Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications


Koukarenko, E, Beeby, S, Tudor, M, White, N, O’Donnell, T, Saha, T, Kulkani, S and Roy, S (2006) Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications. Microsystem Technologies, 12, (11), 1071-1077.

Download

[img] PDF
Download (483Kb)

Description/Abstract

This paper presents a silicon microgenerator, fabricated using standard silicon micromachining techniques, which converts external ambient vibrations into electrical energy. Power is generated by an electromagnetic transduction mechanism with static magnets positioned on either side of a moving coil, which is located on a silicon structure designed to resonate laterally in the plane of the chip. The volume of this device is approximately 100 mm3. ANSYS finite element analysis (FEA) has been used to determine the optimum geometry for the microgenerator. Electromagnetic FEA simulations using Ansoft’s Maxwell 3D software have been performed to determine the voltage generated from a single beam generator design. The predicted voltage levels of 0.7–4.15 V can be generated for a two-pole arrangement by tuning the damping factor to achieve maximum displacement for a given input excitation. Experimental results from the microgenerator demonstrate a maximum power output of 104 nW for 0.4g (g=9.81 m s1) input acceleration at 1.615 kHz. Other frequencies can be achieved by employing different geometries or materials

Item Type: Article
Divisions: Faculty of Physical Sciences and Engineering > Electronics and Computer Science > EEE
ePrint ID: 263652
Date Deposited: 05 Mar 2007
Last Modified: 27 Mar 2014 20:07
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/263652

Actions (login required)

View Item View Item

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics