

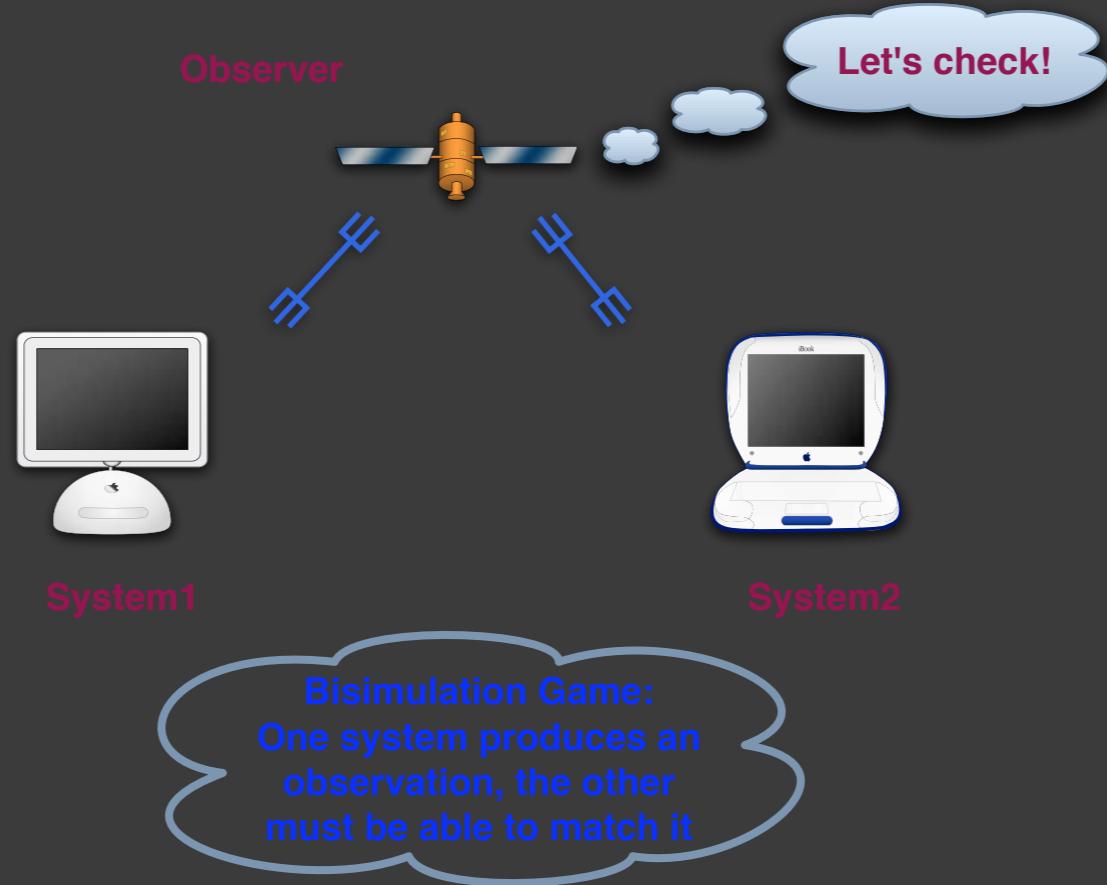
Semantic barbs: what's in an observation?

Vladimiro Sassone

joint work with Bartek Klin, Julian Rathke and Paweł Sobociński

DSSE Seminar, 6/12/06, Soton

Blackbox testing / bisimulation



if $Sys_1 - obs \rightarrow Sys'_1$ then $Sys_2 - obs \rightarrow Sys'_2$
with Sys'_1 and Sys'_2 equivalent
vice versa with Sys_1 and Sys_2 exchanged

The holy grail

most current calculi have an underlying reduction semantics

Suppose we have **syntax** + **reduction** semantics:

Goal 1: Obtain a canonical contextual equivalence \cong
= derive barbs

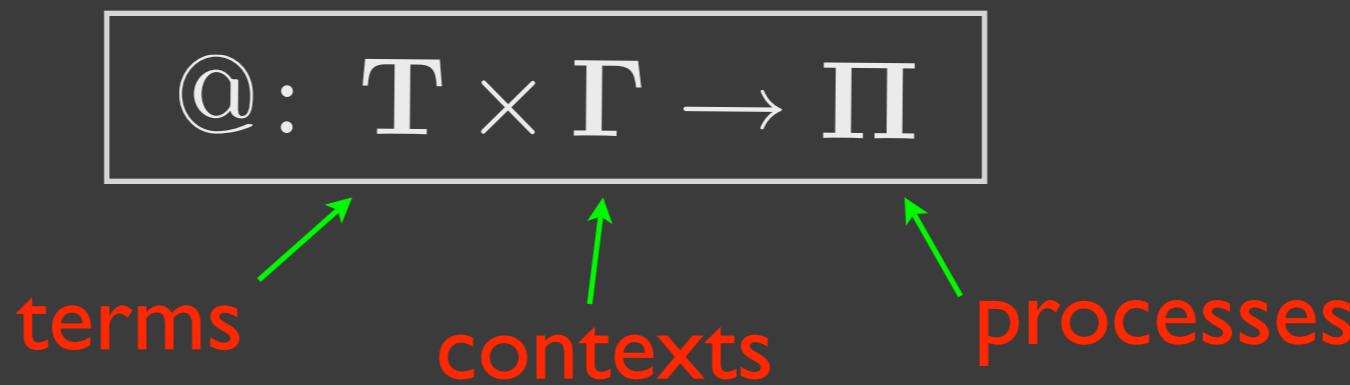
Goal 2: Obtain a bisimulation proof method for \cong
= derive labels

both stories start with seminal papers by Robin Milner

Goal I: Barbs

- **basic observable**
- normally only **immediate** observations
- introduced by Milner & Sangiorgi (1992) for CCS
 - reduction congruence is coarser than bisimilarity in CCS
- **barbs come with no explanation**
 - calculus-specific choices of barbs - often the “natural” choice forced by an a priori labelled semantics & labelled equivalence

Observable properties



$\perp \subseteq \Pi$ “successful processes”

$$(-)^\perp : \mathcal{P}(T) \rightarrow \mathcal{P}(\Gamma)$$

$$T \mapsto \{\gamma \in \Gamma \mid \forall t \in T. t \perp \gamma\}$$

contexts successful
for all terms in T .

$$(-)^\perp : \mathcal{P}(\Gamma) \rightarrow \mathcal{P}(T)$$

$$\Gamma \mapsto \{t \in T \mid \forall \gamma \in \Gamma. t \perp \gamma\}$$

terms successful
for all contexts in Γ .
means $t @ \gamma \in \perp$

... the usual properties follow

$$X \subseteq Y \Rightarrow Y^\perp \subseteq X^\perp$$

$$X \subseteq X^{\perp\perp} \quad \text{and} \quad X^\perp = X^{\perp\perp\perp}$$

$$X^\perp \cap Y^\perp = (X \cup Y)^\perp \quad \text{but} \quad X^\perp \cup Y^\perp \subseteq (X \cap Y)^\perp$$

$\{t_1\}^\perp = \{t_2\}^\perp$ — t_1 and t_2 have the same observations

Biorthogonal: a set V such that $V = V^{\perp\perp}$

Fact: biorthogonals are closed under arbitrary intersections but not in general under (even binary) unions

$$\bigcap_i V_i = \bigcap_i V_i^{\perp\perp} = \bigcap_i (V_i^\perp)^\perp = (\bigcup_i V_i^\perp)^\perp$$

$$V_1 \cup V_2 = V_1^{\perp\perp} \cup V_2^{\perp\perp} \subseteq (V_1^\perp \cap V_2^\perp)^\perp = (V_1 \cup V_2)^\perp\perp$$

Idealised calculi

T

$$\begin{array}{lcl}
 P & ::= & \epsilon \quad | \quad P \parallel P \quad | \quad M.P \\
 M & ::= & a? \quad | \quad a! \quad \quad \quad (a \in A)
 \end{array}$$

Synchrony

$$a!P \parallel a?Q \rightarrow P \parallel Q \quad (a \in A)$$

Asynchrony

$$a! \parallel a?P \rightarrow P \quad (a \in A)$$

$$(a! \stackrel{\text{def}}{=} a!\epsilon)$$

Broadcast

$$a!P \parallel \prod_i a?.Q_i \rightarrow P \parallel \prod_i Q_i$$

Immediate observations

$$\begin{array}{ll}
 \Gamma & C ::= \epsilon \quad | \quad C \parallel C \quad | \quad M_{\checkmark} \\
 & M_{\checkmark} ::= M.\checkmark
 \end{array}$$

$$\begin{array}{ll}
 \Pi & P_{\checkmark} ::= P_{\checkmark} \parallel P_{\checkmark} \quad | \quad P \quad | \quad C \quad | \quad \checkmark
 \end{array}$$

$$\begin{array}{ll}
 @ : P \times C \rightarrow P_{\checkmark} \\
 (t, \gamma) \mapsto t \parallel \gamma
 \end{array}$$

π is spent $\stackrel{\text{def}}{=}$ it has precisely one \checkmark as a component

$\pi \in \perp$ iff $\exists \pi' \in P_{\checkmark}. \quad \pi' \text{ spent} \wedge \pi \rightarrow \pi'$

