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Implicit Feature Selection with the Value
Difference Metric

Terry R. Payne' and Peter Edwards?

Abstract. The nearest neighbour paradigm provides an
effective approach to supervised learning. However, it is es-
pecially susceptible to the presence of irrelevant attributes.
Whilst many approaches have been proposed that select only
the most relevant attributes within a data set, these ap-
proaches involve pre-processing the data in some way, and
can often be computationally complex. The Value Difference
Metric (VDM) is a symbolic distance metric used by a number
of different nearest neighbour learning algorithms. This paper
demonstrates how the VDM can be used to reduce the impact
of irrelevant attributes on classification accuracy without the
need for pre-processing the data. We illustrate how this metric
uses simple probabilistic techniques to weight features in the
instance space, and then apply this weighting technique to an
alternative symbolic distance metric. The resulting distance
metrics are compared in terms of classification accuracy, on a
number of real-world and artificial data sets.

1 INTRODUCTION

The task of a supervised learning algorithm is to utilise pre-
classified training instances to induce a classification hypoth-
esis that can subsequently be used to classify new instances.
These instances are normally presented as fixed length fea-
ture vectors, where each element in the vector corresponds
to some property or attribute of the data. The task of deter-
mining which of these attributes are relevant to the classifica-
tion task is one of the central problems in machine learning.
Ideally, the learning algorithm would be presented with only
relevant attributes, and thus any problems associated with ir-
relevant attributes would be eliminated. However, as data sets
become more complex, the number of irrelevant attributes in-
herent in the data increases, and thus can have a detrimental
effect on the accuracy of the classification algorithm. Thus,
it is important to identify such attributes automatically and
prevent them from influencing the classification process.

One of the most common learning paradigms in machine
learning and pattern analysis is the Nearest Neighbour (NN)
paradigm. This approach to supervised learning has been
studied extensively [6], and compared with a variety of other
learning approaches, such as Bayesian techniques [14], artifi-
cial neural networks [12] and rule induction algorithms [12],
and has also been analysed theoretically [10]. Variants on the
nearest neighbour theme have also been proposed that repre-
sent the induced hypothesis as hyper-rectangles [15], as a set
of prototype points or selected instances [2, 4], or as feature
projections [3].
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Nearest Neighbour learning algorithms determine the class
label of an unclassified instance by comparing it to a set of
stored, classified instances, and identifying the class label of
the nearest neighbour in this set. As the distance between the
unclassified instance and each stored instance is determined
from the values of each attribute, this approach is suscepti-
ble to the presence of irrelevant attributes. As a result, the
accuracy of NN algorithms will generally degrade if irrelevant
attributes exist within the data set.

This paper investigates the irrelevant attribute problem,
and briefly examines a number of existing approaches used to
overcome it. The role of the distance metric is studied and
we show how one specific symbolic distance metric, the Value
Difference Metric (VDM) overcomes the irrelevant attribute
problem without the need for additional processing.

In the next section, a brief introduction to Nearest Neigh-
bour learning is presented, and the VDM is described. In the
third section, a variety of attribute selection approaches are
presented. We show how the VDM can reduce the effect of
irrelevance in the fourth section, and evaluate this property
empirically. The paper concludes in the final section.

2 NEAREST NEIGHBOUR LEARNING
AND THE VALUE DIFFERENCE
METRIC

The nearest neighbour (or instance-based) learning paradigm
is based on the assumption that instances in close proximity to
each other within an instance space will have similar posterior
class probabilities. In other words, if two instances are very
similar, i.e. they are close to each other within the instance
space, then they will share the same class label. Hence, if
the class of a new instance is unknown, it can be predicted
by determining the class of its nearest neighbour within this
instance space.

