NP EZ0oA QL0
= “combining existential quantifications”

Ipq-t=(;9 A PUB0A Q-0

= “using trace rule (a)t = (a)(p'; q¢) = {a)p’); q”

g (a)t = ((a)p') A P00 A QL0
= 3p.q-p=(a)p’ Aa)t=(p;q) A P20 N Q0
From (2)

PL0AQ-%RARS0
PLoon Q%
Ip,q-p=) N g={a)t A P2onQ-5o0
= “V)ig=7¢
Ip,q-(a)t=(p;q) Ap=()AP0AQ-"0
Therefore, for (a)t, from (1) Vv (2)
Ip,q-p=(a)p’ A {a)t=(p;q) AN P=>0 A Q-0
V3Ipg-p=()A{a)t=(p;¢) A P-0A Q-0
= “combining existential quantifications”
3p,g- (p=()Vp=(a)p) A{a)t=(p;9) AP0 A Q-0
= “pig=(a)t = p#{) Ap#)
Ip.q-(a)t=(p;9) AN P-L0A Q-0
This completes the proof of the lemma. We follow the same approach to prove
all the other lemmas in the rest of the paper. The proof of the basic step of

the induction of the above lemma and the proofs of all the other lemmas in the
paper can be found in the appendix.

Compensable Process

Compensable processes have both forward and compensation behaviour. Com-
pensable processes consist of a pair of traces of the form (p{w), p’(w’)), where
p{w) represents the trace of the forward behaviour and p’(w’) represents the
compensation. Let (¢,¢) € DT(PP ; QQ) and according to trace derivation
rules we get

(t,t') € DT(PP ; QQ) = 3R- (PP; QQ) R A R0

The following lemma allows us to derive the lifted forward traces from se-
quential composition of compensable processes.

Lemma 4
(PP ; QQ) >R
= 3P, Q.pg-t=(p:q AN PPZPAQQ-LQ
A R = COND (last(p) = v, (Q ; P), P)

10

Here, COND(true, el, e2) = el and COND(false, el, e2) = e2.
The following equations are derived from the operational rules which will
support to prove the above lemma:

«(PP;QQ)>R = 3P,Q-PP-5P A QQ-“-Q A R=(Q;P)
V PPSRAwEY
e (PP; QQ)-“>RR = 3PP'-PP-“ PP A RR= (PP ;QQ)

vV 3P,QQ -PP-5 P A QQ-% QQ A R=(QQ,P)
In the inductive proof of the above lemma we get an intermediate step in-
volving the auxiliary construct (QQ, P).
(PP; QQ) R = 3RR.- (PP; QQ) - RR A RR —> R

= 3PP'- PP - PP' A (PP'; QQ) -5 R (3)
vV 3P,QQ - PP P A QQ-% QQ A (QQ.P)-“R (4
To deal with this we need another lemma which will support to removing the
auxiliary construct in equation 4. This lemma will deal with the situation where
the forward behaviour of the first process of sequential composition is terminated

with v" and its compensation is stored and the second process of the composition
has started.

Lemma 5
(QQ,P) - R 3Q-QQ -~ Q AN R=(Q ;P)

The lemma is proved by induction over ¢ and helps to prove Lemma 4.

3.2 Parallel Composition

Parallel composition of two processes is defined to be the interleaving of their
observable events followed by the synchronisation of their terminal events. For
example, considering asynchronous events, the execution of A||B will be either
A followed by B or B followed by A. For traces p and ¢, we write (p ||| q) to
denote the set of interleaving of p and ¢ and it has the following definition:

el = p=0ANqg=(
(a)te(plllq) = 3p - p={(a)p’ Ate®]|q
vV 3¢ -q=(a)d N te(pllld)

Standard Processes
Similar to our earlier approach of standard processes, we let t € DT (P]| Q) and
then we get:
t
te DT(PIQ) = (P|Q) — 0

We need to prove of the following lemma to draw the correspondence.

