

Implicit Feature Selection with the Value Difference Metric

Terry R. Payne¹ and Peter Edwards²

Abstract. The nearest neighbour paradigm provides an effective approach to supervised learning. However, it is especially susceptible to the presence of irrelevant attributes. Whilst many approaches have been proposed that select only the most relevant attributes within a data set, these approaches involve pre-processing the data in some way, and can often be computationally complex. The Value Difference Metric (VDM) is a symbolic distance metric used by a number of different nearest neighbour learning algorithms. This paper demonstrates how the VDM can be used to reduce the impact of irrelevant attributes on classification accuracy without the need for pre-processing the data. We illustrate how this metric uses simple probabilistic techniques to weight features in the instance space, and then apply this weighting technique to an alternative symbolic distance metric. The resulting distance metrics are compared in terms of classification accuracy, on a number of real-world and artificial data sets.

1 INTRODUCTION

The task of a supervised learning algorithm is to utilise pre-classified training instances to induce a classification hypothesis that can subsequently be used to classify new instances. These instances are normally presented as fixed length feature vectors, where each element in the vector corresponds to some property or attribute of the data. The task of determining which of these attributes are relevant to the classification task is one of the central problems in machine learning. Ideally, the learning algorithm would be presented with only relevant attributes, and thus any problems associated with irrelevant attributes would be eliminated. However, as data sets become more complex, the number of irrelevant attributes inherent in the data increases, and thus can have a detrimental effect on the accuracy of the classification algorithm. Thus, it is important to identify such attributes automatically and prevent them from influencing the classification process.

One of the most common learning paradigms in machine learning and pattern analysis is the Nearest Neighbour (NN) paradigm. This approach to supervised learning has been studied extensively [6], and compared with a variety of other learning approaches, such as Bayesian techniques [14], artificial neural networks [12] and rule induction algorithms [12], and has also been analysed theoretically [10]. Variants on the nearest neighbour theme have also been proposed that represent the induced hypothesis as hyper-rectangles [15], as a set of prototype points or selected instances [2, 4], or as feature projections [3].

Nearest Neighbour learning algorithms determine the class label of an unclassified instance by comparing it to a set of stored, classified instances, and identifying the class label of the nearest neighbour in this set. As the distance between the unclassified instance and each stored instance is determined from the values of each attribute, this approach is susceptible to the presence of irrelevant attributes. As a result, the accuracy of NN algorithms will generally degrade if irrelevant attributes exist within the data set.

This paper investigates the irrelevant attribute problem, and briefly examines a number of existing approaches used to overcome it. The role of the distance metric is studied and we show how one specific symbolic distance metric, the Value Difference Metric (VDM) overcomes the irrelevant attribute problem without the need for additional processing.

In the next section, a brief introduction to Nearest Neighbour learning is presented, and the VDM is described. In the third section, a variety of attribute selection approaches are presented. We show how the VDM can reduce the effect of irrelevance in the fourth section, and evaluate this property empirically. The paper concludes in the final section.

2 NEAREST NEIGHBOUR LEARNING AND THE VALUE DIFFERENCE METRIC

The nearest neighbour (or instance-based) learning paradigm is based on the assumption that instances in close proximity to each other within an instance space will have similar posterior class probabilities. In other words, if two instances are very similar, i.e. they are close to each other within the instance space, then they will share the same class label. Hence, if the class of a new instance is unknown, it can be predicted by determining the class of its nearest neighbour within this instance space.

To determine the proximity of two instances, a distance metric is required. Although several distance metrics have been proposed [19], the most commonly used metrics are suitable only for either symbolic or numeric attributes. These include the *Euclidean* and *Manhattan* distance metrics for numeric attributes, and the *Overlap* distance metric for symbolic attributes. These metrics calculate the distance between two instances by determining the difference between the values for each attribute (2), and combining these differences to generate an overall distance value (1)³:

³ The value of r in (1) varies for the *Minkowskian* metric, but is equal to 1 for the *Overlap* metric.

¹ Department of Computing Science, King's College, University of Aberdeen, Aberdeen, Scotland, AB24 3UE.

