COLOR EDGE DETECTION HARDWARE BASED ON
GEOMETRIC ALGEBRA

Biswajit Mishra, Peter Wilson

Electronic Systems Design, School of Electronics and Computer Science,
University of Southampton, UK, SO17 1BJ
{bm03r,prw} @ecs.soton.ac.uk, Fax +44.2380.592901

Keywords: Rotor Convolution, Geometric Algebra, Hardware,
Edge Detection.

Abstract

Modern techniques treat color images as separate monochrome
images for processing. Partly, because there is no
straightforward generalization of linear filters available
for color. However the algorithms yield more accurate results
when the correlation among color bands are exploited which
shows fundamental difference to process the color images.
Earlier work[8] reported the transformation of the color images
using Quaternion Fourier Transforms and the realization of
a holistic filter based on Quaternion convolution. Here, we
discuss the rotor based convolution techniques, a generalization
of the previous work, within a new mathematical framework
in Geometric Algebra. Based thereupon, a novel hardware
architecture is proposed. Experiments show the edge detection
with this technique belong to a class of linear vector filter
and is holistic in nature. It is tailored for image processing
applications, providing an acceptable application performance
requirements. The usefulness of the introduced approach was
demonstrated by analyzing and implementing a computation
intensive edge detection algorithm on this hardware.

1 Introduction

Human visual perception doesn’t differentiate color separately
but tends to process it as a whole. In this sense, the compact
representation of color as vector and operating on these vectors
are particularly interesting. This also gives rise to algorithms
in useful applications which pose challenges in the realization
of nonlinear vector filters. Present day techniques don’t treat
the color images wholly, but as separate monochrome images.
Firstly, because there is no straightforward generalization of
linear filters available for color images. Secondly, there is
no simple mathematical framework for the linear filters for
color images. But when the correlation among the color bands
are exploited the algorithms yield more accurate results [10].
hence there is a fundamental difference to apply monochrome
images algorithms to color images.

Previous work[9] reported the transformation of the color
images using Quaternion Fourier Transforms and the
realization of a holistic filter based on Quaternion convolution.
This paper discusses the rotor based convolution approach
within the mathematical framework in Geometric Algebra,
and the linear filter for vector processing. The benefit of using

such a mathematical framework is manifold. Firstly the 3-D
homogeneous regions are modeled as bivectors (explained in
Sec 2) in the graded linear space of Geometric Algebra. Hence
extension to the algorithms from the 3-D space becomes easy
and the same rules apply for the n-dimensional problems.
Secondly, the problem space becomes linear because an n-D
space can always be represented as a graded linear space
consisting 2" elements.

Based thereupon, the hardware architecture design is
discussed. The focus of the paper is the introduction of a
new hardware architecture for application areas involving
Image Processing. Its performance and potential are discussed
by the implementation of a holistic filter design for an edge
detection algorithm in Image Processing application. Color
edge detection is used to find the discontinuities along the
adjacent regions of a color image. These are useful in several
applications involving imaging (medical imaging, detection of
microarray images) and vision.

The paper is structured as follows: in section 2 the
mathematical framework in Geometric Algebra is discussed.
Section 3 provides the concepts of rotors in Geometric
Algebra. The usefulness of the rotor concept is then discussed
in section 4. The usefulness and the reason to develop an
application specific hardware architecture is illustrated in
section 5 which gives analysis on performance benefits in
image processing algorithms operating on color vectors. In
this section a very brief review of the the hardware architecture
is presented. Finally in Section 6 we conclude with results on
a color based edge detection application involving hardware.