11

Lemma 6
(PIQ) =0 = 3dpg-telplgrnP-0nQ -0

From the operational rules we derive the following equations to help us prove
the above lemma.

ePIQ-50 =PL0AQ 20N = wlkw?
*P|Q-—R = 3P -P-—P ANR=(PQ) vV BQ-Q——Q NR=(P|Q"))

Compensable Processes
For the parallel composition of compensable we let (¢,t') € DT(PP||QQ) and
then by following trace derivation rule we get,
(t,') € DT(PP|QQ) = 3R-(PP|QQ) R A R0
The supporting lemma that we need is as follows:

Lemma 7 ,
(PP QQ) R
= 3P, Q,p,q-te(plg) N\PP5PAQQ-—PAR=P|Q

From the operational rules for parallel composition of compensable processes
we get the following equations which will help to prove the above lemma.

e PP|QQ =5 R=(3P,Q-PP XL P A QQ 23 Q A R=(P|Q) N w=wl&w?)
ePP|QQ % RR = (3PP'PP -*5 PP’ A R = (PP'|QQ))
vV (3QQ - QQ — QQ' AR =(PP|QQ")

3.3 Transaction Block

This section derives the correspondence between the two semantics of transac-
tion block. Transaction block is a standard process and we let ¢t € DT ([PP]).
Following the trace derivation rule we get

te DT([PP]) = [PP]-50
The correspondence proof needs the following supporting lemma:
Lemma 8 ,
[PP] 50 = 3Jp,p - t= [p,p'] A PP %0 A last(p) # 7

The operational semantics entail the following equations which help to prove
the above lemma:

o[PP]-%50 = PP-P VPP P AP0
o[PP] R = (3PP -PP-“PP' AR=[PP]) Vv (3P-PP P A P-“R)

The transaction block operator runs the compensation of a terminating forward
behaviour and discards the compensation of successfully completed forward be-
haviour. It removes the traces of an yielding forward behaviour.

12

3.4 Compensation Pair

Compensation pair is a compensable process. Let (¢,t') € (P + Q) and following
the trace derivation rule we have

(t.t)eDT(P=Q) = (P+ @) “Do

Then we need to prove the following lemma;

Lemma 9
. (t,t') . . ;
(P+Q)==0 = 3pq (tL)=(p+q A (P+Q) 750
The following supporting equations are derived from operational rules of com-
pensation pair:

eP+Q) R = PS0AR=QV P-50AR=SKIP Aw#V
e(P+Q)“RR = PP ANR=P +Q

SKIP,THROW and YIELD are the primitive processes of cCSP and their
compensable counterparts are defined as:

SKIPP = SKIP + SKIP
THROWW = THROW -+ SKIP
YIELDD = YIELD =+ SKIP

The correspondence proofs are trivial and omitted from this paper.

We left out two of the operators from the correspondence proof shown here.
One of them is choice operator (P O @). Correspondence proof of this operator
is fairly since traces of choice is just the union of the traces of each process.
Another operator is the interrupt handler (P > Q). Its definition is similar to
standard sequential composition except that the flow of control from first to
second process is caused by a throw (!) rather than a v and its correspondence
proof is dual of the proof of sequential composition.

3.5 Correspondence Derivation

The correspondence is shown separately for standard and compensable processes.
For each term of the language the correspondence between the two semantics
are shown by using structural induction. For example, we have shown that
DT(P; Q) = T(P; Q) and in order to prove this we consider DT(P) =
T(P) and DT(Q) = T(Q). Similarly, for all the terms of the language we have
shown the inductive proof assuming the base case. Having the proofs we can
show that for a standard processes P (not containing 0)

te DT(P) = te T(P)
And similarly for a compensable process PP (not containing 0 or (PP, P))
(t,t') e DT(PP) = (t,t') € T(PP)

13

4 Lessons Learned

We have adopted a systematic approach to show the correspondence between the
two semantics of cCSP. Traces are derived from the operational rules and then
by applying induction over the derived traces we showed the correspondence.