² Department of Computing Science, King's College, University of Aberdeen, Aberdeen, Scotland, AB24 3UE.

$$D(i, j) = \left[\sum_{a=0}^A \delta(i_a, j_a) \right]^{\frac{1}{r}} \quad (1)$$

$$\delta(i_a, j_a) = \begin{cases} 0 & \text{if } i_a = j_a (\text{Overlap}) \\ 1 & \text{if } i_a \neq j_a (\text{Overlap}) \\ |i_a - j_a|^r & (\text{Minkowskian}) \end{cases} \quad (2)$$

Here, i and j refer to the two instances, and a refers to one of the A attributes. The distance metrics described above differ in the approach used to compare the two values i_a and j_a in (2). The *Overlap* metric simply compares the two symbolic values; if they are the same then it returns a value of zero, otherwise a value of one is returned. The *Euclidean* and *Manhattan* distance metrics are both special cases of the *Minkowskian* distance metric, and differ in the value used for r , where $r = 2$ for the *Euclidean* distance metric, and $r = 1$ for the *Manhattan* distance metric⁴.

The *Value Difference Metric* (VDM) was first proposed as an alternative approach for determination of the distance between two symbolic values [17]. It differs from other distance metrics in that the distance between two attribute values is determined by comparing the class conditional probability distributions for the values i_a and j_a for each attribute a (4).

$$vdm(i, j) = \sum_{a=0}^A \delta(i_a, j_a) \cdot \omega(i_a) \quad (3)$$

$$\delta(i_a, j_a) = \sum_{c \in C} |P(c|i_a) - P(c|j_a)|^2 \quad (4)$$

$$\omega(i_a) = \left[\sum_{c \in C} P(c|i_a)^2 \right]^{\frac{1}{2}} \quad (5)$$

Here, C is the set of all class labels present in the data set, and $P(c|i_a)$ is the class conditional probability of i_a , i.e. the probability of the value i_a occurring in the data set for attribute a in instances of class c . This probability is determined directly from the training data by counting the number of instances containing the value i_a for attribute a , and determining the proportion that also have the class label c , i.e.:

$$P(c|i_a) = \frac{|\text{instances containing } i_a \wedge \text{class} = c|}{|\text{instances containing } i_a|}$$

	$i_a = 'X'$	$i_a = 'Y'$	$i_a = 'Z'$
$P(c_1 i_a)$	0.7	0.4	0.6
$P(c_2 i_a)$	0.0	0.5	0.1
$P(c_3 i_a)$	0.3	0.1	0.3

Table 1. Class Conditional Probability Values for the symbols in Figure 1.

This process can be illustrated by means of an example. The top three charts in Figure 1 represent the discrete class distributions of three different symbolic values, 'X', 'Y' and

⁴ A comparison of these two metrics can be found in [16]

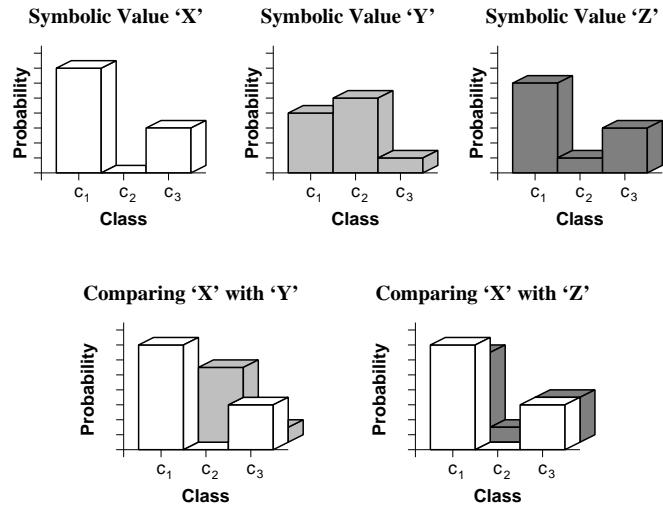


Figure 1. Comparing symbolic values with the Value Difference Metric.

'Z'. Each distribution consists of three class conditional probabilities, represented by the vertical bars. The lower charts illustrate how pairs of symbolic values are compared. For each class, the difference (4) in class conditional probability is determined (i.e. the difference in height between the vertical bars). These differences are then combined (3) and result in a distance measure for the two symbolic values of attribute a . Hence, to compute the distance between the two symbols 'X' and 'Y', the difference in class conditional probabilities is found for each class. For this example, the differences are 0.3, -0.5 and 0.2 for classes c_1 , c_2 and c_3 respectively (the class conditional values for these symbols are listed in Table 1). Hence the final distance between the two symbols is the sum of the squares of these distances = 0.38, i.e.

$$\delta('X', 'Y') = 0.3^2 + (-0.5)^2 + 0.2^2 = 0.38$$

The weight component of the VDM (5) provides some indication of how well an attribute value discriminates between different class labels. The weight can vary between a minimum which is dependent on the number of classes present in the data set, and 1 which represents an ideal discriminator, i.e. an attribute value which only appears in one class. The minimum represents a uniform class distribution where an attribute value appears with equal probability in instances of all classes, and can be calculated as follows (6):

$$\omega(u) = |C|^{-0.5} \quad (6)$$

where $\omega(u)$ is this minimum value (i.e. the weight of an attribute value with a uniform class distribution), and C is the set of all class labels that appear in the data set.

