Incremental Construction of Large Specifications:
Case Study and Techniques

Neil Evans! and Michael Butler?

! AWE, Aldermaston, U.K.
2 School of Electronics and Computer Science, University of Southampton, U.K.

Abstract. The RODIN project is an EU-funded project concerned with
the provision of methods and tools for rigorous development of complex
software-based systems. Ultimately, through the development of open-source
tools and techniques, the project aims to make formal methods more ap-
pealing and accessible to industry. The project is driven by a number of
case studies, each of which is designed to exercise the technology being
developed and create methodologies for the future. In this paper we focus
on the methodologies being developed in one of the case studies (the CDIS
subset). This case study is based on a commercial air traffic information
system that was developed using formal methods 14 years ago, and it is still
in operation today. The key goals of our approach are to improve the com-
prehensibility of large specifications and to achieve a complete mechanical
proof of consistency.

1 Introduction

The CCF? Display and Information System (CDIS) is a computerised system that
provides important airport and flight data for the duties of air traffic controllers
based at the London Terminal Control Centre. Each user position is a workstation
that includes a page selection device (to select CDIS pages) and an electronic dis-
play device (to display the selected pages). The original system was developed by
Praxis? in 1992 and has been operational ever since. This system is an example of
an industrial scale system that has been developed using formal methods. In par-
ticular, the functional requirements of the system were specified using VVSL [5]
— a variant of VDM [4]. The formal development resulted in about 1200 pages
of specification documents and about 3000 pages of design documents. The reli-
ability of the delivered system is encouraging for formal methods in large scale
system development because the defect rate was a considerable improvement on
other similarly sized projects [6]. However, no formal reasoning was applied to the
specification.

This paper describes a case study of the RODIN project that is based on CDIS.
Contemporary tool support has been used to develop a formal specification. The

" This research was carried out as part of the EU research project IST
511599 RODIN (Rigorous Open Development Environment for Complex Systems)
http://rodin.cs.ncl.ac.uk

3 Central Control Function

4 Praxis High Integrity Systems Ltd., U.K.

objective of the case study (that we shall refer to as ‘the CDIS subset’) is to derive a
methodology for large scale formal development. Redeveloping an existing system
also allows us to reflect on the lessons learned from the original development. Our
aim in this paper is to demonstrate how we have attempted to overcome the lack of
comprehensibility and formal proof of the original CDIS development by adopting
a methodology that makes use of available tool support in an effective way. The rest
of the paper is as follows: Section 2 gives an overview of the system on which the
case study is based, Section 3 describes Event-B (which is our notation of choice),
and Section 4 describes our methodology in detail. After defining an abstract
specification of a generic display system, we give some example refinements to
demonstrate how more airport-specific features of the CDIS subset are introduced
into the specification in a stepwise manner. We discuss the merits of this approach
in Section 8.

2 The CDIS Subset

In order to keep the case study manageable in the context of the RODIN project,
a subset of the original CDIS has been carefully chosen for redevelopment [7].
However, rather than focusing on individual aspects of CDIS, a ‘vertical slice’ has
been taken so that all of the interesting features of the system are covered (albeit
in a lesser form). At the heart of the CDIS subset is the ‘core specification’ that
gives the functional properties of the system, and shall be the focus of this paper.
In addition to the core specification, there is a concurrency specification and a
description of the user interface.

2.1 The Original Specification

The core specification is only one part of the overall CDIS documentation. It
gives an idealised view of the entire functional behaviour of the system. (The
design document states how this is actually realised.) In order to avoid ambiguity,
in this paper we will often refer to the core specification as ‘the original VDM
specification’.

The core specification consists of a number of VVSL modules, each of which
contains type, constant and state definitions. (The bulk of the specification is
made up of Boolean functions that are used in the pre/post conditions of other
definitions.) A module can import other modules so that the imported definitions
are available in the importing module. This gives a VVSL specification its struc-
ture. This approach encourages a bottom-up development in which the overall
specification emerges from the way in which its modules are combined.

The core specification of CDIS comprises 15 modules. However, we can identify
three main parts (or contexts):

— Airport-related data. This concerns airport-specific values such as weather or
runway information. The Meta_data module identifies the airport attributes
and their value types. Functions are defined to update the values of the at-
tributes. The Airport_records module declares a state variable that holds all
of the actual values of the attributes.