In the original definition of trace semantics each process was defined as a
non-empty set of traces followed by a trace of a terminal event (v/,!,?) and the
nature of a trace is indicated by this final symbol. We defined the operational
semantics by using labelled transition systems. Transition rules for normal events
and terminal events were defined by separate symbols. Having separate symbols
as labels allows us to extract traces of normal events and terminal events easily
and helps to prove the correspondence.

The correspondence of the two semantics was proved by structural induction.
Two levels of induction was applied in the proof. In one level induction was
applied on individual derived traces and in another level induction was on process
terms of the language. For example, Lemma 3 was on sequential operator for
individual traces. This was then easily lifted to the set of traces to prove the
correspondence.

5 Related Work

Hoare and He [6] presented the idea of unifying different programming paradigms
and showed the way of deriving operational semantics from its denotational
presentation of a sequential language. They derive algebraic presentation from
the denotational definition and then derive the operational semantics from the
algebraic laws. Similar to our work, Huibiao et al. [13] derived denotational
semantics from operational semantics for a subset of Verilog [4]. However the
derivation was done in a different way than our method where the authors defined
transitional condition and phase semantics from the operational semantics. The
denotational semantics are derived from the sequential composition of the phase
semantics. The authors also derived operational semantics from denotational
semantics [12].

Unlike our approach, the unification between the two semantics was shown
n [11], by extending the operational semantics to incorporate the denotational
properties. The equivalence was shown for a language having simple models with-
out any support for concurrency. Similar problem was also investigated in [7] for
a simple sequential language, which support recursion and synchronisation in the
form of interleaving. The relation between operational and denotational seman-
tics is obtained via an intermediate semantics. A comparison of the operators of
c¢CSP with another language having similar operators including compensation
pairs and transaction blocks can be found in [1].

6 Conclusions and Future Work

Demonstrating the relationship between the two semantics of a language ensures
the consistency of the whole semantic description of the language. The main con-

14

tribution of this paper is to show the correspondence between the operational
and the trace semantics of cCSP. The correspondence is shown by deriving the
traces from the operational rules and then applying the induction over the de-
rived traces. Two level of induction is applied. In one level, induction is applied
over the terms of the language and in the next level induction is applied over
the derived traces.

The correspondence shown here are completely done by hand and there are
strong possibilities to miss some of the important parts during the proof. As part
of the future work our goal is to use an automated/mechanized prover which will
help us to use mathematical induction, and prove the theorems automatically.
We are investigating the use of Prototype Verification System (PVS) [8][9] for
our purpose. The specification language of PVS is based on classical, typed, high
order logic and contains the constructs intended to ease the natural development
of specification.

The parallel operator of cCSP does not support synchronization on normal
events. Synchronization of events is significant for the development of a language.
Currently we are working on adding synchronization to ¢cCSP. Adding synchro-
nization and then using mechanized theorem prover to show the correspondence
will strengthen the formal foundation of the language.

7 Acknowledgements

Special thanks to Tony Hoare, Roberto Bruni, Hernan Melgratti.

References

1. Roberto Bruni, Michael Butler, Carla Ferreira, Tony Hoare, Hernan Melgratti, and
Ugo Montanari. Comparing two approaches to compensable flow composition. In
Martn Abadi and Luca de Alfaro, editors, CONCUR 2005, volume 3653 of LNCS,
pages 383-397, 2005.

2. Michael Butler, Tony Hoare, and Carla Ferreira. A trace semactics for long-running
transaction. In A.E. Abdallah, C.B. Jones, and J.E. Sanders, editors, Proceedings
of 25 Years of CSP, volume 3525 of LNCS, London, 2004. Springer-Verlag.

3. Michael Butler and Shamim Ripon. Executable semantics for compensating CSP.
In Mario Bravetti, Leila Kloul, and Gianluigi Zavattaro, editors, WS-FM 2005,
volume 3670 of LNCS, pages 243-256, Versailles, France, September 1-3 2005.
Springer-Verlag.