The weight is used to control the influence of the attribute distance for each training instance when determining the final nearest neighbour. As the range of values of $\delta(i_a, j_a)$ will vary between zero and one, the weight can be used to restrict this range, i.e. the range of $\delta(i_a, j_a) \cdot \omega(i_a)$ will vary between zero and $\omega(i_a)$. A large attribute distance will have a greater

effect on the value of $vdm(i, j)$ than a smaller one. Thus if a small weight is used (i.e. the value present in the test instance is irrelevant), then the resulting attribute distance will also be small and have little impact on the choice of nearest neighbour.

Many Nearest Neighbour learning algorithms employ weights to modify the effect a specific component has in the resulting classification process [1, 8, 15, 18]. For example, PEBLS [5] and EACH [15] assign a weight to each of the instances (or hyper-rectangles in the case of EACH) and modify this weight according to whether the instances result in correct or incorrect class predictions. The weight is used to measure the *reliability* of an instance, and hence reduce the detrimental effects of noisy instances. The VDM utilises value weights (5) to determine how well a specific value for a given attribute can discriminate between class labels. Other systems utilise weights to augment (or diminish) the effects of relevant (or irrelevant) attributes [1, 15].

3 IRRELEVANT ATTRIBUTES AND FEATURE SELECTION

An attribute is irrelevant if it contributes nothing to the target hypothesis, i.e. it makes no meaningful contribution towards the classification task. At best, such attributes increase the dimensionality of the data set, and thus increase the space required to store the data set, and the computational cost of inducing a hypothesis. However, the inclusion of such attributes often also results in a degradation in classification accuracy.

Nearest Neighbour algorithms are especially susceptible to the inclusion of irrelevant attributes in the data set, and several studies have shown that the classification accuracy degrades as the number of irrelevant attributes is increased [1, 10, 18]. This degradation is due to the fact that irrelevant attributes violate the underlying assumption made by the nearest neighbour paradigm. As the location of the instance is defined by its attributes, this assumption relies on the attributes being relevant to the target hypothesis.

Attribute selection is the process of identifying a small subset of relevant attributes from the attributes present in the data set. The resulting data set will generally contain fewer irrelevant attributes, and thus the performance of the learning algorithm will increase in terms of either complexity of the target hypothesis, or in terms of accuracy. A number of different techniques have been studied [13], and can be grouped into two broad categories: those that employ the *filter* model, where the selection technique is independent of the final learning algorithm; and those that employ the *wrapper* model, where the final learning algorithm is embedded within the selection mechanism. The wrapper model was proposed as a means of using the bias inherent in the learning algorithm, to select the attribute subset. It has been argued that this model is superior to the filter model, which uses different biases in the attribute selection and the learning stages [7]. Both models perform a search within a space of attribute subsets to determine the optimal (or sub-optimal) subset for the classification task.

In contrast to these models, a number of nearest neighbour techniques utilise weights to identify irrelevant attributes. Attribute weights are determined by evaluating the NN algo-

rithm on the training data. A vector of attribute weights is generated, which initially gives each attribute an equal weight. The leave-one out cross validation technique [9] is then used to predict the class label of each of the instances in the data set. As each instance is evaluated, the weights are adjusted according to whether or not the classification is correct. An example of a weight update function is given in (7), where ω_a is the weight of the attribute a ; i_a and j_a are the values of the attribute a in instances i and j ; and μ is an incremental value (such as 0.02) which is positive when a correct classification is predicted, and negative when an incorrect classification is made.

$$\omega_a = \begin{cases} \omega_a(1 + \mu) & \text{if } i_a = j_a \\ \omega_a(1 - \mu) & \text{if } i_a \neq j_a \end{cases} \quad (7)$$

The intuition behind this model is that irrelevant attributes will contribute very little overall to the classification task. The function used to update the weights is designed to reward those attributes if they are responsible for making correct predictions, and penalise them if they are responsible for incorrect ones. Thus, the contribution of irrelevant attributes to the classification task falls as the contribution of other attributes rises. The resulting weights can be used to determine which attributes should be retained in the attribute subset, and which attributes should be discarded [8]. An alternative approach is to use the weights to control the influence that each attribute has on the distance between two instances. Those attributes which are awarded low weights will have a diminished effect on the resulting class predictions.