— Page-related data. This gives a device-independent and data-independent record
of the pages that can be displayed by CDIS. Types are declared to model the
layouts of pages. Actual pages are held in the state variables declared in the
Pages module.

— Display-related data. This concerns the physical devices that are used to re-
trieve and display information.

Other subsidiary modules such as the date/time module are concerned with other
important features of CDIS. By far the largest module in the core specification is
EDD_displays that contains the operations of the system. All of the modules listed
above are imported by EDD_displays to enable the definition of the operations.

2.2 Conclusions Drawn

It is worth emphasising that the CDIS specification is necessarily complicated.
Even though the core specification has been criticised for its complexity, it is
unrealistic to expect any significant improvements in the size of a specification
that captures all aspects of CDIS, regardless of the notation used. However, the
bottom-up construction in VVSL forces a level of specification that is too detailed
to get an appreciation of the overall system behaviour.

Too much complexity also precludes formal analysis. In order to reason about
a specification formally, it is necessary to keep the level of detail as simple as
possible. Otherwise mathematical proof becomes infeasible. Analysing monolithic
specifications such as the CDIS core specification would be beyond the capabilities
of contemporary formal methods tools without intense human intervention. This
was not an issue during the original CDIS development because tool support was
largely unavailable, and large-scale formal analysis was out of the question.

2.3 Ideal Specification vs. Reality

Another drawback of the original development is the lack of continuity from the
specification to the design. In the idealised view of the core specification, updates
are performed instantaneously at all user positions, whilst there is an inevitable
delay in the actual system because the information must be distributed to the user
positions. Hence, there is no natural refinement of the original specification (in the
usual sense of the word) to the design. We are investigating more novel notions
of refinement in order to find a suitable link between the two viewpoints. In this
paper, however, we are specifically interested in the idealised view of the system.

3 Event-B

An abstract Event-B specification comprises a static part called the context, and
a dynamic part called the machine. The machine has access to the context via
a SEES relationship. All sets, constants, and their properties are defined in the
context. The machine contains all of the state variables. The values of the variables
are set up using the INITTALISATION clause, and values can be changed via
the execution of events. Ultimately, we aim to prove properties of the specification,

and these properties are made explicit using the INVARIANT clause. The tool
support generates proof obligations which must be discharged to verify that the
invariant is maintained.

Events are specialised B operations [1]. In general, an event F is of the form

E = WHEN G(v) THEN S(v) END

where G(v) is a Boolean guard and S(v) is a generalised substitution (both of
which may be dependent on state variable v)°. The guard must be true for the
substitution to be performed (otherwise the event is blocked). There are three
kinds of generalised substitution: deterministic, empty, and non-deterministic. The
deterministic substitution of a variable z is an assignment of the form z :=
E(v), for expression E, and the empty substitution is skip. The non-deterministic
substitution of z is defined as

ANY ¢t WHERE P(t,v) THEN z := F(t,v) END

Here, ¢ is a local variable that is assigned non-deterministically according to the
predicate P, and its value is used in the assignment of z via the expression F.
Note that in this paper we abuse the notation somewhat by allowing events to
be decorated with input and output parameters (and preconditions to type the
input parameters) in the style of classical B [1]. However, semantically, they can
be treated as ANY parameters.

In order to refine an abstract Event-B specification, it is possible to refine the
model and context separately. Refinement of a context consists of adding additional
sets, constants or properties (the sets, constants and properties of the abstract
context are retained).

Refinement of existing events in a model is similar to refinement in the B
method: a gluing invariant in the refined model relates its variables to those of
the abstract model. Proof obligations are generated to ensure that this invariant
is maintained. In Event-B, abstract events can be refined by more than one event.
In addition, Event-B allows refinement of a model by adding new events on the
proviso that they cannot diverge (i.e. execute forever). This condition ensures that
the abstract events can still occur. Since the new events operate on the state
variables of the refined model, they must implicitly refine the abstract event skip.

4 A Methodology for CDIS in Event-B

As stated above, we shall be concerned with an idealised view of the system,
as modelled in the core specification. Thus, we model a system that has a cen-
tralised database from which information can be retrieved. In order to get a better
overview of the entire system, we follow a top-down approach. At the top level,
we ignore all of the airport-specific features to produce a specification describing
a generic display system. Through an iterated refinement process, we introduce
more features into the specification until all of the CDIS functionality is specified.
This procedure is supported by the tool B4Free. At each step the tool generates a

5 The guard is omitted if it is always true.

number of proof obligations which must be discharged in order to show that the
models are consistent with their invariants. Since each refinement introduces only
a small part of the overall functionality, the number of proof obligations at each
step is relatively small (approximately less than 20).