4. Mike Gordon. The semantic challenge of Verilog HDL. In Proceedings of the
10th Annual IEEE Symposium on Logic in Computer Science (LICS ’95:), pages
136-145. IEEE Computer Society, June 1995.

5. C.A.R. Hoare. Communicating Sequential Process. Prentice Hall, 1985.

6. C.A.R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall
International Series in Computer Science, 1998.

7. J.-J. Ch. Meyer and E.P.de Vink. On Relating Denotational and Operational Se-
mantics for Programming Languages with Recursion and Concurrency, chapter 24,
pages 387-406. Elsevier, 1990.

15

10.

11.

12.

13.

S. Owre, J.M. Rushby, and N Shankar. PVS: A Prototype Verification System.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of LNCS, pages 748-752. Springer-Verlag, June 1992.

Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107-125, February 1995.

G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, Computer Science Department, September 1981.
Scott F. Smith. From operational to denotational semantics. In Proceedings of
the 7Tth International Conference on Mathematical Foundations of Programming
Semantics, volume 598 of LNCS, pages 54—76, 1992.

Huibiao Zhu, Jonathan P. Bowen, and Jifeng He. Deriving operational semantics
from denotational semantics for Verilog. In 8th Asia-Pacific Software Engineering
Conference (APSEC 2001), pages 177-184. IEEE Computer Society, 4-7 Dec 2001.
Huibiao Zhu, Jonathan P. Bowen, and Jifeng He. From operational semantics to
denotational semantics for Verilog. In Tiziana Margaria and Thomas F. Melham,
editors, CHARME 2001, volume 2144 of LNCS, pages 449466, 2001.

16

A Appendix

(For reviewer’s only, not for the final version)

Here we show the proof of the lemmas shown in the main text in Section 3. By
using the lemmas the correspondence derivation are given here as well.

A.1 Standard Sequential Composition

Lemma 3
(P;Q)——~0=3pg-t=p;9) AP0 Q50

Basic step Case - (w)

P;:Q) “o=P; Q0
”From operational ruleb (52), (S93) of standard sequential composition”

= P50A Q%50 (5)
VP 50 A w# Y (6)

From (5)

PL0n Q%0

g p=() A g=w) A W)=) N P—0A Q-0
= 3p,g-W=0@:g) Ap=()APL0A Q-0
From (6)

PL0ANw#V
= 3pgp=W ANw#EV AW =@;9 AN P0A Q50
= 3p,g-W=0@:g) ANpEV)APL0A Q-0
Therefore, for {(w)

Apg- W =@;9 Ap=)ANP-"50A Q-0
Vo 3pg-w=pig Ap# V) APL0A Q-0
= 3p,q-W=0(;9 AN P=0A Q-0

A.2 Compensable Sequential Composition

Lemma 4
(PP; QQ) > R
=3P,Qpq-t=(p;9) A PP =P A QQ 5 Q
A R = COND (last(p) = v, (Q ; P), P)
Basic step: Case - (w)

(PP ; QQ) % R = (PP ; QQ) > R

17

From operational rules (CS2) and (CS3) of compensable sequential processes

=3P, Q- PP P AQQ-Q A R=(Q;P) (7)
VIP-PPP ANw#v NR=P (8)

From (7)

IP,Q- PP 5P AQQ“QANR=Q:P
=3P, Q,p,q-p=() AN qg={w) AN PP P ANQQ-Q AN R=(Q;P)
=3P, Q,p,q- (wy=(;9 N PP>PANQQ—">QANR=(Q;P)

From (8)

3P-PPP ANw#v ANR=P
=3P,p-p=W) ANw#v AN PP P ANR=P
=3P,p- (wW=p A PP PANR=P

Therefore, for (w), from (7) V (8)
3P,Q.p.q-{wy=(piq) N PP=>P A QQ—-Q A R=(Q;P)
VIP,p-(W=p A PP PANR=P

The main difference between the two equation of the above disjunction is that
whether or not, last(p) = v'. The sequence operator handles this in such a way
that when last(p) = v/, then behaviour of QQ is accepted and is augmented
with behaviour of PP, otherwise behaviour of Q@ is discarded. The above two
equations can be combined by the expression COND.