4 EVALUATION OF THE VDM FOR IMPLICIT FEATURE SELECTION

The Value Difference Metric differs from many other distance metrics in that the location of an instance within the instance space is not defined directly by the values of its attributes, but by the class conditional distributions of these values. The distributions vary from being skewed, where an attribute value appears in instances of only one class, to a uniform distribution, where the attribute value appears equally in instances of each class. In other words, attribute values with skewed distributions may be highly relevant to the target concept, and attribute values with a uniform distribution may be irrelevant. However, these distributions assume that each attribute value is independent of any other value for any of the attributes. The value weight component $\omega(i_a)$ provides some indication of the skew of the class distribution for an attribute value, and can be used to control the influence each attribute distance has on the final distance $vdm(i, j)$.

The inclusion of a weight within the VDM has been questioned by a number of studies. PEBLS [5] is a NN learning algorithm which uses the Modified Value Difference Metric (MVDM). This distance metric is a variant of the VDM which omits $\omega(i_a)$, and it has been argued that the distance between two attribute values should be symmetrical, i.e. $vdm(i, j) = vdm(j, i)$. A recent study compared MVDM with the VDM, but concluded that there was no difference in the classification accuracies of either metric over several data sets [18].

We have investigated the utility of $\omega(i_a)$, both as a component of the VDM, and when combined with another distance metric. Several symbolic data sets from the UCI Machine Learning Repository [11] were used to evaluate the performance of five distance metrics: three of which were based on class conditional probabilities (VDM, MVDM & OMVW); and two which were used for baseline comparisons with other studies. The MVDM differs from the metric given in (3) in that the term $\omega(i_a)$ is omitted. In contrast, the OMVW utilises the value weight (5), but instead of using the attribute distance defined in (4), the attribute distance for the Overlap metric (2) is used.

The weighted Overlap metric (WOM) and the simple Overlap metric (OM) were included to provide a comparison of the VDM, MVDM and OMVW with other distance metrics. The Weighted Overlap metric (WOM) is similar to the distance metrics used by weighted NN algorithms, such as IB4 [1] and EACH [15]. A set of attribute weights are generated by evaluating the training data and updating the attribute weights ω_a using the weight function given in (7). The WOM and OMVW differ in that the weights used by the OMVW are probabilistic and can be rapidly determined from the training set, whereas the weights in the WOM are induced, and thus require a separate training stage.

Three hypotheses were investigated:

H₁ There is no difference between the performance of MVDM and VDM, i.e. $\omega(i_a)$ has no significant effect on the performance of the VDM.

H₂ The value weight component $\omega(i_a)$ of the VDM can be effectively utilised by the Overlap metric to improve performance in terms of accuracy. The performance of the OMVW should be comparable to that of the WOM, and both metrics should achieve better results (in general) than the OM.

H₃ The use of class conditional probabilities within the distance metric should improve the classification accuracy by reducing the effects of irrelevant attributes, i.e. the performance of the VDM, MVDM and OMVW should not degrade in the presence of irrelevant attributes.

	OM	WOM	OMVW	MVDM	VDM
Breast-cancer	70.73	66.44	71.46	67.51	67.16
Lung-cancer	40.00	40.00	46.67	68.33	65.00
Lymphography	81.24	82.57	83.24	83.24	83.19
Primary-tumor	32.05	32.07	33.54	30.83	31.15
Promoters	77.00	82.73	79.73	89.36	87.36
Tic-tac-toe	80.90	82.88	72.75	90.71	90.71
Votes	92.44	94.73	93.80	94.51	94.97
Zoo	96.09	95.09	95.09	97.09	97.09

Table 2. 10-fold cross validated classification accuracies.

To evaluate the performance of each of the distance metrics, a 10-fold cross validation [9] was performed on a number of different UCI data sets. The results, given in Table 2, list the classification accuracies achieved by each metric for each of the data sets. Results presented in bold were found to be significantly higher ($p=0.05$) than those achieved by the Overlap

metric (OM), whereas those in italics were significantly lower. A one-tailed paired t-test was used to determine this significance. Figure 2 plots the difference in the results obtained by the OM and the other distance metrics.

