
Abstract In this article, a brief review on texture

segmentation is presented, before a novel automatic

texture segmentation algorithm is developed. The

algorithm is based on a modified discrete wavelet

frames and the mean shift algorithm. The proposed

technique is tested on a range of textured images

including composite texture images, synthetic texture

images, real scene images as well as our main source

of images, the museum images of various kinds. An

extension to the automatic texture segmentation, a

texture identifier is also introduced for integration into

a retrieval system, providing an excellent approach to

content-based image retrieval using texture features.

Keywords Content-based image retrieval Æ Texture
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1 Introduction

Texture segmentation deals with the identification of

regions where distinct textures exist, so that further

analysis can be done on the respective texture regions

alone. As far as this paper is concerned, there are three

types of texture segmentation, which are the super-

vised segmentation, the unsupervised segmentation

and the automatic segmentation. Supervised segmen-

tation assumes prior knowledge of the types of textures

which exist within the image. Unsupervised segmen-

tation does not assume any prior knowledge of the

types of textures, but it still needs to know how many

textures there are in the image. Finally, automatic

segmentation does not need any prior knowledge on

either the type or the number of textures in the image.

There are already a large number of supervised [1,

2] and unsupervised [3, 4] texture segmentation algo-

rithms in the literature. While the supervised and

unsupervised techniques are very useful in a lot of

applications, it is not very useful for our application of

interest, since for both techniques the number of tex-

tures present need to be given a priori. The particular

application area with which this paper is concerned is

content-based retrieval of art and museum artefact

images, where the segmentation is to be performed on

several thousand images. It is therefore inefficient to

expect the number of textures to be manually provided

for all the images. An automatic texture detection and

segmentation algorithm is therefore needed to suit this

kind of application.

In this paper, a novel automatic texture segmenta-

tion, i.e. one without any a priori knowledge on either

the type of textures or the number of textures in the

image, is presented. The method uses a modified dis-

crete wavelet frames (DWF) decomposition to extract

important features from an image before a mean shift

algorithm is used together with a fuzzy c-means (FCM)

clustering to cluster or segment the image into differ-

ent texture regions. The proposed algorithm has the

advantage of high accuracy while maintaining low

computational load. We will also show the advantage
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of using the modified DWF over the standard DWF

and the wavelet transform, and demonstrate how using

the mean shift together with the FCM helps in speed-

ing up the fuzzy clustering process.

This paper is organized as follows. Section 2 briefly

reviews some of the texture segmentation algorithms

available in the literature, before we explain the novel

automatic texture segmentation algorithm in Sect. 3.

Section 4 covers the experimental evaluation on sev-

eral image data sets, including a real museum collec-

tion. Section 5 describes how the proposed algorithm is

extended to become a texture identifer, before it is

evaluated in a content-based image retrieval (CBIR)

system in Sect. 6. This paper ends with a conclusion

and potential future work on the proposed algorithm,

presented in Sect. 7.

2 Review of texture segmentation algorithms

Texture segmentation usually involves the combination

of texture feature extraction techniques with a suitable

segmentation algorithm. This section will briefly de-

scribe some of the popular techniques used in texture

feature extraction and texture segmentation algo-

rithms.

2.1 Texture feature extraction

Among the feature extraction techniques used for

texture segmentation are Gaussian Markov random

field (GMRF), fractal dimension, Voronoi polygons,

Gabor filters and wavelet decomposition. GMRF,

fractal dimension and Voronoi polygons extract the

textural characteristic by computing some parameters

from the image. For example, in Manjunath and

Chellappa’s paper [5], GMRF parameters are com-

puted from non-overlapping regions of the image to be

segmented. In the work by Chaudhuri and Sarkar [6], a

box counting approach is used to estimate the fractal

dimension of the original image, the high grey level

image, the low grey level image, the horizontally

smoothed image, the vertically smoothed image and

the multi-fractal dimension of order two. Finally in

Tuceryan and Jain’s work [3], the algorithm first builds

the Voronoi tessellation of the tokens that make up the

textured image, and a feature vector is computed for

each Voronoi polygon.

Gabor filters and wavelet-based techniques on the

other hand compute the textural characteristic by first

transforming the image into the frequency domain and

then dividing the domain into several frequency sub-

bands. The distribution of energy in each of these sub-

bands is used as the basis for distinguishing different

textures. The difference between the two techniques

lies on the way the frequency domain is divided, as well

as on the types of the filter used. In Paragios and

Deriche’s work [1], the textured feature space is gen-

erated by filtering the input and the preferable pattern

image using Gabor filters. Wavelet-based techniques

gain more and more attention in texture segmentation

because of their multi-resolution property, which leads

to multi-resolution segmentation. Multi-resolution

segmentation is advantageous due to the extra infor-

mation available through different resolutions, as it

performs the segmentation algorithm over a range of

spatial scales of the input image [7]. To illustrate multi-

resolution segmentation, consider the pyramid-struc-

tured wavelet transform (PWT) output image shown in

Fig. 1.

From the pyramid, it is clear that there are three

different image resolutions forming the PWT output.

Now the segmentation process can be applied from the

top to the bottom of the pyramid. The four sub-images

at the top of the pyramid are used as a four-dimen-

sional data set to be segmented. The crude segmenta-

tion results at this level are interpolated and passed to

the next resolution. The segmentation at the next res-

olution can then be performed by combining the data

of that resolution with the temporary segmentation

obtained from the previous resolution. The process

continues and the final segmented image is obtained at

the base of the pyramid. From this simple example

only, it is clear that multi-resolution segmentation of-

fers more advantages over single resolution techniques,

where the lower levels of the pyramid help in refining

the initial segmentation obtained at the top level.
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Fig. 1 Illustration of multi-resolution segmentation based on
pyramid-structured wavelet transform
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In [8], Salari and Ling use the above multi-resolu-

tion segmentation algorithm using the PWT, while

Chang and Kuo [9] experimented with the more com-

plicated tree-structured wavelet transform. Besides

wavelet, other techniques have also included multi-

resolution property in the segmentation algorithm. In

[10], Krishnamachari and Chellappa used the multi-

resolution Gauss Markov random fields (GMRF) for

texture segmentation. Coarser resolution sample fields

are obtained by sub-sampling the sample field at fine

resolution. The segmentation results from the coarser

level are then propagated upwards to the finer reso-

lution.