4.1 Generic Display Context

The purpose of CDIS is to enable the the storage, maintenance and display of data
at user positions. If we ignore specific details about what is stored and displayed
then CDIS becomes a ‘generic’ display system. We begin by constructing a speci-
fication for a generic system (which will be, of course, somewhat influenced by the
original VDM specification) and, through subsequent refinements, introduce more
and more airport-specific details so that we produce a specification of the necessary
complexity, and reason about it along the way. By providing a top-down sequence
of refinements it is possible to select an appropriate level of abstraction to view
the system: an abstract overview can be obtained from higher level specifications
whilst specific details can be obtained from lower levels.

Meta Data Context. Rather than specifying individual airport attributes (such
as wind speed) as state variables of a particular value type, two abstract types are
introduced that correspond to the collection of attribute identifiers and attribute
values. This allows us to represent the storage of data more abstractly as a mapping
from attribute identifiers to attribute values.

CONTEXT META_DATA
SETS Attr_id ; Attr_value
END

Pages Context. The pages of CDIS are device-independent representations of
what can be displayed on a screen. Each page is associated with a page number,
and each page consists of its contents.

CONTEXT PAGE_CONTEXT
SETS Page_number ; Page_contents
END

Displays Context. At this abstract level, we model the physical devices with
which the users interact with the system. However, we only need to acknowledge
that each position is uniquely identified (by its EDD_id), each user position has
a type, and each user position has a physical display. Some user positions are

‘editors’ which have the capability of manipulating data and pages.

CONTEXT DISPLAY_CONTEXT
SETS EDD_id ; EDD_type ; EDD_display
CONSTANTS EDDs , EDIT , EDITORS
PROPERTIES

EDIT € EDD_type N\

EDDs € EDD_id — EDD_type N

EDITORS C EDD_id A

EDITORS = EDDs ~' [{ EDIT }]
END

Merge Context. By merging the previous three contexts (via a SEES clause),
we can declare a function that can determine the actual display, given the appro-
priate information. In declaring this function, we use an unfamiliar syntax. In [2],
we have proposed the introduction of a record-like structure to Event-B. This pro-
posal does not require any changes to the semantics of Event-B, but it gives us a
succinct way to define structured data. The declaration of Disp_interface in the
SETS clause of the following context is an example of our proposed syntax

CONTEXT MERGE_CONTEXT
SEES META_DATA , DISPLAY_CONTEXT , PAGE_CONTEXT
SETS Disp_interface :: data : Attr_id — Attr_value,
contents : Page_contents
CONSTANTS disp_values
PROPERTIES disp_values € Disp_interface — EDD_display

The type Disp_interface is a record comprising two fields data (of type Attr_id —
Attr_value) and contents (of type Page_contents). This record type defines the
interface to the function disp_values. The intention is that, given a database of
values and the device-independent representation of a display, disp_values cal-
culates what is actually displayed (i.e. it returns a value of type EDD_display).
The benefit of using a record type is that it can be refined by adding extra fields
(see [2] for more details). This is necessary because the actual display is dependent
on parameters that are introduced during the refinement stages. The extension of
record types through refinement allows us to modify the interface accordingly (an
example of this is given in Section 5).

As in the original CDIS specification, the fact that we represent disp_values
so abstractly does not undermine the value of the specification. The dynamic part
of the specification (shown below) focuses on updating attributes and pages, and
defines the pages selected at user positions.

4.2 The Abstract Model: A Generic Display

The variable database represents the stored data, and page_selections records the
page number currently selected at a user position. Note that this is a partial
function which means that user positions are not obliged to display a page. The
variable pages is a partial function mapping page numbers and page contents. The
variable private_pages holds the page contents of a page prior to release. This is

intended to model an editor’s ability to construct new pages before they are made
public. Finally, tr¢ models the ‘timed release queue’ that enables a new version of
a page to be stored until a given time is reached, whereupon it is made public.