To determine the proximity of two instances, a distance
metric is required. Although several distance metrics have
been proposed [19], the most commonly used metrics are suit-
able only for either symbolic or numeric attributes. These in-
clude the Euclidean and Manhattan distance metrics for nu-
meric attributes, and the Overlap distance metric for symbolic
attributes. These metrics calculate the distance between two
instances by determining the difference between the values for
each attribute (2), and combining these differences to gener-
ate an overall distance value (1):

3 The value of r in (1) varies for the Minkowskian metric, but is
equal to 1 for the Overlap metric.
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Here, ¢ and j refer to the two instances, and a refers to one
of the A attributes. The distance metrics described above dif-
fer in the approach used to compare the two values i, and j,
in (2). The Overlap metric simply compares the two symbolic
values; if they are the same then it returns a value of zero, oth-
erwise a value of one is returned. The Fuclidean and Manhat-
tan distance metrics are both special cases of the Minkowskian
distance metric, and differ in the value used for r, where r = 2
for the Fuclidean distance metric, and r = 1 for the Manhat-
tan distance metric?.

The Value Difference Metric (VDM) was first proposed as
an alternative approach for determination of the distance be-
tween two symbolic values [17]. It differs from other distance
metrics in that the distance between two attribute values is
determined by comparing the class conditional probability
distributions for the values i, and j, for each attribute a (4).

A
vdm(i,j) = Y 8(ia;ja) - w(ia) 3)
a=0
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Here, C is the set of all class labels present in the data
set, and P(c|iq) is the class conditional probability of iq, i.e.
the probability of the value i, occurring in the data set for
attribute a in instances of class c. This probability is deter-
mined directly from the training data by counting the number
of instances containing the value i, for attribute a, and de-
termining the proportion that also have the class label ¢, i.e.:

|instances containing i, A class = c|

Symbolic Value ‘X’ Symbolic Value'Y’ Symbolic Value'Z’

Probability
Probability
Probability

Comparing ‘X' with ‘Y’ Comparing ‘X' with ‘2’

Probability
Probability

Figure 1. Comparing symbolic values with the Value Difference

Metric.

‘Z’. Each distribution consists of three class conditional prob-
abilities, represented by the vertical bars. The lower charts
illustrate how pairs of symbolic values are compared. For each
class, the difference (4) in class conditional probability is de-
termined (i.e. the difference in height between the vertical
bars). These differences are then combined (3) and result in
a distance measure for the two symbolic values of attribute
a. Hence, to compute the distance between the two symbols
‘X’ and ‘Y’, the difference in class conditional probabilities is
found for each class. For this example, the differences are 0.3,
-0.5 and 0.2 for classes ci1, c2 and c3 respectively (the class
conditional values for these symbols are listed in Table 1).
Hence the final distance between the two symbols is the sum
of the squares of these distances = 0.38, i.e.

S(‘X7,Y) = 0.3° + (—0.5)* +0.2° = 0.38

The weight component of the VDM (5) provides some in-
dication of how well an attribute value discriminates between
different class labels. The weight can vary between a mini-
mum which is dependent on the number of classes present in
the data set, and 1 which represents an ideal discriminator,
i.e. an attribute value which only appears in one class. The
minimum represents a uniform class distribution where an at-
tribute value appears with equal probability in instances of all
classes, and can be calculated as follows (6):

w(u) =[C|7"7

(6)

P(cliq) = : —
|instances containing 4|
| ta =X da=Y  ia=‘D
P(cilia) 0.7 0.4 0.6
P(calia) 0.0 0.5 0.1
P(cslia) 0.3 0.1 0.3
Table 1. Class Conditional Probability Values for the symbols

in Figure 1.

This process can be illustrated by means of an example.
The top three charts in Figure 1 represent the discrete class
distributions of three different symbolic values, ‘X’; ‘Y’ and

4 A comparison of these two metrics can be found in [16]
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where w(u) is this minimum value (i.e. the weight of an
attribute value with a uniform class distribution), and C' is
the set of all class labels that appear in the data set.

The weight is used to control the influence of the attribute
distance for each training instance when determining the fi-
nal nearest neighbour. As the range of values of §(iq, ja) will
vary between zero and one, the weight can be used to restrict
this range, i.e. the range of 0(iq,jo) - w(ia) Will vary between
zero and w(iq). A large attribute distance will have a greater
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effect on the value of vdm(i,j) than a smaller one. Thus if
a small weight is used (i.e. the value present in the test in-
stance is irrelevant), then the resulting attribute distance will
also be small and have little impact on the choice of nearest
neighbour.