2.2 Texture segmentation

A texture segmentation algorithm can be developed by

integrating the texture feature extraction techniques

with a suitable segmentation method, such as the split-

and-merge, region growing, estimation theory, clus-

tering, relaxation and neural networks. The resulting

texture segmentation, as previously mentioned, can be

classified into three types, the supervised, the unsu-

pervised and the automatic. Automatic texture seg-

mentation, in particular, is a very challenging problem

where correct identification of the number of textures

inside an image is as important as the segmentation

accuracy itself. Textured images, usually comes with a

complicated data space, add to the challenges faced by

researchers in this field. There are a very few automatic

texture segmentation algorithms available in the liter-

ature. With the exception of the work by Perry and

Lowe [11], most automatic texture segmentation

algorithms tend to first identify the number of textures

within the image before an unsupervised clustering

algorithm is carried out to segment the image into the

desired number of segments. An example for this kind

of segmentation can be found in the work by Porter

and Canagarajah [12] and Liu and Zhou [13].

Back to the texture segmentation algorithms,

Manjunath and Chellappa [5] opted for the nearest

neighbour clustering method to merge the non-over-

lapping regions of the image based on the GMRF

parameters computed beforehand. Chaudhuri and

Sarkar [6] use an unsupervised k-means like clustering

to the fractal dimension features computed to segment

a scene into the desired number of classes. Tuceryan

and Jain [3] use the feature computed from each

Voronoi polygon in a probabilistic relaxation algo-

rithm to identify the interior and the border regions of

the textures, hence producing an unsupervised texture

segmentation algorithm. Paragios and Deriche [1]

produce a supervised texture segmentation algorithm

by minimizing a Geodesic active contour model

objective function, where the boundary-based infor-

mation is expressed via discontinuities on the statistical

space associated with the multi-modal Gabor textured

feature space generated during the feature extraction

stage.

For the multi-resolution segmentation, Salari and

Ling [8] use the pyramidal wavelet transform together

with the k-means clustering. The four channels at the

top of the pyramid are grouped into the desired num-

ber of clusters by using the k-means clustering tech-

nique. The resulting temporary segmentation is then

labelled according to different clusters and normalized

to avoid the domination of certain channels. The la-

belled image is then interpolated and combined with

the three channels at the next level. The process con-

tinues until the labelled image corresponding to the

base level is obtained. Another multi-resolution tex-

ture segmentation technique using wavelet is proposed

by Yang et al. [14] where they used the wavelet

transform with kd-tree clustering.

On the other hand, Chang and Kuo [9] uses their

tree-structured wavelet transform features with the

fuzzy clustering. The image is first decomposed into

tree-structured wavelet decomposition. Then, starting

from the coarsest level, four leaf nodes corresponding

to each tree nodes are clustered using the fuzzy c-

means algorithm. The resulting output from the fuzzy

clustering is a membership function. This membership

function is then interpolated and combined with the

leaf nodes or the membership functions available at the

next level to provide features at that level. The process

continues until the membership function correspond-

ing to the root node is achieved. The segmented image

can be obtained by assigning each pixel to the class in

which it has the highest membership value. Krishn-

amachari and Chellappa [10] used two techniques to

estimate the GMRF parameters at coarser resolutions

from the fine resolution parameters, one by minimizing

the Kullback–Leibler distance and the other based on

local conditional distribution invariance. The coarsest

resolution data are first segmented by modelling a label

field using MRF, and the segmentation results are

propagated upwards to the finer resolution.

For the automatic texture segmentation technique,

Perry and Lowe [11] use a modified Gabor transform

to produce n-dimensional feature vectors for each

pixel. To perform segmentation, texture seed regions

are established by comparing each feature vector with

their neighbours. Elements that are found to be similar

to at least three of their four neighbours are placed on

the list of candidate texture seed regions. Then texture

region borders are extended and refined through an

Pattern Anal Applic (2006) 9:307–323 309

123



iterative stage. The growing ends when there exists no

neighbouring element for which the distance of this

element to the region is smaller than the threshold for

the region. This algorithm however is computationally

very intensive.

Porter and Canagarajah [12] use the standard

wavelet transform together with k-means clustering

and within cluster distance calculation to perform

automatic texture segmentation. The wavelet trans-

form is used to extract texture features, and the within

cluster distance calculation is used to estimate the

number of different textures within the image. Once

the number of textures are known, the k-means clus-

tering is applied to the data where k is the estimated

number of texture regions. This method however is

rather expensive computationally as it requires two

completely different sets of algorithms, one to detect

the number of textures present and another to segment

them. Liu and Zhou [13] use wavelet transform to-

gether with block-based segmentation to produce

automatic texture segmentation. Similar to this paper,

they also applied their segmentation algorithm for

texture retrieval application. However, in the next

section, we will show that the standard wavelet trans-

form features do not provide a particularly good fea-

ture space, hence will probably affect the segmentation

result for different textures.

2.3 Comparison of texture segmentation

techniques

There are also a few papers comparing the perfor-

mance of several segmentation techniques. Du Buf

et al. [15] compared seven different texture feature

extraction methods which are the grey level co-occur-

rence matrix, fractal, Michelle’s texture feature,

Knutsson’s texture feature, Laws’ texture feature,

Unser’s texture feature and curvilinear integration.

Their paper is one of most important studies since they

are the first to attempt to evaluate issues of image

segmentation and boundary accuracy comparison in a

quantitative framework. From the seven feature

extraction methods tested, the Haralick, Laws and

Unser methods gave the best overall results.

Chang et al. [16] experimented with three feature

extraction methods and three segmentation algorithms.

