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Computational trust
Trust is an ineffable notion that permeates very many things.

What trust are we going to have in this talk?
Computer idealisation of “trust” to support decision-making in open
networks. No human emotion, nor philosophical/sociological concept.

Gathering prominence in open applications involving safety guarantees
in a wide sense

credential-based trust: e.g., public-key infrastructures,
authentication and resource access control, network security.

reputation-based trust: e.g., social networks, P2P, trust metrics,
probabilistic approaches.

trust models: e.g., security policies, languages, game theory.

trust in information sources: e.g., information filtering and
provenance, content trust, user interaction, social concerns.
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Trust and reputation systems

Reputation

behavioural: perception that an agent creates through past
actions about its intentions and norms of behaviour.

social: calculated on the basis of observations made by others.

An agent’s reputation may affect the trust that others have toward it.

Trust

subjective: a level of the subjective expectation an agent has
about another’s future behaviour based on based on the history of
their encounters and of hearsay.

Confidence in the trust assessment is also a parameter of importance.
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Trust and security

E.g.: Reputation-based access control
p’s ‘trust’ in q’s actions at time t , is determined by p’s observations of
q’s behaviour up until time t according to a given policy ψ.

Example
You download what claims to be a new cool browser from some
unknown site. Your trust policy may be:

allow the program to connect to a remote site if and only if it has
neither tried to open a local file that it has not created, nor to
modify a file it has created, nor to create a sub-process.
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Outline

1 Some computational trust systems

2 Towards model comparison

3 Modelling behavioural information
Event structures as a trust model

4 Probabilistic event structures

5 A Bayesian event model
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EigenTrust (Kamvar et al)

Some novel ideas well established by now.

A set P of n peers who interact pairwise and mutually rate the
interaction either sat or unsat .

I Peer i computes a local ‘trust value’ in peer j :

sij = sat(i , j)− unsat (i , j) t 0.

I Peer i then defines a normalised measure of its local trust in j :

cij =
sij∑
j sij

[cij ] defines a Markov chain (i.e.,
∑

j cij = 1), with stationary
distribution (tj)j∈P . The global trust value for principal j is tj .

Simulations prove that EigenTrust is a smart system. Yet, no much
is said formally about properties, e.g. safety guarantees and the
incidence of values like tj .
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Simple Probabilistic Systems

The model λθ:

Each principal p behaves in each interaction according to a fixed
and independent probability θp of ‘success’ (and therefore 1− θp

of ‘failure’).

The framework:
Interface (Trust computation algorithm, A):

I Input: A sequence h = x1x2 · · · xn for n ≥ 0 and xi ∈ {s, f}.
I Output: A probability distribution π : {s, f} → [0,1].

Goal:
I Output π approximates (θp,1− θp) as well as possible, under the

hypothesis that input h is the outcome of interactions with p.
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Maximum likelihood (Despotovic and Aberer)

Trust computation A0

A0(s | h) =
Ns(h)

|h|
A0(f | h) =

Nf(h)

|h|

Nx(h) = “number of x ’s in h”

Bayesian analysis inspired by λβ model: f (θ | αβ) ∝ θα−1(1− θ)β−1

Properties:

Well defined semantics: A0(s | h) is interpreted as a probability of
success in the next interaction.

Solidly based on probability theory and Bayesian analysis.

Formal result: A0(s | h) → θp as |h| → ∞.
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Beta models (Mui et al)

Even more tightly inspired by Bayesian analysis and by λβ

Trust computation A1

A1(s | h) =
Ns(h) + 1
|h|+ 2

A1(f | h) =
Nf(h) + 1
|h|+ 2

Nx(h) = “number of x ’s in h”

Properties:

Well defined semantics: A1(s | h) is interpreted as a probability of
success in the next interaction.

Solidly based on probability theory and Bayesian analysis.

Formal result: Chernoff bound Prob[error ≥ ε] ≤ 2e−2mε2
, where

m is the number of trials.
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TRAVOS (Teacy et al)

Trust computation A2

Based on λβ, like A1, but with serious approach to reputation. One of
the few systems to also accounts for “malicious” reports.
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Our elements of foundation

Recall the framework

Interface (Trust computation algorithm, A):
I Input: A sequence h = x1x2 · · · xn for n ≥ 0 and xi ∈ {s, f}.
I Output: A probability distribution π : {s, f} → [0,1].

Goal:
I Output π approximates (θp,1− θp) as well as possible, under the

hypothesis that input h is the outcome of interactions with p.

We would like to consolidate in two directions:
1 model comparison
2 complex event model
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Cross entropy
An information-theoretic “distance” on distributions

Cross entropy of distributions p,q : {o1, . . . ,om} → [0,1].

D(p || q) =
m∑

i=1

p(oi) · log
(
p(oi)/q(oi)

)

It holds 0 ≤ D(p || q) ≤ ∞, and D(p || q) = 0 iff p = q.

