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Computational trust
Trust is an ineffable notion that permeates very many things.
What trust are we going to have in this talk?

Computer idealisation of “trust” to support decision-making in open
networks. No human emotion, nor philosophical/sociological concept.

Gathering prominence in open applications involving safety guarantees
in a wide sense
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Computational trust
Trust is an ineffable notion that permeates very many things.
What trust are we going to have in this talk?

Computer idealisation of “trust” to support decision-making in open
networks. No human emotion, nor philosophical/sociological concept.

Gathering prominence in open applications involving safety guarantees
in a wide sense

@ credential-based trust: e.g., public-key infrastructures,
authentication and resource access control, network security.

@ reputation-based trust: e.g., social networks, P2P, trust metrics,
probabilistic approaches.

@ trust models: e.g., security policies, languages, game theory.

@ trust in information sources: e.g., information filtering and
provenance, content trust, user interaction, social concerns.
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Trust and reputation systems

Reputation

@ behavioural: perception that an agent creates through past
actions about its intentions and norms of behaviour.

@ social: calculated on the basis of observations made by others.

An agent’s reputation may affect the trust that others have toward it.
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Trust and reputation systems

Reputation

@ behavioural: perception that an agent creates through past
actions about its intentions and norms of behaviour.

@ social: calculated on the basis of observations made by others.

An agent’s reputation may affect the trust that others have toward it.

Trust

@ subjective: a level of the subjective expectation an agent has
about another’s future behaviour based on based on the history of
their encounters and of hearsay.

Confidence in the trust assessment is also a parameter of importance.
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Trust and security

E.g.: Reputation-based access control

p’s ‘trust’ in g’s actions at time t, is determined by p’s observations of
g’s behaviour up until time t according to a given policy ).
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Trust and security

E.g.: Reputation-based access control

p’s ‘trust’ in g’s actions at time t, is determined by p’s observations of
g’s behaviour up until time t according to a given policy ).

Example

You download what claims to be a new cool browser from some
unknown site. Your trust policy may be:

@ allow the program to connect to a remote site if and only if it has
neither tried to open a local file that it has not created, nor to
modify a file it has created, nor to create a sub-process.
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Outline

e Some computational trust systems
e Towards model comparison

e Modelling behavioural information
@ Event structures as a trust model

e Probabilistic event structures

e A Bayesian event model
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Outline

Q Some computational trust systems
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EigenTrust (kamvar et al)
@ Some novel ideas well established by now.

@ A set P of n peers who interact pairwise and mutually rate the
interaction either sat or unsat.

Peer i computes a local ‘trust value’ in peer j:

Peer i then defines a normalised measure of its local trust in

[ defines a Markov chain (i.e.,

), with stationary
distribution . The value for principal j is
@ Simulations prove that is a smart system. Yet, no much
is said formally about properties, e.g. safety guarantees and the
incidence of values like

[m] = = =
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» Peer i computes a local ‘trust value’ in peer j:

sj = sat(i,j) —unsat (i,j) L O.

» Peer i then defines a normalised measure of its local trust in j:
Sjj

YL

Cij

@ [c;] defines a Markov chain (i.e., Zj cj = 1), with stationary
distribution (t;)jc». The global trust value for principal j is t;.

@ Simulations prove that EigenTrust is a smart system. Yet, no much
is said formally about properties, e.g. safety guarantees and the
incidence of values like t;.
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Simple Probabilistic Systems

The model \g:

@ Each principal p behaves in each interaction according to a fixed
and independent probability ¢, of ‘success’ (and therefore 1 — 6,
of ‘failure’).
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Simple Probabilistic Systems

The model \g:

@ Each principal p behaves in each interaction according to a fixed
and independent probability ¢, of ‘success’ (and therefore 1 — 6,
of ‘failure’).

The framework:
@ Interface (Trust computation algorithm, A):
» Input: A sequence h = x3X;---X, forn > 0 and x; € {s,f}.
» Output: A probability distribution 7 : {s,f} — [0, 1].

