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ABSTRACT

An ad hoc wireless LAN is a collection of wireless mobile nodes dynamically form-
ing a temporary network without the use of any pre-existing network infrastructure
or centralized administration. Due to its distributed nature, flexibility, robustness
and ease of installation, ad hoc wireless LAN has greatly increased the scope for
research in wireless communications. Since there is no defined structure, conges-
tion control for systems where each ad hoc node can request certain bandwidth can
pose the challenge of uncertain delay and instability and thus remains as a chal-
lenge in research. An ideal congestion control scheme for multi-hop ad hoc network
would have to ensure that the bandwidth requests and input and output rates are
regulated from chosen bridges and also from source and destination controllers.
In this thesis, a novel congestion control scheme for multihop wireless LAN based
on time-delay model is developed. The design of the proposed control model is
derived from internal model control principles, with the control being done by
the model reference controller and the error controller. Based on the congestion
scenarios, the reference controller sets up a feasible reference value for the queue
length, while the error controller feeds back rate-based compensation for the error
between the reference and instantaneous queue lengths to combat against conges-
tive disturbances. The proposed scheme makes use of Smith Predictor in the error
controller to compensate for backward delay time, which is often referred to as
“dead time” in control-engineering terms, to mitigate the stability problems that
may occur. Underpinning the continuous-time model, a discretized and simplified
digital-filter based solution is devised to make use of fast digital-filters available
to date, without causing problem to scalability of the rate-based scheme and to
propose a hardware based solution. The control objectives will be set with an aim
to ensure full-link utilization and to achieve maximum rate recovery as soon as the
congestion has been cleared under system stability. Simulations are performed to

illustrate the performance of the controller under different congestion scenarios.
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Chapter 1

Introduction

In this chapter, brief definitions are presented for the terms used extensively in
the forthcoming chapters and sections. Based on these definitions, the rest of the
chapter will focus on the problem. An overview of this thesis is presented at the

end of the chapter, together with brief summary of the rest of the chapters.

1.1 Wireless LANSs

A network is a group of devices/nodes (viz. computers, mobile stations etc.) con-
nected by a communication channel, capable of sharing information and other
resources among themselves. A network can range from a peer-to-peer network
connecting a small number of users in an office or department, to a local area
network (LAN) connecting many users over permanently installed cables and dial-
up lines, to a municipal area network or wide area network connecting users on
several networks spread over a wide geographic area [10]. Networks can either be
established over a wireless or wire-line channel. In wireless networks, a group of
nodes are connected among themselves using technology other than conventional
cables. These technologies include infrared line-of-sight high frequency light-wave
signals for medium distance communication, high-frequency radio wave signals
for short to long distance communication and spread spectrum signals for long
distance communication. Since wireless local area network (WLAN) can provide
mobility for its nodes, it is often chosen for personal communication devices and
other portable communication devices. Depending on the distance of the wire-
less node from the network access-point, the communication speed can vary from

1 Mbps to several decades of Mbps [16]. Wireless LANs are not always completely
1
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wireless and may be used to replace the cabling on certain network segments or
to connect groups of networks that use conventional cabling. Similar to wire line
networks, the nodes in the wireless LANs also be distinct depending on their role
in the network. Some nodes act as client nodes, some as server or master nodes,
while some nodes act as bridges, switches and hubs etc. In this thesis from this
point forward, stations, terminals will only be termed as nodes to refer to smallest
communication unit in the network. In the following sub-sections, a brief definition

are presented for each class of node.

1.1.1 Server

Any node that makes access to certain services available to other nodes in the the
network can be called a “server”. In large networks, a dedicated server runs a spe-
cial network operating system; in smaller installations, a non-dedicated server may
run a personal operating system with peer-to-peer networking software running on
top. A generic server typically has a more advanced processor, more memory, a
larger cache, and more disk storage than a single-user workstation. A server may
also have several processors rather than just one and may be dedicated to a spe-
cific support functions. Communications servers, modem servers, file servers, print

servers, Web servers etc. are examples of different servers [10].

1.1.2 Client

Client node is the device or application that uses the services provided by a server.
A client may be a PC or a workstation on a network using services provided from
the network server, or it may be that part of an application program that runs on
the workstation supported by additional software running on the server [10]. It is
often the case that the clients request communication with another client, while

the server manages certain statistics in the process.

1.1.3 Cluster

Clustering is a process of grouping servers and other network resources into a single
system to elevate the network robustness in the event of failure of the resources.
A network may have one or more clusters, depending on how big the network

is. Clustering software adds a load-balancing feature to the clustering system,
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to make sure that processing is distributed in such as way as to optimize system
throughput. In some signaling networks, clusters are groups of signaling points

and individual signal transfer points.

1.1.4 Bridge

A bridge is a hardware device used to connect LANs so that they can exchange
data. Bridges can work with networks that use different wiring or network pro-
tocols, joining two or more LAN segments to form what appears to be a single
network. A bridge operates at the data-link layer of the Open Systems Intercon-
nect reference model for computer-to-computer communications. It manages the
flow of traffic between the two LANs by reading the address of every packet of
data that it receives. In networks, where there are no bridges, certain elected
nodes may create a communication network between neighbouring clusters and
thus acts as a bridge. In such a network, a bridge is elected based on its visibility;
it must be visible by all client stations of the clusters concerned and thus works

as inter-cluster link.

1.2 Ad Hoc WLANSs

The word “ad hoc” refers to making or happening only for a particular purpose
or need, not planned in advance [42]. In networking context, ad hoc network is
an [EEE 802.11 networking framework, in which nodes communicate directly with
each other without the use of an access point, by which it can connect or com-
municate with the network. An ad hoc mode is also referred to as a peer-to-peer
mode that is useful for establishing a network where infrastructure does not exist
or where services are not required [14]. In ad hoc wireless LANs, all nodes work
in ad hoc mode and form a network a dynamically without any existing infras-
tructure or topology. The nodes adjust accordingly with the topology change and
hence are very robust. Also, since it does not utilize expensive network switches
or other access and control points, it is a low cost solution. Due to the flexibility,
robustness, and dynamic structure of such networks, ad hoc wireless LANs have
made a way significantly into the business, military and personal communication
sectors in a very short time [16]. The early groundbreaking research for ad hoc

wireless LANs was supported by the Defense Advanced Research Projects Agency
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(DARPA) and the Navy in US [41] 32]. Despite many advances over the last sev-
eral decades in wireless communications, in general, and ad hoc wireless networks,
in particular, the optimal design, scalability, performance, and fundamental capa-
bilities of these networks remain poorly understood, at least in comparison with
other wireless network paradigms and a lot of “daylight” remains in this field of
research. However, with enormous potentials for such networks, ad hoc networks
primarily support data networks, but it has been envisioned recently to enter to
home networks, wireless device networks, distributed control systems, and sensor
networks etc. In the following subsections, the network architecture, routing and

scalability of an ad hoc network are described.

1.2.1 Network Architecture

As the name suggests, the most fundamental aspect of an ad hoc wireless net-
work is that it does not have any pre-existing infrastructure. The challenge in
design, topology and architecture of such networks stem from this characteristic.
In comparison with conventional wireless networks, viz. cellular systems and wire-
less LANSs, this kind of network offers extremely high flexibility. Unlike cellular
systems, the nodes in this system have peer-to-peer communication between every
two neighbouring nodes. Since there is no centralized control, in order to make
effective communication successful among them, the nodes have to reconfigure
themselves whenever the topology of the network changes. This is a dynamic pro-
cess and is crucial to the system scalability and performance. The following are

the reasons, why the topology of an ad-hoc network may change [16]:

1. Node mobility: Whenever the nodes are mobile, their positions may also

change over time and topology may change.

2. Change of power: Power may suddenly change or fall off from certain com-
munication node and which may result in different criteria for error-free
reception mechanisms during a transmission process, resulting in topology

change.

3. Medium access control (MAC) algorithms: Nodes that find access difficult
through an existing topology and architecture may attempt it with a change

in the topology.



Chapter 1 Introduction 5)

4. Flow dynamics: Data flows come and go; so, if a node has nothing to transmit
for sometime, its links are gone from the topology, to simplify the network

further and improve scalability.

5. Mode of nodes: The mode of a node can either be sleeping or active; so, if a

node goes to a sleeping mode, its links are gone from the topology, too.

Within the topology, certain nodes are close enough to be able to communicate
with each other in a single hop. All nodes that can communication in single hop
then forms a cluster that enables resource sharing among the nodes in a distributed
manner and also to improve network reliability, scalability, and capacity [35] 4].
Clustered ad hoc WLANSs can be operated with different modes of access systems;
viz. bandwidth-on-demand (BoD) systems, Quality-on-Demand (QoD) systems
etc. In this thesis we consider widely used bandwidth-on-demand (BoD) access
mechanism. BoD is a dynamic system, where the access to the network resources is
provided based on the bandwidth demand and defined by a set of rules by which
nodes request transmission capacity from the network controller. The network
controller is essentially an elected node within a cluster, which has the respon-
sibility to share the requested bandwidth based on some fairness criterion and
termed the “master node”. This node decides on the allowed input and output
rate based on the total cluster bandwidth, whenever any transmission request is

generated within a cluster [31].

1.2.2 Routing

Routing algorithms decide certain feasible/optimal paths through which data
transmission can take place. Before such path decisions can be taken, every node
must have enough node and link statistics from its topology. Based on how the
change of topology affects the routing decisions, networks can be either “combi-
natory stable” or “instantaneous”. In combinatory stable networks, the change of
topology is slow enough for the nodes to update link statistics to form a group. Ad
hoc wireless local area networks (WLAN) are example of such networks. In instan-
taneous ad hoc networks, the topology changes take place very fast, links break
and make very often and routing decisions becomes instantaneous and rather diffi-
cult. Such networks pose great challenges to research in dynamic routing decisions.
Some wireless mobile ad hoc networks (MANET'), which have been developed re-

cently are examples of such network [25].
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In some ad hoc networks, the nodes can adjust their power power accordingly
to be able to transmit data in a single hop. The decision of adaptive power
depends on certain perception of quality, viz. signal to noise and interference
ratio (SINR), signal to noise ratio (SNR) etc. [11]. In such routing, nodes can
send packets directly to their final destination via single hop routing as long as
the link SINR is above a minimum threshold. However, the SINR is typically
quite poor under single hop routing, and this method may also cause excessive
interference to surrounding nodes. Also, despite its simplicity it is rather very
expensive solution for large ad hoc networks. In large ad hoc wireless networks,
packets are forwarded from source to destination through intermediate relay nodes.
Since path loss causes an exponential decrease in received power as a function of
distance, using intermediate relays can greatly reduce the total transmit power
(the sum of transmit power at the source and all relays) needed for end-to-end
packet transmission. Such routing is called as “multihop routing”. Essentially, in
ad hoc networks, such routing is possible when some of the intermediate nodes act
as bridges [21],136]. Multihop routing using intermediate relay nodes is a key feature
of ad hoc wireless networks: it allows for communication between geographically-
dispersed nodes and facilitates the scalability and decentralized control of the
network. However, it is much more challenging to support high data rates and low
delays over a multihop wireless channel than over the single-hop wireless channels
inherent to cellular systems and wireless LANs. This is one of the main difficulties
in supporting applications with high data rate and low delay requirements, such

as video, over an ad hoc wireless network [16].

1.2.3 Scalability

Scalability is a requirement for ad hoc wireless networks with a large number of
nodes. It allows the complete ad hoc network to operate in an integrated man-
ner. Due to large number of constraints and lack of centralized administration,
scalability of ad hoc networks is still poorly understood [4]. The key to scalability
lies in the use of distributed network control algorithms: algorithms that adjust
local performance to account for local conditions. By forgoing the use of central-
ized information and control resources, protocols can scale as the network grows
since they only rely on local information. Distributed protocols often consume
a fair amount of energy in local processing and message exchange. Thus, trade
offs arise between how much local processing should be done versus transmitting

information to a centralized location for processing. This trade off is particularly
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apparent in sensor networks, where nodes close together have correlated data,
and also coordinate in routing that data through the network. Many ad hoc net-
work applications, especially sensor networks, could have hundreds to thousands
of nodes or even more. The ability of existing wireless network protocols to scale

to such large network sizes remains unclear [16].

1.2.4 Implementation Issues

An ad hoc wireless LAN network has certain advantages which make it an at-
tractive business and personal solution and as a result such networks have made
their ways into home networks, device networks, sensor networks and distributed
networks within a very short period [16]. But certain implementation issues must

be considered before choosing an ad hoc mode of operation in these networks [15]:

1. Cost : An ad hoc network leads to the ease of setting up a network without
the need to purchase or install access points, which makes it financially a
cheap and desirable option. But cost savings can easily be overrun by a bulk

of complexities in bit rate performance if not properly implemented.

2. Setup Time : One of the basic advantages of ad hoc modes in wireless
networks is that they are set up in a very quick time needing only to setup
a network interface card for it to operate. But certain issues related to the
channel properties and network size may take some calibration to be done

before an ad hoc WLAN can be put into operation.

3. Performance : Issues related to performance must be well understood be-
fore any implementation is planned. In some small ad hoc networks, the
network performance in terms of bit rate and QoS may be better than an
administered one because no packet needs to travel through access points.
However with large number of nodes, multiple access points to separate nodes
onto non-overlapping channels to reduce medium access contention and colli-
sions may reduce the system performance drastically. Also, because of a need
for sleeping stations to wake up during each beacon interval, performance
can be lower with an ad hoc mode due to additional packet transmissions if

you implement power management.

4. Limited Network Access : Due to lack of a distribution system with ad
hoc wireless LANs, nodes may not be allowed access to the Internet and

other wired network services to a larger scale. In places, where there is a
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strong need to access applications and servers on a wired network or Internet,

an ad hoc WLAN may not be a suitable solution.

5. Difficult network management : Because of the fluidity of the network
topology and the lack of a centralized device, the network management be-
comes much harder. The network performance, security audits etc. cannot
be monitored because there is no defined access point in such networks. Ef-
fective network management with ad hoc wireless LANs requires this to take
place at the user device level, which requires a significant amount of over-
head packet transmission over the wireless LAN. This again steers ad hoc

mode away from larger, enterprise wireless LAN applications.

1.3 Congestion Control

Congestion is an unwanted situation in networked systems, where the part of the
network is being offered more traffic than its rated (desired) capacity. Congestion
can be disastrous for a data transmission system as it manifests itself as depletion
of resources that are critical to the operation of the system. These resources can
be CPU, buffer space, bandwidth etc. Resource crunch will lead to lengthening of
various queues for these resources. Due to finite length constraint, many packets
may eventually get dropped, which, in turn, will deteriorate the response time of
the system beyond permissible limits due to retransmission requests. “Congestion
control” refers to the mechanism of combating congestion, which makes sure the
resources are used optimally and the system has maximum data throughput with

the given conditions.

The main objective of congestion control is to make sure the system is running at
its rated capacity, even with the worst case overload situations. In certain systems,
this is ensured by restricting certain nodes to transmit at the maximum capacity
or to make use of certain resources monotonously. Doing this enables optimal
usage of resources for all the nodes in the system with a measurable quality-of-
service (QOS). In some systems, there are built-in mechanisms that does not allow
congestion situation to take place and every node keeps track of system statistics
and resources. This is often knows as “congestion prevention” or “Congestion

avoidance”.

Congestion control is necessary for systems, whose nodes do not keep track of

such statistics or do not keep resource information. In such systems, the nodes
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participate in the network, in which the topology changes very often and the
network statistics also vary randomly. As such the control of congestion becomes
an issue of the nodes that act as bridges. Ad hoc networks are examples of such
scheme. In this thesis, the terms congestion control and congestion avoidance
will be used synonymously with the ultimate aim to keep the total networked
system free of congestion. Congestion control can either be rate-based control or
buffer-based control depending on how the actual control is done. Most of the
rate-based congestion control algorithms are applied during routing of data from
node to node. In multihop routing, thus, congestion takes place on every hop
and is termed hop-by-hop congestion control. However, for single hop routing
congestion is only an end-to-end issue and more of rate adjustment of the source
rather than destination. A major open challenge for research still remains for
congestion control of large ad hoc wireless networks, where single hop routing is

virtually impossible [30, [16].

1.4 Control System Concepts

In this thesis, a control-theoretic model is first developed for the system consid-
ered. The model is based on a time-delay model and designed according to the
internal model control (IMC) principles. Also, to combat system instability, a
Smith predictor (SP) is designed. In this section, relevant basic control system

concepts are briefly presented.

1.4.1 Time delay Model

In process control, a time delay is the time it takes since the moment we make a
change in the control input or signal until a reaction is seen in the output variable.
The time-delay systems (called also hereditary or systems with after-effects) rep-
resent a class of infinite-dimensional systems largely used to describe propagation
phenomena. Possible sources of time delays are: 1. The process may involve the
transportation of materials or fluids over long distances. 2. The measuring device
may be subject to long delays to provide a measurement. 3.The final control ele-
ment may need some time to develop the actuating signal. Independently of the
representation type, the effects of delay on the stability and control of dynamical
systems (delays in the state and/or in the input) are problems of critical interest

since the delay presence may induce complex behaviors (oscillations, instability,
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bad performance) for the closed-loop schemes: “small” delays may destabilize
some systems, but “large” delays may stabilize others [27]. Indeed, for example,
a sequence of delay ‘switches’ (stability to instability or instability to stability)
may appear with the second order even for a single discrete or point delay in a
linear differential-difference equation, if the delay value, seen as a parameter, is
increased. Furthermore, a chaotic behavior may appear if the delayed state is a
nonlinear function. But in other cases, chaotic systems may by stabilized by a de-
layed output. In control systems, it is well known that delays in feedback systems
are accompanied by bandwidth ‘sensitivity’ to model uncertainty. Furthermore,
delay perturbations due to some modeling errors may induce instability, and in-
terconnection schemes of finite or infinite-dimensional systems with delay blocks
may become unstable even if some “well-possessedness” property holds [17]. In
this research, the control system model is built from a linear time-delay model. In

Chapter 5, the effect of forward and backward time-delay is investigated.

1.4.2 Internal Model Control

The internal model control (IMC) is a control system result, which states that the
control can be achieved only if the control system encapsulates, either implicitly
or explicitly, some representation of the process to be controlled. If perfect control
is to be achieved, the control scheme must be developed as an exact model based
on IMC principles. In the open loop case when all the states of the particular
process are known and the process is perfectly invertible. In practical, however,
the process-model mismatch is common, which means the process may not be
invertible and the system is often affected by unknown disturbances. In this case,
IMC principles allow a closed-loop model to be implemented for achieving perfect

or near-perfect model [1§].

1.4.3 Smith’s Principle

In a process control, time-delay is crucial to system performance. The presence of

time delays causes the following difficulties in process control:

1. A disturbance entering the process will not be detected until after a signifi-

cant period of time.
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2. The control action will be inadequate since its effects on a current error will

affect the process variable only after a long delay.

3. Long time delays may originate instability in the system.

As such it is difficult to model a process that has time-delay, which often leads to
unexpected results. One of the classical solutions to time-delays model compensa-
tion had been proposed in [37], known as a Smith predictor. The Smith predictor
consists of an ordinary feedback loop plus an inner loop that introduces two extra
terms directly into the feedback path. The first term is an estimate of what the
process variable would look like in the absence of any disturbances. It is gener-
ated by running the controller output through a process model that intentionally
ignores the effects of disturbances. The mathematical model used to generate the
disturbance-free process variable has two elements connected in series. The first
represents all of the process behaviour not attributable to dead time. The second
represents nothing but the dead time. Subtracting the disturbance-free process
variable from the actual process variable yields an estimate of the disturbances.
By adding this difference to the predicted process variable, Smith created a feed-
back variable that includes the disturbances, but not the dead time. The Smith
predictor essentially works to control the modified feedback variable (the predicted
process variable with disturbances included) rather than the actual process vari-
able. If it is successful in doing so, and if the process model does indeed match the
process, then the controller will simultaneously drive the actual process variable
towards the set point after set point changes or disturbances. Many of today’s
commercial PID controllers with time delay compensation use the Smith predic-
tor strategy, or modifications from it. In this research, the Smith predictor is used
to compensate for the loop delays to compensate for the forward disturbance in
Sec. [3.1.

1.5 Problem Statement

Due to its distributed nature, flexibility, robustness and ease of installation, ad
hoc wireless LAN has greatly increased the scope for research in wireless commu-
nications [16]. These LANs can be operated with different modes of access and
routing systems; in this case, we consider multihop routing of data packets and

bandwidth-on-demand (BoD) access mechanism.
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In this thesis, a DSP-based solution is developed from control-theoretic paradigm
to control the congestion of a multihop ad hoc wireless LAN with bandwidth-on-
demand access. The design of the proposed system has been derived from the
reference and error controller model, which essentially controls the queue length
against a reference queue length based on the congestion that the system has to
combat. This is done by regulating the desired input rate and required output
rate such that the system is asymptotically stable in terms of all possible conges-
tion scenarios. The Smith predictor is used in the closed-loop error controller to
compensate for delays that could cause instability. Unlike conventional end-to-
end feedback and stochastic control of congestion, this paper uses a hop-by-hop
method. Hence, the control of congestion takes place on every hop to intermediate
nodes that act as bridges. The obvious advantage of such control is fast reaction
in each hop; however scalability remains a dilemma for such systems since flow
adjustments are to be made on every hop. The network topology of the proposed
system is considered as combinatory stable, which means that change in the net-
work topology is slower than that required to update the network information
by each node in the network. Underpinning the control paradigm, a filter based
solution is proposed with an aim to ensure full-link utilization and to achieve
maximum rate recovery as soon as the congestion has been cleared under system
stability. This can then be used as a means of real-time control of congestion
rather than on-demand control and mitigates the scalability problem to some ex-
tent. Filter models have been previously used in [40] to control the congestion
of a ATM switching network, but here we also a novel congestion control solu-
tion for ad hoc wireless LANs. Simulation results are given to demonstrate the
performance of the designed system. Similar congestion control algorithms had
been developed by [30] and [31] but the proposed scheme improves on hardware

solution, scalability and rate value limiting, to be illustrated later.

1.6 Overview of the Thesis

Based on the definitions presented in this chapter, the problem that this thesis
deals with is defined. Also, brief definitions have been presented for certain terms
that have been used throughout the thesis. In Chapter 2, research literatures that
have contributed to the problem of congestion control over the years are briefly
revised, as essential background of the present work. In this chapter, the classical
congestion control in the Internet that had evolved due to different requirements

have been illustrated in Sec. 2.1. Later, in Sec. 2.2, early background works for
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congestion control in the ad hoc wireless LAN are investigated. In Chapter 3,
the control system model based on the IMC principle is derived. A basic system
model have been presented for the derivation in Sec. [3.1l and reference and error
controllers are designed from defined control objectives in Sec. 3.2, In Sec. 3.3, the
designed model is analyzed and a time-delay stability analysis is done. Underpin-
ning the control system model designed, a digital filter based solution is derived
in Chapter 4. Also, the digital filter-based solution have been analytically inves-
tigated from stability and implementations perspective. Later, in Chapter 5, the
digital filter-based solution have been simulated to test for system performance.
The effects of time delays are investigated from different congestion scenarios in
Sec. 5.2 while the backward, forward and combined congestion scenarios are sim-
ulated in Sec.s 5.1.1, 5.1.2 and [5.1.3, respectively. To assure the total system
performance, MATLAB Simulink have been used for simulation, while for inte-
grated performance in WLANs, an OPNET discrete event simulation tool (by
MIL3) have been employed in this chapter. In Chapter (6, overall conclusions
are drawn as directions for further research are given. Finally, the Simulink and

OPNET simulation models are presented in the appendices.



Chapter 2

Literature Review

Congestion is an unwanted situation which takes place in the access points in the
networks that have limited resources, such as buffer length. Also, the fact that
large networks often have nodes having different input and output rates, congestion
can take place in such access points, as well. Congestion control has been a serious
issue in communication networks and is a key to network performance. Early
works in congestion control are based on the modern Internet technology, where
the access points are well defined and are administered by dedicated nodes. But
due to lack of these infrastructures, congestion in ad hoc wireless LANs cannot
be dealt in exactly the same way as that in the Internet, even though the basic
purpose is the same. In the following sections, we look into different literatures to
describe how congestion control algorithms have matured from that in Internet to
ad hoc wireless LANs and how these algorithms affect the congestion in different

scenarios.

2.1 Congestion in the Internet

Communication networks have experienced an explosive growth over the past
decade, but the networks and resources have not grown up to same proportion.
As such overwhelming growth of data have come under severe congestion prob-
lems. Much of the menace to packet loss in today’s internet gateways lies in
transport control protocol (TCP) implementations: the obvious ways to imple-
ment a window-based transport protocol can result in exactly the wrong behavior

in response to network congestion. However, there had been series of congestion

14
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control and avoidance algorithms based on end-to-end or edge-to-edge flow con-
trol, unicast or multicast control. Most of these algorithms are rooted in the idea
of achieving network stability by forcing the transport protocol to obey a packet
conservation principle and by adjusting the transmission rate based on the loss
probability [19].

In October of 1986, the Internet had the first of what became a series of conges-
tion collapses. During this period, the data throughput from Laurence Berkeley
National Laboratory (LBL) to University of California at Berkeley (UC, Berke-
ley) dropped from 32Kbps to 40bps. Probed investigation into 4.3BSD (Berkeley
Software Distribution) brought back the same answer; it was TCP at the root,
which needed certain calibration at the congestion algorithm level. Following the

dilemma, the following seven new algorithms came into existence in 4BSD [19), 26]:

1. Dynamic window sizing on congestion.

2. Round-trip-time variance estimation.

3. Exponential retransmit after back off.

4. Slow start.

5. More aggressive receiver acknowledge policy.
6. Karn’s clamped retransmit back off.

7. Fast retransmit.

Algorithm 1/ is based on resizing the transmission window size according to cer-
tain congestion scenario, like packet loss probability. To meet the needs of today’s
bandwidth-rich networks, Fisk and Feng developed dynamic right sizing algorithms
of TCP packets in the event of congestion to allow much more fine tuned flow con-
trol for congestion control [12]. In algorithm 2, the transmission rate is adjusted
by regulating the window size using round-trip-time (RTT) estimation. But if the
round trip delay increases, the queue starts to form larger and situation may go out
of control. To cope with such increased delays, Brakmo and Peterson in [6] pro-
posed TCP Vegas, in which the retransmit rate was set proportional to the ratio of
the RTT and the queuing delay [22]. RTT estimation has recently been renovated
through adaptive Kalman filtering as proposed by Jacobsson et al in [20]. Conges-
tion and queue management with congestion indication has also been attempted

in various ways like random early detection techniques [13], random exponential
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marking techniques [3], which improved on algorithm 2. Algorithm /4] operates by
observing that the rate at which new packets should be injected into the network
is the rate at which the acknowledgments are returned by the other end. As a
means of avoiding congestion rather than combating congestion scenarios, con-
gestion avoidance algorithms also evolved. Basic Assumption of the congestion
avoidance algorithm is that packet loss caused by damage is very small (much less
than 1%), therefore the loss of a packet signals congestion somewhere in the net-
work between the source and destination. There are two indications of packet loss:
a timeout occurring and the receipt of duplicate ACKs. Congestion avoidance and
slow start (algorithm [4) are independent algorithms with different objectives. But
when congestion occurs, TCP must slow down its transmission rate of packets
into the network, and then invoke slow start to get things going again. In practice
they are implemented together [39]. Algorithm (7| evolved with certain changes
to congestion avoidance algorithm in 1990 by Jacobson [19]. This was based on
the assumption that TCP could retransmit as soon as the first acknowledgement
(ACK) is seen, without having to wait for the repeated and delayed acknowledge-
ments. This also depended on algorithm 5 for an aggressive acknowledgement
for a faster retransmit attempt. After fast retransmit sends what appears to be
the missing packet or segment, congestion avoidance, but not slow start can be
performed. This was later also known as the fast recovery algorithm. It is an
improvement that allows high throughput under moderate congestion, specially
for large windows [39]. Algorithm 6 and algorithm 3| are basically same except for
the fact that in the former the retransmission is clamped based on loss of packets
after a backoff has happened, while in the later the retransmit attempts are made

exponentially after a backoff, until successful transmission is done [19)].

As far as use of control-theoretic model in the Internet is concerned, Mascolo
first used a control-theoretic model for the flow-based congestion control of the
traditional internet protocol in [24] as a time delay system. The author shows
that the self-clocking principle, which is known to be a key component of any
stable congestion Internet control algorithm, corresponds to simple proportional
controller plus a Smith predictor (SP), which overcomes feedback delays that are

due to propagation times.
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2.2 Congestion in Ad Hoc WLANSs

In recent years, depending on how challenging the congestion problem is, a com-
bination of the algorithms in Sec. 2.1 work satisfactorily under congestion circum-
stances [19]. As issue related to mobility of computing and business came stronger
in the recent years, ad hoc WLANs became a popular choice with added algorith-
mic challenges. Owing to its high potential, ad hoc networks became a standard in
IEEE 802.11 networking framework [14} [16]. Compared to internet technology, ad
hoc WLANSs do not have any centralized or distributed control points. Thus, when
an ad hoc WLAN becomes moderately large, it becomes increasingly more difficult
to maintain high data rate with BoD systems using the existing algorithms. Of
many reasons as to why the existing algorithms do not fit in the ad hoc network
framework, are issues related to the change of topology and increased complexity

for system without administration and without access point.

Similar to the ones illustrated in Sec. 2.1, a congestion control scheme was pro-
posed based on end-to-end feedback exchanges in [38]. But soon it was found out
that such TCP based solution do not work well for bandwidth-on-demand ad hoc
WLAN systems due to lack of control access points. Later, as one of the early
works in congestion control for ad hoc networks, Altman et al in [2] showed that
the congestion control problem can be formulated as a stochastic control prob-
lem. The paper considers the design of explicit rate-based congestion control for
high-speed communication networks and shows that this can be formulated as a
stochastic control problem where the controls of different users enter the system
dynamics with different delays. It also shows the existence, derivation and the
structure of the optimal controller, as well as of suboptimal controllers of the
certainty-equivalent type with defined context for congestion control. In partic-
ular, this paper considers two certainty-equivalent controllers which are easy to
implement, and show that they lead to bounded infinite-horizon average cost, and
stable queue dynamics with simulations. However, certain users may suffer exces-
sive delays beyond limits. All these methods demanded use of continual statistical

information and complexity in order to have a proper control on congestion.

In [23], for high-speed communication networks, which are characterized by large
bandwidth-delay products, the adverse impact on the stability of closed-loop con-
gestion control algorithms is found out. To combat these effects the classical
control theory model and Smith’s principle are proposed as key tools for designing
an effective and simple congestion control law for high-speed data networks. The

authors make argument through mathematical analysis to show that the proposed
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control law guarantees stability of network queues and full utilization of network
links in a general network topology and traffic scenario during both transient and
steady-state condition. Also, the authors makes a comparison with the explicit
rate indication for congestion avoidance (ERICA) algorithm with necessary trans-

formation for the control law to a window, to be applied in the Internet.

In [33], an H-infinity controller is designed guaranteeing stability robustness with
respect to uncertain time-varying multiple delays. It also brings the queue length
at the bottleneck node to the desired steady-state value asymptotically and satis-
fies a weighted fairness condition. Lower bounds for stability margins for uncer-
tainty in the time-delays and for the rate of change of the time-delays are derived
and time-domain performance of the controller is demonstrated by a number of

simulations.

Both of these congestion control scheme opened the wide range of scope to combat
against congestion in classical control-theoretic method. As far as early ad hoc
WLANs with BoD protocols are concerned, Acar and Rosenburg successfully used
such protocols for satellite networks in [1], where the problem is formulated as a
optimization problem. The authors in this paper present a demand assignment
multiple access based resource management protocol, weighted fair bandwidth-on-
demand (WFBoD), for geostationary satellite networks with on-board processing,
which combines flexibility with efficiency and the right level of traffic segregation.
The paper tries to formulate the global resource allocation problem, central to
which is a large generic integer value optimization problem with a large number
of coupled constraints and proposes heuristics to solve this optimization problem

and compare their performances and their complexity with the formal solution.

Priscoli and Pietrabissa, in [30], used BoD protocol along with Smith’s predictor
to ensure that the queue lengths are controlled by reference values for a satellite
terminal, while in [31], authors models the problem of congestion control in geosta-
tionary satellite framework with large delays in the form of two cascade controllers:
on-board and on-earth. It uses similar time-delay based control-theoretic model
to propose the solution. In [31], similar protocol and algorithm has been used in
wireless LANs by the same authors. In these papers, the authors present a model
based control methodology to simultaneously computer the capacity requests nec-
essary to access the network and the capacity allocations required to regulate the
rates of the traffic flows. The scheme proposed by the authors also allows to com-
pute upper bounds of the queue lengths in all network buffers. The high speed

wireless LAN considered in [31] has been developed within the European Union
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project wireless indoor flexible high bit rate modern architecture (WINDFLEX).
In [9], the BoD protocol uses a adaptive predictor coupled with a receding horizon

controller.

Congestion control in multihop wireless networks is a hop-by-hop process assuming
that the intermediate nodes help in the routing acting as bridges. Yi and Shakkot-
tai investigated hop-by-hop congestion control algorithm in [43]. The authors focus
on congestion control over multihop, wireless networks using hop-by-hop conges-
tion control. Also in their work, time-division strategy for medium access control
algorithm has been used for channel access, such that at any point in space, the
physical channel can be accessed by a single user at each instant of time. A fair
hop-by-hop congestion control algorithm with the MAC constraint being imposed
in the form of a channel access time constraint is developed, using an optimization
based framework. The authors also show that the algorithm is globally stable
using a Lyapunov function based approach and shows that the hop-by-hop control
algorithm has the property of spatial spreading. For simulation, bounds on the
peak load at a node are also derived, both with hop-by-hop control, as well as

with end-to-end control.

Congestion control and scheduling algorithms for wireless networks has been shown
in an integrated manner by Priscoli and Isidori in [29], which deals with the prob-
lem of guaranteeing a target quality of service (QoS) to connections set-up over
wireless internet protocol (IP) networks, while efficiently exploiting the air inter-
face. This problem is then coped with congestion control and traffic scheduling
algorithms: congestion control deals with the problem of computing the traffic rel-
evant to in progress connections which can be admitted into the wireless network
without causing the infringing of the QoS, while the scheduling deals with the
problem of deciding the priorities for the transmission of the admitted traffic over
the air interface. The authors also present the original and simple architecture
and procedures of a traffic control module aiming at solving the problem follow-
ing a control-based approach. The controller steers the overall system towards an
ideal equilibrium at which desirable performance is achieved and is in charge of
periodically updating this ideal equilibrium, which is a function of the IP traffic

presently offered to the wireless network.

Digital filters are key technology to todays fast communications and signal pro-
cessing. Digital filter-based approach to congestion control has been shown by Tan
et al. The authors in [40] proposes a control-theoretic approach to design rate-

based controllers in order to flow-regulate the best-effort service in asynchronous
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transfer mode (ATM) switching networks. The proposed control by the authors
uses a recursive digital filtering controller as a original approach, where the con-
trol parameters can be designed to ensure the stability of the control loop in a
control-theoretic sense. The stability of closed-loop congestion control system is
analyzed by SchurCohn stability criterion, which leads to certain necessary and
sufficient stability condition under which the controlled ATM switching network is
asymptotically stable in terms of buffer occupancy and also to ensure a fair share
of the available bandwidth at the bottleneck node can be achieved according to

the proposed control policy.

Most of the congestion control schemes described in this chapter are either end-
to-end feedback or stochastic control scheme. However, this research exploits a
hop-by-hop method for congestion control of ad hoc wireless LANs using digital
filters. The control of congestion for this scheme takes place on every hop to
intermediate nodes that act as bridges. The obvious advantage of such control is
fast reaction in each hop with scalability as a dilemma since flow adjustments are to
be made on every hop. The network topology of the proposed system is considered
as combinatory stable, which means that change in the network topology is slower
than that required to update the network information by each node in the network.
Underpinning the control theoretic model that will be developed in Chapter 3,
a discretized and properly approximated model is then developed in chapter 4
towards a digital-filter based solution for control of congestion. The proposed
system can be used as a real-time control of congestion rather than an on-demand
control. Since the solution is hardware based, it also mitigates the scalability
problem to some extent. Unlike [40], the proposed scheme introduces a novel
congestion control solution for ad hoc wireless LANs. Simulation results are given

to demonstrate the performance of the designed system later in Chapter 5.



Chapter 3
Control System Design

In this chapter, a control-system model is formulated according to internal model
control (IMC) principle. The internal model control objectives are derived from
congestion avoidance perspective with congestive disturbances entering the system.
The purpose of the controller is to ensure that the system regulates the input and
output rates based on the bandwidth demands and disturbances. Also, in this
chapter time-delay stability analysis will be carried out to demonstrate the system

performance.

3.1 System Model

In order to derive the system model, a basic ad hoc wireless network with BoD
access is studied first. As shown in Figure 3.1, in each cluster the master nodes
are chosen by the nodes, which has the responsibility to share the cluster capacity
among the nodes. Also, cluster nodes choose one of them to act as the bridge,
which is visible to the neighbouring clusters. In Figure 3.1 nodes B, E and [
are shown as master nodes and nodes D and H act as bridges at a particular
instant of time. The choices of master nodes and the bridges may change as the
topology changes. In each cluster, every node can communicate with all others in
single hop. To simplify the network diagram, only master nodes are shown with

end-to-end wireless links.

We consider a typical case when node A of cluster 0 wants to transmit to node M

of cluster 2. The step by step procedures involved are described next.

21
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Cluster 0 Cluster 1 Cluster 2

FiGURE 3.1: A typical ad hoc wireless LAN

1. Inits turn, in the time-division cycle, node A requests its share of bandwidth
from master node B of the cluster 0. Node D will also announce to the
master node B, the maximum desired input rate, rpgs(t), at which it is able
to accept. The source controller in node B decides at what rate it should

output the data.

2. Once node B has complete knowledge of which node wants what share, it
then announces what bandwidth can be given to each node in the cluster
depending on the available bandwidth, bandwidth requests from nodes in
the cluster and a fairness criterion. Master node B also announces back
to bridge node D what rate, rn(), it should be allowed to take as input.
The delay that occurs between the desired input rate announcement and the
acknowledged maximum input rate between bridge D and master node B,
is called the backward delay and will be denoted by Tgw here. If the de-
sired input rate, rpgs(t), is higher than the acknowledged input rate, rn (%),
an additive backward disturbance takes place, which is denoted by dpw/(?).
The controller must decide on the rates based on the backward disturbance

created from differences from the master node.

3. Bridge D receives data from node A in a single hop, with associated input
rate of rn(t), derived from the source and bridge controller and disturbance
inputs. Node D also announces to master node of cluster 1, node E, at what
output rate, rreq(t), it wants to transmit. Node H, connecting the clusters

1 and 2, also announces what rate it is able to receive as rpgs(t).

4. Node E feeds the output rate, royr(t), back to node D, at which it is allowed
to transmit. The time delay that occurs between the announced rate and
the maximum allowed output rate is called the forward loop delay and will

be denoted by Trw. If the requested output rate, rrpq(t), is higher than the
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allowed output rate, royr(t), an additive forward disturbance takes place,
which is denoted by dpw(t). This disturbance is critical to system stability.
The controller must decide on the rates based on the backward disturbance

created from differences from master node.

5. Node D now transmits data to node H, at a rate rour(t) allowed by the
bridge controller, which is decided based on the disturbances and maximum
throughput rate. Node H requests the required output rate, rrpq(t), at

which it wants to transmit.

6. Master node I allows the rate of rouyr(t) as in step 4. At this moment,
node H dispatches the data directly to the node M of cluster 2 at a rate of
rout(t). The destination controller decides at which rate it can receive data,

to avoid overflow of queues and buffers.

In the procedures described above, the source, destination and intermediate nodes
incrementally start to form queues when the actual input rate, rin(¢), is higher
than the actual output rate, rouyr(t), for them. The proposed filter based solution
therefore makes sure that the decisions of allocating input and output rate are
optimally controlled in the source, destination and in the bridge controller. In
order to arrive at such solution a time delay model based control system will first
be derived. Later, discretization will be done assuming that the forward and back-
ward delays are integer multiples of the unit sample time, T,. The present control
system will have two distinct parts: the reference controller and error controller.
A reference queue length, grgr(t), will be first deduced from the maximum data
rate, ryax(t), and backward disturbance, dgw(t), in the reference controller. The
closed-loop error controller will control and minimize the error between instanta-
neous queue length, ¢(t), and reference queue length, grgr(t). The overall system

is intended to meet the following objectives:

1. The queue lengths must be limited to maximum buffer size of S, with a lower
limit of 0, i.e.

0<qt)<S . (3.1)

This will make sure that no data is lost due to overflow and that link uti-

lization is maximum.