Established measure in statistics for comparing distributions.

Information-theoretic: the average amount of information
discriminating p from q.
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Expected cross entropy
A measure on probabilistic trust algorithms

Goal of a probabilistic trust algorithm A: given a history X,
approximate a distribution on the outcomes O = {o1, . . . ,om}.

Different histories X result in different output distributions A(· | X).

Expected cross entropy from λ to A

EDn(λ || A) =
∑

X∈On

Prob(X | λ) · D(Prob(· | X λ) || A(· | X))
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An application of cross entropy (1/2)

Consider the beta model λβ and the algorithms A0 of maximum
likelihood (Despotovic et al.) and A1 beta (Mui et al.).

Theorem
If θ = 0 or θ = 1 then A0 computes the exact distribution, whereas A1

does not. That is, for all n > 0 we have:

EDn(λβ || A0) = 0 < EDn(λβ || A1)

If 0 < θ < 1, then EDn(λβ || A0) = ∞, and A1 is always better.
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An application of cross entropy (2/2)

A parametric algorithm Aε

Aε(s | h) =
Ns(h) + ε

|h|+ 2ε
, Aε(f | h) =

Nf(h) + ε

|h|+ 2ε

Theorem
For any θ ∈ [0,1], θ 6= 1/2 there exists ε̄ ∈ [0,∞) that minimises
EDn(λβ || Aε), simultaneously for all n.

Furthermore, EDn(λβ || Aε) is a decreasing function of ε on the interval
(0, ε̄), and increasing on (ε̄,∞).
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EDn(λβ || Aε), simultaneously for all n.

Furthermore, EDn(λβ || Aε) is a decreasing function of ε on the interval
(0, ε̄), and increasing on (ε̄,∞).

That is, unless behaviour is completely unbiased, there exists a unique
best Aε algorithm that for all n outperforms all the others.
If θ = 1/2, the larger the ε, the better.
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Furthermore, EDn(λβ || Aε) is a decreasing function of ε on the interval
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Algorithm A0 is optimal for θ = 0 and for θ = 1.

Algorithm A1 is optimal for θ = 1
2 ±

1√
12

.
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A trust model based on event structures
Move from O = {s, f} to complex outcomes

Interactions and protocols
At an abstract level, entities in a distributed system interact
according to protocols;

Information about an external entity is just information about (the
outcome of) a number of (past) protocol runs with that entity.

Events as model of information
A protocol can be specified as a concurrent process, at different
levels of abstractions.

Event structures were invented to give formal semantics to truely
concurrent processes, expressing “causation” and “conflict.”
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A model for behavioural information
ES = (E ,≤,#), with E a set of events, ≤ and # relations on E .

Information about a session is a finite set of events x ⊆ E , called a
configuration (which is ‘conflict-free’ and ‘causally-closed’).

Information about several interactions is a sequence of outcomes
h = x1x2 · · · xn ∈ C∗ES, called a history.

eBay (simplified) example:

confirm /o/o/o time-out

pay /o/o/o/o/o/o/o/o/o

``AAAAAAAA

>>}}}}}}}}
ignore

positive
6v 5u 5u 4t 4t 3s 2r 2r 1q 1q 0p 0p /o .n .n -m -m ,l ,l +k *j *j )i )i (h

/o/o/o neutral /o negative

e.g., h = {pay , confirm ,pos } {pay , confirm ,neu} {pay }
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Running example: interactions over an e-purse

authentic /o/o forged correct /o/o incorrect

reject /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o grant

jjUUUUUUUUUUUUUUUUUU

77ooooooooooo

ddHHHHHHHHH

OO
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Modelling outcomes and behaviour

Outcomes are (maximal) configurations

The e-purse example:

{g,a,c } {g,f,c } {g,a,i } {g,f,i }

{g,c }

oooooooooo
{g,a }

iiiiiiiiiiiiiiiii

OOOOOOOOOO

{g,f }

UUUUUUUUUUUUUUUUU

oooooooooo
{g,i }

OOOOOOOOOO

{r } {g}

KKKKKKKKK

VVVVVVVVVVVVVVVVVVVVV

sssssssss

hhhhhhhhhhhhhhhhhhhhh
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Confusion-free event structures (Varacca et al)

Immediate conflict #µ: e # e′ and there is x that enables both.

Confusion free: #µ is transitive and e #µ e′ implies [e) = [e′).

Cell: maximal c ⊆ E such that e,e′ ∈ c implies e #µ e′.
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Cell valuation: a function p : E → [0,1] such that p[c] = 1, for all c.
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Cell valuation
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Properties of cell valuations

Define p(x) =
∏

e∈x p(e). Then

p[∅] = 1;

p[x ] ≥ p[x ′] if x ⊆ x ′;

p is a probability distribution on maximal configurations.
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{g,c }9/20
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∅ 1
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So, p(x) is the probability that x is contained in the final outcome.
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Estimating cell valuations

How to assign valuations to cells? They are the model’s unknowns.