@ Goal:

» Output 7 approximates (6, 1 — 6,) as well as possible, under the
hypothesis that input h is the outcome of interactions with p.
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Maximum likelihood (Despotovic and Aberer)

Trust computation Ag

Ns(h) o Nf(h)

Ao(s [ h) =

Nx(h) = “number of x’s in h”

Bayesian analysis inspired by Ag model: f(0 | a 8) oc 9*~1(1 — )71

Well defined semantics:

is interpreted as a probability of
success in the next interaction.

Solidly based on probability theory and Bayesian analysis.

Formal result: as

o = na
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Maximum likelihood (Despotovic and Aberer)

Trust computation Ag

Aos ()= oty = S

Nx(h) = “number of x’s in h”

Bayesian analysis inspired by Ag model: f(0 | a 8) oc 9*~1(1 — )71

Properties:

@ Well defined semantics: Ay(s | h) is interpreted as a probability of
success in the next interaction.

@ Solidly based on probability theory and Bayesian analysis.

@ Formal result: Ay(s | h) — 6, as |h| — occ.
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Beta models (Mmui et al)

Even more tightly inspired by Bayesian analysis and by Ag
Trust computation A;

Ns(h) +1 N¢(h) + 1
Aus [ =BTy = L

Nx(h) = “number of x’s in h”

Well defined semantics:

is interpreted as a probability of
success in the next interaction.

Solidly based on probability theory and Bayesian analysis.
Formal result:

. where
is the number of trials.

o = = na
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Beta models (Mmui et al)
Even more tightly inspired by Bayesian analysis and by \g

Trust computation A,

Ns(h) +1 N¢(h) + 1
Aus [ =L gy = B

Nx(h) = “number of x’s in h”

Properties:

@ Well defined semantics: A;(s | h) is interpreted as a probability of
success in the next interaction.

@ Solidly based on probability theory and Bayesian analysis.

@ Formal result: Chernoff bound Problerror > €] < 2e—2m€2, where
m is the number of trials.
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TRAVOS (Teacy et al)

Trust computation A,

Based on g, like A1, but with serious approach to reputation. One of
the few systems to also accounts for “malicious” reports.
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Our elements of foundation

Recall the framework

@ Interface (Trust computation algorithm, A):
Input: A sequence h = x3Xz---Xn forn > 0and x; € {s,f}.
Output: A probability distribution 7 : {s,f} — [0, 1].

@ Goal:

Output 7 approximates (6,, 1 — 6,) as well as possible, under the
hypothesis that input h is the outcome of interactions with p.
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Our elements of foundation

Recall the framework

@ Interface (Trust computation algorithm, A):
Input: A sequence h = x3Xz---Xn forn > 0and x; € {s,f}.
Output: A probability distribution 7 : {s,f} — [0, 1].

@ Goal:

Output 7 approximates (6,, 1 — 6,) as well as possible, under the
hypothesis that input h is the outcome of interactions with p.

We would like to consolidate in two directions:
@ model comparison
@ complex event model
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Outline

e Towards model comparison
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Cross entropy
An information-theoretic “distance” on distributions

Cross entropy of distributions p,q : {04,

om} — [0, 1].
D(p || q)—Zp(o

-log(p(0i)/a(oi))

Itholds0 < D(p||q)<occ,andD(p || q) =0iffp=q

» Established measure in statistics for comparing distributions
discriminating

@ Information-theoretic: the average amount of information
from

=] = = E na
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Cross entropy

An information-theoretic “distance” on distributions

Cross entropy of distributions p.q : {01,...,0m} — [0, 1].

D(p || q) = Zp -log(p(0i)/a(or))

ltholds0 < D(p||q) <oc,andD(p || q)=0iffp=q.

@ Established measure in statistics for comparing distributions.

@ Information-theoretic: the average amount of information
discriminating p from q.
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Expected cross entropy

A measure on probabilistic trust algorithms

@ Goal of a probabilistic trust algorithm A: given a history X,
approximate a distribution on the outcomes O = {01,...,0m}.

@ Different histories X result in different output distributions A(- | X).
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Expected cross entropy

A measure on probabilistic trust algorithms

@ Goal of a probabilistic trust algorithm A: given a history X,
approximate a distribution on the outcomes O = {01,...,0m}.

@ Different histories X result in different output distributions A(- | X).