MACHINE ABS_DISPLAY
SEES
META_DATA, DISPLAY_CONTEXT, PAGE_CONTEXT, MERGE_CONTEXT
VARIABLES database , pages , page_selections , private_pages , trq
DEFINITIONS
inv =
database : Attr_id — Attr_value N
pages : Page_number - Page_contents A
page_selections : EDD_id + Page_number A
private_pages : Page_number - Page_contents A
trq : Page_number - Page_contents N
ran(page_selections) C dom(pages)
INVARIANT inv
INITIALISATION database , pages , page_selections , private_pages , trq : (inv)

Note that, in addition to type information, the invariant insists that pages can be
selected only if they have contents. We keep the model simple by initialising the
system to be any state in which the invariant holds.

Almost all of the operations given below correspond to operations defined in
the original VDM specification. One exception is the VIEW _PAGE operation
that uses the disp_values function to output an actual display. This is a depar-
ture from the original VDM specification but, since outputs must be preserved
during refinement, it forces us to ensure that the appearance of actual displays is
preserved.

UPDATE_DATABASE models the automatic update of data via the stream
of data coming from the airports (see [7]), and SET_DATA _VALUE models the
manual update of values (by editors). DISPLAY _PAGE enables any user to se-
lect a new page to be displayed, and DISMISS_PAGE removes a page selection.
RELEASE_PAGE makes a private page public, and DELETE_PAGE enables
an editor to delete the contents of a page. In addition to the manual release of
pages (via RELEASE_PAGE), pages can be released automatically at specific
times. RELEASE_PAGES_FROM_TRQ models the timed release of pages.
However, at this stage no notion of time exists in the specification. Therefore, this
operation selects an arbitrary subset of the pages from trq to be released. This is
refined when we introduce a notion of time (as shown in Section 5.1). The opera-
tions use common B operators such as function overriding < , domain subtraction

<, and range subtraction B.
RELEASE_PAGE (no) =

UPDATE_DATABASE (ups) =
PRE PRE no € Page_number THEN
ups € Attr_id -+ Attr_value WHEN
THEN no € dom (private_pages)
database := database <+ ups THEN
pages (no) =

private_pages (no) ||

END ;
private_pages :=

1

SET_DATA_VALUE (e, ai, av
PRE { no } <4 private_pages
ei € EDD_id A END
ai € Attr_id N av € Attr_value END ;
THEN
WHEN ¢ei € EDITORS THEN RELEASE_PAGES_FROM_TRQ =
database (ai) = av ANY 5SS WHERE
END SS €
END ; Page_number - Page_contents A
SS C trq
DISPLAY_PAGE (ei,no) = THEN
PRE pages := pages <& SS ||
ei € EDD_id N\ no € Page_number trq := trq — SS
THEN END ;
WHEN no € dom (pages) THEN
page_selections (ei) := no DELETE_PAGE (ei,no) =
END PRE
END ; ei € EDD_id A
no € Page_number
DISMISS_PAGE (¢ei) = THEN
PRE ei € EDD_id THEN WHEN ¢ei € EDITORS THEN
WHEN pages := { no } 4 pages ||
et € dom (page_selections) private_pages :=
THEN { no } < private_pages ||
page_selections := trg :={ no } Qtrq ||
{ ei } 4 page_selections page_selections :=
END page_selections & { no }
END ; END
END ;

ed «—— VIEW_PAGE (¢i) =
PRE ei € EDD_id THEN
ANY di WHERE
ei € dom (page_selections) A
di € Disp_interface N
data (di) = database N

contents (di) =
pages (page_selections (et))

THEN
ed := disp_values (di)

END
END

5 Refinement

The abstract specification described in the previous section omitted many of the
features that characterise CDIS. However, this made it possible to give a broad
overview of the system, including its state variables and operations, within a few
pages. Now we use this specification as a basis for refinement in which the omitted
details are introduced. We introduce a notion of time so that we can add age
information to attributes, and add creation and release times to pages.

5.1 Adding Time

In terms of the CDIS subset, there are two main reasons for adding time: each
piece of airport data has an age which affects how it is displayed, and the version
of each page that is displayed is also time-dependent. In this refinement we shall
once again use our proposed syntax for record types [2].

Time Context. We begin by introducing a new context to the development. The
set Date_time represents all of the different points in time. We also include a total
ordering relation (leq) between these points.