2 Geometric Algebra
2.1 Basic Definitions

In this section we discuss the basic definitions in Geometric
Algebra. For a more detailed review please see [5][6]. Scalars,
vectors, bivectors and trivectors (sweeping a bivector a A ¢
along another vector ¢) represent 0, 1, 2 and 3 dimensional
subspaces respectively within Geometric Algebra. The
elements of the graded linear vector space is given in the
the following (Table 1) which contain all the homogeneous
elements for the three dimensional space. In Geometric
Algebra it is possible to add quantities of different grades (e.g.
0 grade scalar, 1 grade vector and 2 grade bivector) resulting in
a multivector. One can manipulate expressions on multivectors
which gives rise to meaningful geometric information.

Element Grade | basis k-blade | total
0-blade or scalar 0 1 1

1-blade or vectors 1 e1,€s,€3 3
2-blades or bivector 2 e162, €063, €361 3
3-blade or trivector 3 ei1eses 1

Table 1: Homogeneous elements of 3D Geometric Algebra

2.2 Geometric Product

The fundamental building block in Geometric Algebra is
called the geometric product. The geometric product for
two vectors a and b is defined as ab = a-b +a A b. This
consists of the inner product and the outer product which
gives the information about the magnitude and direction and
orientation of the vector. The inner product a and b results
in a scalar quantity and is expressed as a - b. It conveys the
relative direction of the two vectors. The outer product, though
shares same properties as the vector product, is fundamentally
different, is generalizable to higher dimensions and conveys the
orientation information. For example, if a and b are collinear,
then a A b = 0, the geometric product gives the magnitude
of the vectors. If a and b are perpendicular, then a-b = 0
and the geometric product gives the orientation of the bivector.
The inner product is commutative and the outer product is
anticommutative. Hence the geometric product is neither
symmetric like the inner product nor antisymmetric like the
outer product but is invertible. So the geometric product of ba
isgivenbyba=b-a+bAa=a-b—aAb. By addition
of ab and subtraction of ba, a more generalized definition of
the inner and outer product is obtained. Therefore, the inner
product is given by a- b = %(ab + ba) and the outer product
is given by aA b = 1(ab — ba). In essence this is the most
important element of this algebra and all the other meaningful
operations can be derived from this geometric product
algebraically. The importance of this product computation is
evident in many science and engineering applications [4].

Let e1,ez and eg be the orthonormal vectors for a three
dimensional Euclidean space. The relationship e;e; = 0
leads to a basis calculation in the algebra. The rules of
the geometric product calculation which encapsulates the full
algebra is given by eqn (1):

—e;e;
_ J 1
e:e; =
1] { 17

In the graded linear space spanned by the basis vectors eq, e
and es, the space in R3 will have 23 = 8 blades or elements
as shown following. The highest grade element is called the
pseudoscalar and is denoted by a symbol i or L.

ifi £ j

ifi=y M)

1 , e1,ez,e3, e1/\ez,eaNeg,e3Ner, epNex/Neg
———
scalar vector bivector trivector(I)

3 Rotations in the Geometric Algebra 3-D space

As described in the previous section, the pseudoscalar I =
e1 A es A eg squares to -1 and commutes with all the vectors.

For example, ejes = lIes,eqes = Iej,ese; = les. Also,
the bivectors rotate the vectors by 90° in their own plane (e.g.
(ere2)ex = eq, (eze3)ex = —es, (eze1)er = e3).

Before we progress to discuss the rotational element in
Geometric Algebra and its significance in engineering
applications we can agree that any rotation is represented by a
pair of reflection. Let us consider any vector a being reflected
in a plane perpendicular to an unit vector n. The reflected
vector a’ is expressed as a’ =a, — a. Where a is the
perpendicular component and a is the parallel projection of
the vector. Expanding the terms for a and a’ we get,

a=n?a=n(n-a+nAa)

=(n-ajn+n(nAa) 2)

Therefore, a) = (n-a)nand a; = n(n A a). Hence

a’=a; —aj=n(nAa)— (n-a)n

=—(n-a)n— (nAa)n=—nan 3)

Hence the resultant reflection of a in the plane perpendicular
to unit vector n is -nan. It is observed that the reflection of a
in the plane perpendicular to n followed by another reflection
in the plane perpendicular to m results in another vector given
by—m(—nan)m = (mn)a(nm) = RaR. This product R is
a multivector and is called a rotational element or Rotor and
satisfies RR = 1, where R is the conjugate of R. The equation
RaR works for any dimension, any grade and any objects.