= 3P, Qpg) =(psa) A PP5P A QQ—Q
A R = COND(last(p) =v,(Q ; P), P)
Inductive step: Case - (a)t

(PP; 0Q) ‘Y R=3RR- (PP; QQ) <~ RR A RR - R
From operational rules (CS1) and (CS4) of compensable sequential processes

=3PP'- PP-% PP’ A (PP'; QQ) - R (9)
V3P, QQ - PP S P A QQ-%QQ A (QQ,P)- R (10)

From (9)
3PP’ PP -% PP’ A (PP QQ) -5 R
=" by inductive hypothesis”
3PP -PP -2 PP' A 3P, Q,p,q-t=(p';q) N PPP 5P A QQ -5 Q
A R = COND(last(p) =v,(Q ; P),P)
Here COND expression handles both the cases, whether or not last(p) = v'.

18

= ”"Combining existential quantifications”
(a)p’

AP, Q,p'q-t=(p';9) AN PP 5P A QQ -5 Q
A R = COND(last(p) =v,(Q ; P), P)
=3P, Q.p.q-p={a)p’ ANt=(p';9) AN PP P A QQ -5 Q
A R = COND(last(p) = v,(Q ; P), P)
="(a)t = (a)(p';q¢) = (a)p') ;9= (p;q)
3P,Q,p.q- (a)t=(p;q) N PP P A QQ -5 Q
A R = COND(last(p) =v,(Q ; P),P)

From (10)
IP,QQ"- PP 5P A QQ % QQ' A (QQ,P) - R
=" by using Lemma 5”
3P,QQ"- PP P A QQ - QQ A3Q-QQ QA R=(Q;P)
= ”Combining existential quantifications”
3P,Q- PP P A QQY 0 A R=(Q; P)
=3P, Qp,q-p=(V) A g={(a)t A (a)t=(p;q) AN PP5P A QQ—>Q N R=(Q; P)

Therefore, for (a)t, from (9) Vv (10)
IP,Q.p.q-(a)t=(p5q) A PP>P A QQ— Q
A R = COND(last(p) = v,(Q ; P), P)

VAP, Q.p.q-(a)t=(piq) AN PP=>P A QQ—>Q A R=(Q;P)
”2nd part of the disjunction is same as the 1st part when last(p) = v/ in COND
expression.
=3P,Q,p.q- (a)t=(p;q) N PP P A QQ—Q

A R = COND(last(p) = v,(Q ; P), P)

Lemma 5:
(QQ,P) - R
=3Q-QQ——>Q AN R=Q;P

Basic step: Case - (w)

(QQ,P) L R=(QQ,P) - R

= ”From operational rule (CS6)”
1Q-QQ 5 Q A R=Q;P
Inductive step: Case - (a)t
a)t
(QQ.P) " R
=3RR- (QQ,P)-“ RR AN RR - R
= ”From operational rule (CS5) ”
3QQ" QQ - QQ' A (QQ,P) R
= "inductive hypothesis”
31QQ- QQ--QQ A3Q Q- QANR=Q:P

= ”combining existential quantification”

3Q- QL QA R=Q; P

19

Deriving correspondence:

(t,t") € DT(PP ; QQ)

— (PP; QQ) "0

— 3R-(PP:0Q)-“R A RS0
”by using Lemma 4”