Expected cross entropy from A to A

ED"(A || A) = > Prob(X | A)-D(Prob(- | XA) || A(- | X))
Xeon
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An application of cross entropy (1/2)

Consider the beta model Az and the algorithms Ay of maximum
likelihood (Despotovic et al.) and A, beta (Mui et al.).
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An application of cross entropy (1/2)

Consider the beta model Az and the algorithms Ay of maximum
likelihood (Despotovic et al.) and A, beta (Mui et al.).

Theorem

If & = 0 or 6 = 1 then Ay computes the exact distribution, whereas .4;
does not. That is, for all n > 0 we have:

ED"(Ag || Ao) =0 <ED"(Ag || A1)

If0 < 6 < 1,then ED"(Ag || Ag) = oo, and A, is always better.
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An application of cross entropy

A parametric algorithm A,

(212)
Ns(h) + € Nt(h) + ¢
(s|h)= ; (fFlh)=
A= I =Tz AL = T2
For any , there exists
, Simultaneously for all
Furthermore,

, and increasing on

that minimises

is a decreasing function of ¢ on the interval

=] = = E na
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An application of cross entropy (2/2)

A parametric algorithm A,

Ns(h) + Nt(h) +
Ads [y =T e, Aty = T2

Theorem

Forany 6 € [0, 1], # # 1/2 there exists € € [0, o0) that minimises
ED"(Ag || A¢), simultaneously for all n.

Furthermore, ED"(Ag || A.) is a decreasing function of € on the interval
(0,€), and increasing on (¢, o).

v
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An application of cross entropy (2/2)

A parametric algorithm A,

A(s | h) = Ns(h) + €

_ Ne(h) + €
Ih| +2¢ ~

AU )= [+ 2¢

Theorem
Forany 0 € [0, 1], § # 1/2 there exists € € [0, co) that minimises
ED"(Ag || Ac), simultaneously for all n.

Furthermore, ED"(Ag || Ac) is a decreasing function of € on the interval
(0, €), and increasing on (&, o).

v

That is, unless behaviour is completely unbiased, there exists a unique
best A, algorithm that for all n outperforms all the others.
If & = 1/2, the larger the ¢, the better.
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An application of cross entropy (2/2)

A parametric algorithm A,

Ns(h) + € N¢(h) + €
Ags =TS ey - B

Theorem

Forany 0 € [0, 1], § # 1/2 there exists € € [0, co) that minimises
ED"(Ag || Ac), simultaneously for all n.

Furthermore, ED"(Ag || A¢) is a decreasing function of ¢ on the interval
(0, &), and increasing on (&, co).

v

@ Algorithm Ay is optimal for ¢ = 0 and for 6 = 1.
@ Algorithm A, is optimal for 6 = % + \/%
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Outline

e Modelling behavioural information

@ Event structures as a trust model
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A trust model based on event structures

Move from O = {s,f} to complex outcomes

Interactions and protocols

@ At an abstract level, entities in a distributed system interact
according to protocaols;

@ Information about an external entity is just information about (the
outcome of) a number of (past) protocol runs with that entity.

Events as model of information

@ A protocol can be specified as a concurrent process, at different
levels of abstractions.

@ Event structures were invented to give formal semantics to truely
concurrent processes, expressing “causation” and “conflict.”
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A model for behavioural information

@ ES = (E, <,#), with E a set of events, < and # relations on E.
@ Information about a session is a finite set of events

, called a
(which is ‘conflict-free’ and ‘causally-closed’).
@ Information about several interactions is a sequence of outcomes
, called a