Theorem (Bayes)

Prob[Θ | X λ] ∝ Prob[X | Θλ] · Prob[Θ | λ]

A second-order notion: we not are interested in X or its probability, but
in the expected value of Θ! So, we will:

start with a prior hypothesis Θ; this will be a cell valuation;

record the events X as they happen during the interactions;

compute the posterior; this is a new model fitting better with the
evidence and allowing us better predictions (in a precise sense).

But: the posteriors need to be (interpretable as) a cell valuations.
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Cells vs eventless outcomes

Let c1, . . . , cM be the set of cells of E , with ci = {ei
1, . . . ,e

i
Ki
}.

A cell valuation assigns a distribution Θci to each ci , the same way
as an eventless model assigns a distribution θ to {s, f}.

The occurrence of an x from {s, f} is a random process with two
outcomes, a binomial (Bernoulli) trial on θ.

The occurrence of an event from cell ci is a random process with
Ki outcomes. That is, a multinomial trial on Θci .

To exploit this analogy we only need to lift the λβ model to a model
based on multinomial experiments.
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A bit of magic: the Dirichlet probability distribution

The Dirichlet family D(Θ | α) ∝
∏

Θα1−1
1 · · ·ΘαK−1

K

Theorem
The Dirichlet family is a conjugate prior for multinomial trials. That is, if

Prob[Θ | λ] is D(Θ | α1, ..., αK ) and

Prob[X | Θλ] follows the law of multinomial trials Θn1
1 · · ·ΘnK

K ,

then Prob[Θ | X λ] is D(Θ | α1 + n1, ..., αK + nK ) according to Bayes.

So, we start with a family D(Θci | αci ), and then use multinomial trials
X : E → ω to keep updating the valuation as D(Θci | αci + Xci ).
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The Bayesian process
Start with a uniform distribution for each cell.

authentic
1/2

/o/o forged
1/2

correct
1/2

/o/o incorrect
1/2

reject
1/2

/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o grant 1/2

jjUUUUUUUUUUUUUUUUUU

77ooooooooooo

ddHHHHHHHHH

OO

Theorem

E [Θei
j
| X λ] =

αei
j
+ X(ei

j )∑Ki
k=1(αei

k
+ X(ei

k ))

Corollary

E [next outcome is x | X λ] =
∏
e∈x

E [Θe | X λ]
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Interpretation of results
As a result, we have lifted the trust computational algorithms based on
λβ to our event-base models by replacing

Binomials (Bernoulli) trials 7→ multinomial trials;

β-distribution 7→ Dirichlet distribution.
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Future directions (1/2)
Hidden Markov Models

Probability parameters can change as the internal state change,
probabilistically. HMM is λ = (A,B, π), where

A is a Markov chain, describing state transitions;

B is family of distributions Bs : O → [0,1];

π is the initial state distribution.

1

.01

++ 2
.25

kk

π1 = 1
B1(a) = .95
B1(b) = .05

O = {a,b}
π2 = 0
B2(a) = .05
B2(b) = .95

V. Sassone (Soton) Foundations of Computational Trust 06.11.22 33 / 35



Future directions (1/2)
Hidden Markov Models

Probability parameters can change as the internal state change,
probabilistically. HMM is λ = (A,B, π), where

A is a Markov chain, describing state transitions;

B is family of distributions Bs : O → [0,1];

π is the initial state distribution.

1

.01

++ 2
.25

kk

π1 = 1
B1(a) = .95
B1(b) = .05

O = {a,b}
π2 = 0
B2(a) = .05
B2(b) = .95

V. Sassone (Soton) Foundations of Computational Trust 06.11.22 33 / 35



Future directions (2/2)
Hidden Markov Models

1

.01

++ 2
.25

kk

π1 = 1
B1(a) = .95
B1(b) = .05

O = {a,b}
π2 = 0
B2(a) = .05
B2(b) = .95

Bayesian analysis:

What models best explain (and thus predict) observations?

How to approximate a HMM from a sequence of observations?

History h = a10b2. A counting algorithm would then assign high
probability to a occurring next. But he last two b’s suggest a state
change might have occurred, which would in reality make that
probability very low.
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Summary

A framework for “trust and reputation systems”
I applications to security and history-based access control.

Basic policies can be specified declaratively and verified
efficiently. Quantified policies are expressive, and quantified
model checking is decidable (though hard with many quantifiers).

Bayesian approach to observations and approximations, formal
results based on probability theory. Towards model comparison
and complex-outcomes Bayesian model.

Future work
I Probabilistic logic.
I Dynamic models with variable structure.
I Better integration of reputation in the model.
I Relationships with game-theoretic models.
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