The three texture feature methods are the grey level

co-occurrence matrix (GLCM), Laws’ texture feature

and Gabor filtering techniques while the segmentation

algorithms include the fuzzy clustering, square-error

clustering and split-and-merge algorithms. The com-

bination of Gabor filtering with the square error clus-

tering was found to be the best among several

combinations. Gabor filtering more readily incorpo-

rates multi-resolution information than the GLCM and

Laws, therefore, resulting in much better segmenta-

tion.

Pichler et al. [17] compared the pyramidal and tree-

structured wavelet transform with the Gabor filtering

in segmenting textured images. FCM clustering is used

to obtain a segmentation based on computed texture

features. The Gabor filtering was found to give the best

segmentation result among the three techniques.

Nevertheless, Gabor filtering was found to be very time

consuming compared to the other two techniques.

3 A novel automatic texture segmentation algorithm

Our proposed texture segmentation algorithm is based

on multi-resolution clustering of texture data. Firstly, a

feature extraction technique is applied to the image to

obtain a series of texture coefficients at different res-

olutions. Each coefficient represents pixels in the ori-

ginal image. The coefficients are then clustered into an

appropriate number of groups in the feature space, and

each pixel is labelled to the group of its corresponding

coefficients. There are several feature extraction tech-

niques to be used in capturing texture coefficients.

From our earlier work [18], we found that the DWF

method [19] is the best texture algorithm in terms of

the retrieval accuracy and computational speed, and

thus have chosen to use it for the segmentation pur-

pose as well.

Nevertheless, DWF results in quite a large number

of coefficients, and this might slow the segmentation

process. A modified DWF is proposed instead. Once

the feature space has been constructed using the

modified DWF, a suitable clustering algorithm can be

used to cluster the data. However, since we would like

to produce an automatic texture segmentation algo-

rithm, the clustering algorithm needs to be able to

identify how many clusters there are in the feature

space. This can be done using the mean shift algorithm.

The modified DWF, mean shift and the proposed

segmentation algorithms are explained in the following

section.

3.1 Modified discrete wavelet frames

For a standard wavelet transform [20], the output

of the filter is sub-sampled at each level resulting in

an output with the same size as the input image.

Meanwhile, DWF are an over-complete wavelet

transform where all the output data are preserved.

For an M · M image, the output of the standard
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wavelet transform is M2 while the output of the DWF

will have (3K + 1) · M2 coefficients, where K is the

number of decomposition levels. If we sample the

DWF output every 2k samples, where k = 1,...,K is

the level associated with a particular filtered image,

the output will be exactly the same as the wavelet

transform. The standard wavelet transform coefficients

are actually a subset of a much larger set of DWF

coefficients. It is therefore of more computational

advantage to use the standard wavelet transform for

segmentation instead of the DWF.

However, because of the sub-sampling, the wavelet

transform coefficients are of very high variance, which

could affect the clustering process quite badly. For

example, the third level coefficients of the wavelet

transform are sampled every eight coefficients both

horizontally and vertically, and if we plot these into a

feature space, there will not be well-defined clusters

due to the high variance, even after applying some

smoothing process. The DWF on the other hand does

not suffer from this problem. While the wavelet

transform is perfectly reconstructable, thus making it

very good in some other fields, it is not very suitable for

image segmentation, at least for the automatic case.

One of the most important properties in achieving

automatic segmentation is to be able to come up with a

well-defined feature space; thus the wavelet transform

is clearly unsuitable.

Nonetheless, it occurs that we can reduce the coef-

ficients of the discrete wavelet transform to take the

pyramid structure of the standard wavelet transform

without significantly affecting the distribution of data

in the feature space. If the coefficients of the DWF are

carefully chosen rather than simply throwing away

every other data point as in the wavelet transform,

well-defined clusters can be preserved and the amount

of data can also be reduced greatly. A simple yet

reliable method is to take the mean of energy within

distinct blocks. For each filtered image, the DWF

coefficients are divided into distinct blocks of size

2k · 2k, and the mean energy of the coefficients within

the blocks are taken as the new coefficients of the

DWF at that level. This results in data reduction of

factor (2k · 2k) for that particular filtered image. If this

procedure is repeated for every filtered image of the

DWF, we will have the same pyramid configuration as

the wavelet transform but with better coefficients.

Figure 2 shows a 3D plot of coefficients at level 3 for

both the wavelet transform and the modified DWF of

the same image consisting of three textures. Notice

that the data of the wavelet transform coefficients are

poorly scattered and end up detecting four clusters

instead of three.

3.2 Mean shift algorithm

Mean shift clustering is a relatively new clustering

technique which finds possible cluster centres based on

the density gradient of data, thus allowing unsuper-

vised clustering to be performed. The rationale behind

the density estimation based clustering approach is that

the feature space can be regarded as the empirical

probability density function (p.d.f) of the represented

parameter. Dense regions in the feature space thus

correspond to the local maximum of the p.d.f., that is,

to the modes of the unknown density. Once the loca-

tion of the mode is determined, the cluster associated

with it can be delineated based on the local structure of

the feature space.

Much of the work on mean shift clustering in image

processing is done by Comaniciu and Meer [21–24],

although the original idea was introduced by Fukunaga

and Hostetler [25]. Due to its useful feature, mean shift

has received considerable attention recently, especially

in the field of image processing [26, 27]. The idea of the

mean shift is to shift all points in the feature space by a

Fig. 2 3D feature space plot a wavelet transform coefficient
b modified DWF coefficient
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significant amount until they converge to certain

points. The convergence points are subsequently

analysed to find possible cluster centres. A point is

shifted to a new location based on the mean of all

points within a radius h from the point itself. Theo-

retically, the point will be shifted towards a local

density maximum of the data set.

An example of mean shift convergence of a point is

shown in Fig. 3, for a two-dimensional case. From the

same figure, the power of the mean shift-based clus-

tering can be illustrated. The two clusters have arbi-

trary shapes and the background is heavily cluttered

with outliers. Traditional clustering methods would

have difficulty producing satisfactory result. The two

significant modes in the data space however will be

clearly revealed in a kernel density estimation, making

it possible for the mean shift procedure to detect both

nodes. The associated basins of attraction then provide

a good delineation of the individual clusters. In prac-

tice, using only a subset of the data points suffices for

an accurate delineation.