confirm

~~~ time-out

pay ~~~~ o ignore
JEBNBEESEE
77 \xx\\
positive ~~~ neutral
e.g.,

=
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A model for behavioural information
@ ES = (E, <, #), with E a set of events, < and # relations on E.

@ Information about a session is a finite set of events x C E, called a
configuration (which is ‘conflict-free’ and ‘causally-closed’).
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A model for behavioural information

@ ES = (E, <, #), with E a set of events, < and # relations on E.

@ Information about a session is a finite set of events x C E, called a

configuration (which is ‘conflict-free’ and ‘causally-closed’).

@ Information about several interactions is a sequence of outcomes

h = XX -+ Xn € CLg, called a history.
eBay (simplified) example:

confirm ~~ time-out

N

N\/A,;VI\C\J’\G\D\-/’\’J\,‘M\:‘\:\:\‘
P ad RSN
~ =

positive ~~~ neutral ~ negative

ignore
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A model for behavioural information

@ ES = (E, <, #), with E a set of events, < and # relations on E.

@ Information about a session is a finite set of events x C E, called a

configuration (which is ‘conflict-free’ and ‘causally-closed’).

@ Information about several interactions is a sequence of outcomes

h =X1X2 - X € Cig, called a history.
eBay (simplified) example:

confirm ~~ time-out

N

SOOI,
o o

o e
Pad S
7

~

'\,‘\_,\_
positive ~~ neutral e

ignore

negative

e.g., h = {pay,confirm ,pos} {pay,confirm ,neu} {pay}
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Running example: interactions over an e-purse

authentic  ~~ forged
reject

grant

~~ incorrect

V. Sassone (Soton)
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Modelling outcomes and behaviour

@ Outcomes are (maximal) configurations
@ The e-purse example:

{g.ac +  {gfc } {gai } A{ofi }

{g,c } {g.a} {of } {gi }

i \ /
\@/

@ Behaviour is a sequence of outcomes
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Modelling outcomes and behaviour

@ Outcomes are (maximal) configurations
@ The e-purse example:

{gac +  {gfc } {gai } A{ofi }

{g.c } {g.a}

@ Behaviour is a sequence of outcomes
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Outline

° Probabilistic event structures
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Confusion-free event structures (varacca et al)

@ Immediate conflict #,: e # e’ and there is x that enables both.
@ Confusion free: #, is transitive and e #, e’ implies [e) = [¢’).
@ Cell: maximal ¢ C E suchthate,e’ € c implies e #/, €.
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Confusion-free event structures (varacca et al)

@ Immediate conflict #,: e # e’ and there is x that enables both.
@ Confusion free: #, is transitive and e #, e’ implies [e) = [¢’).
@ Cell: maximal ¢ C E suchthat e, e’ € c implies e #, €’

{gac } {gfc } {gai + A{ofi }

{g.c } {g.a} {o.f } {g.i }

i \ /
\w/
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Confusion-free event structures (varacca et al)

@ Immediate conflict #,: e # e’ and there is x that enables both.
@ Confusion free: #, is transitive and e #, e’ implies [e) = [¢’).
@ Cell: maximal ¢ C E such thate,e’ € c implies e #/, €'.

So, there are three cells in the e-purse event structure

authentic  ~~ forged correct ~~ incorrect

]

grant

reject

@ Cell valuation: a function p : E — [0, 1] such that p[c] = 1, for all c.
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Cell valuation

4/5 1/5 3/5 2/5
authentic ~~ forged correct ~~ incorrect
1/4 (\\ T
reject grant 3/4
{g.ac }  {ofc } {g.ai }  {gfi }
N ~— ~_ ///M
{g.c } {9.a } {9.f } g9 }
T \ /’//////
~
{r } —— —
\(/)///

_—

/
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Cell valuation

4/5 1/5 3/5 _ 2/5
authentic  ~~ forged  correct ~~ incorrect

oo T=IN]

reject  ~~ o grant  3/4
9/25{g,a,c } {gfc }o9/100 6/25{g,ai } {gfi }6/100

9/20 {g,c } {g.a } 35 3/20 {0,f } {9 } 310

e x /

{r} CI

\@/

1
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Properties of cell valuations

Define p(x) = [[ocx P(€). Then
e p[l]=1,;
@ p[x] > p[x’] if x C x/;
@ p is a probability distribution on maximal configurations.

925 {g,a,c } {gfc }o/w006/25{g,ai } {gfi }e6/100

9/20 {g,c } {g.a} 35 320{0f } {9, }3/10

1/4 x /

{r} IR

T~

1

So, p(x) is the probability that x is contained in the final outcome.

V. Sassone (Soton) Foundations of Computational Trust 06.11.22
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Outline

a A Bayesian event model
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Estimating cell valuations