3P, Q.p,qt=(;q) AN PP-5P A QQ -5 Q

A R = COND(last(p) = v, (Q ; P), P) A R -0
We now consider both the cases where p ends with and without v and
we separate these two conditions. The sequential composition operator is

defined in a way so that when last(p) # v/, the traces of Q@ are discarded

= TP, Qupg-t=0W)ig) A PPELP A QQ-5Q A (Q;P) 0

VIPp t=pw) Aw#v A PP P AP0
= "by using Lemma 3”

v
3P, Q,p,q-t=(p{V);q) A PP P A QQ L Q

Aﬂp/,q,‘t/:(q/;p/) A Qq_>0 AP2s0
VAP, pp - t=plw) At =p APP-SP AP 0N wEY

= "combining existential quantification”

3p. 0 ad - t= (V)i q) At =(¢5p) A PPP 0 A QQ 2% 0

Vp,p-t=pw At'=p A PP o A WAV
= "using the rules for derived traces ”
Ip, 0 a4 t=m);) ANt =(d;0) A (p(V),p) € DT(PP) A (¢,4') € DT(QQ)
vap,p'-t=plw) Nw#V At =p" A (plw),p’) € DT(PP)
= ”Structural Induction”
3p, 0" q,d - t=); 9 AN t'=(d;p) N (p(V),p") e T(PP) A (¢,4) € T(QQ)
Vap,p' - t=plw) N w#FV AL =p" Apw),p’) € T(PP)
We have (t,t") = (p(v') 5 q), (¢ ; p') or (t,t') = (p(w), p")
Using trace rules we can write that:
(p(v) 5 9),(d 5 p) = (), 0) ;5 (¢,4)
Similarly, using the definition of sequential composition over traces
plw),p" = (p{w),p") 5 (¢,¢') where w # vV
= (t,t) e T(PP; QQ)O

20

A.3 Standard Parallel Composition

Lemma 6
PlQ 50 =3p.q-te(plg A P20 A Q-0

Basic step: Case - (w)

PO o="PIQ -0
= "From operational rule (P3) ”

Juwl,w2- P 0 A QY20 A w=wlkw?
=3p,g-p=(wl) A g=(w2) A (W elg N P01 Q-0
=3p,q- W) e(pllg) A P-0A Q-0

Inductive step: Case - (a)t

PlQ o

—3R- P R AR L0
= "Using the operational rules (P1) and (P2)”
3P PSP APIQ -0
V3Q-Q-%qQ A PIQ -0
= "Inductive hypothesis”
IP PSP A3pgte@a AP T0A QL0

VIQ-Q-5Q Adpd-tepld) APLon QL0
= ”"Combining existential quantifications”

—3pg-te@lg A P 0 A Q-0

vap,d teld) AP0 A Q<ﬂ;0
=3p.g-p=(a)p’ Ate(@g A P0A Q50
VIp,g-q=(a)gd AN tepl|d)n PL0OAQ-L0
= "Combining”
3p,q- (p="(a)p’ Ate®la) vV g=(a)d A te(p|d) AP0 Q-0
= "By the definition the interleaving of traces”

3p,q- ()t € (pllg) AP0 A Q-0
Deriving Correspondence:
te DT(P | Q)=P| Q—0
?Using Lemma 6”

Ip,g-te(plg) AP-50A Q-0

= "using the rules for derived traces”

21

Ip,q¢-t€(pllg) N pe DT(P) N q¢€ DT(Q)
= "gstructural induction”

Ip,qg-te(pllg) Ape T(P) A qge T(Q)
= "by trace rule”

te T(P| @)O

A.4 Compensable Parallel Composition
Lemma 7

PP|QQ — R
=3P,Q,p,q-t€(pllg) N PPP A QQ—P N R=P|Q
Basic step: Case- (w)

PP|QQ “L R
= PP|QQ = R
= ”From operational rule (CP3) of parallel composition”

AP, Q w=wl&w2 A wl&w2 e (W)|[w2)) A PP 2L P A QQ <2 Q A R=(P|Q)
=3P, Q,p,qg-p=(wl) A g=(w2) A (w)€(plle) A PP5P A QQ—Q A R=(P|Q)
=3P,Qp,q- W eplg) A PPP A QQ—Q A R=(P|Q)