Comaniciu and Meer, however, used a simple near-

est neighbour clustering to associate each data point

with its cluster centre for their colour features. We find

this approach is too basic to be used for texture fea-

tures, since unlike colour, the distribution of texture

feature data in the feature space is more complex and

therefore needs a more robust clustering technique.

Furthermore, since our method uses a multi-resolution

feature extraction in DWF, the decision about cluster

membership for a pixel only needs to be decided at the

base level. The clustering output at all levels, except the

base, only serves as intermediate results, and therefore

is better represented by some sort of a membership

function instead of a membership class. For these rea-

sons, we opt to use the FCM clustering to cluster the

data, while the mean shift algorithm is just used to

estimate the number of clusters and the cluster centres.

The mean shift algorithm used in the proposed

segmentation technique can be broken down into five

processes:

– Data sampling. To reduce the computational load, a

set of m points called the sample set is randomly

selected from the data. Two constraints are imposed

on the points retained in the sample set. The dis-

tance between any two neighbours should not be

smaller than h, the radius of the hypersphere Sh(x)

and the sample points should not lie in sparsely

populated regions. The latter condition is to avoid

low density clusters. A region is sparsely populated

whenever the number of points inside the sphere is

below a threshold T.

– Mode seeking. For each of the sample points, apply a

mean shift procedure until the points converge to a

stationary point. The mean shift computation for

each sample points is based on the entire data set.

The convergence points are considered as cluster

centre candidates.

– Cluster centre derivation. Any subset of cluster cen-

tre candidates which are sufficiently close to each

other (for any given point in the subset, there is at

least another point in the subset such that their dis-

tance is less than h) defines a cluster centre. The

cluster centre is the mean of the cluster centre can-

didates in the subset.

– Cluster centre validation. Between any two cluster

centres, a significant valley should occur in the

underlying density. The existence of the valley is

tested for each pair of cluster centres. If the density at

any point between the two centres is below V ·
(highest density between the two centres); 0 < V < 1,

then a valley is observed and both centres are valid.

If no valley was found, the cluster centre of lower

density is removed from the set of cluster centres.

– Clusters delineation. At this stage, each data point is

associated with a cluster centre using the FCM

clustering technique.

We will discuss in detail all the parameters involved

in the above algorithm in Sect. 4.

3.3 Segmentation algorithm

Our proposed texture segmentation algorithm has a

hierarchical structure and consists of two phases: a top-

down decomposition phase followed by a bottom-up

segmentation phase. Figure 4 shows the flowchart of

the algorithm.Fig. 3 Mean shift convergence of data points

312 Pattern Anal Applic (2006) 9:307–323

123



3.3.1 Top-down decomposition phase

In the top-down decomposition phase, K-level DWF

decomposition is performed. For a 2n · 2n image, this

results in 3K + 1 planes of 2n · 2n data. The amount of

data is then reduced by applying steps described in

Sect. 3.1. This results in pyramid-structured coeffi-

cients. At this point, we label the original image of size

2n · 2n with level index 0 (the base level), the four sub-

images of size 2n–1 · 2n–1 with level index 1 and so on.

Since the DWF provide good spatial and frequency

energy localization, we may take the energy value of

each modified DWF coefficient as an energy feature.

However, the variance of the feature is still high since

only one sample is used. By assuming that neighbour-

ing DWF coefficients are identically and independently

distributed, the variance can be reduced by performing

a local averaging or smoothing operation.

On the one hand, it is desirable to have a large

window to reduce the statistical variations. On the

other hand, since a large window centred at points in

the texture boundary region may contain multiple

texture classes, the window size has to be small. To

avoid this problem, we opt to use a sophisticated

adaptive smoothing algorithm developed by Chang

et al. [28], which repeatedly implements a simple local

averaging operation until some criterion is satisfied. A

typical smoothing operator is of the form

W ¼ 1

16

1 2 1
2 4 2
1 2 1

0
@

1
A: ð1Þ

For an N · N image f(x, y), the iteration stopping

criterion for a sub-image at the pth level is given by

Ck ¼ 1:28
a
2p

N2; ð2Þ

where

Ck ¼
X

x

X
y

Dkf ðx; yÞ
�� ��

Wk�1f ðx; yÞj j þ Dkf ðx; yÞj j þ � ð3Þ

and a is an estimate of the percentage of the number of

boundary pixels (suggested value 1/N), � is a very small

number, Dk ” Wk – Wk–1, and Wk means applying the

smoothing operator k times.

The smoothed energy values are then normalized to

the range between 0 and 1 within each node so that

they can be conveniently used for segmentation in the

bottom-up phase, as well as to make sure that no

components will artificially dominate the clustering

process.

3.3.2 Bottom-up segmentation phase

In the bottom-up phase, we start with level K and

produce an intermediate segmentation result for level

K – 1 using the four sub-images available at level K. To

generate the intermediate segmentation, the four sub-

images of size 2n–K · 2n–K are integrated in such a way

that it can be viewed as four-dimensional 2n–K · 2n–K

data, before the mean shift algorithm is applied

and provides us with the number of clusters detected in
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Fig. 4 Flowchart of the proposed segmentation algorithm
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the data as well as the cluster centre positions. As

mentioned in the last section, the FCM clustering is

chosen above other clustering techniques and is applied

to the four-dimensional data using the information

provided by the mean shift. The FCM clustering

algorithm is an iterative procedure described in the

following:

Fuzzy c-means clustering algorithm Given M input

data points {xm; m = 1,...,M}, the number of clusters C

(2 £ C < M), and the fuzzy weighting exponent w,

1 < w < ¥, initialize the fuzzy membership functions

uc,m
(0) with c = 1,...,C and m = 1,...,M which are the entry

of a C · M matrix U(0). Perform the following for

iteration l = 1, 2,....