How to assign valuations to cells? They are the model’s unknowns.

A second-order notion: we not are interested in
in the expected value of ®! So, we will:

or its probability, but

=] = = E na
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Estimating cell valuations

How to assign valuations to cells? They are the model’s unknowns.

Theorem (Bayes)

Prob[® | XA] < Prob[X | © A] - Prob[© | A]

A second-order notion: we not are interested in X or its probability, but
in the expected value of ©!
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Estimating cell valuations

How to assign valuations to cells? They are the model’s unknowns.

Theorem (Bayes)

Prob[® | XA] < Prob[X | © A] - Prob[© | A]

A second-order notion: we not are interested in X or its probability, but
in the expected value of ! So, we will:

@ start with a prior hypothesis ©; this will be a cell valuation;

@ record the events X as they happen during the interactions;

V. Sassone (Soton) Foundations of Computational Trust 06.11.22 28135



Estimating cell valuations

How to assign valuations to cells? They are the model’s unknowns.

Theorem (Bayes)

Prob[® | XA] < Prob[X | © A] - Prob[© | A]

A second-order notion: we not are interested in X or its probability, but
in the expected value of ! So, we will:

@ start with a prior hypothesis ©; this will be a cell valuation;
@ record the events X as they happen during the interactions;

@ compute the posterior; this is a new model fitting better with the
evidence and allowing us better predictions (in a precise sense).
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Estimating cell valuations

How to assign valuations to cells? They are the model’s unknowns.

Theorem (Bayes)

Prob[® | XA] < Prob[X | © A] - Prob[© | A]

A second-order notion: we not are interested in X or its probability, but
in the expected value of ! So, we will:

@ start with a prior hypothesis ©; this will be a cell valuation;
@ record the events X as they happen during the interactions;

@ compute the posterior; this is a new model fitting better with the
evidence and allowing us better predictions (in a precise sense).

But: the posteriors need to be (interpretable as) a cell valuations.
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Cells vs eventless outcomes

Letcy,...,cy be the set of cells of E, with ¢; = {e}, ... e} }.

@ A cell valuation assigns a distribution ©, to each c;, the same way
as an eventless model assigns a distribution ¢ to {s,f}.

@ The occurrence of an x from {s,f} is a random process with two
outcomes, a binomial (Bernoulli) trial on 6.

@ The occurrence of an event from cell ¢; is a random process with
K; outcomes. That is, a multinomial trial on Oc,.

To exploit this analogy we only need to lift the Az model to a model
based on multinomial experiments.

=] = = E na
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Cells vs eventless outcomes

Letcy,...,cy be the set of cells of E, with ¢; = {el, ... ,eiKi}.

@ A cell valuation assigns a distribution O, to each c;, the same way
as an eventless model assigns a distribution ¢ to {s,f}.

@ The occurrence of an x from {s,f} is a random process with two
outcomes, a binomial (Bernoulli) trial on 6.

@ The occurrence of an event from cell ¢; is a random process with
K; outcomes. That is, a multinomial trial on Oc,.

To exploit this analogy we only need to lift the A3 model to a model
based on multinomial experiments.
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A bit of magic: the Dirichlet probability distribution

The Dirichlet family D(© | o) oc [JOS* .- @«
The Dirichlet family is a

is
then

for
and

follows the law of multinomial trials

is

. That s, if
So, we start with a family

according to Bayes.
to keep updating the valuation as
V. Sassone (Soton)

, and then use multinomial trials
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A bit of magic: the Dirichlet probability distribution

The Dirichlet family D(© | o) o [JO* .- @«

Theorem
The Dirichlet family is a conjugate prior for multinomial trials. That is, if
@ Prob[® | A]is D(O | ay, ..., ak ) and
@ Prob[X | © A] follows the law of multinomial trials ©1* - - - ©¢,
then Prob[® | XA] is D(© | a1 + Ny, ..., a + Nk ) according to Bayes.
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A bit of magic: the Dirichlet probability distribution

The Dirichlet family D(© | o) o [JO* .- @«

Theorem
The Dirichlet family is a conjugate prior for multinomial trials. That is, if
@ Prob[® | A]is D(O | ay, ..., ak ) and
@ Prob[X | © A] follows the law of multinomial trials ©1* - - - ©¢,