In 3D rotations if a rotor R, takes a vector a to the vector b
then b is defined as b = R; al%l. If another rotor R takes b
to ¢ then ¢ is RobRy. Therefore, ¢ = (RQRl)aR2~R1. This
explains that rotors are expressed in a straightforward manner
and in this particular case the final rotor R is given by R =
R2R;.

Using only the bivectors of the algebra it can be shown that the
Hamilton’s Quaternions are a subset of the geometric algebra.
If i, j, k are the elements of the Quaternions then these can be
defined as i = Iey, j = —Iey and k = Ies. As (Ieg)? = —1,

(—Iez)? = —1 and (Ie3)? = —1 and (Ie;)(—Iez)(Ie3) =
Ieiezes = —1 the famous relations by Hamilton i2 = j? =
k? = ijk = —1 can be recovered.

If F = [ao, a1, as, as] is an unit quaternion then the one to one
mapping between the quaternion and the rotor which performs
the same rotation in geometric algebra is given by eqn (4)

R = ag + a1161 — 112162 + a3163 (4)
—~—

scalar bivector

Therefore taking only the scalar and bivector parts, a general

rotation in 3-D can be written as:

R =exp(—i—n) = cos - —insin — 5

p(~ign) 5 5 ©)
where 6 represents a rotation about an axis parallel to unit
vector n and the rotation axis n is given by nieses + nseseq +
nsej ez which is spanned by the bivector basis.

4 Rotor Edge Detection

The human eye doesn’t process different colors and RGB
images separately. Rather the evidence suggests that the
processing is similar to a continuous vector valued approach
in the 3-D Euclidean space. In this regard the bivector
representation of color vectors in geometric algebra fits neatly
for the 3-D Euclidean space. Then the color information of
(r, g, b)T vector of the color image ¢, , can be written as:

Cm,n = Tm,n€2€3 + 9Im,n€3€1 + bm,nele2~ (6)
where 7y, ., gm,n and by, ,, are the RGB vectors of the image
Cm,n- The edge detection process involves convolving masks
my,(x,y) (forleft) and mg(x, y) (for right) of the size (2X+1)
and (2Y + 1) with the image c(m,n) of dimension (M x N).
In rotor based approach as described above the convolution
involves geometric product of the vector with the rotor as
shown in the following convolution equation:

X Y
é(m,m) = Z Z mr(x,y)c(m —x mod M,
r=—X y=-Y

n —y mod N)mg(x,y) (7
The hypercomplex masks for edge detection of the horizontal,
vertical edges were introduced by Sangwine[8] and were
extended for rotors by Corrochano-Flores[3]. The rotor R
convolution works exactly the same way as the hypercomplex
convolution and operate on the color vectors (eqn6) of the
image. The horizontal left and right masks for the rotor
convolution are defined in the following eqn8. The vertical
masks are obtained by interchanging the rows and columns of
the two masks.

R R R
mr(left,hor)=1 0 0 0 8)

R R R

R R R
mpg(right,hor)=1 0 0 0 ©)]

R R R

The rotors are given by

R = se"™* = s(cos(m/4) + nsin(w /4)) (10)

where n is the unit vector and is given by n = (ege3 + ezeq +
e1ez)/v/3 and s = 1/+/6 is the scale factor. The left and right

masks are applied to each of the color pixels which gives the
following convolution in the simplified form,

é(myn) = R(c(m, n))R = R(Cm—l,n—1 + Cmtim
+Cm—1,n+l)R + R(Cm+1,n—1 + Cm+1,n +

cmiini1)R=Re,R+ReR - (11)

where ¢, and c; are the upper and lower rows of the color
subimage (fig 1) comprising of different colors. colors. The

<

Upper (Red, Green\Blue|

::::::::::::::::

[]
Lower(Red) n
L]

Convolution
Mask

Pixel

Figure 1: R-G-B plane.

Green

Blue

\/

Black Red

Figure 2: RGB vectors and the Color Cube.

color vector is split into two components. (C_par OF c|) is
the component parallel to the gray axis and the perpendicular
component is (¢_perp Or ¢1) (fig 2). When the masks are
operated on the color vector only the ¢ is affected but the
¢ is unchanged. After the convolution the perpendicular
component is rotated by an amount specified by the rotor R.
This is quite significant if the colors in the upper and lower
rows are homogeneous. The rotor RaR would rotate the
color vector by the same amount as would the rotor RaR.
Hence if the color vectors are homogeneous then both the
components would cancel out and the point would fall on
somewhere on the gray axis. Then the pixel representing this
vector would lie somewhere on gray axis and hence would be

perceived as a gray picture. However if the color components
are not homogeneous then the color vector will be rotated by
an unequal amount by the two rotors. Thus the resultant vector
would lie somewhere in the color cube, far from the gray axis
(fig 2). This is evident from the results that we obtained from
the three images (see fig 10 12a and 13a) where we applied
only the horizontal edge detection masks on the images. More
details on this will be discussed in the results section.

Sangwine[8] reported that the Quaternion convolution required
the rotations of the 4-D space vectors at an angle 7/2. The
same edge detection technique is improved by making the
rotation angle dependent on color points with the assumption
that the properties of similar and dissimilar regions of the color
image remains the same [3]. By doing so the performance
improves for the nonhomogeneous regions. This method also
suppresses noise caused by shadows. This generalized method
based on Sangwine performs the edge detection better than the
original Sangwine’smethod.

5 Rotor Edge Detection Hardware

Many image processing algorithms can be decomposed into
many parallelized tasks, each task involving operations such
as Multiply and Accumulation (MAC). Ideally these systems
should also provide the customer with a large variety of
processing options to carry out different algorithms. Two major
reasons to implement the architecture in hardware is because
these algorithms are repetitive in nature and the high degree of
regularity of the geometric operations. Hence it presents itself
a good candidate for hardware accelerated implementation.
Also as shown in Table3 the main computations for the edge
detection algorithm is geometric product and additions and
multiplications of the vectors which would benefit from such
a hardware implementation. With this in mind we developed
a new architecture based on the mathematical framework
described in the previous section.

48

Y4y

CHECK, ALTEN
4NN

STATUS
AND

CONTROL
REGISTER

A0

\.32

|
ADDER | o,
16

DATA B

BUFFER — e —

S
MULTIPLIER |,32 ARRAY
v K=

INSTRUCTION
[DECODER.]—D[SEQUENcERH CONTROLLER

T8

3x16

DATA
REGISTER
FILE

Figure 3: Rotor Edge Detection Hardware Architecture.

The proposed Rotor Edge Detection Hardware architecture
consists of an IO interface, control unit, memory unit and a
central Geometric Algebra Micro Architecture(GAMA)[2]
consisting of adder, multiplier, blade logic, checker and

alignment logic, sum and a result register (fig 3). The
architecture supports both single and double precision floating
point numbers, four rounding modes, and exceptions specified
by the IEEE 754 standard [1].The floating point multiplier is a
five stage pipeline that produces result on every clock cycle.
The shaded portion in the (fig 4) refers to different stages of
the pipeline of the floating point multiplier. The floating point
adder (fig 5) is more complex than the multiplier. The typical
steps for the addition process are: check if any operand to
be zero, subtraction of exponents, align the mantissa and add
or subtract the two mantissas, adjust the exponent, normalize
the result and rounding off the result. The adder is a six
stage pipeline (shaded regions of (fig 5)) that produces result
on every clock cycle. It is important to state here that our
design can process other products of Geometric Algebra with
ease. The state machine governing the processing stages of

| Sigll Exponent | Significand | | Sigrl Exponent |

Significand |

#1, Add,
Multiply

#2,
Subtract

#3,
Control

#4,

Shift left or Romdlize

right
|

Round
v

|Sign| Exponent | Significand |

Figure 4: Floating Point Multiplier Architecture.