1. Calculate the fuzzy cluster centres vc
l with

vc =
P

m=1
M (uc,m)wxm/

P
m=1
M (uc,m)w.

2. Update U(l) with uc;m ¼ 1=
PC

i¼1
dc;m

di;m

� � 2
w�1

; where

ðdi;mÞ2 ¼ kxm � vik2 and ||Æ|| is any inner product

induced norm.

3. Compare U(l) with U(l+1) in a convenient matrix

norm. If ||U(l+1) – U(l)|| £ e stop; otherwise return

to step 1.

The value of the weighting exponent, w, determines

the fuzziness of the clustering decision. A smaller value

of w, i.e. w is close to unity, will give the zero/one hard

decision membership function, and a larger w corre-

sponds to a fuzzier output. Our experimental results

suggest that w = 2 is a good choice. The advantage of

using the mean shift algorithm together with the FCM

clustering is demonstrated here. The FCM algorithm is

not a fully unsupervised clustering method as it re-

quires the number of clusters to be known a priori.

Besides that, one other drawback of the FCM is finding

the best way to initialize the fuzzy membership func-

tion.

The FCM algorithm finds a local minimum ofP
c=1
C P

m=1
M uc,m

w dc,m
2 by solving uc,m and vc, and its

output depends on the initial value of U(0). Various

methods have been proposed on the best way to ini-

tialize U(0) such as the maximin distance algorithm. But

by using the mean shift, it provides the FCM with not

only the number of clusters, but also the cluster cen-

tres, meaning that the initial value of U(0) is already

quite close to the final value of U(0). Hence, part of the

task of the FCM, which is to find appropriate cluster

centres, is done. Experiments have shown that the

FCM algorithm terminates after just a few iterations,

thanks to the precise location of the cluster centres.

The output of the FCM is a 2n–K · 2n–K membership

function of Nc dimension, where Nc is the number of

clusters. Each element of the membership function

describes the membership value with respect to a

particular type of cluster and the sum of these elements

is equal to 1. The membership function is then inter-

polated to size 2n–K+1 · 2n–K+1 so that it has the same

size with the data at the following level. For simplicity,

a linear interpolation algorithm is used to interpolate

the membership function.

At level K – 1, the interpolated membership func-

tion is integrated with the three sub-images at this level

resulting in an (Nc + 3)-dimensional data set to be used

for the next mean shift and FCM processes. These

procedures of data integration, mean shift, clustering

and interpolation are applied recursively from bottom

to top so that we eventually obtain the segmentation

result of the base level, i.e. the original image. The final

crispy segmentation at level 0 can be determined by

assigning each pixel to the class where it has the highest

probability of membership. Note that the number of

clusters detected by the mean shift algorithm can be

different at each level. We might get a wrong number

of clusters in the bottom level, but that is just an

intermediate result, where not all data are utilized.

What matter is the final segmentation result, after all

data has been taken into account. The incorrect num-

ber of clusters in the bottom level might be refined by

the data at the higher levels.

Finally, the proposed texture segmentation algo-

rithm works on the images of any resolution, and is not

confined to dyadic length image only. For non-dyadic

image length, the formula for the modified DWF re-

mains the same except we introduce the floor function

when converting the coefficient to lower level. For

example, an image with length 355 will have the length

of 177 for level 0 coefficients, 88 for level 1 coefficients

and 44 for level 2 coefficients. During the bottom-up

segmentation process, the length will be converted

back to the original length.

4 Experimental analysis

We will first show the sequence of segmentation result

from coarse to fine resolution in order to give a better

illustration of the segmentation process at each level.

For illustration purposes, we experiment with a com-

posite texture image comprising four different Brodatz

textures [29] (D017, D024, D055 and D077), with each

texture positioned at each quarter of the image. The

size of the image is 256 · 256. The image is decom-

posed using the modified DWF for up to three levels

using an 8-tap Daubechies wavelet filter. The radius, h,

and threshold, T, for the mean shift algorithm are

critical, and from experiment a suitable value of h at all
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levels is found to be 0.2, while a suitable value of T is

one twentieth of the total data points at each level. The

valley threshold, V, is set to 0.5. Figure 5 shows the

sequence of segmentation results obtained at each

level for the composite texture image. In this example,

the initial segmentation result obtained at level 2 al-

ready gives a quite good segmentation and is used as a

basis for higher level processing. It can be clearly seen

that as the level increases, the segmentation result

improves. This implies that the coefficients from the

higher levels help in refining the boundary of the tex-

tures, thus illustrating the advantage of multi-resolu-

tion segmentation.

We will now evaluate the performance of the algo-

rithm for different numbers of textures within an im-

age. The following section evaluates the performance

on composite textures, synthetic textures, real scene

images and museum images.

4.1 Composite texture images

In this section, the performance of the segmentation

algorithm will be evaluated by its ability in identifying

the correct number of textures in the image, as well

as its precision in defining the boundaries of the seg-

mented images. The precision is measured by com-

puting the percentage of misclassified pixels in the

segmented images. We applied our texture segmenta-

tion algorithm to several images of composite textures

with size 256 · 256 pixels and 256 grey levels. Textures

from the Brodatz album are used to make up

the composite texture images by a cut-and-paste

technique. Textures pasted are of either rectangular or

square shape in order to make the computation of

misclassified pixels easier. None of the textures used in

our experiment can be discriminated by grey level

values alone.

Figure 6 shows an example of applying the texture

segmentation algorithm to a number of images with

different numbers of textures. The two-textured image

consists of texture D012 and D017, the three-textured

image of texture D054, D074 and D102, the four-tex-

tured image of texture D001, D011, D018 and D026,

while the five-textured image consists of texture D001,

D053, D065, D074 and D102. All the results in Fig. 6

show a correctly identified number of texture as well as

good segmentation. Altogether, we have applied our

algorithm to 50 composite textures, and the results are

summarized in Table 1.