Many Nearest Neighbour learning algorithms employ
weights to modify the effect a specific component has in the
resulting classification process [1, 8, 15, 18]. For example, PE-
BLS [5] and EACH [15] assign a weight to each of the instances
(or hyper-rectangles in the case of EACH) and modify this
weight according to whether the instances result in correct or
incorrect class predictions. The weight is used to measure the
reliability of an instance, and hence reduce the detrimental
effects of noisy instances. The VDM utilises value weights (5)
to determine how well a specific value for a given attribute
can discriminate between class labels. Other systems utilise
weights to augment (or diminish) the effects of relevant (or
irrelevant) attributes [1, 15].

3 IRRELEVANT ATTRIBUTES AND

FEATURE SELECTION

An attribute is irrelevant if it contributes nothing to the target
hypothesis, i.e. it makes no meaningful contribution towards
the classification task. At best, such attributes increase the
dimensionality of the data set, and thus increase the space
required to store the data set, and the computational cost
of inducing a hypothesis. However, the inclusion of such at-
tributes often also results in a degradation in classification
accuracy.

Nearest Neighbour algorithms are especially susceptible to
the inclusion of irrelevant attributes in the data set, and sev-
eral studies have shown that the classification accuracy de-
grades as the number of irrelevant attributes is increased
[1, 10, 18]. This degradation is due to the fact that irrele-
vant attributes violate the underlying assumption made by
the nearest neighbour paradigm. As the location of the in-
stance is defined by its attributes, this assumption relies on
the attributes being relevant to the target hypothesis.

Attribute selection is the process of identifying a small sub-
set of relevant attributes from the attributes present in the
data set. The resulting data set will generally contain fewer
irrelevant attributes, and thus the performance of the learn-
ing algorithm will increase in terms of either complexity of
the target hypothesis, or in terms of accuracy. A number
of different techniques have been studied [13], and can be
grouped into two broad categories: those that employ the fil-
ter model, where the selection technique is independent of the
final learning algorithm; and those that employ the wrapper
model, where the final learning algorithm is embedded within
the selection mechanism. The wrapper model was proposed
as a means of using the bias inherent in the learning algo-
rithm, to select the attribute subset. It has been argued that
this model is superior to the filter model, which uses differ-
ent biases in the attribute selection and the learning stages
[7]. Both models perform a search within a space of attribute
subsets to determine the optimal (or sub-optimal) subset for
the classification task.

In contrast to these models, a number of nearest neighbour
techniques utilise weights to identify irrelevant attributes. At-
tribute weights are determined by evaluating the NN algo-
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rithm on the training data. A vector of attribute weights is
generated, which initially gives each attribute an equal weight.
The leave-one out cross validation technique [9] is then used
to predict the class label of each of the instances in the data
set. As each instance is evaluated, the weights are adjusted
according to whether or not the classification is correct. An
example of a weight update function is given in (7), where wq
is the weight of the attribute a; i, and j, are the values of the
attribute a in instances 7 and j; and p is an incremental value
(such as 0.02) which is positive when a correct classification
is predicted, and negative when an incorrect classification is

made.

The intuition behind this model is that irrelevant attributes
will contribute very little overall to the classification task. The
function used to update the weights is designed to reward
those attributes if they are responsible for making correct
predictions, and penalise them if they are responsible for in-
correct ones. Thus, the contribution of irrelevant attributes
to the classification task falls as the contribution of other at-
tributes rises. The resulting weights can be used to determine
which attributes should be retained in the attribute subset,
and which attributes should be discarded [8]. An alternative
approach is to use the weights to control the influence that
each attribute has on the distance between two instances.
Those attributes which are awarded low weights will have a
diminished effect on the resulting class predictions.

if iq = ja
if iq # ja

wa(l+p)
wa (1l — )

Wa (M

4 EVALUATION OF THE VDM FOR

IMPLICIT FEATURE SELECTION

The Value Difference Metric differs from many other distance
metrics in that the location of an instance within the instance
space is not defined directly by the values of its attributes, but
by the class conditional distributions of these values. The dis-
tributions vary from being skewed, where an attribute value
appears in instances of only one class, to a uniform distribu-
tion, where the attribute value appears equally in instances
of each class. In other words, attribute values with skewed
distributions may be highly relevant to the target concept,
and attribute values with a uniform distribution may be ir-
relevant. However, these distributions assume that each at-
tribute value is independent of any other value for any of the
attributes. The value weight component w(iq) provides some
indication of the skew of the class distribution for an attribute
value, and can be used to control the influence each attribute
distance has on the final distance vdm(, j).

The inclusion of a weight within the VDM has been ques-
tioned by a number of studies. PEBLS [5] is a NN learn-
ing algorithm which uses the Modified Value Difference Met-
ric (MVDM). This distance metric is a variant of the VDM
which omits w(iq), and it has been argued that the dis-
tance between two attribute values should be symmetrical,
ie. vdm(i,j) = vdm(j,7). A recent study compared MVDM
with the VDM, but concluded that there was no difference in
the classification accuracies of either metric over several data
sets [18].
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We have investigated the utility of w(ia), both as a com-
ponent of the VDM, and when combined with another dis-
tance metric. Several symbolic data sets from the UCI Ma-
chine Learning Repository [11] were used to evaluate the per-
formance of five distance metrics: three of which were based
on class conditional probabilities (VDM, MVDM & OMVW);
and two which were used for baseline comparisons with other
studies. The MVDM differs from the metric given in (3)
in that the term w(is) is omitted. In contrast, the OMVW
utilises the value weight (5), but instead of using the attribute
distance defined in (4), the attribute distance for the Overlap
metric (2) is used.

The weighted Overlap metric (WOM) and the simple Over-
lap metric (OM) were included to provide a comparison of the
VDM, MVDM and OMVW with other distance metrics. The
Weighted Overlap metric (WOM) is similar to the distance
metrics used by weighted NN algorithms, such as IB4 [1] and
EACH [15]. A set of attribute weights are generated by eval-
uating the training data and updating the attribute weights
wa using the weight function given in (7). The WOM and
OMVW differ in that the weights used by the OMVW are
probabilistic and can be rapidly determined from the train-
ing set, whereas the weights in the WOM are induced, and
thus require a separate training stage.

Three hypotheses were investigated:

H; There is no difference between the performance of MVDM
and VDM, i.e. w(iq) has no significant effect on the perfor-
mance of the VDM.

H> The value weight component w(i,) of the VDM can be
effectively utilised by the Overlap metric to improve per-
formance in terms of accuracy. The performance of the
OMVW should be comparable to that of the WOM, and
both metrics should achieve better results (in general) than
the OM.

H3s The use of class conditional probabilities within the dis-
tance metric should improve the classification accuracy by
reducing the effects of irrelevant attributes, i.e. the per-
formance of the VDM, MVDM and OMVW should not
degrade in the presence of irrelevant attributes.

& 9

> & 9O
F L & &

Breast-cancer 70.73 66.44 T1.46 67.51 67.16
Lung-cancer 40.00 40.00 46.67 68.33 65.00
Lymphography | 81.24 82.57 83.24 83.24 83.19
Primary-tumor | 32.05 32.07 33.54 30.83 31.15
Promoters 77.00 82.73 79.73 89.36 87.36
Tic-tac-toe 80.90 82.88 72.75 90.71 90.71
Votes 92.44 94.73 93.80 94.51 94.97
Z.00 96.09 95.09 95.09 97.09 97.09
Table 2. 10-fold cross validated classification accuracies.

To evaluate the performance of each of the distance metrics,
a 10-fold cross validation [9] was performed on a number of
different UCI data sets. The results, given in Table 2, list the
classification accuracies achieved by each metric for each of
the data sets. Results presented in bold were found to be sig-
nificantly higher (p=0.05) than those achieved by the Overlap
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metric (OM), whereas those in italics were significantly lower.
A one-tailed paired t-test was used to determine this signifi-
cance. Figure 2 plots the difference in the results obtained by
the OM and the other distance metrics.