2. When congestion is cleared by the congestion controller, the controller must
also make sure the desired input and required output rates, rpgs(t) and

rreq(t) respectively, are driven back to the maximum data rate, ryax(t),
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as if congestion was not there. This must be immediate to ensure that the

system throughput is maximum at all states.

3. The system impulse response must be asymptotically stable independently

of forward or backward disturbance.

3.2 Design of the Controllers

To meet the control missions, it is necessary to model the system in line with the
control objectives set. In the following sections, a reference and error controller
model for the bridge controller will be derived in the Laplace domain in accor-
dance with [31] and later a digital filter-based solution is presented with necessary
modifications. While both the controllers are based on a time-delay model, the
former controller is based on open loop IMC principle and the later is based on

closed-loop IMC principle.

3.2.1 Reference Controller Model

As mentioned before, the queue length, ¢(s), at a bridge controller node will

incrementally build up when the input rate, rin(s), is higher than the output rate,

T’OUT(S), i.e.

dfs) =~ ran(s) — rov(s)] (32

In order to make sure that the objective 1] is met, the necessary condition is
%(TIN(S) —rour(s)) < S, where S is the maximum buffer length. In [34] the buffers
are considered unrealistically large to contain all the receive traffic, while in this
paper the minimum buffer size to allow controllability will be defined realistically

later in equation (3.18)).

We have previously defined that, forward and backward disturbances are given by

dpw(s) = TREQ(S)_TOUT(S) y (33)
dBW(S) = TDES(S)—TIN(S) ) (3-4>
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where rpgs(s) and rrpq(s) are the desired input rate and required output rate
respectively and rour(s) and rn(s) are the output and input rates allowed by
the master node. It should also be noted that, since all rates are bound by the
maximum throughput rate of ryax(s) and since rour(s) < rreq(s) and rin(s) <

rpes(s), values of forward and backward disturbances are bound by

0 < dpw(s) < rreq(s) < rvax(s) (3.5)
0 S dBw(S) S TDES(S) S T’MA}(<S) . (36)

With the disturbances present, to establish a reference queue length, grgr(s), the
reference controller must define the reference desired input rate, rprspge(s) and
reference required output rate, rrpqg,,(s) based on the maximum throughput
rate. Growth of ¢(s) is then controlled against ¢grgr(s) through control over input
and output rates as shown in equation (3.2). To achieve such control, reference

rates and queue length must be defined.

In order to satisfy the congestion control objective 2, the reference desired rate

should always be set the maximum throughput rate,

TDESREF(S) = 7”MAX(S) . (3-7)

From equations (3.5) and (3.6), it is evident that the maximum required output
reference rate, Trpqp,,. (), can be ryax(s), and this happens when there is no
backward disturbance is present. Also, since maximum backward disturbance is
also bound by equation (3.6) as ryax(s), the minimum value of rrrq,,, () is 0.

Thus, with the given constraint in equation (3.6), 7req,, (5) is given by

TREQR.EF (S) = TMAX(S)B_STBW - dBW(S) (38)

where the delay term, e *"®W  is due to backward delay, Tgw, in the time-delay
model caused by the master node in the backward acknowledgment process. Equa-
tion (3.8) conforms with the internal model principle, stating that the closed-loop
system behaves much more like an open loop system in the absence of the distur-

bances [5].

Equations (3.7) and (3.8) show that the required reference output rate, rreqQp (5);

can be redefined in terms of the desired reference output rate, rprggye(S),
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PREQugp () = rpms(s)e W — dpw(s) . (3.9)

During the time interval between requesting an output rate and acknowledgment
of the permitted rate, packets will integrally get accumulated at the buffer. A
reference value of the queue length in the reference controller can thus be modeled

by

1
qrer(s) = 3 [7DESrur () = TREQup: ()€ *TV] . (3.10)

Combining equations (3.7), (3.8) and (3.10), grer(s) can further be expressed in

terms of inputs ryax(s) and dpw(s) as

1
qREF<S) = gvMAX(S)(l — €_S(TBW+TFW)) + dBw<S)€_STFW] . (311)

The delays in equation (3.11) are due to the time-delay model used in the con-
troller. Knowledge of bounded values of time delays are crucial to stability of
time-delay systems [17]. In this system we have a time-division multiplexed de-
mand assignment cycle at the master node and these delays are explicitly known.

This is essentially the requirement for the control mission set in objective 3.

3.2.2 Error Controller Model

Based on the disturbances and the reference rates, the error controller must control
the values of rix(s) and rour(s) in closed-loop fashion in order to minimize the er-
ror, e(s), between ¢(s) and grgr(s). Controlling the values of rpgs(s) and rreq(s)
would directly affect these rates, if a time-delay model is used, as in Sec. (3.2.1).
The control would stem from the effect of worst case congestion, dpw(s), which

has been neglected in the reference controller.

As shown in equations (3.3) and (3.4), to compensate for the effects of dpw(s),
it is necessary to reduce rpgs(s) rather than to reduce rrrq(s). This enables a
fine-tuned control for the output rate such that congestion can be avoided and
controlled. This control is done based on the feedback error between the reference

queue length, grer(s) and the instantaneous queue length, ¢(s), given by
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e(s) = q(s) — qrer(s) - (3.12)

Since the forward disturbance happens after royr(s) has been announced by the
master node after Tgw, the compensation of dgw during this time requires that
the error controller waits for the “dead time”, Tgyw, for the next error feedback to
be available. This can cause instability and as such, control of rix(s) and royr(s)
by means of e(s) must consider the effect of “dead time” according to Smith’s

principle [37]. Hence, transfer function between e(s) and dpw(s) can be given by

e(s) 1— e sTew  =sTBw
— + —.
dpw(S) S S+ T

(3.13)

Tk is the time constant, defined as the difference between minimum buffer-filling

time and total delays, given by

S
Tk = — (TFW + TBW) . (314)
'MAX

Since both terms in the sum in equation (3.13) are first order systems and have
poles at s = 0 and at s = —i, the system is stable as a requirement from control
objective 3. Equation (3.13)) also establishes the limiting values of e(s). Taking

the inverse Laplace transform of equation (3.13) yields

e(t) = / dpw (7)dT + / e T dpw(t — Taw — 7)dT. (3.15)
t 0

—Tpw

Considering T > 0, dpw(t) = 0 for —(Tsw+Trw) < t < 0and 0 < dpw(t) < rvax
for t >= 0 in equation (3.15) yields

0 <et)

IA

t t—Tew .
TMAX {/ dT+/ €TKdT}
t—Tew 0

rvax (Tew +Tk), V>0 . (3.16)

IN

Equation (3.16)) is essentially limiting the queue error, e(s), that is set by the

controller and can be verified. In equation (3.9), when dpw(s) = 0, rrREQug(S)
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is asymptotically driven to the value of rpgs...(s) and grer(s) = 0. But when
dpw(s) # 0, grer(s) > 0 according to equation (3.10). Thus, the minimum error

takes place when ¢(s) and grgr(s) are same, i.e.

e(S)MIN =0 . (317)

On the other hand, from equation (3.12), it is evident that e(s) is maximum when
q(s) is maximum and grgr is minimum. According to control objective [Il and

equation (3.14), the upper limit of ¢(s) is given by

QMAX(S) = TMAX(S) [Q_STK + e_STBW + e—STFWj|

- 5 . (3.18)

From equation (3.10), grgr(s) is minimum when rrpq,,, (s) is maximum as shown
in the inequality (3.5). The maximum value of 7reqy,, () from equation (3.8) is
(

raax(s). Thus, grer, (s) and the maximum error, epax(s) can be shown as

1
qREFyy (8) = ETMAX(S)U — W] = ryax(s)e Y (3.19)

emax (s) = quax(s) — qrEFu (5) = TMax(S) [e_STK + €_STBW} . (3.20)

In the time-domain, equations (3.17) and (3.20) can be combined as the following

inequality

0 S e(t) S TMAX<TK + TBW) . (321)

Inequality (3.21)) is a direct result of control objectives[lland 3. With known limits
set in inequality (3.21), the controller must be able to control ¢(s) by controlling
the rates mprg(s) and rreq(s). This would indirectly affect actual input and output
rates, rin(s) and rour(s) from the master node, resulting from an additive forward
disturbance of dpw(s). The control of rpgs(s) and rrrq(s) can be done using
a error compensation method through desired input rate error, rpgsguy(s) and

required input rate error, rreqy,, (S) as
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TDES(S) = TDESREF(S)_TDESERR(S)’ (3'22)

T’REQ(S) = TREQREF (S) — T‘REQERR(S). (323)

As specified at the beginning of Sec. 3.2.2, this compensation will be in favour
of rprs(s) and not of rreq(s) due to advantages in fine-tuned control. Using the
dead time compensation method for the Tpw by Smith’s principle [37], we have

the following transfer functions for the error rates,

TDESgrr (8) S Tk
— 3.24
e(s) 5+ 7 (1 — e~sTow) (3:24)
Qe (%) _ (3.25)

Multiplying the transfer functions in equations (3.24) and (3.13), the following

Laplace and time domain transfer functions can be shown,

1

TDESERR(‘S) Tk
= 1 3.26
dew(s) St (3.26)
1 b
T"'DESErr (t) = IT e 'k dFW(t - T)dT' (3.27>
K Jo

From equation (3.27) it follows that when dpw(t) = 0,
T"DESgrr (t) =0,

mpes(t) = rvax(t)

This is the necessary target to be achieved in control objective 2. From Equa-

tion (3.20) it is also evident that the control system between rprggpy, () and dpw ()

is a first order stable system with a pole at s = —ﬁ [control objective 3]. When

0 < dpw(t) < rmax(t), The compensation through rpgs,,, (t) decreases exponen-

tially with time constant, T and as such, the following inequality holds

0 < pESpre (1) < rmax(t) - (3.28)
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On the other hand, since Trpq,,, (t) = 0 according to equation (3.25), the con-
troller sets the desired input rate to be low enough to allow the output rate be
higher than input rate when a congestion is to be cleared and high enough to
allow the input rate be higher than the output rate when the effects of forward
disturbance are to be mitigated. This would mean that the required output rate,

rreq($), is bound by equation (3.5) as

0 S TREQ(S) S ’I“MA)((S) . (329)

Since the control system is based on a time-delay model, the time delays play an
important role in the system performance. The larger the time delays are, the
slower and more unstable the control action becomes and the harder it becomes

to control the congestion with the time-delay model [§].

3.3 Performance Analysis

The open loop reference controller derived in Sec. 3.2.1/ and the closed-loop error
controller derived in Sec. 3.2.2] are the two time-delay systems based on IMC
principles that controls the congestion in integrated manner. However, certain
analysis of the proposed controller needs to be done in order to investigate the
performance in the presence of congestive disturbances. In order to analyze the
performance, we present the following lemmas and theorems and their proofs and

later we also analyze the time-delay performances that may affect the system.

3.3.1 Theoretical Performance

Lemma 3.1. When initially qrer(t) = 0, dgw(t) = 0 for [-Tpw < t < 0] and
0 < dpw(t) < ryax(t),Vt > 0, the reference controller derived equation (3.11) has
the following properties:

1. 0 < qrer(t) < rvax(t)Trw, VE > 0, which eventually means full-link utiliza-

tion and overflow avoidance.

2. TDESper (1) = TREQupe (1) = rMax(t), V¥t > tye > Tew, when dpw(t) = 0 for
t > tpe.
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Proof: From equations (3.7) and (3.8), we have the following definition of the

desired input and required output rates and also the reference queue length:
rDESREF('S) = TMAX(S) )

"REQRrgr (5) = TMAX(S)eisTBW - dBW(S) >

1
qrer(s) = —[rmax(s)(1 — e_S(TBW+TFw)) + dBW(S)e—STFW]
s

By computing the inverse Laplace transform of equation (3.11)), we have

g (1) = /t rviax (7 — o) — dow (7)]dr (3.30)

—Trw

Since ryax (t) is generally step-like function and constant and also since dgw (t) = 0
for [—Tpw <t < 0] and 0 < dpw(t) < ryax(t),Vt > 0, property 1l is satisfied.
Also since ryax(t) = rvax(t — Tew), from equation (3.8) and equation (3.7), it
can be shown that, when dpw(t) = 0, rDESRer (1) = TREQuge () = rvax(t). This is

the property 2.

Lemma 3.2. Initially when e(t) = 0,Tx > 0,dpw(t) = 0 for [-Tsgw <t < 0] and
0 < dpw(t) < ryax(t),Vt > 0, the error controller derived equation (3.24) and
equation (3.25) has the following properties:

1. 0 <e(t) < rmax(t)[Tew +Tk], Vt > 0, which essentially sets the error limits.
2. TDESERR(t) = O,Vt Z tFC Z 0, when dpw<t) =0 fOTt Z th.
Proof: From equation (3.16) and (3.21), we have the proved the property [1 in

Laplace domain. Assuming ryax(t) is constant, the time-domain inequality of

property [l is given from equation (3.21), as
0 <e(t) < rvax(Tx + Tow)

In equation (3.15), we have also shown that the inverse Laplace transform of

equation (3.13) is given by
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The first integral of equation (3.15) is equal to 0 when dpw(t) = 0 for ¢t =
trc + Tew. According to equation (3.13), second integral is due to a first or-
der system with negative pole at p = —ﬁ, followed by delay equal to tgw. Thus,
at t > (trc + Tpw), the second integral is asymptotically driven to zero with a
time-constant of Tk, as shown before. More specifically, from equation (3.26)), the
error compensation transfer function has a negative pole at p = —ﬁ and is aymp-
totically driven to 0, without any overshoot or oscillations, with a time constant

of Tk. So, the property 2 is proved.