Inductive step: Case- (a)t

pP|QQ Y R
=3RR- PP|QQ > RR A RR -5 R
= ”From operational rules (CP1) and (CP2)”

3PP'- PP % PP’ A PP'|QQ - R
VIQQ'- QQ - QQ' A PP|QQ R
= "By inductive hypothesis”

3PP’ -PP - PP A 3P, Q,p,q-te(|lq) AN PPP EZP A QQ - Q A R=(P||Q)
V3IQQ - QQ - QQ A3IP,Qp,qd -t plld) N PP5P A QQ " Q A R=(P|Q)
= ”Combining existential quantifications”

3P.Q.pq-te@llo) A PP P A QQ-%Q A R=(P|Q)
V3P,Q.p.¢ te(ld) A PP P A QQ U Q A R=(P|Q)
=3P, Qp,q-p={a)p' Nte(@]g) AN PPP A QQ—Q AR
V3IP,Qp,q-q=(a)d A te(plgd) A PP->P A QQ—Q AR
= "Combining existential quantifications”

3P, Q.p,q- (p=(a)p’ AN te(@llg) vV ¢=(a)g A te(pld))

APP L. P A QQ - Q N R=(P|Q)
= "By the definition of interleaving”
3P, Q,p,q- (a)t € (plg) A PP 5P A QQ—>Q A R=(P|Q)

Deriving Corrrespondence:

(PlQ)
(PlQ)

(t,t') € DT(PP||QQ)

22

(t,t")

= (PP|QQ) — 0
—3R- (PP|QQ) - R A R0
="by Lemma 7”

IP,Q.p,q- te(pll)) A PP P A QQ-5Q A (PIQ) -0
= "by Lemma 6”

3P,Q,p,q-t€(plg) N PP—P A QQ - Q

Adp, gt e@|d) A PE0A QL0
= "combining existential quantifications”

Ap.pa.d - teplle) At e@ld) A PPELO A QQELO
= "Trace derivation rule”

Ippiq,d - teplg At e®@ld) A (p,p) € DT(PP) A (¢,4') € DT(QQ)
= ”Structural induction”

p, v q,d" - tellg) At e@ld) A (p.p") € T(PP) A (g,4) € T(QQ)
= "by trace rules of parallel composition

(t,1) € T(PP|QQ)O

A.5 Transaction Block

Lemma 8
[PP] -5 0=3p,p' -t =[p,p'] A PPEL0 A last(p) #?

Basic step: Case- (w)
[PP] -5 0
"using operational rules (72) and (7T3)”

=3rp . PP-LP A P20 (11)
v3IP.-PP 5P AP0 (12)
From (11)
3p,y-PP-P AP0

=3p.p'p=(A PP g

= "By the definition of block operation”
Ip.p' - W) =p(v) A PP 0
From (12)
JP.-PP—P A P50
=3P, p,p - p=)Ap =(w) A pp?p A P2

—3p,p' - () = pp’ A PPPEL g

23

Therefore, for (w), from (11) Vv (12)

Ip,p - (W) =p(v) A PP

Vap,p - (w)y=pp A J RARE g
= "By the definition of block operator”
V3p,p'- W) =[p,p'] A PP 750 A last(p) #°
Inductive step: Case - (a)t
1pP] 2% 0
=3R-[PP] > RAR-50
= "using operational rules (7'1) and (7'3)”

3PP . PP % PP’ A [PP'] 50
vIP.PP-P A PSP AP L0
From (13)

3PP . PP % PP’ A [PP'] -5 0
= "by inductive hypothesis”

3PP PP % PP A 3p",p -t =[p"p)] A PP'PE 0 A last(p”) £7

= ”Combining existential quantifications”

Ap” p’ -t =[p”,p'] N PP <a£ipl 0 A last(p"”) #7?
—3p,p - p=(a)p” A t=1[p",p) A PPELO A last(p”) 47
="(a)t = (a)[p",p'] = [(a)p",p'] = [p,p']”

Ip,p' - (a)t = [p,p') A PP 220 A last(p) £7
From (14)

sp-pp—p AP

p(!)