then Prob[® | XA] is D(© | a1 + Ny, ..., a + Nk ) according to Bayes.

So, we start with a family D(©¢, | o, ), and then use multinomial trials
X : E — w to keep updating the valuation as D(Oc, | ac, + X, ).
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The Bayesian process
Start with a uniform distribution for each cell.

1/2 1/2 1/2 ) 1/2
authentic  ~~ forged correct ~~ incorrect

e =]

reject grant 1,2
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The Bayesian process
Suppose that X = {r — 2,g — 8,a+— 7,f — 1,c — 3,i — 5}. Then

1/2 1/2 1/2 _ 1/2
authentic ~~ forged correct  ~~ incorrect

e =]

reject grant 1,2
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The Bayesian process
Suppose that X = {r — 2,g — 8,a+— 7,f — 1,c — 3,i — 5}. Then

4/5 1/5 3/5 _ 2/5
authentic  ~~ forged correct ~~ incorrect

]

reject grant 3/4
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The Bayesian process
Suppose that X = {r — 2,g — 8,a+— 7,f — 1,c — 3,i — 5}. Then

4/5 1/5 3/5 _ 2/5
authentic  ~~ forged correct ~~ incorrect

]

reject grant 3/4

Theorem
el + X(eji)

L1 (e +X(e}))

E[Gg | XAl =
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The Bayesian process
Suppose that X = {r — 2,g — 8,a+— 7,f — 1,c — 3,i — 5}. Then

4/5 1/5 3/5 _ 2/5
authentic  ~~ forged correct ~~ incorrect

]

reject grant 3/4
Theorem
el + X(eji)
E[@q | XAl = —¢ i
' ke1(ae +X(&))
Corollary

E[next outcome is X | XAl = [ E[©e | X A]

eex

v
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Interpretation of results

As a result, we have lifted the trust computational algorithms based on
Ag to our event-base models by replacing

Binomials (Bernoulli) trials

B-distribution

RARAR

o K M " . " " "
0 01 02 03 04 05 06 07 08 09

multinomial trials;
Dirichlet distribution.

V. Sassone (Soton)
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Future directions (1/2)
Hidden Markov Models

Probability parameters can change as the internal state change,
probabilistically. HMM is A\ = (A, B, 7), where
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Future directions (1/2)
Hidden Markov Models

Probability parameters can change as the internal state change,
probabilistically. HMM is A = (A, B, ), where

@ Ais a Markov chain, describing state transitions;

@ B is family of distributions Bs : O — [0, 1];

@ r is the initial state distribution.

.01
1 — 2
.25
m = 1 T = 0
B.(a) = .95 O ={a,b} B»(a) = .05
By(b) = .05 B,(b) = .95
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Future directions (2/2)

Hidden Markov Models

.01
.25
m =1 7 =0
Bi(a) = .95 O = {a,b} Bz(a) = .05
Bi(b) = .05 B,(b) = .95

Bayesian analysis:

@ What models best explain (and thus predict) observations?
@ How to approximate a HMM from a sequence of observations?
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Future directions (2/2)
Hidden Markov Models

.01

.25
m =1 7 =0
Bl(a) = .95 O = {a, b} Bz(a) = .05
B.(b) = .05 Ba(b) = .95

Bayesian analysis:
@ What models best explain (and thus predict) observations?
@ How to approximate a HMM from a sequence of observations?

History h = a'®b?. A counting algorithm would then assign high
probability to a occurring next. But he last two b’s suggest a state
change might have occurred, which would in reality make that
probability very low.
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Summary

@ A framework for “trust and reputation systems”
» applications to security and history-based access control.

@ Basic policies can be specified declaratively and verified
efficiently. Quantified policies are expressive, and quantified
model checking is decidable (though hard with many quantifiers).

@ Bayesian approach to observations and approximations, formal
results based on probability theory. Towards model comparison
and complex-outcomes Bayesian model.
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Summary

@ A framework for “trust and reputation systems”
» applications to security and history-based access control.

@ Basic policies can be specified declaratively and verified
efficiently. Quantified policies are expressive, and quantified
model checking is decidable (though hard with many quantifiers).

@ Bayesian approach to observations and approximations, formal
results based on probability theory. Towards model comparison
and complex-outcomes Bayesian model.

@ Future work

Probabilistic logic.

Dynamic models with variable structure.
Better integration of reputation in the model.
Relationships with game-theoretic models.

v

v vy
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