Immediate observations: examples

$$a!P \parallel a?Q \rightarrow P \parallel Q \quad (a \in A)$$

$$\{a!\}^{\perp\perp} = [a?\checkmark]^{\perp} = [a!P]$$

$$\{a?\}^{\perp\perp} = [a?P]$$

||-ideal generated by t

$$\{a? \parallel b!c?\}^{\perp\perp} = [a!\checkmark, b?\checkmark]^{\perp} = [a?P \parallel b!Q]$$

$$\{a?, b!c?\}^{\perp\perp} = [a!\checkmark \parallel b?\checkmark] = [a?P, b!Q]$$

$$a! \parallel a?P \rightarrow P \quad (a \in A)$$

$$\{a!\}^{\perp\perp} = [a?\checkmark]^{\perp} = [a!.P]$$

$$\{a?\}^{\perp\perp} = T, \text{ in particular } \{a?\}^{\perp} = \{\epsilon\}^{\perp}$$

Basic observations

$$[a!P, b!Q] = \{a?\checkmark \parallel b?\checkmark\}^\perp = \{a!\}^{\perp\perp} \cup \{b?\}^{\perp\perp}$$

$$[a!P \parallel b!Q] = \{a?\checkmark, b?\checkmark\}^\perp = \{a! \parallel b!\}^{\perp\perp}$$

For V, W biorthogonals $V + W = (V \cup W)^{\perp\perp} = (V^\perp \cap W^\perp)^\perp$

Biorthogonal V is *irreducible* when

$$V = W + W' \Rightarrow V = W \vee V = W'$$

$[a!P, b!Q]$ is **reducible**

$[a!P \parallel b!Q]$ is **irreducible**, but

$[a!P \parallel b!Q]^\perp = [a?\checkmark, b?\checkmark] = \{a?\checkmark\}^{\perp\perp} \cup \{b?\checkmark\}^{\perp\perp}$ is **reducible**

Barbs

A barb is a **proper biorthogonal** V st:

- 1. V is **irreducible**;
- 2. V^\perp is **irreducible**.

$$T \downarrow_B \stackrel{\text{def}}{=} T^{\perp\perp} \subseteq B$$

$$t \Downarrow_B \stackrel{\text{def}}{=} \exists t'. t \rightarrow^* t' \wedge t' \downarrow_B$$

Thm 1

the synchronous barbs are:

$$\{a!\}^{\perp\perp} \text{ & } \{a?\}^{\perp\perp}$$

Thm 2

the asynchronous barbs are:

$$\{a!\}^{\perp\perp}$$

Proof relies on:

- 1. $V + W = V \cup W$
- 2. Irreducibles are generated by a single element

Barbs for real calculi

- Since only immediate observations are needed:
 - full calculi such as CCS or Pi can be translated to idealised calculi in order to find barbs

Join-like features

$$\boxed{\begin{array}{ccc} a?P \parallel a!P' & \rightarrow & P \parallel P' \\ ab?P \parallel a!P' \parallel b!P'' & \rightarrow & P \parallel P' \parallel P'' \end{array}}$$