—3P,pp p=0 A p=(a)tAPP P A PP
= "by using trace rules”
3p.p - (a)t = [pp') A p={ A PP"E g
Therefore, for (a)t from (13) V (14)
Ip.p" (a)t =[p,p'] A PP 250 A last(p) #7?
V3pp(a)t=[pp] Ap=0 A PPPEE O
= ”Combining existential quantifications”
Ip.p’" - (a)t =[p,p'] A PP 250 A last(p) #7

Deriving correspondence:

t € DT([PP))
=[PP] 50

= "From Lemma 8"

24

Ip.p’ -t =[p,p/] A PPELO A last(p) #?

= "By trace derivation rule”
3p,p" - t=1[p.p'] A (p,p) € DT([PP]) A last(p) #?

= ”Structural induction”

3p,p" - t=1p,p'l A (p,p) € T([PP]) A last(p) #?
=t e T([PP])O

A.6 Compensation Pair

Lemma 9

t,t s
P=QYY0 =3pq- ()= A (P+Q) 250

Basic step: Case - (w) and (w)
P+Q)0
=3R-P+-Q R A R0
= ”Using operational rules (R2) and (R3) of compensation pair”

PL0An Q50 (15)
VP50 A w#Y A SKIP 150 (16)

From (15)
PS0A Q%0
p(v)

=3p,g-p=() Ag=(w) A PZZ0 A Q-0
= "By trace rule”

3p,q- (p(V) = q) = (ww) A P+ Q"%
From (16)
P50 Aw#v A SKIP 50

=3pqp=0 A g=() A PQ "0
= "By trace rule”

Sp.0- () = 0) = ((0), (V) A w# Y A PQ g
Therefore, from (15) V (16)

Ip,q- (p(v) +q) = (w,w) A P+Q PV 0
V3p.a- () +a) = () () A wE Y A PQ M

= ”Combining and using trace rules”
3p,q- (W), W) =@+q) A P+Q =50

Inductive step: For inductive case consider either (a)t or (a)t’

25

P+@Q"o

—3R-P+Q-“RAR-0
"Using operational rules (R1) and (R2) and applying induction”

—3P PSP A (P Q) Yo

va-P-Lo0A Q5@ A QS0
From (17)
3PP P A (P Q) B0
= "By inductive hypothesis”
3PP P ATp g ()= +q A (PP+Q) 220
= ”Combining existential quantification”
g () = +0) A (P+Q) P70
=3p,q-p=(a)p A (L) = +q) A (P+Q) =50
="a)(t,t') = ((a)t,t') = ((a)p') +q = (p+q)
Ip,q- (@),) =(p+q) A (P+Q) &5 0
From (18)
30'-PS0AQ-%Q Ao Lo
—pLon Q%0
=3pgp=0 A g=(at' A PE20 A QL0
= "By trace rule”
Ap,q,t-t=p() A (p(V)+q)=(t,(a)') N (P+ Q)
Therefore, from (17) Vv (18)
(w),
Ip,q-((a)t,t') = (p+q) A (P+Q) 570
(vV),
Vap,g-(t(a)t") = (p(v)+q) A (P+Q) =570
”Combining and using trace rule”
=3p,q- (L) =(p+q) A (P+Q) 250
Deriving correspondence:
(t,t') € DT(P+ Q)
=(P+Q) o
= "From Lemma 9”
Ip,g- (L) = (p+q) A (P+Q) 250
= "By trace derivation rules”
Ip,q- (1) = (p+q) A (p,g) € DT(P+ Q)
= ”Structural induction”
p,q- (6,t) =(p+q) A (p,g) € T(P+Q)
=(t,t') € T(P+ Q)0

pﬂ;q 0

26