|5igr| Exponent | Significand ||5igr| Exponent | Significand

]
ADD,

E [
difference

(o 1 0 1 o 1

Control
[y
#4,
Cprrectign
Shift left or
Decrement right

Round #6,
Round

|Sign| Exponent | Significand

#1,
Compare
and Swap

. . #2'
Shift right Shifft small to right

#3,
Add /Sub

#5,
Normalize

Figure 5: Floating Point Adder Architecture.

Geometric Algebra has six states, idle, clear, load, process,

write and memory dump. Firstly, the idle state waits for the
start signal to be high to trigger the state machine. After that,
the state machine will come into the clear state where it clears
any registers and then to load state to export load as ’1’ to
load input data into the registers. Then it processes the result
in required clock cycles based on the control word from the
instruction register. Finally, it just drops put the product when
the output-enable signal is high in output state. Except the
transformation of the load state which is triggered by start
signal, the others just proceed to next state after expected
number of cycles based on the control word automatically.
The long (= 320) bit word datapath are coordinated by
controller and sequencer unit. The transfer of the data is
done in the input and output interface unit. The signals are
all registered inputs and outputs to the system. Selection of
the data input and output is based on the 16 bit control word.
The control bits is used for configuring the processing core
for different operations. These control bits are sent by the
controller/sequencer which is responsible for defining the data
interface and configuring the operators at the correct time and
outputting the result to the outside or to the input interface
of the core via the IO bus. The control block along with the
sequencer ensures effective queueing and stalling to balance
the inputs in different stages in the datapath.

Another important element of this architecture is the blade
computation. The blade index relationships is already
explained for a three dimensional space (eqnl). For example
if we want to compute e; with es, the resultant blade index
is ejes. Similarly if we multiply e;e; with es then the
resultant basis blade index is e;. This can be implemented
by a multiplication table, an approach followed by many
software implementation. However accessing a memory in
hardware is a slower operation than a simple EXOR operation
in hardware (fig 6). Determining sign due to blade index is not
straightforward due to the invertible nature of the geometric
operation. For example the blade index multiplication of e;
with ey gives ejes whereas with e and e results in —ejes.
The resulting circuit which is a cascade of EXOR gates takes
care of the swapping of the blade vector and the AND gates
compute the number of swaps that the blade element undergoes
(see fig 7).

Multivector A

-]
210800
w

Multivector B

©
LI I]

(1Pig
(Wpig

©
a

(Wpig

)
(@)p
()Pl

PIg|

2

| (9] | @ |Blade Index |(n)|

Figure 6: Basis vector computation logic.

The architecture is described using synthesizable VHDL(Very

Multivector B

T = T 2
sl &| ewofs | =

Sign Multivector A

(Dpig)
(2)Pig)

123 23 | §|---- |§|

X Swapping

Elimination

sign(bld)

Result = -el

Figure 7: Swapping and sign computation of basis blades.

High Speed Integrated Circuit Hardware Description
Language) which makes choosing a different technology
not a major decision any more. The EDA tools perform all
the translation from VHDL to Silicon. The architecture
was synthesized using the ST 0.12 pm standard cell
ASIC(Application Specific Integrated Circuit) library with up
to 6 layers. The synthesis is done using the synplify ASIC and
Cadence Silicon Ensemble tool suite. The synthesis timing
and area reports are summarized in the following TableS5.