Theorem 3.3. Given the initial condition q(0) = 0,dpw(t) = 0 for [0 < ¢t <
(TFW + TBW)] and dBw(t) = 0 for [O <t < TBW]; if T > 0 and TMAX(t) 18

constant, then the following properties hold true:

S
1. TMAX(t) < Tew+Tsw+Tk’

time-delays and mazximum throughput.

i.e. the maximum queue length is bound by the

2. 0<q(t) <S8, ie instantaneous queue length is bound by maximum buffer

length of S.

3. When congestion situation terminates, the rprs(t) and rreq(t) are driven to
rvax(t), which means the controller must retain the target rates whenever

there is no congestive disturbance.

Proof: From equation (3.18)), it is evident that in time-domain the maximum
buffer length is limited by

S = TMAX(t) [TK -+ TBW + TFW]

Realistic implementation of the proposed control system relies on the assumption
of the buffer length. As such, equation (3.18) sets the upper bound of the buffer
length. However, for practical limitations, the physical interpretation of the buffer
length comes from the fact that minimum ryax () is the rate at which the buffer
can get full with the maximum delay of (Tx +Tsw + Trw). This proves property [1
and property 2.

From equation (3.27), it is evident that when there is no forward disturbance, the
error-controller asymptotically drives the rpggy,, to 0 with a time constant Tk,

given by

1

t
TDESERR({;) = ﬁ/o e_ﬁde(t — T)d’i'.
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Since the compensation of rpgs,y;, is only through rprs(t) and not through rreq(t),
the controller tracks the optimal data throughput according to IMC principles [18].
the closed-loop model strictly follows the target control to be achieved through

meeting the control objective 3. This proves property 3.

3.3.2 Time-delay Performance

In order to analyze the robust stability of the interconnected closed-loop system
derived in Sec. 3.2, time-delay analysis can be done. Since priori knowledge on
the upper bounds would be known due to time-division multiplexed request as-
signment cycle, delay dependent time-domain analysis would suffice to illustrate
the time-delay robustness. This kind of approach is based on various Lyapunov-
Krasovski functionals and Lyapunov-Razumikhin functions [17]. However, in this
research, owing to the fact that the time-delays are explicitly known by the design
constraints in the master station, the system stability can be tuned by a proper
choice of these delays during the design phase. In Chapter 5, several simulations
are performed to assess the system stability under varied time-delays. It will be
seen that the system performance is particularly affected by backward delay and
not by forward delay due to equations (3.10) and (3.24). However, the effect of
forward delay will have an impact in setting the maximum buffer size according

to equation (3.14).



Chapter 4

Digital-filter Based Design

Based on the control system derived in Chapter |3, a digital filter-based model is
derived in this chapter. With stable filter modeling, the reference controller can
be implemented by the reference filter and the error controller can be implemented
by the error filter, respectively. While doing necessary transformation, stability
is strictly maintained, conforming to control objective 3. A complete schematic

diagram is presented at the end of this chapter.

4.1 Discretization

In order to deduce a digital-filter based solution, the overall system derived in
Sec. 3.1 is first discretized by sampling with a period of T,s. With the high-speed
large scale circuits available today, the sampling period can be made granular
enough so that the forward and backward delays, Tgw and Tgw, can be consid-
ered as integer multiples of T, Tgw = o1, and Tpw = (7T, where o and 3 are
non-negative integers. Also, since T >> 2T, and Tx = ~T,, where v is also
non-negative integer, from Nyquist theorem, it follows that the discretization will
mimic the continuous time system, without any distortion or loss [23]. The fact
that the forward and backward delays are explicitly known due to time-division
multiplexed request assignment cycle, the choice of the sampling time can be de-
cided beforehand. Following the discretized model, the continuous time system
model shown in Sec. 3.2.1/ and in Sec. 3.2.2 can be modeled by digital filters as

shown in the following sections.

34
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4.2 Reference Filter

Based on the reference controller in Sec. 3.2.1, a reference filter is found in this
section using transformations, as required. Based on the desired and required
reference rate, rprsyer(s) and TrEQ.e(S), shown in equations (3.7) and (3.8),

transformed and redefined rates in z-domain are given by

TDESREF(Z) = TMAX(Z) ) (4-1)

TREQger (2) = Tmax(2)27% —dpw(z) . (4.2)

Since grer(z) is necessarily the integrated difference between the desired input
and required output rates, it can be expressed in terms of ryax(z) and dpw(z) as
shown in equation (3.11) with necessary transformations, i.e.

TMAx(Z)TS + S 1

QREF(Z> = dBw(Z>T5 . (43)

z—1

The expression for the reference queue length in equation (4.3) can be simplified

as

5=l _ = (atp+1) »—(B+1)
QREF(Z> = T TMAx(Z)TS + 1 _ o1 dBw(Z)TS . (44)
\ ~ / N——
IIR Filter 1 IIR Filter 2

Equation (4.4) models the reference filter by two infinite impulse response (IIR)
filter transfer functions that contribute to setting the grpp(z) from ryax(z) and
dpw (z) over one time sample, Ts. Also, according to equation (4.4)), the first IIR
filter must have a minimum of (« + § + 1) taps, while the second IIR filter must
have more than (4 + 1) taps in order to be allow time-delay effects. The fact
that they add together also requires that ryax(2)7s and dpw(2)7Ts have same tap
length, i.e. a minimum length of (o + G+ 1) taps. The reference model is a direct
consequence of the reference controller and is stable. This is due to pole on the
unit circle in the z-plane as shown in equation (4.3). The term T appear in the
expression along with ryax(2) and dgw(z) due to inherent conversion of data rate
in (in bps) to buffer length in (in bits). This can easily implemented using a single

tap multiplier with the data line.
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4.3 Error Filter

As seen in Sec. [3.2.2] based on the error between instantaneous queue length
and grpr(2), and found in Sec. 4.2, the error filter must generate the compensa-
tion for dpw(2) as rpesurg (2) and TReqQy,, (7). From equations (3.24) and (3.25),

TDESEre (2) a0d TREQu., (2) can be expressed as

roEsere(2) B _ z(l—=") (4.5)
e(z) 1+ ﬁ(l —27%) A4+ (1—q)z7t— zf(o‘ﬂi '
IR Filter 3
"REQunn (2) (4.6)

where e(z) is the z-domain queue error and can be expressed from equations (3.12)
as e(z) = q(z) — qrer(2). The transfer function shown in equation (4.5) is an
IIR filter with (a4 1) feedback taps and is stable. The term 7% appears in the
numerator due to conversion between a rate (in bps) and queue length (in bits).
As before, no compensation is needed to reduce the required output reference rate
and as such the transfer function between rgpq,,,(2) and e(z) is zero. Hence,

actual desired and required rates, rpgs(z) and rrrq(z) can be expressed as

TDES(Z) = TDESger (Z) — T"'DESgrr (Z)’ (47)

"REQ(2) = TREQggr(2) — "REQgg (7). (4.8)

These rates directly affect the input and output rates that the system might have.
However, the input and output rates cannot be known beforehand because dis-
turbance is generated on some criterion externally. The actual input and output

rates are found out from the transformed time-delay models as

rin(z) = rpes(2)2 7" — dw(2), (4.9)
rour(?) = TrReq(2)2 " — drw(2). (4.10)
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The delays in equations (4.9) and (4.10) can be modeled by finite impulse response
(FIR) filters of («w + 1) and (8 + 1) taps respectively, with all but the final tap
set to one. Also, to make sure the rates do not fall below zero due to external
disturbance rates, limiters can be used. From equation (3.2) and input and output

rates shown above, the instantaneous queue length, ¢(z), will thus grow as

T. 27!

d —— |"in(2) — rouT(2)] . 4.11
(1_271)[ () ()] (411)
———

IIR filter 4

The IIR filter implementation (functioning as an integrator) in equation (4.11)
needs only two taps and is marginally stable, since only one pole exists on the unit
circle. However, it’s stability can be improved during the feedback process. The
difference between reference and instantaneous queue length would thus be fed to
the filter-based control system after every T seconds, but the actual compensation
for forward congestion must wait for at least 3 samples. An integrated filter-based

solution to the proposed congestion controller is shown in Figure 4.1.

1/T,
r z
Max(?) oes ernl?) IIR Filter
oesper@ 7T Moes(@) 2T, IR Filter qREF(Z)Ea
' + PRL:ICY
N z® > "ReQ(2) > zB dgw(2) g
L T L
/ s c
g i + 5 @)
© NP 6‘ Ts
> 2B AR ]
+T four(@)
dew(2)

FIGURE 4.1: Integrated filter-based congestion controller
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4.4 Filter Responses and Comments

The filter based model shown in Figure 4.1/ is the complete integrated solution
to the control of congestion. The external inputs are: maximum throughput
rate, rvax(z), backward disturbance, dgw(z) and forward disturbance, dpw(2).
The filter-based model handles the disturbances separately but in an integrated
manner. The former affects the reference filter, which functions as a open loop IMC
controller for modeling reference queue length, while the later affects the actual
input and output rates through a closed-loop filter based controller to mitigate
the effect of the disturbances.

While deriving, it has been extensively shown that the filters are stable considering
the pole and zero locations and are easy and straightforward for implementation.
But it is also important that the values of «, 3 and ~ are carefully chosen, otherwise
numerator terms in IIR filters 1 and 2 with rapid change of values may be inflicted
as a faster compensation requirement at the closed-loop error controller. Faster
compensation is particularly hard to achieve since the situation worsens due to lag
in compensation on every forward and backward time delay interval. In Figure 4.2
and Figure 4.3 the effect of change of times delays on the two frequency response
of the filters are shown similar to that in digital signal processing (DSP) circuits.
While in this section, the frequency domain effects are investigated, the effect
of change of time-delays on the time domain performance are illustrated more

comprehensively in Chapter 5.

Magnitude response of IIR Filter 1 with a=50 and =50
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FIGURE 4.2: Effect of a =50 and 8 = 50 on the IIR Filter 1 for ryax(2)7Ts
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Magnitude response of IIR Filter 1 with a=100 and =100
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FIGURE 4.3: Effect of a = 100 and = 100 on the IIR Filter 1 for ryax(2)Ts

In our assumptions, since TMAx(Z)TS is constant and does not change, the mag-
nitude response does not reveal any useful information from Figure 4.2/ and Fig-
ure 4.3l However with the increase of o and (3, the phase changes faster. The IIR
filter 1 necessarily accumulates sample-by-sample differences between maximum
throughput rate with delayed version of the same by (« + 3) samples. Similar to
IIR filter 1, Figure 4.4 and Figure 4.5 demonstrate the contribution of backward

delay and effect of such delay in the reference filter.

Magnitude response of IIR Filter 2 with =50
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FIGURE 4.4: Effect of § = 50 on the IIR Filter 2 for dpw(2)T5
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Magnitude response of IIR Filter 2 with 3=100
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FIGURE 4.5: Effect of § = 100 on the IIR Filter 2 for dpw(z)75

As shown in Figure 4.4/ and Figure 4.5 the magnitude of the backward disturbance
is not the same over all frequencies rather the filter acts more like a low pass
amplifier: the slower changes of the backward disturbance rate over a sample time
is amplified and higher changes are attenuated. As far as the delay is concerned,
it is asymptotically increasing in values and the slope depends on how high or low
the delays are. With larger delay, the increase of the phase is higher and steeper,
while for smaller delays this is rather smaller, as well. These are DSP analogies
that show that the proposed filter based scheme works exactly in the same way as

the continuous time model shown in Chapter 3.

In Figure 4.6, 4.7/ and 4.8, the effects of change of values of o and ~ are shown.
Since 7y is the constant related to setting of the maximum buffer length, the only
effect of this would be in changing the upper limit, while change of o changes the
how quickly the compensation can be done. The change of o from 50 to 100 in
Figure 4.6/and Figure 4.7/ demonstrate the fact that with higher « the filter is able
to amplify the rate of change of backward disturbance even faster. However as
far as the phase response is concerned, the phase experiences higher damping for
faster rate of change with higher initial phase. This is due to the integration like
operation carried out in the time-domain. As demonstrated in Figure 4.8, with the
increase of 7, the amplification at higher rate of change of backward disturbance

is increased and phase damping is reduced as the rate experiences sharp change.

In all the simulations carried out in Chapter 5, only the time domain effects and
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Magnitude response of IIR Filter 3 with a=50 and y=50
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FIGURE 4.6: Effect of @ = 50 and v = 50 on the IIR Filter 3 for error compen-
sation transfer function

Magnitude response of IIR Filter 3 with a=100 and y=50
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Magnitude response of IIR Filter 3 with a=100 and y=100
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not the frequency domain effects are demonstrated that may affect the system.
But it is important to have rate of change effects taken into consideration in order
to modulate the system stability, because in real systems, these changes come as
rectangular short-duration signals. In all the filters demonstrated above, the sys-
tem does not have any instability problems for any particular rate of change that
the system might experience. From control-theoretic point of view, this is partic-
ularly important since stability is set as the third but most important objectives
in Chapter 3.