CONTEXT TIME
SETS Date_time
CONSTANTS leq
PROPERTIES

leq € Date_time < Date_time N

V (a).(a : Date_time = (a, a) : leg) A

Y (a, b).(a : Date_time A b : Date_time =
(a, b) : leg A\ (b, a) : leg = a = b) A
(a, b) : leg V (b, a) : leq)) A
a, b, ¢).(a : Date_time A b : Date_time A c¢ : Date_time =
((a, b) : leg A (b, c) : leqg = (a,) : leq))

(
(
(
v (

Meta Data Context. In order to record the age of a piece of data as well as its
value, we refine the META_DATA context by defining a record type Attrs with
two fields value and last_update.

CONTEXT META_DATA1
SEES META_DATA , TIME
SETS Attrs :: value : Attr_value,

last_update : Date_time
END

Note that the range of value is of our original value type Attr_value. The gluing
invariant of the refined model will ensure that the values of the entries in the
refined database will match the corresponding entries in the original database (see
Section 5.1). The field last_update (of type Date_time) records the time at which
the value of the attribute was last updated.

This technique of ‘wrapping’ an abstract type in a refined type is a pattern
that occurs frequently in our approach. In general, if f € I — A is an abstract

collection formed from abstract type A and in a refinement we wrap A in a record
B ::a: A, ---, then abstract variable f is replaced by ¢ € I — B with gluing
invariant f = g;a.

Pages Context. We proceed by refining the pages context in a similar manner.
We declare a record type Page with two fields: page_contents holds the structure
of a page, and creation_date holds the time at which a page was created. Note
that this has nothing to do with the time at which the page is released. In order
to model the timed release queue faithfully, we must associate a release date with
every page on the queue. By using our proposed syntax for record refinement [2],
this is achieved by defining a subtype of Page (called Rel_page) whose elements
have an additional field called release_date.

CONTEXT PAGE_CONTEXT!
SEES TIME , PAGE_CONTEXT
SETS
Page :: page_contents : Page_contents,
creation_date : Date_time |
Rel_page SUBTYPES Page WITH release_date : Date_time
END

Only pages of type Rel_page occur on the timed release queue. We shall see how
the refinement of the operation RELEASE_PAGES_FROM_TRQ uses this
additional information.

Merge Context. Now that we have introduced a notion of time, the display func-
tion disp_values can be augmented so that the ages of the data in the database is
taken into account when they are displayed. We change the interface of the func-
tion by adding a new field to Disp_interface called time. The operator ‘EXTEND’
is similar to the ‘SUBTYPES’ operator, but it adds fields to all elements of the
record type.

CONTEXT MERGE_CONTEXT1
SEES
META_DATA , DISPLAY_CONTEXT , PAGE_CONTEXT ,
TIME , META_DATA1 , PAGE_CONTEXT1 , MERGE_CONTEXT
SETS EXTEND Disp_interface WITH time : Date_time
END

Whenever the function disp_values is called, the current time can be passed as
a parameter so that the ages of the relevant data can be determined. In CDIS,
the colour of a value when displayed indicates its age (although this detail is not
included at this level of abstraction).

The Refined Model: A Timed Display. The state variables and the opera-
tions of ABS_DISPLAY are refined to incorporate the timed context. Four of the
variables in the refinement replace those of the abstract model. The invariant gives
the relationship between these concrete variables and their abstract counterparts.
For example, the abstract variable database is refined by timed_database, and they

10

are related because the attribute values held in database can be retrieved from the
value fields in timed_database.

REFINEMENT ABS_DISPLAY1
REFINES
ABS_DISPLAY
SEES
META_DATA, DISPLAY_CONTEXT, PAGE_CONTEXT, MERGE_CONTEXT,
TIME , META_DATA1 , PAGE_CONTEXT1 , MERGE_CONTEXT1
VARIABLES
timed_database ,
page_selections
timed_pages ,
private_timed_pages ,
dated_trq ,
time_now
DEFINITIONS
invl =
timed_database € Attr_id — Attrs N
timed_pages € Page_number + Page N
private_timed_pages € Page_number - Page N
dated_trq € Page_number - Rel_Page N\
time_now € Date_time A
database = (timed_database § value) A
ran (page_selections) C dom (timed_pages) N\
pages = (timed_pages j page_contents) N\
private_pages = (private_timed_pages ; page_contents) A
trq = (dated_trq ; page_contents) A
VvV n.(n € dom (timed_pages) =
(creation_date (timed_pages (n)), time_now) € leg) A
Vn.(n € dom (private_timed_pages) =
(creation_date (private_timed_pages (n)), time_now) € leq) A
Vn.(né&dom (dated_trq) =
(creation_date (dated_trq (n)), time_now) € leq)
INVARIANT invl

Some of the operations affected by the refinement are shown below.