A return of 90% correctly detected the number of

textures is very promising. Except for one of the three-

textured images, which the algorithm detected to have

five textures, all other incorrect results only miss by

plus/minus one texture. Figure 7 shows an example of a

wrongly detected number of textures. The image con-

sists of texture D065, D066, D086 and D102. From the

figure, it is clear that the incorrect segmentation is

caused by the fact that the top half texture appears to

contain two visually different regions. For the five

incorrect cases, the cause is either the same problem as

above, or the fact that two textures are almost the same

visually.

Table 2 shows the percentage of segmentation er-

rors for the five correctly segmented textures shown in

Figs. 5 and 6. All the images give an error percentage

of below 5% which is quite a low rate in texture seg-

mentation. Notice that the more texture boundaries

there are, the more difficult decisions must be made,

resulting in an increasing number of misclassified pix-

els. Non-boundary pixels seem to be well distinguished

by the proposed algorithm. Altogether from the 45

correctly segmented images, we obtain an average of

just 3.72% misclassified pixels.

Finally, we compare the performance of our algo-

rithm with a segmentation technique based on the

wavelet transform segmentation, i.e. the data to be

clustered by the mean shift, and the FCM is generated

by the standard wavelet transform instead of the

modified DWF. Figure 8 compares the performance of

the modified DWF with the wavelet transform method

Fig. 5 Example of segmentation result a four-textured image
b result at level 2 (64 · 64) c result at level 1 (128 · 128) d result
at level 0 (256 · 256, final result)
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for the image in Fig. 6d. Clearly, the wavelet transform

fails to provide good clusters in the feature space

resulting in a poor segmentation. Also, the sampling

of poorly scattered data points during the mean shift

results in a rather inconsistent segmentation for the

wavelet transform-based segmentation. In this case, the

modified DWF is therefore superior to the wavelet

transform in terms of segmentation performance, and

is superior to the standard DWF in terms of compu-

tational speed.

4.2 Synthetic texture images

Figure 9 shows segmentation results for synthetic tex-

tures composed of the + and L symbols. This texture

pair has a spectrum with the same magnitude but dif-

ferent phases. However, since it is difficult to pre-

assign the classes for boundary pixels, it is difficult to

compute the misclassified pixels. Thus, the evaluation

for this particular problem is simply based on visual

inspection. The algorithm successfully segments the

two different textured regions. Since the illumination

of both textures is the same, this example also shows

that it is the surface texture, not the illumination con-

dition that is being classified.
Fig. 6 Segmentation result for different numbers of textures

Table 1 Percentage of correctly detected number of textures

No. of
textures in
an image

No. images
tested

Images with
correctly
detected no.
of textures

No. of textures
detected for the
incorrect case

2 3 4 5

2 16 15 1
3 12 11 1
4 13 12 1
5 9 7 2
Total 50 45 (90%) 0 1 2 2

Fig. 7 Example of incorrect segmentation. The four-textured
composite image is wrongly segmented into five segments

Table 2 Percentage of misclassified pixels

Image Textures Misclassified
pixels

Percentage
of error (%)

Figure 5 4 1,654 2.52
Figure 6a 2 621 0.90
Figure 6b 3 1,771 2.70
Figure 6c 4 1,615 2.46
Figure 6d 5 2,816 4.29
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4.3 Real scene images

Figure 10 shows the segmentation result on several

real scene images as well as on a museum image. In the

first, fourth and fifth images, the algorithm correctly

identified the three regions and went on to segment the

regions accurately. In the second and third images, the

number of different texture segments in these images is

two, and the algorithm again correctly identify and

segment these images. As in the synthetic texture case,

it is difficult to define an objective boundary for this

example, thus the percentage of segmentation errors

cannot be measured. However, from the few examples

given, it is clear that the proposed algorithm works well

in distinguishing real scene image textures.

The sixth image in the figure is an example of one of

many various kinds of images in our museum collec-

tions. In this example, the image is of an open book

which consists of a textured region in the middle of the

book and non-textured region in other parts of

the book as well as a non-textured background. From

the result of the segmentation, it can be seen that the

algorithm manages to isolate the textured region of the

book page from the non-textured regions. The result

suggests that the proposed segmentation algorithm will

be useful in our texture retrieval application.

4.4 Computational speed of the algorithm

The computational speed of the algorithm depends on

two factors; the size of the image and how many seg-

ments the algorithm perceives the image has. As men-

tioned in detail in the previous section, there are several

processes involved in the proposed algorithm, but the

processes that are sensitive to the two factors above are

the feature smoothing, the mean shift (data sampling,

mode seeking, cluster centre validation) and the fuzzy

clustering. For the first factor, the larger the image size,

the higher the number of data points to be processed, in

which the feature smoothing, data-sampling and the

mode seeking processing time will all be longer.

The processing time for feature smoothing in partic-

ular increases quite dramatically with the increase in

image size. For the second factor, the higher the number

of segments in an image, the higher the number of dif-

ferent clusters in the data space, in which the cluster

centre validation as well as the fuzzy clustering process

will both take longer time to complete. The second

factor however does not affect the computational speed

as much as the first factor. Segmentation on a typical

museum image of size 768 · 768 with around three to

five textured segments takes around 10 s on average.

This will be very helpful in minimizing the time spent

when creating a database of very large image collections.

4.5 The effect of segmentation parameters

Throughout the entire segmentation process, several

parameters are encountered and these parameters may

or may not have significant effect on the outcome of

the segmentation result. These parameters include the

radius, h, threshold, T, and valley, V, of the mean shift

algorithm, the fuzzy weighting exponent, w, and the

fuzzy stopping criterion, e, of the fuzzy clustering, and

the estimate of the percentage of the number of

boundary pixels, a, in the adaptive smoothing algo-

rithm. In this section, we will discuss the significance of

these parameters to the final segmentation result.

The mean shift algorithm is used to determine the

number of texture regions in our segmentation algo-

rithm; hence the three mean shift parameters affected

only the final number of texture segments. The fuzzy

clustering and adaptive smoothing parameters on the

other hand contributed to the boundary accuracy of the

segmentation of the known number of texture regions.

4.5.1 Mean shift parameters

The radius and threshold of the mean shift are very

crucial in our segmentation algorithm. The radius

Fig. 8 Wavelet transform against DWF comparison. a Result
using wavelet transform coefficients for the image in Fig. 6d.
b Result using DWF coefficient

Fig. 9 Segmentation result of synthetic textures
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controls the number of segments or clusters in the

image. It needs to be big enough so that the mean shift

can converge on the correct cluster centres, but cannot

be too big as it will result in all the points converging

on the same cluster centre, i.e. only one big cluster is

found. The threshold is used to make sure that the

sample points do not belong to scarcely populated

areas. This in turn contributes in controlling the size of

the texture segments, i.e. in order for a particular

texture to be considered as one texture region, the

textured area should not be too small.

The radius and threshold are inter-related. When

the radius is small, an appropriate threshold needs to

be found so that it is proportional to the number of

points in the circle of radius h. Figure 11 illustrates the

effect of this inter-relation. A very large radius,

depending on the threshold, will either detect only one

big cluster or no cluster at all. Small radius with

small threshold will produce too many clusters, thus

increasing the probability of error. However, since we

normalized the wavelet features to be between 0 and 1,

the choice of radius and threshold can be determined

quite easily by experiment. A radius of 0.2 is found to

be suitable for our collection of museum images, while

the value of the threshold, assuming that there will not

be more than 20 clusters within the image, is taken as

one twentieth of the total data points at each level.

The last mean shift parameter, the valley, V, is less

crucial and is only used to check whether two cluster

centres are actually in two different clusters. One

hundred points are generated between the two cluster

centres and the density of each point within the circle

radius is calculated. If at any point the density is lower

than V · (highest density of the two cluster centres),

then it proves that the two cluster centres are in dif-

ferent clusters. Otherwise, the two are considered to be

in one cluster, and only one of the cluster centres will

be considered as the final cluster centre. Therefore, the

value of V does affect the number of clusters; the

bigger V, the higher the number of clusters. It was

found that a suitable value of V is 0.5.

4.5.2 Fuzzy clustering and adaptive smoothing

parameters

As mentioned before, the fuzzy weighting exponent,

w (1 < w < ¥), controls the fuzziness of the mem-

bership function of the fuzzy clustering algorithm.

The higher the weighting exponent, the more accurate

the boundary accuracy of the segmentation. None-

theless, bigger w also implies that there will be

‘‘holes’’ within the homogeneous texture segments. InFig. 10 Segmentation result of real scene image
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other words, while it may increase the boundary

accuracy of the segments, the non-boundary region

will not be as smooth. This problem can be solved by

using higher w together with some relaxation process.

However, as bigger w tend to make the membership

function uniform, it does have an effect during the

mean shift convergence of the following level. For this

reason, the choice of w value should not be too big.

From experiment, w = 2 was found to be the most

suitable choice.

The fuzzy stopping criterion, e, does not have a

major impact on the segmentation result since it only

affects the location of the final cluster centres. The

smaller the stopping criterion, the more iterations the

fuzzy clustering will perform before settling the loca-

tion of the cluster centres. However, there is very little

difference on the cluster centre location that overall

this parameter does not have a significant impact on

the final outcome.

Finally, the estimate of the percentage of the

number of boundary pixels, a, controls the shape of

the clusters. The adaptive smoothing operation is

applied to reduce the high variance of the wavelet

coefficients, and the number of times the smoothing

iteration is applied depends on a. Smaller a means

applying the smoothing operation more times and

may results in the data points being grouped together

in one big cluster. Higher a, the extreme case means

no smoothing operation at all, on the other hand may

result in loosely populated clusters and might lead to

too many clusters. The choice of a ¼ 1
N as suggested

by [28] is suitable for our application, where N is the

length of the image.

5 Texture identifier for CBIR

Content-based image retrieval becomes more and

more important with the advance of the multimedia

and imaging technology. Historically, some of the

popular CBIR systems have been the QBIC (Query By

Image Content) [30] system developed by IBM, Virage

[31] by Virage Inc., and Photobook [32] by MIT Media

Lab. Colour, texture and shape are among the most

commonly used retrieval features associated with

CBIR, with texture feature being one of the most dif-

ficult to solve. One of the reasons is that real images

can have several different textures in a single image or

they can also contain no texture at all. Good localiza-

tion is therefore necessary to capture the local texture.

As a solution, most CBIR systems opted for the more

straight-forward block-based image decomposition, but

while this approach can achieve quite a good locali-

zation, it comes with quite a high computational load.

The fact that the feature extraction process will always

be applied for each and every block regardless of

whether it is fully textured or not will have an effect on

the retrieval performance as well, since more features

mean more confusion for the algorithm. A segmenta-

tion-based CBIR system can be used instead to avoid

the problem.

In order to be used with a CBIR system, it is nec-

essary for the segmentation algorithm not only to

segment between textured regions, but also to distin-

guish between textured regions and non-textured

regions. Hence, only the feature vectors of the textured

segments will be created and stored for matching

purposes. Our proposed segmentation algorithm can

discriminate not only between different textured regions

but also between textured regions and non-textured

regions, although it may or may not be able to segment

different homogeneous or non-textured regions. For

example, an image consisting of two textures on a dark

background at the top and a bright background on the

bottom will result in either three or four clusters using

the proposed algorithm, two of them textured. The

inability to segment non-textured region however is

not important as we are only interested in the textured

region. The non-textured region can be discarded

using the algorithm to determine whether a particular

segment is textured or not proposed by Porter

and Canagarajah [12]. The basic idea behind their

algorithm is to find the ratio of the mean energy in the

low-frequency channels to the mean energy in the

middle-frequency channels. Non-textured images (in

which the grey level varies smoothly) are heavily

dominated by the low-frequency channels in their

wavelet transform. However, textured images have

large energies in both the low and middle frequencies.