Chapter 5

Simulations and Results

Assuming discrete fluid flow approximation for data in the WLAN for the con-
troller, appropriately chosen simulation based tests are undertaken to assess the
achievable performance of the system described in Sec. 4.1, In the simulations,
the nodes in the WLAN are now classified according to their functions in the
network. Source and destination nodes are the participating transmitting and re-
ceiving nodes, while bridges are the connecting nodes between the clusters. The
model derived in Sec. 3.1 and in Sec. 4.1, can be directly placed in the bridge con-
troller. However, since the source controller does not make any rpgs(z) request,
the time-delay model for the backward delay is thus not needed. Also for the des-
tination controller, the time-delay model for the forward delay is not needed since
it does not make any outbound request in the form of rgrpq(z). In this chapter,
the proposed filter based model in Chapter 4/ is simulated in different scenarios
to illustrate the effects of time-delays and effect of disturbances by MATLAB
Simulink. Also with an integrated WLAN scenario modeled in OPNET, the dis-
crete event simulator by MIL3, simulations have been carried out to investigate

the performance of the integrated system.

5.1 Effects of Congestive disturbances

Based on the derivations in Sec. 4.1), the following parameter values are assumed
for simulation to illustrate the effects of disturbances: Ty = 0.001s, rvax(t) =
11Mbps, Tegw = 1007y, Tew = 2007, Tx = 1007,. The choice of T} is such that
forward and backward delays can be effectively implemented using delay filters, as

mentioned in Chapter4. Assuch, ryax(2), dpw(2), drw(2), rin(z) and rour(2) are

43
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provided with buffer lengths of 600 each for the delays which can be implemented
by filters shown in Sec. 4.1. In all the following simulations, the initial queue
length is assumed to be of zero length and the units in the following descriptions

are avoided due to discretization but implicitly understood.

5.1.1 Effects of Backward Congestion

Backward disturbance is generated when the master station acknowledges with
input rate, rn(t), different from the original desired input rate, rpgs(t), requested
by the nodes. Thus, in order to assess the effect of backward disturbance, it is
assumed that the master station cannot allow any input to be taken against the
desired input requests during ¢t = 0.5s to t = 2.5s and it allows whatever output re-
quests are made during this time. These mean that the system will be experiencing
a backward disturbance of dgw(z) = 11 x 10% and dpw(z) = 0 during the interval
considered. The congestion disturbances are shown in Figure /5.1 along with the
respective desired, required, input and output rates. Due to equation (4.1)), the
reference desired rate will always be set to rpgg(z) = 11 x 10°, while due to equa-
tion (4.2), rreq(z) = 11 x 10° after a time-delay of Tpw = 0.1s. From ¢ = 0.1s
to t = 0.5s, the desired and required rates would be sustained until a backward
disturbance happens at ¢t = 0.5s. Also during this interval riy(2) = 11 x 10° after
rpes(z) is allowed by the master station at t = 0 + Tpws = 0.1s. Since rrpq(2)
is already delayed by 0.1s, due to the forward delay loop, royr(z) = 11 x 10°
after t = 0.1 + Tpw = 0.3s. After t = 0.5s, since no input is being allowed,
rin(z) = 0 against rpgs(z) = 11 x 10° and as a result, royr(z) = 0 after a forward
delay of 2007 = 0.2s. As soon as backward congestion is cleared at ¢t = 2.5s,
rpes(z) = 11 x 10° and as such, rn(2) is revived back to ryax(z) = 11Mbps
according to equation 3.4. This is necessarily control objective 2| stated in Chap-
ter 3. The output rate, rour(z), is also set to ryax(z) = 11 x 10, after a forward
request to the master station is done without any disturbance being generated
during Tpw = 2007ss. Typical simulation results which support these statements

are given in Figure 5.1.

As far as the queue lengths are concerned, the growth of the reference queue length
is directly affected by the backward disturbance according to equation (4.3). At
t = 0.1s onwards, during this interval of Tpw = 2007 = 0.2s, grer(z) grow
linearly according to integral function of the filters shown in equation 4.3l Since
there is no forward congestion, the error compensation is immediate to make sure

q(z) follows qrer(z) as shown in Figure 5.1l During the 0.2s interval the reference
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and instantaneous queue lengths grow up to 11 x 10° x 0.2 = 2.2 x 10%its. At

= 0.3s and onwards, this is maintained until the buffer has some opportunity
to dispatch some of its stored data due to backward disturbance at this time.
However due to forward-loop delay and rix(z) = 0 and rix(z) = 11 x 10° at
t = 0.5s onwards, the queue is emptied at a rate of 11 x 10% within 0.2s. Since no
transmissions take place from ¢ = 0.7s, the queue remains empty until ¢ = 2.5s,
when backward disturbance is cleared. At this time again, the queue starts to
build up to 2.2 x 10°bits due to forwards-loop delay between ry(2) and royr(z).
It is to be noted that due to no closed-loop error feedback, the reference and error
filter employs perfect IMC principle and the reference and instantaneous queue

lengths are exactly the same.
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5.1.2 Effects of Forward Congestion

Similarly to backward disturbance, forward congestion is generated when the mas-
ter station acknowledges with output rate, rour(t), different from the original
required output rate, rrpq(t), requested by the nodes for an outbound transmis-
sion request. In order to assess the effect of forward disturbance, it is assumed
that the master station cannot allow any output to be taken against the required
output rate requests from t = 0.5s to t = 2.5s, while it allows whatever input
requests are made during this time. In this case, the system will experience a
forward disturbance of dpw(2) = 11 x 10° and dpw(z) = 0 during this time. The
congestion disturbances are shown in Figure 5.2 along with the respective desired,
required, input and output rates. The desired input rate, rpgs(z) will be set the
maximum 11 x 10® until the forward disturbance appears as shown previously in
equation (4.1). Since no compensation is done on the required output rate, it will
also be set to 11 x 10¢ after a backward loop delay of 0.1s that would be taken in
the backward request process. At ¢t = 0.5s, as the forward congestion takes place,
due to equation (4.5), the desired rate will be reduced due to error compensa-
tion. This compensation is exponential and increases with a time constant of Ti.
At approximately ¢t = 1s, the compensation would cause the desired rate fall at
zero. Since there is no backward congestion assumed, the input rate would follow
exactly, except for a time-lag of backward-loop delay. Also as a consequence of
forward congestion, output rate will be 11 x 10%bps from t = 0.3s to t = 0.5s owing
to forward loop delay. The desired rate, require rate, input and outputs rates are
shown in Figure 5.2. Typical simulation results which support these statements
are given in Figure 5.2l As soon as forward congestion is cleared at t = 2.5s,
rpes(z) regains back to 11 x 106ps due to exponential reduction in compensation.
Since there is no compensation, ry(z) is is still maintained at ryax(z) = 11 Mbps.
The desired rate revival is almost immediate following a time constant of Tk as
this is necessarily control objective 2. The output rate, rour(z), is also set to
rvax(z) = 11 x 10° immediately with the requested output rate as no forward

disturbance exists after ¢ = 2.5s. This is also illustrated in Figure 5.1.

As far as the queue lengths are concerned, the growth of the reference queue
length is directly affected by the forward disturbance according to equation (4.3)).
At t = 0.1s onwards, during an interval of Trw = 2007 = 0.2s, qrer(2) grow
linearly according to integral function of the filters shown in equation [4.3. The
reference and instantaneous queue lengths grow up to 11 x10%x 0.2 = 2.2 x 10%bits.

At t = 0.3s and onwards, this is maintained up to ¢ = 0.5s until the forward
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FIGURE 5.2: Simulation 2: Effect of forward disturbance, Trw = 0.2s, Tpw =
0.1s: top left, maximum rate and disturbances, top right, desired and required
rates, bottom left, input and output rates, bottom right, instantaneous and

reference queue length.

disturbance happens. At t = 0.5s onwards, due to 0.1s lag the instantaneous queue

starts to build up exponentially with a time constant of Tk and after approximately

0.8s, the queue length is sustained until forward congestion is over. At t = 2.5s,

the forward congestion is cleared and the input rate gradually starts to build up

with time delay of Tgw = 0.1s again. This causes the queue to come back to the

reference queue length value with the same time constant. During the forward

disturbance, the control actions are critical dual IMC problem.

In the closed-

loop error controller a rather loosely-coupled IMC controller is used to ensure the

system is asymptotically stable, while the queue limits are maintained by control

objective (1.
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5.1.3 Effects of Combined Congestion

In a real ad hoc networks, normally the disturbances appear simultaneously with
a with a time difference of Tgw between the backward congestion and the forward
congestion. This is due to the fact that the forward disturbance take place only
when an input, which is also the reference for output request is acknowledged.
Thus, in order to assess the effect of forward and backward disturbances, it is
assumed that the master station can only allow input to be taken 5.5 x 10%bps less
than that of desired input requests during ¢t = 0.5s to ¢t = 2.5s and it allows output
rate 5.5 x 10%ps less than that of required output rate requests during t = 0.6s to
t = 2.6s . These mean that the system will be experiencing a backward disturbance
of dpw(2) = 5.5 x 10° and dpw(z) = 5.5 x 10° during the interval mentioned. The
congestion disturbances are shown in Figure 5.3/ along with the respective desired,
required, input and output rates. As before, due to equation (4.1)), the reference
desired rate will always be set to rpgsg,, (2) = 11 x 10°, while due to compensation
shown in equation (4.5), rpgs(z) will fall exponentially down to 5.5 x 10¢ after a
time-delay of Tgw = 0.1s. During the interval between t = Tgw = 0.1s and
t = 0.5s, the required rate will be set to the maximum 11 x 10%ps. The delay
is due to the backward loop request that has to happen before the required rate
is known to the system. Due to presence of backward disturbance in the system
starting from ¢ = 0.5s to t = 2.5s, the required rate will fall down to 5.5 x 10%bps.
Again, due to presence of forward disturbance in the system starting from ¢ = 0.6s
to t = 2.6s, the desired rate will fall down to 5.5 x 10%ps exponentially with
the error filter feeding back the compensation as rpgs,,y, (2). The corresponding
desired and required rates are shown in the Figure 5.3. The impact of these desired
and required rates are direct on the input and output rates. The input rate is
related to the desired rate with a backward delay and the backward disturbance.
The input rate fall down to 0bps in approximately the same time when the desired
rate falls down to 5.5 x 10%ps. Since at t = 2.5s, the backward congestion is
cleared, the desired and hence the input rate exponentially rise due to reduction
in the exponential compensation. Similarly, output rate is directly affected by
the required rate, with a time forward delay and forward disturbance coming into
play. Since there is no compensation done on the required rate, this relations are

straight forward and as shown in Figure 5.3l

As far as the queue lengths are concerned, the growth of the reference queue length
is directly affected by the combined disturbance according to equation (4.3). At
t = 0.1s onwards, during this interval of Tpw = 2007; = 0.2s, grger(z) grow
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linearly according to integral function of the filters shown in equation 4.3. Since
there is no forward congestion, the error compensation is immediate to make sure
q(z) follows qrer(z) as shown in Figure 5.3l During the 0.2s interval the reference
and instantaneous queue lengths grow up to 11 x 10° x 0.2 = 2.2 x 10%its. At
t = 0.3s and onwards, both the reference and instantaneous queue are maintained
at a constant level since there is no disturbance present. However due to the
fact forward disturbance effect makes the input rate to be higher than the output
rate, from ¢ = 0.6s, the instantaneous slightly deviates from the reference queue
length with an exponential rise to 11 x 10% x 0.2 = 2.2 x 10°bits. This continues
until ¢ = 2.5s, after which due to difference between the rates, both the queue
lengths increase integrally for a duration of 0.1s. From ¢ = 2.6s, since both the
input and output rates reach the maximum rate 11 x 10°, both the queues level

up and follow the open-loop IMC controller set values asymptotically as long as
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the forward disturbance does not happen.

5.2 Effects of Time-delays

Knowledge of bounded values of time delays are crucial to stability of time-delay
systems [17]. In this system a time-division multiplexed demand assignment cycle
at the master node is implemented and hence these delays are explicitly known.
This is essentially the requirement for the control mission set in objective 3| in
Chapter 3. However, for a strictly stable performance it is important to find out
the best and minimum possible time-delay that can be fit into the design. In this
section, the effect of change of forward and backward time-delays on the different

rates and the queue lengths and on the system stability has been investigated.

To investigate the effects of the time delays only, a simple case is considered
when the controller will be subjected to forward disturbance only since backward
disturbance cannot affect the compensation and as such time delays effects are
not reflected in the results. The forward and backward delays are set as Trw =
0.2s and Tgw = 0.1s. As shown in Figure 5.4, a simulation is performed as
a reference for the later two cases where the forward and backward delays are
increased to simulate how they affect the system performance. The system is
considered as subjected to a forward disturbance of 11 x 10°bps from t = 1.0s
to t = 2.0s. As expected and shown in Sec. 5.1, the desired rate exponentially
drops to Obps at t = 1.0s with a time constant of Tk. Also, the required rate
would be set to maximum rate since no backward congestion takes place as shown
in equation (4.2). Due to loop delays, the corresponding input and output rates
are affected as shown in the Figure 5.4. Due to Difference between the input and
output rate at and onwards ¢t = 1.0s, the instantaneous queue length exponentially
rises to 11 x 10 x (Tpw + Tk + Tw) = 4.4 x 10%;its. This is maintained until
the congestion is cleared at t = 2.0s, when the rates rise exponentially and the

instantaneous queue length follows the reference queue length.