30.00+
g 25.00 EOwoM EOMVW OMVDM OVDM
5 20.00
e
S 15.00
S s
< o) 10.00-
£
° 5.00-
(8]
@ 0.00
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Data Sets

Figure 2. Comparison of the 10 fold cross validated
classification accuracies of the distance metrics relative to the
Overlap metric (OM).

There was no significant difference between the perfor-
mance of the VDM and MVDM for any of the data sets,
which appears to support Hi. The VDM succeeded in signifi-
cantly improving the classification accuracy for four data sets
(p=0.05), and succeeded in raising the accuracy (though not
significantly) for two other data sets. The MVDM achieved
similar success, except for the Votes data set, where the in-
crease in accuracy became significant when p=0.054. The re-
sults for both distance metrics were significantly lower than
the OM for only one data set (Breast-Cancer). These results
demonstrate that the VDM (and MVDM) can achieve better
classification accuracies than the Overlap metric. The accu-
racy of the MVDM was significantly higher than the WOM
for three data sets (Lung-cancer, Promoters and Tic-tac-toe).

The OMVW also succeeded in raising the classification ac-
curacy for six of the data sets, although the increase was only
significant for three. A significant increase in accuracy was
also achieved by the WOM for two of the same three data
sets. As the WOM has previously been demonstrated to be
robust in the presence of irrelevant attributes, and given that
a similar increase in accuracy can be observed for the OMVW,
this suggests that the value weight w(iq) can be used to limit
the impact of irrelevant attributes on the classification accu-
racy. This appears to support Ha.

Although the distance metrics based on the VDM per-
formed well with the data sets, a further investigation was
required to determine if the performance of these metrics
would degrade in the presence of irrelevant attributes. For
this reason, the metrics were evaluated on the 24-attribute
LED display problem. This problem contains seven binary
valued attributes (corresponding to the different segments
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within an LED seven segment numeric display), and an ad-
ditional seventeen irrelevant attributes [2]. If this number of
additional attributes is varied, it is possible to observe the
effect of irrelevant attributes on different learning algorithms.
Data sets were constructed containing 200 randomly gener-
ated instances with 10% noise (i.e. each attribute value had
a 10% chance of being inverted). The number of irrelevant
attributes was varied from zero to seventeen, and each test
was repeated ten times. The results are plotted in Figure 3.

70.00
60.00 3 otk B ok Se ol Sl e
A
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10.00 +| — < — MVDM

.00 +—H—+—~—-"r—~+—+—+—+—+———+—t+—+——+—+—+—+

012 3 456 7 8 9 1011 12 13 14 15 16 17
Number of Irrelevant Attributes
Figure 3. LED artificial results.

As the number of irrelevant attributes increased, the perfor-
mance of the Overlap metric (OM) fell from 59.7% to 40.0%.
There was a similar degradation in the performance of the
OMVW, although this degradation was not as acute as the
OM, and the classification accuracy of the OMVW was signif-
icantly higher than that of the OM when three or more irrel-
evant attributes were present. The VDM and MVDM showed
no signs of degradation as the number of irrelevant attributes
increased. These results support both Ha and Hs, though it
would appear that w(iq) succeeds only in reducing the impact
of the irrelevant attributes, not eliminating their effects.

5 CONCLUSIONS

The Value Difference Metric is an alternative symbolic dis-
tance metric which can be successfully applied to classifica-
tion problems containing irrelevant attributes. The distance
metric utilises a set of value weights, which can be determined
‘on the fly’ from the training data. These value weights modify
the distance between attribute values such that the distances
between class discriminant values are augmented, but other-
wise diminished. The exclusion of these value weights appears
to have no effect on the performance of the VDM. However,
if combined with the Overlap metric, the value weights im-
prove the performance of the distance metric (in terms of
accuracy) on data containing irrelevant attributes. This in-
crease in performance is comparable to that achieved when
attribute weights are induced, and utilised by the Overlap
metric. However, the value weights have the advantage that
no training is required.
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