2 o z
BB b B
o &l 3523
~1fgss9 >
R Rl e B
DINO - 4 DIN14
DIN1 - 4—p DIN13
DIN2 | l—» DIN12
6ND || | -7 DIN11
VDD44 [T3 l=—1 GND
VDD 1 [+ = VDD
6ND [=7 VDD
DIN3 <« | GND
DIN4 b 4 DIN10
DINS & lt— DIN9
DIN6 <+ a—p» DINS
Xt ggat 11
< & >5508 5 00
o Z & -
E Z W w a | |
=2 m| o o
o o 5 a 2

Figure 8: Bonding Diagram of the ASIC.

Design Unit Rotor Hardware
No of Cells 35355
Area in square microns 813504
No of Equivalent Gates 133361
Clock Frequency 130.0 MHz

Table 2: Area, Clock Frequency of Rotor Hardware .

The core chip area is found to be 0.9mm x 0.9mm and around

1.1mm x 1.1mm including the IO pads (fig 8). The clock
frequency of 130MHz is determined by the longest path in the
design.

6 Experimental Results

The experimental setup is as shown in the fig 9. The images
were first read in MATLAB and being converted as binaries.
These were then fed to the hardware, then the results from
the hardware were again converted to the bmp images (see fig
9). Three images (fig 10, 12a and 13a) of different sizes were

ROTOR
TO BIN EDGE
MATLAB DETECTION
HARDWARE

TO BMP

] MATLAB

INPUT IMAGE OUTPUT IMAGE

Figure 9: Experimental Setup.

taken and the horizontal masks were applied. The masks are
same as the Prewitt operator described in [8] and [3]. Rotor

50 100 150 200 250

Figure 10: Original Color Block.

50 100 150 200

Figure 11: Color Blocks after rotor convolution.

convolution was applied on the test image of the “color blocks”

which has an 8 x 8 array of colored squares (see fig 10). The
result of the filtered image is shown in the fig 11. The filtered
image has gray areas where the squares had uniform color. But
it has colored lines at the edges or where there was a change
of color. Also it can be observed that the edges between the
black and white blocks remain gray but the edges change to
color where there was a color difference across the edge. This
is because the RcR rotates the color by 7/2 and RcR by
—m /2. Hence the two color vectors cancel each other due to
the rotation operation when they are uniform and fall on the
Black and White axis. Otherwise they fall outside the line
giving a color to the pixel. This signifies the rotor operation
is a shift in hue of the image. The areas where the upper and
lower pixels are similar the rotors produce a gray scale image.
When these pixels differ in color the rotors produce different
colors as they don’t cancel in the chromatic sense. Hence the
change of direction due to rotation of colors results in different
colors on the edges. This type of change can also be observed
on the filtered images of tulips (fig 12b) and lenna (fig 13b).
The areas where the color change was flat or smoothly varying,
the filtered image became chromatic, otherwise colors can be
observed in regions like the top edges of the hat of the “lenna”
image and the edges of flowers of the “tulip” image.

50

(b) Tulip
convolution

(a) Tulip Image. Image after rotor

Figure 12: Outputs of the Tulip Image before(a) and after(b)
rotor convolution.

after rotor

(a) Original Lenna Image.

(b) Lenna
convolution

Image

Figure 13: Outputs of the Lenna Image before(a) and after(b)
rotor convolution.

It can be seen that for an image size of 128 x 128 pixels the
total number of geometric product multiplications adds up to
196608(Table 3, 2"% col). This is because each color pixel
is treated as a vector and each convolution operation consists
of 12 geometric product multiplications and 4 geometric
product additions. However, if we use the linearity of the

rotor operations we can use 4 additions and then perform 4
convolution on these vectors. Furthermore each product in
RaR takes 28 floating point multiplications and 26 floating
point additions. Similar number of operations are needed for
the RaR computation. Hence the total number of convolution
operations equals 56 geometric product multiplications and 52
geometric product additions. However three more addition are
required to calculate (RaR+RaR) totalling the add operations
to 55. Since these products are calculated based on the basis
vectors the total number of floating point multiplications
and additions result in 917504(Table 3, 4t"col) and 901120
respectively (see Table 3, 5'"col) and for the 128 x 128
image. The hardware is designed to handle such specialized
computations efficiently. It can be seen that the total time taken
for the convolution of a 128 x 128 image takes 5701781 cycles
which amounts to 46 ms (Table 3, 6t"col) based on the design
running at 130 MHz. The convolution times for different sized
images are obtained and is given in the following Table (3).