$$\{a?\checkmark\}^{\perp\perp} = [a!P]^\perp = [a?\checkmark]$$

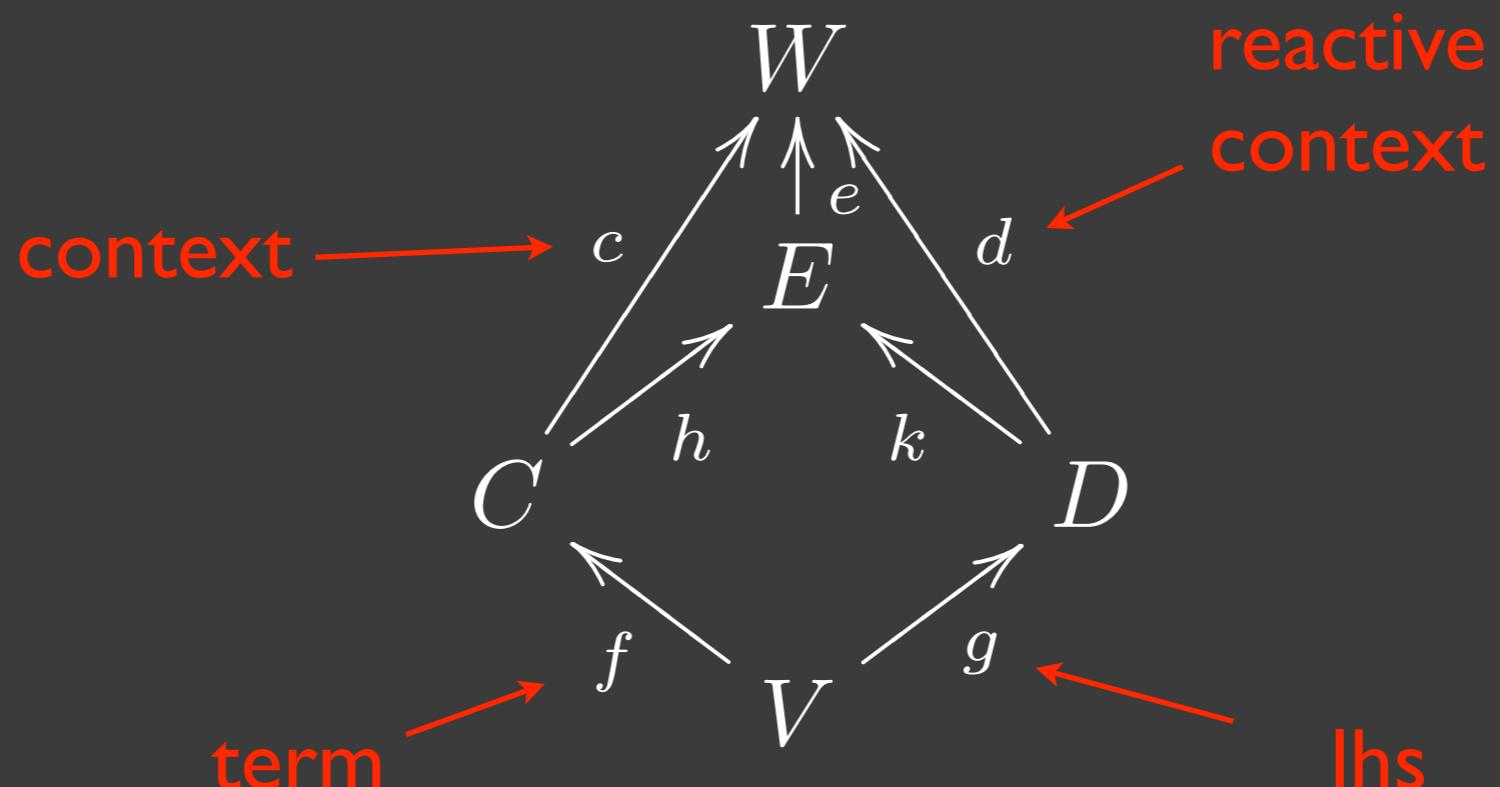
$$\{b?\checkmark\}^{\perp\perp} = [b?\checkmark]$$

$$[a?\checkmark, b?\checkmark]^{\perp\perp} = [a!P \parallel b!Q]^\perp = [a?\checkmark, b?\checkmark, ab?\checkmark]$$

This calculus' biorthogonals are not closed under union! Hard to characterise barbs.

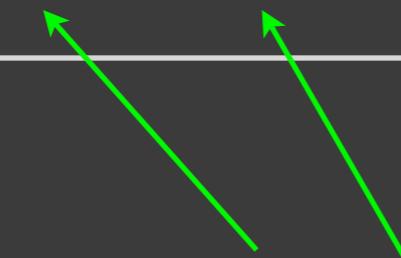
Goal 2: Labels

- Leifer and Milner 2000 - relative pushouts
 - labels are “smallest contexts which allow reduction”