For a three-level decomposition, the ratio can be

computed between the mean energy in the four

low-frequency channels (LL3,LH3,HL3,HH3) and the
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Fig. 11 Inter-relation of radius, h, and threshold, T
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mean energy in the three middle-frequency channels

(LH2,HL2,HH2) and is given as follows:

R ¼ LL3 þ LH3 þHL3 þHH3

LH2 þHL2 þHH2
: ð4Þ

If the ratio, R of a segment is above a certain

threshold, then we can conclude that the particular

segment is non-textured and thus no feature vectors

should be created for it. Otherwise, if the ratio is below

the threshold, then a feature vector is created for the

segment.

From visual inspection of the conducted experi-

ments, a textured region usually gives a ratio of less

then 10, while a non-textured region can be from 10 up

to infinity. However, this is not always true as our

collection of images is very large and it is impossible to

visually inspect the ratio of all the textures. To avoid a

situation where a genuine texture is missed, a threshold

of 20 is used. It is less harmful for a non-textured being

classified as textured than a textured being classified as

non-textured as it will be completely ignored in cre-

ating feature vectors. Figure 12 shows the same image

example used in Sect. 4.3, and the ratio of each of its

segments. The textured segment clearly gives a small

ratio to indicate its texturedness while the two non-

textured regions have a much larger ratio.

The texture identifier hence is a useful tool in

identifying significant texture regions within an image

for feature extraction, while neglecting the non-tex-

tured region of the image.

6 Integration with a retrieval system

We are now ready to integrate the proposed segmen-

tation algorithm with a retrieval system. From the

segmented regions, the last thing we need to do is to

compute the feature vectors for the identified texture

regions. We do not need to perform the wavelet

decomposition again as we already have the original

coefficients of the DWF when we perform the seg-

mentation.

For this experiment, the following parameters are

used. The number of decomposition levels is set to

three levels and the wavelet basis is the Daubechies 8-

tap wavelet. The mean subtraction can be applied by

removing the local mean of the segmented region in

the LL channel to make it zero mean. The normalized

Euclidean distance is used as the distance metric, while

the standard deviation of energy and the number of

zero crossings of all channels are used as texture fea-

tures. For the identified texture regions, the features

are computed from the original DWF coefficients (not

the modified ones used for segmentation) within the

segmented texture regions only. This will create a

feature vector that closely resembles the texture in that

particular region. Finally, the luminence function is

used to convert colour images to monochrome images.

These parameters are so chosen because this experi-

ment is part of our bigger project, which is to compare

the segmentation-based approach with the block-based

approach to texture retrieval, and we would like to use

the same parameters for both approaches in order to

produce a fair conclusion.

One might argue that we can simply take the cluster

centres in each level and combine them to provide the

feature vector. However, this is not true since

the number of clusters found in each level might not be

the same. Hence, it is difficult to compute the feature

vector this way. Moreover, the cluster centre is based

on the modified DWF, and not from the true DWF

coefficients, thus might not be as good as the original

DWF coefficients when used in texture matching be-

tween several thousands texture images. Therefore, the

proposed feature computation above will be used

instead, as it is much easier to perform, and the dis-

crimination performance of the original DWF coeffi-

cients has been proved in our previous work [18].

A simple retrieval experiment is carried in order to

observe the validity of this retrieval approach as well as

its performance. Since this simple experiment is only

intended to investigate whether the proposed algo-

rithm can be successfully integrated into an image

retrieval system, we used texture patches as the query

to the system. A much better query selection scheme

Fig. 12 Example of texture identifier for a museum image
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where a user can load an image and then provide the

query texture by choosing a specific region inside the

image using a mouse can always be incorporated into

the final system later. The retrieval experiment is tes-

ted on a museum database of size 1,106. The retrieval

performance was observed visually since we do not

know how many similar textures there might be in the

database. Nonetheless, as long as the top matches are

visually similar to the query, it can be considered suc-

cessful. Figure 13 shows three examples of the seg-

mentation-based retrieval. The line circling part of the

image indicates the segmented region found by the

algorithm to be similar to the query.

As can be seen, the retrieval system manages to

retrieve visually similar textures to the query, and thus

is very useful in texture retrieval of museum collec-

tions. However, one disadvantage of using segmenta-

tion-based retrieval can be seen in the third example.

Here the query image is a small stripe from one of the

images in the database, and can be considered as a

subset of a coarser texture. However, since the seg-

mentation algorithm segments the coarser texture, the

retrieved images does not actually correspond to

the finer texture of the image; instead it corresponds to

the coarser texture. In this example, the features of the

finer scale and the coarser scale textures may be close

(because the majority of the image consists of stripes);

hence it still manages to retrieve all images consisting

of stripes.

Nonetheless, apart from the lack of multi-scale

property, the segmentation-based approach proves to

be very good for CBIR application.

Fig. 13 Example of retrieval
results of real museum
collections. For each case, the
query image is located at the
top left, followed by the top
10 retrieved images (left to
right, top to bottom)
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7 Conclusion and future works

In this paper, a new framework for automatic texture

segmentation based on modified DWF and the mean

shift algorithm is developed. By modifying the DWF,

much better clustering is obtained on a reduced set of

data, making possible the use of the mean shift algo-

rithm to detect the correct number of clusters, and

substantially reduces the processing time. The mean

shift also provides the position of the cluster centres

which effectively solves the problem of initializing the

membership function in the FCM algorithm, and hence

reducing the fuzzy iterations.

From the results of the experiments we can see

that the proposed method can detect the correct

number of clusters as well as segmenting the image

correctly in composite textures, synthetic textures,

real scene images and museum images, while main-

taining the low computational load. The texture

segmentation was then extended to be a texture

identifier in order to use it in the image retrieval

system. This is done by computing the ratio of en-

ergy in the low-frequency channels to the energy in

the middle-frequency channels, and observing whe-

ther the ratio is below a certain threshold. The fea-

ture vector of the identified texture region is then

computed for matching purposes. From experimental

result, the proposed segmentation-based retrieval

system performs well in retrieving similar texture

from a museum image collections.
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