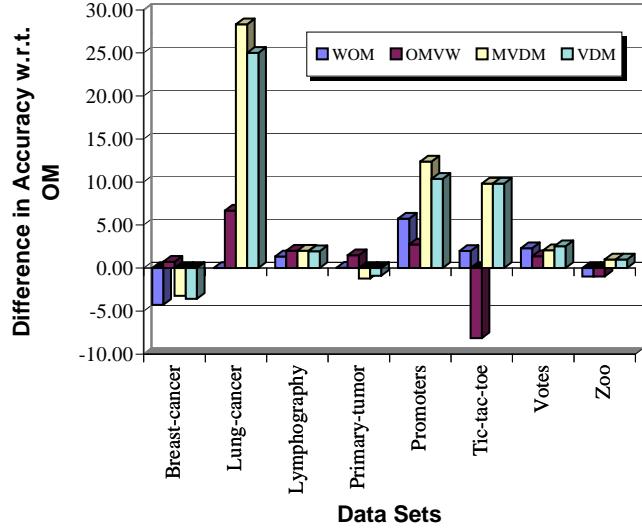


Figure 2. Comparison of the 10 fold cross validated classification accuracies of the distance metrics relative to the Overlap metric (OM).

There was no significant difference between the performance of the VDM and MVDM for any of the data sets, which appears to support H₁. The VDM succeeded in significantly improving the classification accuracy for four data sets ($p=0.05$), and succeeded in raising the accuracy (though not significantly) for two other data sets. The MVDM achieved similar success, except for the *Votes* data set, where the increase in accuracy became significant when $p=0.054$. The results for both distance metrics were significantly lower than the OM for only one data set (*Breast-Cancer*). These results demonstrate that the VDM (and MVDM) can achieve better classification accuracies than the Overlap metric. The accuracy of the MVDM was significantly higher than the WOM for three data sets (*Lung-cancer*, *Promoters* and *Tic-tac-toe*).

The OMVW also succeeded in raising the classification accuracy for six of the data sets, although the increase was only significant for three. A significant increase in accuracy was also achieved by the WOM for two of the same three data sets. As the WOM has previously been demonstrated to be robust in the presence of irrelevant attributes, and given that a similar increase in accuracy can be observed for the OMVW, this suggests that the value weight $\omega(i_a)$ can be used to limit the impact of irrelevant attributes on the classification accuracy. This appears to support H₂.

Although the distance metrics based on the VDM performed well with the data sets, a further investigation was required to determine if the performance of these metrics would degrade in the presence of irrelevant attributes. For this reason, the metrics were evaluated on the 24-attribute LED display problem. This problem contains seven binary valued attributes (corresponding to the different segments

within an LED seven segment numeric display), and an additional seventeen irrelevant attributes [2]. If this number of additional attributes is varied, it is possible to observe the effect of irrelevant attributes on different learning algorithms. Data sets were constructed containing 200 randomly generated instances with 10% noise (i.e. each attribute value had a 10% chance of being inverted). The number of irrelevant attributes was varied from zero to seventeen, and each test was repeated ten times. The results are plotted in Figure 3.

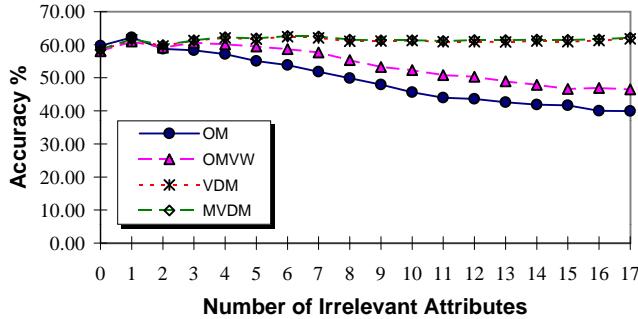


Figure 3. LED artificial results.

As the number of irrelevant attributes increased, the performance of the Overlap metric (OM) fell from 59.7% to 40.0%. There was a similar degradation in the performance of the OMVW, although this degradation was not as acute as the OM, and the classification accuracy of the OMVW was significantly higher than that of the OM when three or more irrelevant attributes were present. The VDM and MVDM showed no signs of degradation as the number of irrelevant attributes increased. These results support both H_2 and H_3 , though it would appear that $\omega(i_a)$ succeeds only in reducing the impact of the irrelevant attributes, not eliminating their effects.