Image size | GP Mul | GP Add | Float Mul | Float Add | Time (ms)
128 x 128 | 196608 65536 917504 901120 46
256 x 256 | 786432 262144 3670016 3604480 184
512 x 512 | 3145728 | 1048576 | 14680064 | 14417920 735

Table 3: Rotor convolution operation time on hardware for
different image sizes on hardware

7 Conclusion

Like the human visual system which does not process the R,
G, B color channels separately, this approach fits nicely with
the bivector representation for the color vectors. Experiments
show that this kind of edge detection is holistic in nature. It is
also concluded that the convolution operation with the rotor
masks belong to a class of linear vector filters. This linear
vector filter can be applied to image or speech signals where
vector filtering is of fundamental interest[7].

The paper presented an overview of the convolution operations
involving rotors for image processing application. A new
rotor hardware was introduced, including its potential for
other applications in Vision and Graphics. The hardware
architecture is discussed briefly. The architecture is tailored
for image processing applications, providing an acceptable
application performance requirements. The usefulness of
the introduced approach was demonstrated by analyzing
and implementing a computation intensive edge detection
algorithm on this hardware. Much of the future work will be
focussed on theoretical understanding of this linear filter and
the frequency response which would be useful in developing
further algorithms.

Acknowledgements

BM would like to thank the School of Electronics and
Computer Science, University of Southampton for their

Support in the form of a University Research Scholarship.
References

[1] American National Standards Institute and Institute of
Electrical and Electronic Engineers. IEEE standard for
binary floating-point arithmetic. ANSI/IEEE Standard,
Std 754-1985, New York, 1985.

[2] B.Mishra and P.Wilson. Hardware implementation of
a geometric algebra processor core. In Proceedings of
ACA 2005. IMACS, Int. Conference on Advancement of
Computer Algebra, Nara, Japan, 2005.

[3] E.Bayro-Corrochano and S.Flores. Color edge detection
using rotors. In Leo Dorst, Chris Doran, and J. Lasenby,
editors, Applications of Geometric Algebras in Computer
Science and Engineering. Birkhduser, 2002.

[4] J. Lasenby, W. J. Fitzgerald, A. N. Lasenby, and C. J. L.
Doran. New geometric methods for computer vision: An
application to structure and motion estimation. [Int. J.
Comput. Vision, 26(3):191-213, 1998.

[5] L.Dorst and S.Mann. Geometric algebra: A
computational framework for geometrical applications
(D). IEEE Computer Graphics and Applications,
22(3):24-31, 2002.

[6] Stephen Mann and Leo Dorst. Geometric algebra: A
computational framework for geometrical applications
(2). IEEE Comput. Graph. Appl., 22(4):58-67, 2002.

[7] R.Lukac, B.Smolka, K.Martin, K.N.Plataniotis, and
A.N.Venetsanopoulos. Vector filtering for colour
imaging. IEEE Signal Processing Magazine, 22(1):74—
86, 2005.

[8] S.J.Sangwine.
on quaternion convolution.
34(10):969-971, 1998.

Colour image edge detector based
IEE Electronics Letters,

[9] S.J.Sangwine and T.A.Ell. Colour image filters based on
hypercomplex convolution. /[EE Proc Vision Image Signal
Processing, 147(2), 2000.

[10] H.Joel Trussel, Eli Saber, and Michael Vrehl. Colour
image processing. IEEE Signal Processing Magazine,

22(1):14-22, 2005.