UPDATE_DATABASE (ups) =
PRE ups € Attr_id -+ Attr_value THEN
ANY jff WHERE
If € Attr_id +— Attrs A
dom (ff) = dom (ups) A
(ff 5 value) = ups A
(ff 5 last_update) = dom (ff) x { time_now }
THEN
timed_database := timed_database <+ [f
END
END

The parameter to the UPDATE_DATABASE operation maintains its type,

11

but the ANY clause is used to construct a new mapping from Attr_id to Attrs
all of whose last_update components are assigned to the current time (to reflect
the time of the update). This mapping is used to overwrite the appropriate en-
tities in the timed database. An interesting refinement occurs in the operation
RELEASE_PAGES_FROM_TRQ. Rather than selecting an arbitrary subset
of trq to release, time_now is used to select those elements whose release date is
earlier than the current time. The released pages (held in timed_pages) are up-
dated accordingly.

RELEASE_PAGES_FROM_TRQ =
LET SS BE SS =
dated_trq > { rp | rp € Rel_Page A (release_date (mp) , time_now) € leq }
IN
timed_pages := timed_pages <+ SS ||
dated_trq := dated_trq — SS
END

Next, we introduce a new operation, called CLOCK that increases the current
time by some unspecified amount. This operation models the passing of time.

CLOCK =

ANY time_next WHERE
time_next € Date_time N
(time_now , time_next) € leq N
time_next # time_now

THEN
time_now = time_next

END

5.2 Another Refinement: Highlighting Manual Interaction

Several other aspects can affect the way values are displayed. One requirement
of CDIS is that any manually updated values should be highlighted when they
are displayed. Hence, with each attribute value, we need to record whether it was
updated manually. Once again, we use our notion of record refinement to achieve
this. The Boolean value associated with the new field manually_updated indicates
whether the attribute’s latest recorded value (accessed via the value field) has been
input manually. In this case, we extend the record type Attrs as follows:

EXTEND Attrs WITH manually_updated : BOOL

If left unaltered, the existing B operations UPDATE_DATABASE and
SET_DATA_VALUE would update this field nondeterministically, but we can
refine them to assign meaningful values. In this case, the appropriate refinements
are:

12

UPDATE_DATABASE (ups) =
PRE ups € Attr_id +~ Attr_value THEN
ANY ff WHERE
If € Attr_id + Attrs A
dom (ff) = dom (ups) A
(ff 5 value) = ups A

(ff 5 last_update) = dom (ff) x { time_now } A
= (

{
(ff 5 manually_updated) = dom (ff) x { FALSE }
THEN
timed_database := timed_database <+ ff
END
END

o~

SET_DATA_VALUE (ei, ai, av) =
PRE ei € EDD_id A ai € Attr_id N av € Attr_value THEN
WHEN ei € EDITORS THEN
ANY aa WHERE
aa € Attrs N
value (aa) = av A
last_update (aa) = time_now A
manually_updated (aa) = TRUE
THEN
timed_database (ai) := aa
END
END
END

Since the operation UPDATE_DATABASE models the automatic update of
values, all manually_updated fields are set to FALSE; SET_DATA _VALUE,
which models a manual update, sets the manually_updated field to TRUE. Prov-
ing consistency of this form of superposition refinement is completely automatic.

6 Introducing Concrete Values

The ultimate aim of the refinement process is to construct a specification in which
constants and variables are associated with concrete values and operations are
defined to maintain the state accordingly. As part of this process, we have to sepa-
rate an abstract type into subtypes. In the case of CDIS, this technique is used to
introduce concrete attribute identifiers and value types into the specification. For
example, the original VDM specification defines Attr_value as a union type made
up of value types such as Wind_direction and Wind_speed. Although union types
do not exist in B, we employ the separation technique to achieve the same goal.
We define a new context in which Wind_direction and Wind_speed are defined
subtypes of Attr_value®.

5 Even though Attr_value is not a record type, deferred sets such as this can be viewed
as ‘fieldless records’. By subtyping deferred sets, we can incorporate structure.

13

CONTEXT META_DATAn

SEES META_DATA , META_DATAL, ---

SETS
Wind_speed SUBTYPES Attr_value WITH speed : 0..99
Wind_direction SUBTYPES Attr_value WITH dir : 0..359 ;

END

Note that in this example we have refined Attr_value in two different ways. This
is a reasonable thing to do (as discussed in [2]). The subtype Wind_speed has a
single field speed which ranges from values 0 to 99. Similarly, Wind_direction has
a single field dir which ranges from 0 to 359.

This is just one of the many refinements needed to introduce concrete types.
A further refinement introduces AV_WIND_SPEED, MIN_WIND_SPEED and
MAX_WIND_SPEED as concrete attribute identifiers (since they appear in the
core specification). From these refinements, it is necessary to specialise the update
operations to ensure that only values of the correct type update the database. As
stated in Section 3, abstract operations can be refined into one or more concrete
operations. Previously, SET_DATA_VALUE updated any attribute identifier
with any attribute value. Now it must be refined to a collection of operations, each
referring to specific attribute identifiers and attribute values.

7 Error Handling

With every operation that assigns a meaningful value to a concrete attribute iden-
tifier (such as SET_WIND_SPEED_VALUE above), we must also say what
happens when an attempt is made to assign an out-of-range value. This situation
gives us the opportunity to handle potential errors in the update of CDIS ex-
plicitly. We define additional operations to handle updates with such out-of-range
values. This approach in Event-B corresponds to the built-in error handling capa-
bilities of VVSL. As an example, consider the following operation fragment (which
is another refinement of the SET_DATA_VALUE operation) that attempts to
assign an out-of-range wind speed.

SET_WIND_SPEED_ERROR (¢i, ai, av) =
PRE ¢i € EDD_id N ai € Attr_id N av € Attr_value THEN
WHERE
ei € EDITORS N
ai € { AV_.WIND_SPEED, MIN_WIND_SPEED, MAX_WIND_SPEED } A
av & Wind_speed
THEN

This operation only considers values outside the subtype Wind_speed. The body
of the operation should handle this anomaly in an appropriate way (such as by
ignoring the update and issuing an error message).

14

8 Conclusion

This paper represents a methodological contribution to the construction of large
formal specifications. Our experience shows that incremental construction through
iterative refinement makes it feasible to apply tool-based formal analysis to large
specifications. This increases our confidence in the specification greatly and pro-
vides the basis for tool-based formal development of a design and implementation.
We also believe that this approach makes a large formal specification more ac-
cessible and comprehensible both to those constructing the specification and to
others.

A key factor in our success was the construction of good initial abstractions
capturing the essentials of the system concerned. Such a skill is not easily trans-
ferable of course, but by providing good examples, such as the one here, we can
help others understand how to construct good abstractions. Beside this, we have
provided a number of concrete techniques which are transferable to the construc-
tion of other large formal specifications. In particular we made strong use of the
developmental pattern of extending records to add additional information to in-
formation structures and to extend function signatures in in refinement steps. We
identified and made use of a related pattern of wrapping abstract types within
record structures in a refinement step, providing a standard pattern for a gluing
invariant. We also made use of record subtyping and record extension to differ-
entiate structures in refinements and to add attributes to abstract deferred sets.
These techniques allow us to avoid unnecessary clutter at the more abstract levels.
The techniques are easily supported by existing B provers and our experience is
that the associated proof obligations are mostly automatically discharged.

Acknowledgements

The authors thank Anthony Hall, Cliff Jones and Joey Coleman for their valuable
input into this research.

References

1. J. -R. Abrial: The B Book: Assigning Programs to Meanings, Cambridge University
Press (1996).

2. N. Evans and M. Butler: Proposal for Records in B, accepted for publication, FMO06.

3. A. Hall: Using Formal Methods to Develop an ATC Information System, Software, Vol.
13, No. 2, IEEE, March 1996.

4. C. Jones: Systematic Software Development using VDM, Prentice Hall, 1990.

5. C. A. Middleburg: VVSL: A Language for Structured VDM Specifications, Formal
Aspects of Computing, Vol. 1, No. 1, Springer, 1989.

6. S. Pfleeger and L Hatton: Investigating the Influence of Formal Methods, Computer,
Vol. 30, No. 2, IEEE, February 1997.

7. RODIN Deliverable D4: Tracable Requirements Document for Case Studies,
http://rodin.cs.ncl.ac.uk/deliverables/D4.pdf, 2005.

15