5 CONCLUSIONS

The Value Difference Metric is an alternative symbolic distance metric which can be successfully applied to classification problems containing irrelevant attributes. The distance metric utilises a set of value weights, which can be determined 'on the fly' from the training data. These value weights modify the distance between attribute values such that the distances between class discriminant values are augmented, but otherwise diminished. The exclusion of these value weights appears to have no effect on the performance of the VDM. However, if combined with the Overlap metric, the value weights improve the performance of the distance metric (in terms of accuracy) on data containing irrelevant attributes. This increase in performance is comparable to that achieved when attribute weights are induced, and utilised by the Overlap metric. However, the value weights have the advantage that no training is required.

ACKNOWLEDGEMENTS

T.R. Payne acknowledges financial support provided by the UK Engineering & Physical Sciences Research Council (EPSRC).

REFERENCES

- [1] D.W. Aha, 'Tolerating Noisy, Irrelevant and Novel Attributes in Instance-Based Learning Algorithms', *International Journal of Man-Machine Studies*, **36**, 267–287, (1992).
- [2] D.W. Aha, D. Kibler, and M.K. Albert, 'Instance-Based Learning Algorithms', *Machine Learning*, **6**, 37–66, (1991).
- [3] A. Akkuş and H.A. Güvenir, 'K Nearest Neighbor Classification on Feature Projections', in *Proceedings of the 13th International Conference on Machine Learning*, pp. 12–19. San Francisco, CA:Morgan Kaufmann, (1996).
- [4] Y. Biberman, 'The Role of Prototypicality in Exemplar-Based Learning', in *Proceedings of the 8th European Conference on Machine Learning*, pp. 77–91. Berlin, Germany:Springer-Verlag, (1995).
- [5] S. Cost and S. Salzberg, 'A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features', *Machine Learning*, **10**, 57–78, (1993).
- [6] B. V. Dasarathy, *Nearest Neighbor(NN) Norms: NN Pattern Classification Techniques*, Los Alamitos, California:IEEE Computer Society Press, 1991.
- [7] G. John, R. Kohavi, and K. Pfleger, 'Irrelevant Features and the Subset Selection Problem', in *Proceedings of the 11th International Conference on Machine Learning*, pp. 121–129. San Francisco, CA:Morgan Kaufmann, (1994).
- [8] K. Kira and L.A. Rendell, 'The Feature Selection Problem: Traditional Methods and a New Algorithm', in *Proceedings of the 10th National Conference on Artificial Intelligence (AAAI-92)*, pp. 129–134. MIT Press, (1992).
- [9] R. Kohavi, 'A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection', in *Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 1137–1145. San Mateo, CA:Morgan Kaufmann, (1995).
- [10] P. Langley and W. Iba, 'Average-case Analysis of a Nearest Neighbor Algorithm', in *Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 889–894. San Mateo, CA:Morgan Kaufmann, (1993).
- [11] C.J. Merz and P.M. Murphy. UCI repository of machine learning databases, 1996.
- [12] *Machine Learning, Neural and Statistical Classification*, eds., D. Michie, D.J. Spiegelhalter, and C.C. Taylor, UK:Ellis Horwood Ltd., 1994.
- [13] T.R. Payne and P. Edwards, 'A Survey of Feature Selection Methods'. Unpublished Draft, 1998.
- [14] J. Rachlin, S. Kasif, S. Salzberg, and D.W. Aha, 'Towards a Better Understanding of Memory-Based Reasoning Systems', in *Proceedings of the 11th International Machine Learning Conference (ML94)*, pp. 242–250. San Francisco, CA:Morgan Kaufmann, (1994).
- [15] S. Salzberg, 'A Nearest Hyperrectangle Learning Method', *Machine Learning*, **6**, 251–276, (1991).
- [16] S. Salzberg, 'Distance Metrics for Instance-Based Learning', in *ISMIS'91 6th International Symposium, Methodologies for Intelligent Systems*, pp. 399–408, (1991).
- [17] C. Stanfill and D. Waltz, 'Toward Memory-Based Reasoning', *Communications of the ACM*, **29**(12), 1213–1228, (1986).
- [18] D. Wettschereck, D.W. Aha, and T. Mohri, 'A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms', *Artificial Intelligence Review*, **11**(1–5), 273–314, (1997). Special Issue on Lazy Learning.
- [19] D.R. Wilson and T.R. Martinez, 'Improved Heterogeneous Distance Functions', *Journal of Artificial Intelligence Research*, **6**, 1–34, (1997).