5.2.1 Effects of Forward Delay

In the following simulation, the forward delay, Tgw, has been increased from 0.2s
to 0.5s to investigate the effect of increase of forward delay towards the system

performance. As shown in Figurel5.5, increasing the forward delay simply increases
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FIGURE 5.4: Simulation 4: Effect of delay, Trw = 0.2s, Tgw = 0.1s: top left,
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left, input and output rates, bottom right, instantaneous and reference queue
length.

the reference queue length, grger(2), and hence the instantaneous queue length,
q(z). This causes the maximum instantaneous queue length to be 11 x 10° x
(Trw + Tx + Tew) = 7.7 x 10%its. This is maintained until the congestion is
cleared at t = 2.0s, when the rates rise exponentially and the instantaneous queue

length follows the reference queue length, as shown in Figure [5.5.

5.2.2 Effect of Backward Delay

Backward delay is the most crucial element in system stability since it appears as
a Smith predictor variable in the closed loop error controller as shown in equa-
tion (4.5). To investigate the effect of increase of backward delay, Tgw, has been
increased from 0.1s to 0.5s, while Trw = 0.2s. The effect can be described as this:

with the increase of backward delay time, the waiting time for the control increases
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further for which the compensation becomes even bigger. Since Smith predictor

feeds back this delay causing the system accumulated the time delay effects for the

next compensation to be done. But due to the fact that Tgw > Tgw, the compen-

sation becomes large enough to drive the rates negative and often overshoots take

place since the pole is now outside the unit circle according the equation (4.5).

However this instability problem can be practically handled using lower value lim-

iter for the input and output rates so that negative values are not allowed. This

will also allow the system to avoid overshoots since the error will reduce, requiring

less compensation to be fed back to the desired rate, rpgs(z). The instable system

with overshoots due to higher backward loop delay is shown in Figure [5.6.

3000
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5.3 Simulation in WLAN

Based on the derivations in Sec. 4.1} the following parameter values are assumed for
simulation in a WLAN scenario: Ty = 0.001s, ryax(z) = 11Mbps, Tew = 10075,
Tew = 2007, Tk 1007,. Similarly like 5.1, the choice of T, is such that

forward and backward delays can be effectively implemented using delay filters,

as mentioned before. In order to allow iterative simulation, rvax(z), dpw(z),
drw(2), min(2) and rour(z) are provided with buffer lengths of 600 each for the
delays which can be implemented by filters shown in Sec. [4.1. In all the following

simulations, the initial queue length is assumed to be of zero length.

Using the scenario in the Figure 3.1, the simulation is performed using an OPNET
(by MIL3) model of the filter based controller and plotted using MATLAB with

exported data. Since control time and frame times are high level layer issues, in
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this simulation, these values are suitably chosen as integer multiple of sample time,
i.e. control time, T, = 5007 and frame time, T}, = 4007;. Nodes A, C, G and
F' are considered as the source nodes, while nodes M, L, K and J are considered
as the destination nodes. Nodes B, E and I are the master nodes that assign the
bandwidth among the cluster nodes, and nodes D and H act as bridges. To mimic
the overall controller behaviour, each source and destination pair is considered to
possess different maximum rate, ryax(z) and the nodes are considered to have a
trajectory which is slower than the time required to update the topology informa-
tion. The start and stop time for the connections and corresponding maximum

rates are shown below

Connection | Start Time, s | Stop Time, s | ryax(t), Mbps
A— M 0.2 7.3 11.0
C— 1L 2.0 5.5 8.3
G— K 1.8 10 4.6
F—J 4.5 9.2 10.2

TABLE 5.1: Start and stop times for connections

In this simulation, only queue length of node H is investigated since it is typi-
cally inflicted with more inbound and outbound requests during the transmissions.
Also, time domain results are shown instead of z-domain, to illustrate the time-
dependent results. As can be seen from Tab. 5.1, no transmission takes place up
to 0.2s and as such the queue lengths increase linearly according to equation 4.3.
Since from ¢t = 0.2s to t = 1.8s, only node A is transmitting, dgw(t) = 0Mbps and
dpw (t) = 0Mbps. A random bandwidth sharing criterion for the master node has
been considered to simulate congestion situation arbitrarily. From ¢t = 1.80s to
t = 2.0s, nodes A and G start to transmit simultaneously as shown in Figure [5.7.
During this interval, the controller copes to mitigate the disturbance through de-
This causes ¢(t) to fall down with the

reference queue length due to effect described in equation [4.11/ and 4.2. Eventu-

creasing rpgs(f) and increasing rrpq(t).

ally rin(t) also falls down to lower value compared to royur(t) during Trw = 0.2s

interval.

With the integrated scenario, the overall system has the following average queue
length, gavg in bits and average throughput rate, r,,athrmQOUT 4y in bps as
shown in Table 5.2. These results are obtained from OPNET global link statis-
tics and scaling the connection properties linearly according to their maximum

throughput rates. It is evident that when forward disturbance persists, system
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dBW(t): Backward Disturbance at H

—d Forward Disturbance at H
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F1GURE 5.7: Simulation 7: Integrated WLAN Simulation, Trw = 0.1s, Tpgw =
0.2s: top left, maximum rate and disturbances, top right, desired and required
rates, bottom left, input and output rates, bottom right, instantaneous and

reference queue length.

queue length exponentially increases and when a high backward disturbance ap-

pears in absence of forward disturbance, the queue length retains its IMC prin-

ciples. The results in the table also validates the effectiveness of the proposed

controller since it improves the data rate significantly, while maintains control-

lable queue length, which is not overflown. However, the only problem is that

system has to scale its output and input rate at any node almost every sample

time. But since the proposed controller is hardware based, it is possible for the

controller to improve the scalability further. This is a strict requirement for net-

works, where the open system interconnect (OSI) layers are poorly defined, like in

sensor networks or device networks etc.
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Connection | Connection Time, s | qavg, bits | rouT,,, bPS
A— M 0.2+— 7.3 1.2718 x 10° | 3.5323 x 10°
C — L 2.0 —— 5.5 0.7482 x 10° | 2.4519 x 10°
G— K 1.8 +—— 10 0.45381 x 10° | 1.93572 x 10°
F—J 4.5+—9.2 1.3726 x 10° | 3.18268 x 10°

TABLE 5.2: Average queue length and average throughput rate

5.4 Comparisons

The proposed filter-based controller is rather a lower level solution in modern
network architecture, but surely improves on the kind of quick response that ad hoc
networks may need. It can be easily implemented using modern DSP hardware.
The only dilemma is that rates need to be adjusted almost on every sample instant.
Also, for every connection, a bridge would need to have a dedicated filter-based
controller, increasing the bulk of hardware. However, in [31], the continuous-time
model for congestion control has been considered without any direction to whether
it could be implemented as a hardware or software solution. Also, the proposed
system considers the introduction of minimum value logic such that the input and
output rates would never fall below zero. But in [31], this has not been done.
This leads to impractical control when either rix(t) or rour(t) falls below zero,
due to compensation of rpgg(t) through rpgs,,,(t). The comparisons are drawn

in Figure [5.8.

To illustrate the differences, simulations are carried out with the proposed model
and the model described in [31], whereby both are shown in the time-domain.
Figure 5.8 shows the disturbances considered over a time duration of 10s. With
the introduction of the logic for the lower limit of rix(t) and rour(t) as zero, the
control objectives are still met and remains practical as shown in the Figure 5.8.
Note that at ¢t = 3.5s, ¢(t) does not rise exponentially as the controller externally
sets the lower value as 7y (f) = 0 instead of negative value, while according
to [31], the rates go negative, which is not realistic. The effect of negative rates

on the queue lengths are shown in Figure 5.8 along with the realistic assumptions.

The proposed congestion control scheme is based on end-to-end congestion control.
To illustrate the performance of proposed scheme, OPNET simulations results are
shown in Table 5.3/ with the following end-end-end transfer delays for the proposed

scheme and the feedback based control scheme.
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bits/sec

bits/sec

1.

Time (Seconds)
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FIGURE 5.8: Simulation 8: Integrated Simulation for comparison , Trw = 0.2s,

Tew = 0.1s:

top left, maximum rate and disturbances, top right, desired and

required rates, bottom left, input and output rates, bottom right, instantaneous

and reference queue length.

Connection

Transfer delay with
proposed scheme, s

Transfer delay with
traditional feed-
back based scheme,
S

A—-M

0.572

0.674

C— L

0.925

0.893

G— K

0.472

0.531

F—J

0.718

0.703

TABLE 5.3: Comparison of average transfer delays
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5.5 Comments and Discussions

In this chapter, several simulations were carried out to demonstrate the system
performance under varied circumstances. First, system performance was validated
using MATLAB Simulink simulations and later an integrated WLAN scenario was
simulated using OPNET discrete event simulator tool. Proposed model in this

research considers certain advantages, as illustrated below:

1. In this proposed method, a realistic maximum buffer length has been con-
sidered as compared to [34], where the buffers are considered unrealistically
large to contain all the receive traffic. The minimum buffer size that allows
the proposed control system to work conforming with the control objectives

has been defined in equation 3.18.

2. As shown in [31] and also in [30], the control scheme does not consider
the fact that the input and output rates can go negative due simultaneous
high backward and forward congestion. But in the proposed scheme strictly

maintains the rates at or above zero, which is practical.

3. In networks sensor networks or device networks, ad hoc wireless LANs nor-
mally do not strictly maintain OSI layering model and as such this kind of
model can be suitable for maintaining high data rate. It is particularly an
advantage in today high speed networks, that adopt ad hoc mode and have
bandwidth-on-demand system. Also since the implementation is proposed
using high speed DSP hardware, the solution is fast and tunable at the same

time.

4. The proposed scheme uses time division multiplexed request assignment cy-
cle and as such, the time delays can be tuned towards stable system per-
formance. Also, it is incumbent to design the minimum time delays for the

system to achieve best results.

5. This scheme is an excellent candidate for congestion control in satellite net-
works, since the time delays are generally large and large queues can be

implemented, too.

Despite these advantages, the system also has certain drawbacks. These are de-

scribed below:
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1. Since in the proposed scheme, the data rates need to be changed according
to the time-delay control system, the rate adjustment can cause scalability
problem. However, since this is hardware based, this scalability problem can
be minimized using hardware level control on these rate using the control

scheme described in this research.

2. Proposed scheme can be difficult to implement since it does not fit in the
traditional OSI or TCP/IP model of network layering.

3. Due to added cost for DSP hardwares for each connection that a virtual
access point has to deal with, the cost may increase. This is a trade off

against all the advantages described above.



Chapter 6

Conclusions and Further Research

6.1 Conclusions

In this thesis, a congestion control scheme has been proposed from end-to-end
control-theoretic paradigm with a DSP based implementation for multihop ad
hoc wireless LANs with bandwidth-on-demand access. The proposed model in
this research is novel in that it considers the controlling of congestion by means of
processing the disturbance rate signals. The proposed model also improves on pre-
vious models, to ensure the control is realistic. Here, the basic control objectives
are met while controlling congestion. In order to illustrate that the proposed sys-
tem works as intended, a simple and generic WLAN scenario has been simulated.
Since the proposed congestion control is real-time control, it avoids and controls
congestion by making sure that the desired and required rates are regulated op-
timally according to the stated control objectives. Digital filter-based approach
allows high-speed congestion control and a scalable hardware solution. The pro-
posed congestion control scheme also uses combinatory stable assumptions, which
is characteristic to WLANs. A more generic and quasi-stable assumptions are ex-
pected to lead to ground-breaking models for mobile ad hoc networks (MANETS).
Recently research is being carried out for congestion control in MANETSs with

introduction of variable packet fragmentation and service-on-demand systems.

6.2 Future Directions

An ad hoc mode of operation for networked systems is presently being considered
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an attractive field of research and as such more speculations and observations
are necessary for different applications using the same technology as described in
this research. Next possible directions for ongoing/future research are outlined

together with a summary of the challenges likely to be involved.

6.2.1 Congestion Control in Device Networks

Device networks support short-range wireless connections between devices and
they are primarily more stable than present assumptions in terms of topology
changes. Such networks are intended to replace inconvenient cabled connections
with wireless connections. Thus, the need for cables and the corresponding con-
nectors between cell phones, modems, headsets, computers, printers, projectors,
network access points, and other such devices is eliminated. The interaction among
the devices are less frequent and their network can also be set up on ad hoc ba-
sis. Also, master stations can be almost statically decided due to less change in
topology and as such proposed congestion control scheme will fit easily. Also, lack
of higher layers like in OSI network layer model can be an added advantage for
the implementation. However, research opportunities lie in congestion control for

a large device network, where balanced clustering is still a difficult problem [16].

6.2.2 Congestion Control in Sensor Networks

Senors have been in use for quite long time but wireless networked sensors are
modern concepts with enormous potentials for research. Wireless sensor networks
consist of small nodes with sensing, computation, and wireless networking ca-
pabilities, as such these networks represent the convergence of three important
technologies. Sensor networks have enormous potential for both consumer and
military applications. Military missions require sensors and other intelligence
gathering mechanisms that can be placed close to their intended targets. The
potential threat to these mechanisms is therefore quite high, so it follows that the
technology used must be highly redundant and require as little human intervention
as possible. Due to these attributes, ad hoc mode of operation for such network
is an attractive solution but the fact that these networks perform and often ex-
change data in multiple path, make congestion an issue where intensive research

opportunities remain.
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One of the basic advantages of an ad hoc mode of sensor networks is that their
network layers are very poorly defined and as such the proposed control scheme
can be easily fit in. Unlike in WLANSs, the master nodes in such network can be
fixed because of the redundancy in the network. Using rather predictive delay and
using adaptive Smith predictor, the present scheme can be configured to work for
these networks, as well. However, the major challenge lies in prediction versus
Smith predictor implementation and is being considered as an extension of this
work. Such networks are being more used in today’s feedback control, biological

sensory networks, remote sensing and geographical information system etc.