Problems

$$a!P \parallel a?Q \rightarrow P \parallel Q \quad (a \in A)$$



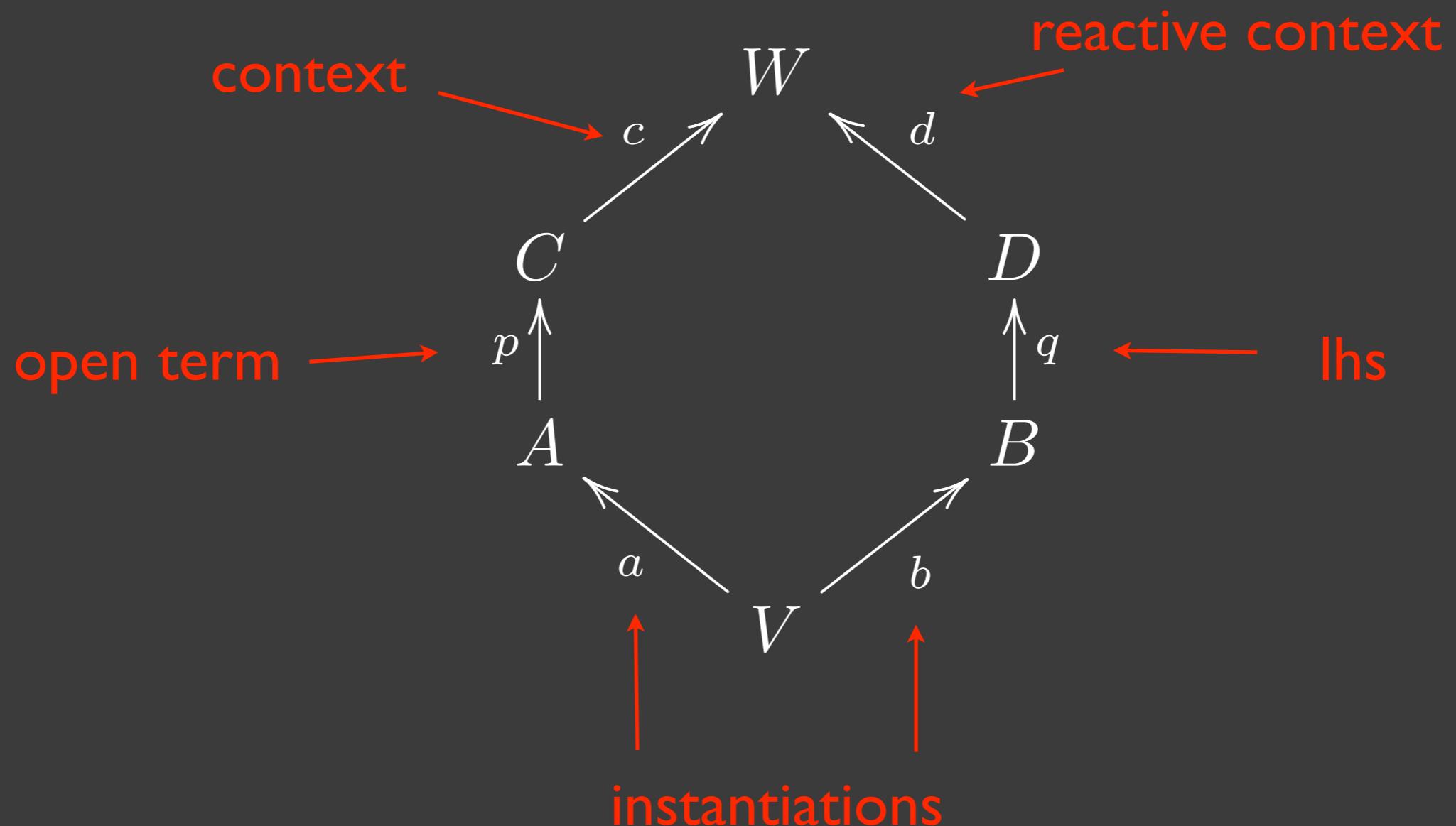
instantiating P and Q leads to infinitely many ground rules