6.2.3 Congestion Control in MANETSs

Due to its wide range of scope for applications in today’s fast growing commu-
nication technology, MANETSs have attracted research interest for a long time.
Initiated by Department of Defense (DoD) of the United States of America, it was
first named as packet radio network. However, due to the limitations of the mobile
nodes such as power and processing capability interests in this area were declined
until quite lately. Recently, due to the development of high speed modern chip
technology, faster adaptive power processing and low energy solution, MANETSs
have returned into mainstream research. Also, since in recent years demands of
intercommunication using hand held devices without relying on fixed infrastruc-
ture such as base stations have been growing significantly, MANETSs have become

a core attention for research in modern wireless communication [28].

As much as MANETS offer outstanding possibilities, it also poses great challenge
in congestion control since the topology change is even faster. Hence, combinatory
stable assumptions made in this research does not hold any more. However, with
the introduction of adaptive power control such assumptions can still be made.
The only challenge that remains to be solved is that the scalability becomes even
more of an non-trivial issue. This work can be generalized to fit into MANETSs
with the introduction of on-board power control and rate adjustment down to

hardware level and is being considered as another direction for research.

6.2.4 Congestion Control for Service-on-Demand Systems

In the proposed scheme, the control of congestion is based on the bandwidth

demand. However, with the advent of highly critical service oriented systems,
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the system performance is not affected by bandwidth only rather by a group of
statistical and non-statistical variables. This leads to a classical problem of multi-
dimensional control, where number of control variables both at the input and at
the output side are more than one. In such system, the system can ensure a
certain quality of service (QoS) is maintained as demanded while controlling the
congestion and the queue length. Today’s high speed satellite and other ad hoc
networks use QoS parameters to indicate whether a service is acceptable or not.
Presently, research works are being carried out to devise a novel service oriented

technique to control the congestion.



Appendix A

Simulation with MATLAB

Simulink

A.1 Introduction to Simulink

Simulink is a software package for modeling, simulating, and analyzing dynamic
systems. It supports linear and nonlinear systems, modeled in continuous time,
sampled time, or a hybrid of the two. Systems can also be multirate, i.e., have
different parts that are sampled or updated at different rates. It is a tool for model-
based design and with Simulink, one can move beyond idealized linear models to
explore more realistic nonlinear models, factoring in friction, air resistance, gear
slippage, hard stops, and the other things that describe real-world phenomena.
Simulink turns simple personal computers into a lab for modeling and analyzing
systems that simply wouldn’t be possible or practical otherwise, whether the be-
havior of an automotive clutch system, the flutter of an airplane wing, the dynam-
ics of a predator-prey model, or the effect of the monetary supply on the economy.
For modeling, MATLAB Simulink provides a graphical user interface (GUI) for

building models as block diagrams, using click-and-drag mouse operations.

A.2 Simulink Model

In this thesis, Simulink has been extensively used in several simulations to assess
the system performance under varied circumstances. Figure A.1 shows the main

simulation model that has been used in this research.
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Appendix A Simulation with MATLAB Simulink
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Subsystem 1 and Subsystem 2 are simple direct binary switching based on equa-
tion (4.3). Figure A.2 also shown the subsystem 3 which sets the error compensa-

tion for simulation.

In1

Gain

Out1

vvY
—

FW Delay

-100 K
4

F1cURE A.2: Simulink subsystem 3 used in simulation

In the simulations, Tjw is used for forward delay, which is set to 2007 and T,w
is used for backward delay, which is set to 1007,. The CTZ boxes are simulink
compare to zero boxes. The system is implemented with 600 buffer length. All

other symbols have their usual meanings described in Chapter 3/ and /4.



Appendix B

Simulation with OPNET Model

B.1 Introduction to OPNET

OPNET is a a commercial tool by MIL3, Inc., OPNET (Optimized Network Engi-
neering Tools) is an engineering system capable of simulating large communication
networks with detailed protocol modeling and performance analysis. It’s features
include graphical specification of models, a dynamic, event-scheduled Simulation
Kernel, integrated data analysis tools and hierarchical, object based modeling. It
is a network simulation tool that allows the definition of a network topology, the
nodes, and the links that go towards making up a network. The processes that
may happen in a particular node can be user defined, as can the properties of the
transmission links. A simulation can then be executed, and the results analyzed

for any network element in the simulated network [7].

The key features of OPNET are that, it provides powerful tools that assist the
user in the design phase of a modeling and simulation project, i.e., the building
of models, the execution of a simulation and the analysis of the output data.
OPNET employs a hierarchical structure to modeling, that is, each level of the
hierarchy describes different aspects of the complete model being simulated. It
has a detailed library of models that provide support for existing protocols and
allow researchers and developers to either modify these existing models or develop
new models of their own. Furthermore, OPNET models can be compiled into
executable code. An executable discrete-event simulation can be debugged or
simply executed, resulting in output data. OPNET has three main types of tools

- the Model Development tool, the Simulation Execution tool and the Results
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Analysis tool. These three types of tools are used together to model, simulate and

analyze a network.

B.2 OPNET Model

In this thesis, a rather simple WLAN scenario has been simulated using OPNET
discrete event simulator, version 8.1. The WLAN is designed according to figure-
fig:adhoc in Chapter 3. The detailed settings of the OPNET model is available at
author’s discretion. Figure B.1/shows the simulation model that has been used to

investigate the system performance in real WLAN environment.

Cluster 0 Cluster 1 Cluster 2

F1GURE B.1: OPNET model used for simulation

Apart from the parameters shown in Table 5.1, parameters and their values are

used for the simulation of a realistic WLAN scneario are shown in Table B.1l

Symbol Parameter Value
Thame Frame length 0.081s

T eedback Feedback Delay 7 frames
Tk Buffer filling allowance time 6.7s
Co Capacity of Cluster 1 80 packets/frame
Ch Capacity of Cluster 2 80 packets/frame
Cy Capacity of Cluster 3 60 packets/frame
Tc Control frame size 5 frames

TABLE B.1: Parameter values used in OPNET simulation



Bibliography

1]

G. Agar and C. Rosenburg. “Weighted fair bandwidth-on-demand (WFBoD)
for geostationary satellite networks with on-board processing”. Computer
Networks, 39(1):5-20, 2002.

E. Altman, T. Bagar, and T. Srikant. “Congestion control as a stochas-
tic control problem with action delays”. Automatica, vol.35(No.12), 1999.
pp-1937-1950.

S. Athuralia, V. Li, S. Low, and Q. Yin. “REM: active queue management”.
IEEE Networking, 15(3):pp.48-53, 2001.

S. Basagni, Turgut.D., and S. Das. “Mobility-adaptive protocols for managing
large ad hoc networks”. In Proceedings of IEEE International Conference,
pages 1539-1543, June 2001.

R. Braatz. The Control Handbook. CRC Press, W.S.Levine,Ed., Boca Raton,
FL, 215-224 edition, 1996.

L. Brakmo and L. Peterson. “TCP Vegas end-to-end congestion avoidance
on a global Internet”. IEEE Journal on Selected Areas in Communications,
Vol.13(No.8):pp.1465-4, 1995.

X. Chang. Network Simulation using OPNET. In Proceedings of the 1999
Stmulations Conference, volume 5, pages pp.95-104, 1999.

C. Chicoix, J. Pedoussat, and N. Giambiasi. “An accurate time delay model
for large digital network simulation”. Proceedings of the 15th Conference on

Design Automation, pages 54—60, 1976. San Fransisco, California, USA.

L. Chisci, Fantacci, and T. Pecorella. “Predictive bandwidth control for GEO
satellite networks”. Proceedings of International Conference on Communica-

tions, 1CC"04, pages 3958-3962, 2004.

69



BIBLIOGRAPHY 70

[10]

[11]

[16]

[17]

[18]

[19]

[20]

[21]

P. Dyson. Dictionary of Networking. Sybex Inc., 1151 Marine Village Park-
away, Alameda, CA 94501-1044, USA, 3rd edition, 2003. ISBN: 0-7821-2461-5.

A. Ephremides, J. Wieselthier, and D. Baker. “A design concept for reliable
mobile radio networks with frequency hopping signalling”. In Proceedings of
IEEE, pages 5673, Jan. 1987.

M. Fisk and W. Feng. “Dyanmic Right Sizing in TCP”. In Proc. of the Los
Alamos Computer Science Institute Symposium, LA-UR, 01-5460, Oct. 2001.

S. Floyd and V. Jacobson. “Random early detection gateways for congestion
avoidance”. IEEE/ACM Transaction on Networking, Vol.1(No.4):pp.397-413,
January 1993.

A. Freedman, editor. Computer Desktop Encyclopedia. AMACOM, 2nd bk
and cdr edition, 1999. ISBN: 0814479855.

J. Geier and J. Geier. Wireless Networking Handbook. New Riders Publising,
Indianapolis, 1996.

A. Goldsmith. Wireless Communcaitions. Cambridge University Press, 1st
edition, August 2005.

K. Gu, V. Kharitonov, and J. Chen. Stability and Robust Stability of Time-
delay Systems. Birkhauser, Boston, USA, 2003.

P. Toannou. The Control Handbook, chapter Model Reference Adaptive Con-
trol, pages pp.847-858. CRC Press, 1996.

V. Jacobson. “Congestion Control and Avoidance”. Computer Communica-
tions Review, vol.18(4):314-329, Aug. 1988.

K. Jacobsson, H. Hakan, N. Moéller, and K. Johansson. “Round Trip Time
Estimation in Communication Networks Using Adaptive Kalman Filtering”.
In Proceedings of IEEE Networks, pages 156160, 2004.

R. Karri and Mishra.P. “Modeling energy efficient secure wireless networks
using network simulation”. In Proceedings of IEEE Internation Conference

of Communication, pages 61-65, May 2003.

S. Low, L. Peterson, and L. Wang. “Understanding Vegas: a duality model”.
Journal of ACM, Vol.49(No.2):pp.207-235, 2002.



BIBLIOGRAPHY 71

[23]

[24]

[25]

[26]

[30]

[31]

[32]

[33]

[34]

S. Mascolo. “Congestion Control in high-speed communication networks”.
Automatica, Vol.35(No.12):pp.1921-1935, 1999.

S. Mascolo. “Modeling the internet congestion control using Smith controller
with input shaping”. Control Engineering Practice, Vol.13(2005):pp.312-319,
2005.

C. Murthy and S. Manoj, B. Ad Hoc Wireless Networks: Architectures and
Protocols. Prentice Hall Communications and Emerging Techno, May 24 2004.

J. Nagle. Congestion Control in IP/TCP Internetworks. ARPANET Working
Group Requests for Comment, DDN Network Information Center, RFC-896,
SRI International, Menlo Park, CA, Jan. 1984.

S. Niculescu. Delay effects of stability: A robust control approach, volume
vol.269. Springer-Verlag Heidelberg, 1995.

P. Pham. Congestion Avoidance using Multipath Routing and Power Control
i Mobile ad hoc Networks. PhD thesis, University of South Australia, 2002.

F. D. Priscoli and A. Isidori. “A control engineering approach to integrated
congestion control and scheduling in local area networks”. Control Engineer-
ing Practice, vol.13(2005):pp.541-558, 2005.

F. D. Priscoli and A. Pietrabissa. “Design of a capacity-on-demand (BoD)
protocol for satellite networks modelled as time-delay systems”. Automatica,
40(5):729-741, 2004.

F. D. Priscoli and A. Pietrabissa. “Hop-by-Hop Congestion Control for Wire-
less LAN: A Model-Based Control Approach”. International Journal of Con-
trol, 2005. to appear.

M. Pursley. “The role of spread spectrum in packet radio networks”. IFEFE
Proceedings, pages pp.116-134, January 1987.

P. Quet, B. Ataslar, A. Iftar, H. Ozbay, S. Kalayanaraman, and
T. Kang. “Rate based flow controllers for communication networks in

the presence of uncertain time-varying multiple time-delays”. Automatica,
Vol.38(No.6):pp.917-928, 2002.

G. Ramamurthy and B. Sengupta. “A Predictive Hop-by-Hop Congestion
Control Policy for High-Speed Networks”. In Proceedings of INFOCOM’93,
pages 1033-1041, 1993.



BIBLIOGRAPHY 72

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

R. Ramanathan and Rosales-Hein. “Topology control of multihop wireless
networks using transmit power adjustment”. In Proceedings of IEEE INFO-
COM’00, pages 404—413, March 2000.

R. Shafik, S. Weiss, and E. Rogers. “A DSP-based approach to congestion
control for multihop ad hoc WLANs with BoD access”. In 2nd IEE-EURASIP
DSPEnabledRadio Conference’05, pages pp.31/1-31/9, Southampton, SO17
1BJ, September 2005.

O. Smith. “A controller to overcome dead time”. ISA Journal, Vol.6:28-33,
1959.

W. Stalling. High Speed Networks: TCP/IP and ATM Design Principles.
Prentice Hall, San Francisco, 1998.

W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms. Network Working Group Requests for Comment,
RFC-2001, Category Standards Track, NOAO, Jan. 1997.

L. Tan, A. Pugh, and M. Yin. “Rate Based Congestion Control in ATM
switching networks using a recursive digital filter”. Control Engineering Prac-
tice, Vol.11(2003):pp.1171-1181, February 2003.

F. Tobagi. “Modeling and performance analysis of multihop packet radio
networks”. IEEE Proceedings, pages 135155, January 1999.

E. Walter, editor. Cambridge Advanced Learner’s Dictionary. Cambridge
University Press, 2nd edition, April 15 2005. ISBN: 0521604982.

Y. Yi and S. Shakkottai. “Hop-by-hop congestion control over a wireless
multihop network”. In IEEE INFOCOM’04, pages pp.1214-1224, July 2004.