... and so to infinitely branching rpo
lts with infinitely many useless labels

$$a!1 \parallel a?2 \rightarrow 1 \parallel 2 \quad (a \in A)$$

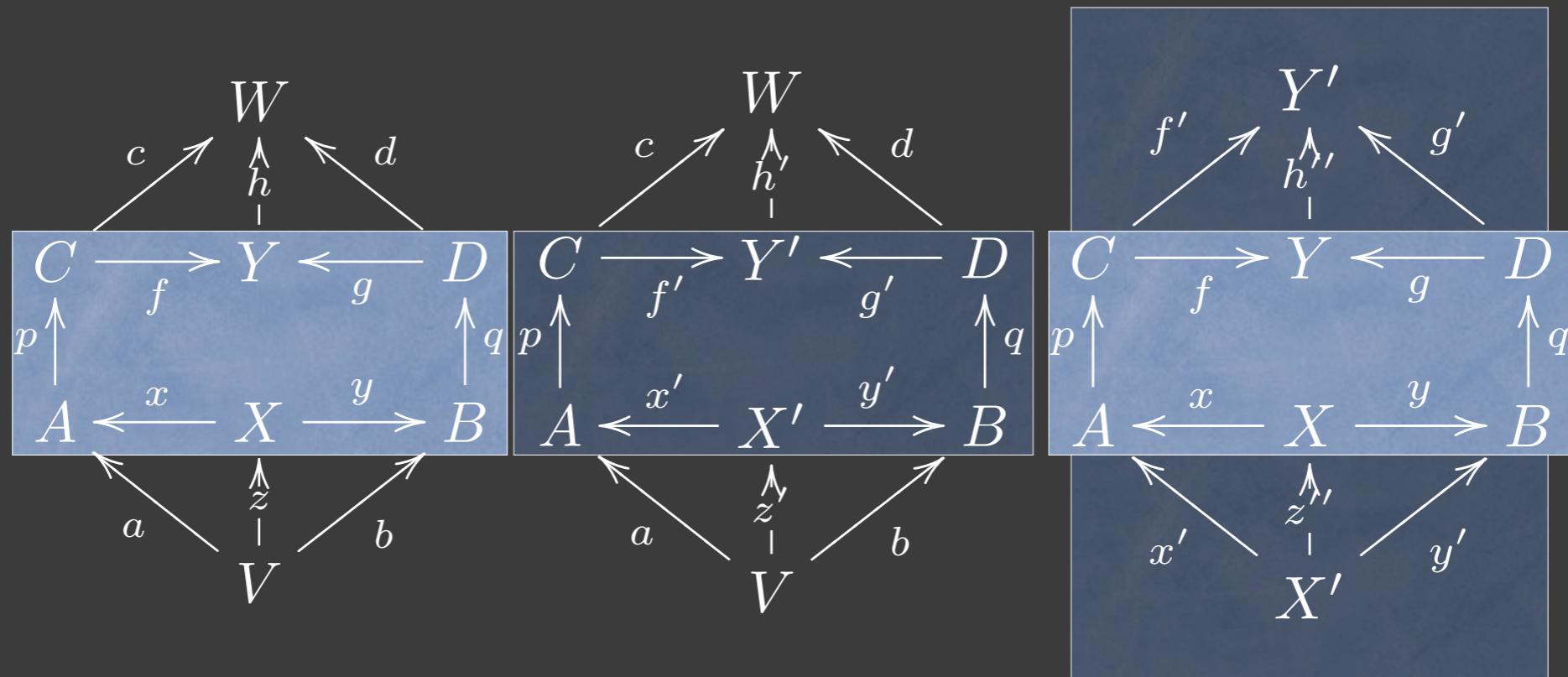
Hexagons

Semantics for parametric terms



Luxes

locally universal hexagons

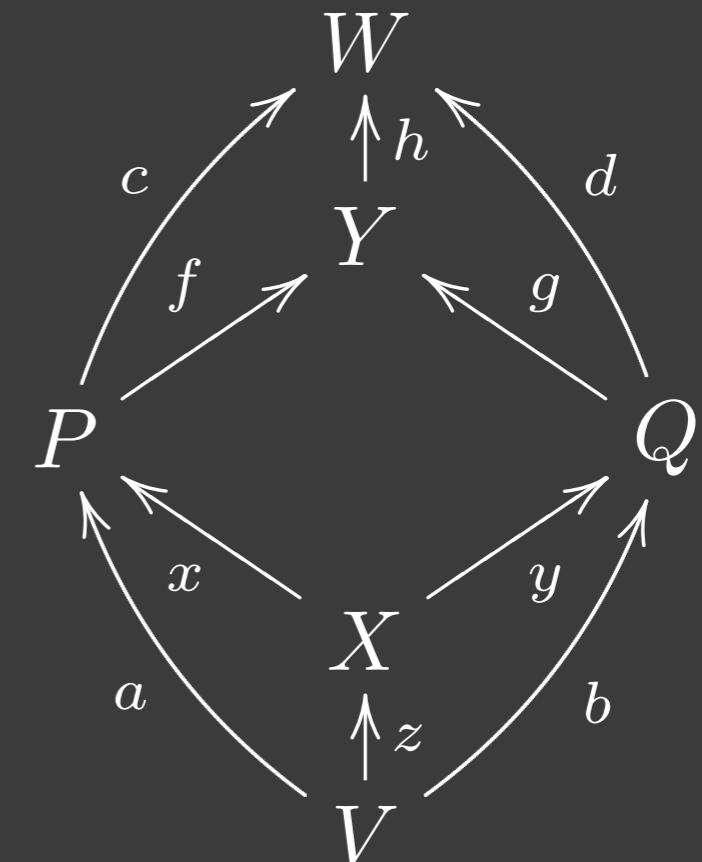


or simply a coproduct in a twisted arrow category...

Theorem

A category has luxes when it

- has relative pushouts
- has relative pullbacks
- rpo's and rpb's “commute”



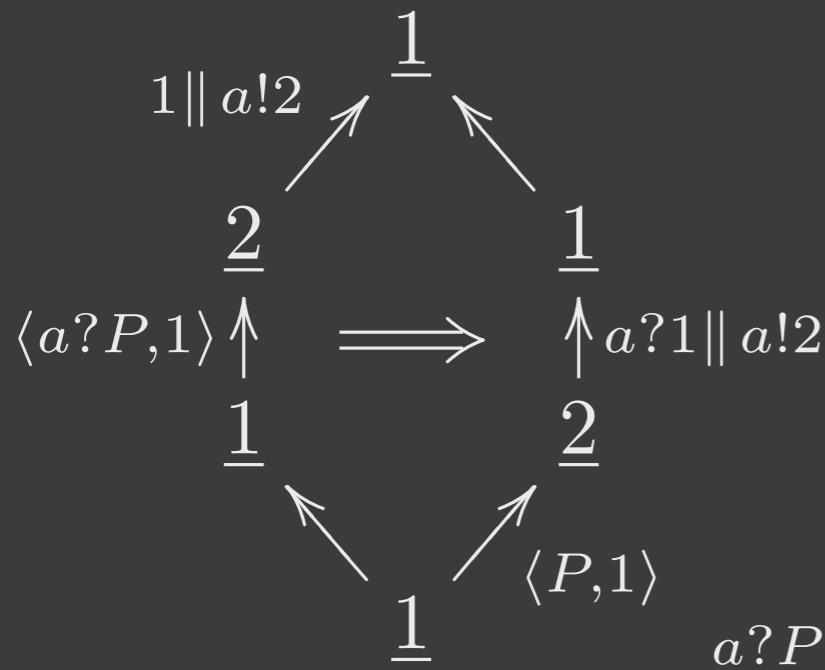
Set doesn't have luxes, but many “syntactic” categories do.

Examples

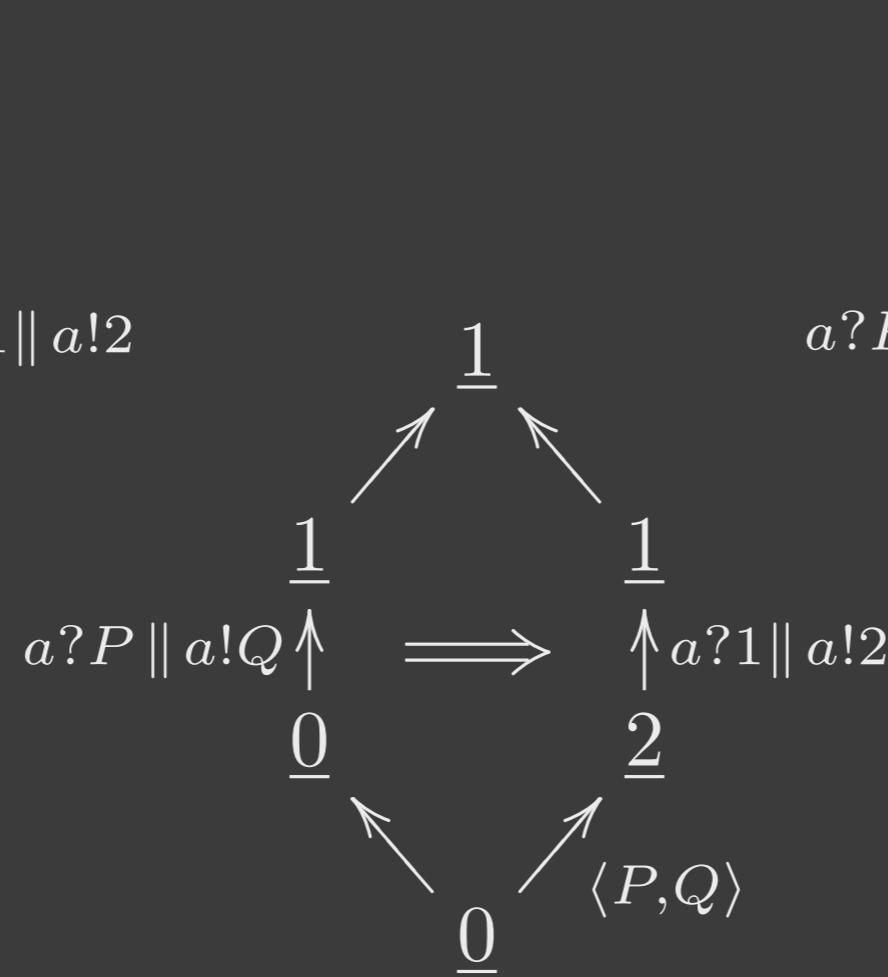
$P ::= \epsilon \mid a?P \mid a!P \mid P \parallel P$

let P & Q be some terms

context gives

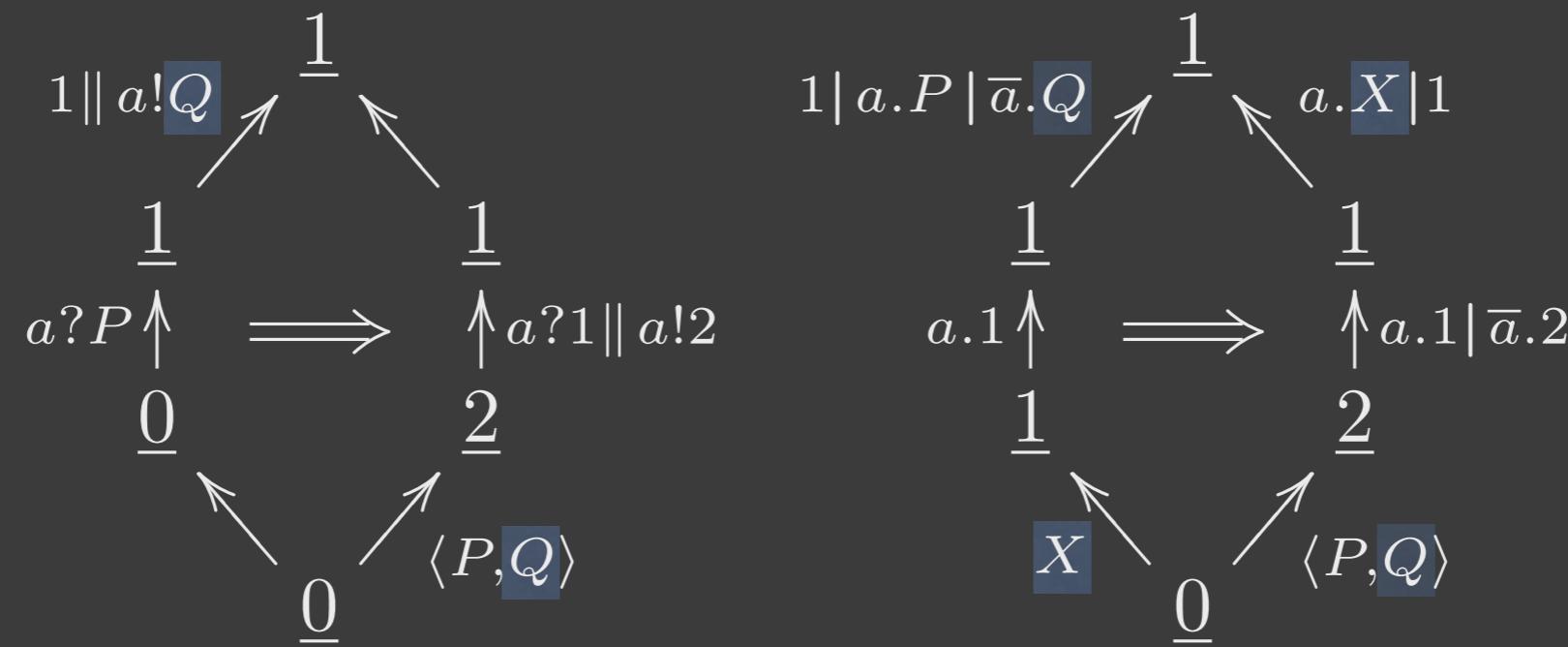


parameters give

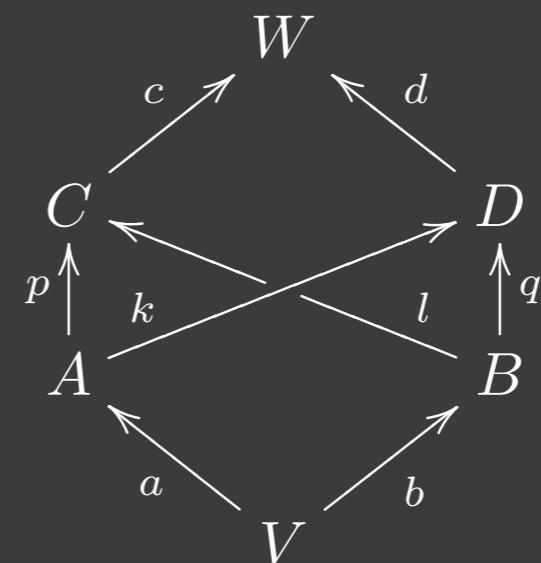


nothing gives

Problems



possible solution:



... but as yet no Its or congruence theorem

Related work

- Barbs
 - **basic biorthogonality framework**: Girard's phase semantics for linear logic, Pitt's toptop-closed relations, Krivine's realisability, P.-A. Mellies and J. Voullion LICS '05
 - **irreducibility**: basic algebraic geometry
- Labels
 - F. Bonchi, B. Koenig, U. Montanari. *Saturated semantics for reactive systems*. Proceedings of LICS '05;
 - F. Bonchi, F. Gadducci, B. Koenig. Process bisimulation via a graphical encoding. Proceedings of ICGT '06.
 - O. Jensen. PhD thesis, Cambridge '06.
 - Robin Milner's work on bigraphs

Conclusions

- Barbs
 - study interesting reduction rules
- Labels
 - understand relationship between the contribution of contexts and parameters
 - derive asynchronous labels (Honda-Tokoro)
- J. Rathke, V. Sassone and P. Sobociński. *Semantic barbs and biorthogonality*. Submitted, 2006.
- B. Klin, V. Sassone and P. Sobociński. *Labels from reductions: towards a general theory*. Proceedings of Calco'05, 2005.